Netherlands School of Economics

ECONOMETRIC INSTITUTE

.

Report 7206

ON NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS I : THE CYCLOTOMIC $\Gamma-\text{EXTENSION}$.

by Michiel Hazewinkel

,

March 19, 1972

ON NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS ¹⁾ I : THE CYCLOTOMIC Γ-EXTENSION.

by Michiel Hazewinkel

Contents

		0
1.	Introduction	1
2.	Generalities on Formal Groups	1
3.	Unramified and Tamely Ramified Extensions	5
4.	The Cyclotomic F-Extension	7 :
5.	Some Prelimanary Calculations	10
6.	Statement of the Theorem, Outline of the Proof	15
7.	Proof of Theorem (6.1)	18
8.	Concluding Remarks	24

Page

1. INTRODUCTION

Let K be a finite extension of Q_p , the field of p-adic numbers. Let L/K be a galois extension. Local class field theory studies the cokernel of the norm map $N_{L/K}$: L*+ K*. Let A_L , A_K be the ring of integers of L, K and let U(L), U(K) be the group of units of A_L , A_K . The most difficult part of the determination of $N_{L/K}(L^*)$ is the determination of the image (or cokernel) of $N_{L/K}$: U(L) + U(K). This map can also be viewed as follows. Let G_m be the multiplicative group. Then $G_m(A_L) = U(L)$, $G_m(A_K) = U(K)$ and the map $N_{L/K}$ is : $N_{L/K}(x) =$ sum of all the conjugates of x in $G_m(L)$.

The following generalization is now natural and also interesting for various reasons (cf. [7], §4). Let G be an arbitrary commutative group scheme over A_{K} . Define Norm(x) = sum in $G(A_{L})$ of all the conjugates of x, for $x \in G(A_{L})$. Problem: determine the cokernel of Norm :

54

¹⁾ While the research for this paper was done the author stayed at the Steklov Institute of Mathematics in Moscow (1969/1970) and he was supported by Z.W.O., the Netherlands Organization for the advancement of Pure Research.

 $G(A_L) \rightarrow G(A_K)$. As in the case of G_m an important step is to calculate the cokernel of the induced map $\widehat{G}(A_L) \rightarrow \widehat{G}(A_K)$ where \widehat{G} is the formal completion of G; \widehat{G} is a formal group over A_K .

In the following we study the cokernel of Norm: $F(A_L) \rightarrow F(A_K)$ where F is a one dimensional formal group over A_K . In case the height of F is equal to 1 the answer is up to a twist given by local class field theory (cf. [7]). Important is the fact that Norm: $F(A_L) \rightarrow F(A_K)$ ur

is subjective if height(F) = 1, where L_{ur} , K_{ur} is the maximal unramified extension of L, K. The picture changes drastically as soon as height(F) > 1. It is then not true in general that Norm (F(L)) = F(K) if L/K is a finite galois extension and the residue field of K is algebraically closed.

The main part of this paper is devoted to the precise determination of the cokernel of $F(L) \Rightarrow F(K)$ for one special class of extensions L/K. We take $K = Q_p$, the p-adic numbers. Let L be the extension of Q_p obtained by adjoining all p^r -th roots of unity. $Gal(L_{\omega}/Q_p) \approx U(Q_p) \approx \Delta \times Z_p$ where Δ is the torsion subgroup of $U(Q_p)$. Let K be the invariant field of Δ . $Gal(K_{\omega}/Q_p) \approx Z_p$, i.e. K_{ω}/Q_p is a Γ -extension. Let K_n be the invariant field of $p^nGal(K_{\omega}/Q_p)$. We determine $Im(F(K_n) \Rightarrow F(Q_p))$, where F is any formal group over Z_p of height(F) ≥ 2 . The results turn out to be generalizable to some extent. (Cf. [3]).

The results turn out to be generalizable to some extent. (Cf. [3]). The motivation to study precisely Γ -extensions came from [7]. It remains for me to thank the reviewer who thoroughly criticised an earlier version of this note.

2. GENERALITIES ON FORMAL GROUPS.

(2.1) Some Notations and Definitions.

K will always denote a local field of characteristic 0 and residue characteristic p > 0; A_K is its ring of integers; π_K is a uniformizing element and v_K is the normalized exponential valuation on K (i.e. $v_K(\pi_K) = 1$); π_K is the maximal ideal of A_K .

A one dimensional formal group over A_K is a formal power series in two variables over A_K of the form

(2.1.1)
$$F(X,Y) = X + Y + \sum_{i,j=1}^{\infty} a_{i,j} X^{i} Y^{j}$$

which satisfies

$$(2.1.2) F(X,F(Y,Z)) = F(F(X,Y),Z)$$

All formal groups considered in this paper will be one dimensional. A one dimensional formal group over A_K is automatically commutative; i.e. it satisfies F(X,Y) = F(Y,X), cf [4].

2.2. Points and Norm Maps.

Let L be a finite extension of K. One can use a formal group over A_K to define an abelian group structure on the set m_L . In fact one simply sets

(2.2.1)
$$x + y = F(x,y), x, y \in \pi_L$$

(The series F(x,y) converges in m_L). This group is denoted F(L). If $x, y \in m_L^t = m_L^t A_L$, t = 1, 2, ... then $x + y \in m_L^t$. The group F(L)therefore has a natural filtration by subgroups $F^t(L)$ where the underlying set of $F^t(L)$ is $\pi_L^t A_L$.

Because $F(X,Y) \equiv X + Y \mod(\text{degree 2})$, cf (2.1.1), we have

$$(2.2.2) Ft(L)/Ft+1(L) \stackrel{\sim}{\rightarrow} l^+$$

where ℓ^+ is the underlying additive group of the residue field ℓ of L Now let L/K be a galois extension with galois group G = Gal(L/K) = = { $\sigma_1, \ldots, \sigma_r$ }. We define a norm map F-Norm : F(L) + F(K) by the

formula

(2.2.3) F-Norm:
$$F(L) \rightarrow F(K)$$
, $x \mapsto \sigma_1 x + \sigma_2 x + \cdots + \sigma_r (x)$

(The F-sum of the conjugates of x is in K because it is invariant under G).

Examples. If $F = \hat{G}_{a}$, the additive group, given by $\hat{G}_{a}(X,Y) = X + Y$,

then $F(L) = m_L$ (with its original additive group structure) and $F(K) = m_K$. The norm map, G_a -Norm, is equal to $Tr_{L/K}$, the trace map.

If $F = \hat{G}_m$, the multiplicative group given by $\hat{G}_m(X,Y) = X + Y + XY$, then $F(L) = U_L^1$, the group of units congruent to 1 mod π_L of A_L . The norm map \hat{G}_m -Norm becomes the ordinary norm map $U_L^1 + U_K^1$ under the isomorphisms $F(L) \stackrel{\sim}{\to} U_L^1$ and $F(K) \stackrel{\sim}{\to} U_K^1$.

2.3. Height of a Formal Group.

Let F be a formal group over A_{μ} . We define inductively

(2.3.1)
$$F_2(X_1, X_2) = F(X_1, X_2)$$
, ..., $F_{n+1}(X_1, ..., X_{n+1}) = F(F_n(X_1, ..., X_n), X_{n+1})$, ...

Because F is associative and commutative, one has that $F(X_1, ..., X_n) = F(X_{\sigma(1)}, ..., X_{\sigma(n)})$ for every permutation of {1, 2, ..., n} Let p be the residue characteristic of A_K . One defines $[p]_F(X)$ as

 $[p]_{F}(X) = F_{p}(X, X, ..., X)$. We consider $[p]_{F}(X) \mod \pi_{K}$. There are two possibilities: (cf [1], [4]).

- 1° There exists a number $h \in N$ such that $[p]_F(X) \equiv g(X^{p^n}) \mod \pi_K$ where $g(Z) = b_1 Z + h_2 Z^2 + \dots$ is a power series over A_K with $b_1 \neq 0 \mod \pi_K$. The number h = h(F) is called the height of F. 2° $[p]_F(X) \equiv 0 \mod \pi_K$. In this case one defines h = h(F), the height of F, as $h = \infty$.
- 2.4. Lemma on F-Norm.

Let F be a formal group over A_K . If M is a monomial in X_1, \ldots, X_n , e.g. $M = X_1^{-1} \ldots X_n^{-n}$, we define $Tr(M) = X_1^{-1} \ldots X_n^{-n} + X_2^{-1} \ldots X_n^{-1} X_1^{-1} + \ldots + X_n^{-1} X_1^{-2} \ldots X_{n-1}^{-n}$. We write $N^i(X)$ for $X_1^i \ldots X_n^i$. Using these notations one has 2.4.1. Lemma

$$F_n(X_1, \ldots, X_n) = Tr(X_1) + \sum_{i=1}^{\infty} a_i N^i(X) + \sum_{M} a_M Tr(M)$$

where a_i , $a_M \in A_K$, and M runs through a set of monomials of total degree ≥ 2 which are not of the form $N^i(X)$. If moreover n = p, the residue characteristic of K, then $v_K(a_i) \geq 1$ unless $i = kp^{h-1}$, $k = 1, 2, ..., and <math>v_K(a_i) = 0$ if $i = p^{h-1}$, where h is the height of F. (If $h = \infty, v(a_i) \geq 1$ for all i if p = n) <u>Proof</u>. The first statement follows from the fact that F(X,Y) = X + Ymod(degree 2) and the fact that $F(X_1, ..., X_n)$ is invariant under permutations of the $X_1, ..., X_n$. The second part of the lemma follows from the first part and (2.3), because substituting X for the X_i in Tr(M) results in something $\equiv 0 \mod p$ if M is not of the form $N^i(X)$.

q.e.d

Now let L/K be a cyclic galois extension of degree n. Let $\operatorname{Tr}_{L/K}$ and $\operatorname{N}_{L/K}$ denote the trace and norm maps. We write $\operatorname{N}_{L/K}^{i}(x)$ for $(\operatorname{N}_{L/K}(x)^{i}$. From the definition of F-Norm and (2.4.1) one then immediately obtains the

2.4.2. Corollary.

$$\mathbf{F}-\mathbf{Norm}_{\mathbf{L}/\mathbf{K}}(\mathbf{x}) \equiv \mathbf{Tr}_{\mathbf{L}/\mathbf{K}}(\mathbf{x}) + \sum_{i=1}^{\infty} \mathbf{a}_{i} \mathbf{N}_{\mathbf{L}/\mathbf{K}}^{i}(\mathbf{x}) \mod \mathbf{Tr}_{\mathbf{L}/\mathbf{K}}(\mathbf{x}^{2}\mathbf{A}_{\mathbf{L}})$$

for all $x \in F(L)$. If n = p one has the same statements on the valuations of the a, as in (2.4.1).

3. UNRAMIFIED AND TAMELY RAMIFIED EXTENSIONS.

In the case of an unramified or tamely ramified extension L/K, the image of F-Norm: $F(L) \rightarrow F(K)$ is very easy to calculate.

3.1. Proposition.

Let L/K be a tamely ramified galois extension, then F-Norm: $F(L) \rightarrow F(K)$ is surjective. <u>Proof</u>. First suppose that L/K is unramified. F-Norm maps $F^{S}(L)$ into $F^{S}(K)$ and for every $y \in F(K)$ of valuation $v_{K}(y) = s$, there exists an $x \in F^{S}(L)$ such that

$$F-Norm(x) \equiv y \mod(\pi_K^{2s})$$

Indeed, according to (2.2.1) and (2. 2.3) we have

$$\operatorname{F-Norm}_{L/K}(x) \equiv \operatorname{Tr}_{L/K}(x) \mod(\pi_{K}^{2s})$$

and it thus suffices to select an $x \in F^{S}(L)$ such that $\operatorname{Tr}_{L/K}(x) = y$ which can be done because L/K is unramified. It follows that the induced map $F^{S}(L) \to F^{S}(K)/F^{S+1}(K)$ is surjective and this proves the proposition in this case according to lemma (3.2) below.

Now let L/K be totally and tamely ramified. Because Gal(L/K) is cyclic of order prime to p (cf. [8], Ch.IV, §2), it suffices to treat tamely and totally ramified extensions of prime degree ℓ , $(\ell, p) = 1$. For such extensions one has

(3.1.1)
$$\operatorname{Tr}_{L/K}(\pi_{L}^{t}A_{L}) = \pi_{K}^{r}A_{K}, r = \left[\frac{(\ell-1)+t}{\ell}\right]$$

where $[\frac{s}{\ell}]$ denotes the entier of $\frac{s}{\ell}$. (Cf. [8], Ch. V, §3) It follows that for every $s \in N$ there exists a number t_s such that

> 1° $t_s > s$ 2° $v_K(Tr_{L/K}(x)) > s \text{ if } v_L(x) > t_s$ 3° $v_K(Tr_{L/K}(x)) = s \text{ if } v_L(x) = t_s$

It follows from this and (2.4.2) that

$$F-Norm_{L/K}(zx) \equiv z \operatorname{Tr}_{L/K}(x) \operatorname{mod}(\pi_{K}^{s+1}A_{K})$$

if $\mathbf{v}_{L}(x) = t_{s}$, $z \in A_{K}$. Using this, (2.2.2) and 3^o above we see that the induced map $\mathbf{F}^{s}(L) \neq \mathbf{F}^{s}(K)/\mathbf{F}^{s+1}(K)$ is surjective, which proves the proposition in this case. Finally let L/K be tamely ramified. The extension L/K can be decomposed into a lower K $\subset L_{ur} \subset L$, where L_{ur}/K is unramified and L/L_{ur} is totally and tamely ramified. As F-Norm_{L/K} = F-Norm_L/K °

F-Norm we are through. q.e.d.

For completeness sake we state the lemma which was used twice in the proof above, and which we shall use a few more times in the sections below.

3.2. Lemma.

Let A and B be abelian groups filtered by subgroups $A = A_1 \supset A_2 \supset B = B_1 \supset B_2 \supset \cdots$ such that $A = \lim_{t \to 0} A/A_n$, and $\bigcap_{n=1}^{n} B_n = \{0\}$. Let u : A \Rightarrow B be a homomorphism and suppose that there exist indices $t_1 < t_2 < \cdots$ such that $u(A_{t_1}) \subset B_i$ and $u : A_{t_1} \rightarrow B_i/B_{i+1}$ is surjective for all $i = 1, 2, \ldots$ Then u : A \Rightarrow B is surjective.

Proof. Very easy, cf. e.g. [8], Ch. V, §1, lemma 2.

4. THE CYCLOTOMIC **F**-EXTENSION.

A Γ -extension of a field K is an (infinite) galois extension K_{∞}/K such that $Gal(K_{\infty}/K) \simeq Z_p$, the p-adic integers.

4.1. The Cyclotomic I-Extension of Q.

Let Q_p be the field of p-adic numbers. Adjoin to Q_p all p^r -th roots of unity, for all r. The result is a totally ramified abelian extension L_{∞}/Q_p of galois group isomorphic to $U(Q_p)$. Let Δ be the torsion subgroup of $U(Q_p)$. If p > 2, this is the subgroup of the (p-1-st roots of unity; if p = 2 this is the subgroup $\{1,-1\}$. Let K_{∞} be the invariant field of Δ . Then K_{∞}/Q_p is a Γ -extension (associated to the prime p). We shall call this extension the cyclotomic Γ -extension of Q_p . Let K_n be the invariant field of the invariant field of the invariant field of the invariant field of the closed subgroup $p^n \text{Gal}(K_{\infty}/Q_p)$. We obtain a tower of totally ramified extensions of degree p

7

$$\dots - K_{n+1} - K_n - \dots - K_2 - K_1 - Q_p = K$$

Another way to construct this Γ -extension of $K = Q_p$ for p > 2is as follows. Let $f(X) = X^p + p$; Let $f^{(m)}(X)$ be the m-th iterate of f(X), i.e. $f^{(m)}(X) = f^{(m-1)}(f(X))$, $f^{(o)}(X) = X$. Let $(LT)_{n+1}$ (the (n+1)-st Lubin-Tate extension of K; cf [6] or [2]) be the extension generated by any root λ_{n+1} of $f^{(n+1)}(X)$ which is not a root of $f^{(n)}(X)$. The extension $(LT)_{n+1}/K$ is galois and totally ramified; the galois group is isomorphic to $U(Q_p)/U^{n+1}(Q_p)$. (Cf. [6] or [2]; $U(Q_p) =$ units of Z_p ; $U^n(Q_p) = \{u \in U(Q_p) \mid u \equiv 1 \mod p^n\}\}$, The action of $u \in U(Q_p)$ is given by $\lambda_{n+1} \rightarrow [u]_f(\lambda_{n+1})$, where $[u]_f(X)$ is the unique power series such that $[u]_f(X) = uX \mod(\text{degree } 2)$ and $[u]_f \circ f = f \circ [u]_f$. Let ζ be a (p-1)-st root of unity, then $[\zeta]_f(X) = \zeta X$, because $(\zeta X)^p + p(\zeta X) = \zeta(X^p + p)$. The element $\mu_n = \lambda_{n+1}^{p-1}$ is therefore invariant under the action of Δ . The extension $\cup Q_p(\mu_n) / Q_p$ is the cyclotomic Γ -extension of Q_p . (If p=2one obtains in this way the whole extension L_m/Q_2). 4.2. The Number m(L/K).

Let L/K, be a totally ramified extension of degree p. Then there exists a certain number $m(L/K) \in N$ such that

(4.2.1)
$$\operatorname{Tr}_{L/K}(\pi_{L}^{t}A_{L}) = \pi_{K}^{r}A_{K}$$
 where $r = \left[\frac{(m(L/K) + 1)(p-1)+t}{p}\right]$

Cf [8], Ch. IV, §2.

4.3. Equations for μ_n .

It is not difficult to find equations for the μ_n defined in (4.1) Indeed, we can choose $\lambda_1, \lambda_2, \ldots$ inductively such that $\lambda_{n+1}^p + p\lambda_{n+1} = \lambda_n, n \ge 1, \lambda_1^{p-1} = -p$. We have $\mu_n = \lambda_{n+1}^{p-1}$; it follows that $\mu_0 = -p$ and that

(4.3.1)
$$\chi(\chi + p)^{p-1} - \mu_{n-1}$$

is the minimal polynomial of μ_n over K_{n-1}

4.4. The Numbers m

Let $m_n = m(K_n/K_{n-1})$, n = 1, 2, ... One finds by explicit calculations from equation (4.3.1) above that

(4.4.1)
$$Tr_{n/n-1}(\mu_n) = -(p-1)p$$
$$Tr_{n/n-1}(\mu_n^2) = (p-1)p^2$$

$$\operatorname{Tr}_{n/n-1}(\mu_n^{p-1}) = (-1)^{p-1}(p-1)p^{p-1}$$

(We have written $\operatorname{Tr}_{n/n-1}$ for $\operatorname{Tr}_{K_n/K_{n-1}}$). Comparing this with (4.2.1) one finds that

$$(4.4.2) \qquad m_n = 1 + p + \dots + p^{n-1}$$

In the sections below we shall need to know something about $Tr_{n/n-1}(\mu_n^k)$, especially to for the case that k is a multiple of p.

$$Tr_{n/n-1}(\mu_{n}^{kp+c}) \equiv 0 \mod \mu_{n-1}^{k}p^{c}, c \equiv 1, 2, ..., p-1; k \equiv 0, 1, 2,$$
$$Tr_{n/n-1}(\mu_{n}^{kp}) \equiv p\mu_{n-1}^{k} \mod \mu_{n-1}^{k-1}p^{p}, k \equiv 1, 2, ...$$

<u>Proof.</u> The formulas (4.4.1) above take care of the cases k = 0, c = 1, 2, ..., p-1. We have the relation

(4.5.1)
$$\mu_n^p + {\binom{p-1}{1}} \mu_n^{p-1} p + \dots + \mu_n {\binom{p-1}{p-1}} p^{p-1} = \mu_{n-1}$$

Applying $Tr_{n/n-1}$ and using (4.4.1) we see that

(4.5.2)
$$\operatorname{Tr}_{n/n-1}(\mu_n^p) \equiv p\mu_{n-1} \mod (p^p)$$

To prove the lemma for kp + c > p, multiply the relation (4.5.1) with $\mu_n^{(k-1)p+c}$ and use induction.

9

!

5. SOME PRELIMANARY CALCULATIONS.

In this and the following sections 6, 7, $K = K_o = Q_p$, and

$$\dots - \kappa_n - \dots - \kappa_1 - \kappa$$

is the lower of extensions constructed in (4.1), $K_n = K_{n+1}(\mu_n)$. If p > 2, U K_n is the cyclotomic Γ -extension: if p = 2, U K_n/K has galois group isomorphic to $U(Q_2) \simeq Z_2 \propto \{1,-1\}$. We write $F-Norm_n/k$ or $Norm_n/k$ for $F-Norm_K_n/K_k$ and N_n/k for N_K_n/K_k Further $v_{K_n} = v_n$, $A_{K_n} = A_n$.

5.1. Lemma.

Let
$$x \in F^{k}(K_{n})$$
. Then $v_{n-1}(Norm_{n/n-1}(x) \ge \min\{[\frac{m+1}{p}]^{p}, p^{h-1}\bar{t}\}$

Proof. It follows from (2.4.2) that

$$v_{n-1}(Norm_{n/n-1}(x) \ge min\{[\frac{(m_n+1)(p-1)+t}{p}], v_{n-1}(a_i)+ti\}$$

Because $v_{n-1} {a \choose p} = 0$, we can omit $v_{n-1} {a \choose i} + ti$ for $i > p^{h-1}$ without changing the minimum. If $1 \le i < p^{h-1}$, then $p|a_i$, and $v_{n-1} {a \choose i} + ti \ge p^{n-1} + ti > p^{-1} {m \choose n} + 1)(p-1) + t)$, because $m_n = 1 + p + \ldots + p^{n-1}$ and $t \ge 1$, $i \ge 1$. q.e.d. Lemma 5.1. shows that the numbers $\{[\frac{(m_n+1)(p-1)+t}{p}], p^{h-1}t\}$ are probably important in the determination of Norm $_{n/0}(F(K_n))$. 5.2. <u>The Functions</u> $\sigma_{n/k}(t)$ and $l_{n/k}(t)$

We define inductively

(5.2.1)
$$\sigma_{n/n}(t) = t, \sigma_{n/k}(t) = \sigma_{k+1/k}(\sigma_{n/k+1}(t))$$

 $\sigma_{n/n-1}(t) = \min\{[\frac{(m_n+1)(p-1)+t}{p}], p^{h-1}t\}$

It is also convenient to define

(5.2.2)
$$\sigma_{n/n-1}^{o}(t) = \left[\frac{\binom{m}{n}+1}{p}\right]$$

 $\sigma_{n/n-1}^{1}(t) = p^{h-1}t$

and

(5.2.3)
$$\iota_{n/k}(t) = -1 \text{ if } \sigma_{k/k-1}^{\circ}(\sigma_{n/k}(t)) \leq \sigma_{k/k-1}^{1}(\sigma_{n/k}(t))$$

= h-1 if $\sigma_{k/k-1}^{\circ}(\sigma_{n/k}(t)) > \sigma_{k/k-1}^{1}(\sigma_{n/k}(t))$

It follows immediately from the definitions that if k < n

$$(5.2.4) \sigma_{n/k}(t) = \min\{\sigma_{k+1/k}^{o}(\sigma_{n/k+1}(t)), \sigma_{k+1/k}^{1}(\sigma_{n/k+1}(t))\}$$

The function $\iota_{n/k}(t)$ indicates whether it is the value of $\sigma_{k/k-1}^{o}$ or $\sigma_{k/k-1}^{1}$ which determines $\sigma_{n/k-1}(t)$, or in other words whether in the step from K_k to K_{k-1} (having started in K_n with an element of valuation t), it is $\operatorname{Tr}_{k/k-1}(\operatorname{Norm}_{n/k}(x))$ or $\operatorname{N}_{k/k-1}^{p}(\operatorname{Norm}_{n/k}(x))$ for which the lower bound on the valuation is sharpest.

5.3. Lemma

$$\operatorname{Norm}_{n/o}(F^{t}(K_{n})) \subset F^{\sigma_{n/o}(t)}(K)$$

This follows immediately from (5.2.1) and lemma (5.1). We now proceed to calculate the functions $\sigma_{n/o}(t)$. In case h = 1, the functions $\sigma_{n/o}(t)$ are determined by the Herbrand functions $\psi_{K_n/K}(s)$. Indeed $\psi_{K_n/K}(s) < t \leq \psi_{K_n/K}(s+1)$ is equivalent to $\sigma_{n/o}(t) = s+1$. 5.4. Lemma.

$$\iota_{n/n}(t) = -1 \iff t \ge \frac{p^n - 1}{p^h - 1}$$

<u>Proof</u>. 1 n/n (t) = -1 is equivalent to $\sigma_{n/n-1}^{0}(t) \leq \sigma_{n/n-1}^{1}(t)$. I.e.

5.5. Lemma.

If $k \ge 2$ and $\iota_{n/k}(t) = -1$, then $\iota_{n/k-1}(t) = -1$.

<u>Proof</u>. Let $s = \sigma_{n/k}(t)$. Then $\iota_{k/k}(s) = -1$. Let $s' = \sigma_{k/k-1}(s) = \sigma_{k/k-1}^{o}(s)$

We must show that $l_{k-1/k-1}(s') = -1$. We know that

$$s \ge \frac{p^{k}-1}{p^{h}-1}$$

Hence

$$\mathbf{s'} = \left[\frac{\binom{\mathbf{m}+1}{\mathbf{p}}(\mathbf{p}-1)+\mathbf{s}}{\mathbf{p}}\right] \ge \frac{\frac{\mathbf{m}}{\mathbf{k}}(\mathbf{p}-1)}{\mathbf{p}} + \frac{\frac{\mathbf{p}^{k}-1}{(\mathbf{p}^{h}-1)\mathbf{p}}}{(\mathbf{p}^{h}-1)\mathbf{p}} = \frac{\frac{\mathbf{p}^{k}-1}{\mathbf{p}} + \frac{\mathbf{p}^{k}-1}{(\mathbf{p}^{h}-1)\mathbf{p}} \ge \frac{\frac{\mathbf{p}^{k}-1}{\mathbf{p}^{h}-1}}{\mathbf{p}^{h}-1}$$

Using (5.4), (5.5) and (4.2) it is not difficult to calculate $\sigma_{n/o}(t)$ for large enough t. We find

5.6. Lemma.

$$\frac{p^{n}-1}{p^{k}-1} \le t \le \frac{p^{n}-1}{p-1} \implies \sigma_{n/o}(t) = n$$

$$\frac{p^{n}-1}{p-1} + kp^{n} < t \le \frac{p^{n}-1}{p-1} + (k+1)p^{n} \implies \sigma_{n/o}(t) = n + k + 1.$$

Let $j_n(t)$ be the number of indices k = n, n-1, ..., 2, 1 such that

$$l_{n/k}(t) = h-1$$
. In view of (5.5) we have $j_n(t) = s \ge 1 \nleftrightarrow l_{n/n}(t) = h-1$, ..., $l_{n/n-s+1}(t) = h-1$, $l_{n/n-s}(t) = -1$, ..., $l_{n/1}(t) = -1$.

5.7 Lemma.

$$j_{n}(t) = s \ge 1 \quad \xleftarrow{p^{n-sh}-p^{s-sh}}{p^{h}-1} \le t < \frac{p^{n-(s-1)h}-p^{(s-1)-(s-1)h}}{p^{h}-1}$$
$$j_{n}(t) = 0 \quad \iff \quad \frac{p^{n}-1}{p^{h}-1} \le t$$

Proof. The second formula follows from (5.4) and (5.5). As to the first:

$$j_{n}(t) = s \ge 1 \iff p^{s(h-1)}t < [\frac{\binom{m}{n-s+1}+1(p-1)+p^{(s-1)(h-1)}t}{p}]$$

and $p^{(s+1)(h-1)}t \ge [\frac{\binom{m}{n-s}+1(p-1)+p^{s(h-1)}t}{p}]$

(Use (5.5), the fact that $\iota_{k/k}(t') = -1$ if $\iota_{k/k}(t'') = -1$ and t' \geq t" (cf. (5.4)) and $p^{m(h-1)}t \geq \sigma_{n/n-m}(t)$). The same calculations as in (5.4) now prove (5.7). q.e.d.

5.8. Proposition.

Write n = lh + r, with $1 \le r \le h$. Then we have

$$1 \leq t \leq \frac{p^{r}-1}{p-1} \Rightarrow \sigma_{n/o}(t) = n - k$$

$$\frac{p^{r}-1}{p-1} \leq t \leq \frac{p^{r+h}-1}{p-1} \Rightarrow \sigma_{n/o}(t) = n - k + 1$$

$$\frac{p^{r+kh}}{p-1} \leq t \leq \frac{p^{r+kh+h}-1}{p-1} \Rightarrow \sigma_{n/o}(t) = n - k + k + 1, \ k = 0, 1, \dots, k-1$$

$$\frac{p^{n}-1}{p-1} \leq t \leq \frac{p^{n}-1}{p-1} + p^{n} \Rightarrow \sigma_{n/o}(t) = n + 1$$

$$\frac{p^{n}-1}{p-1} + kp^{n} < t \leq \frac{p^{n}-1}{p-1} + (k+1)p^{n} \Rightarrow \sigma_{n/0}(t) = n + k + 1, k = 1, 2, ...$$

5.9. Remark.

These formulas are also true if $h = \infty$; take l = 0, r = n

T

5.10. Corollary.

$$F-Norm_{n/o}(F(K_n)) \subset F^{n}(K)$$

where $\alpha_n = n - [\frac{n-1}{h}]$

5.11. Proof of Proposition (5.8).
Let
$$j_n(t) = s \ge 1$$
. Then according to (5.7)
$$\frac{p^{n-sh}-p^{s-sh}}{p^{h}-1} \le t < \frac{p^{n-sh+h}-p^{s-1-sh+h}}{p^{h}-1}$$

Further

$$\frac{p^{n-s}-1}{p^{h}-1} \le \sigma_{n/n-s}(t) = p^{s(h-1)}t < \frac{p^{n+h-s}-p^{h-1}}{p^{h}-1}$$

We have $l_{n-s/n-s}(\sigma_{n/n-s}(t)) = -1$ (because $j_n(t) = s$) and we can therefore now calculate $\sigma_{n-s/o}(\sigma_{n/n-s}(t)) = \sigma_{n/o}(t)$ by means of lemma (5.6). The result is

$$(5.11.1) \quad \frac{p^{n-sh}-p^{s-sh}}{p^{h}-1} \leq t \leq \frac{p^{n-sh}-p^{s-sh}}{p-1} \quad \Rightarrow \quad \sigma_{n/o}(t) = n-s$$

and

$$(5.11.2) \frac{p^{n-sh}-p^{s-sh}}{p-1} < t < \frac{p^{n+h-sh}-p^{s-1-sh+h}}{p^{h}-1} \Rightarrow \sigma_{n/o}(t) = n - s + 1$$

Because $h \ge 1$, we have that $0 < p^{s-sh} \le 1$ for all s = 0, 1, 2, ...It follows that

(5.11.3)
$$t \ge \frac{p^{n-sh}-p^{s-sh}}{p-1} \iff \frac{p^{n-sh}-1}{p-1} \leqslant t$$

Now put the formulas (5.11.2) and (5.11.1) for s = 1, 2, ..., ltogether (note that s = l + 1 gives nothing if n = lh + h); use (5.11.3) and extend with the result of (5.6). The result is proposition (5.8). 6. STATEMENT OF THE THEOREM. OUTLINE OF THE PROOF.

6.1. Theorem.

Let F be a formal group over Z_p . Let $\dots -K_n - K_{n-1} - \dots - K_1 - K = Q_p$ be the tower of extensions constructed in §4. (If $p > 2, \bigcup K_n$ is the nⁿ cyclotomic Γ -extension of Q : if p = 2 it is a slightly larger abelian totally ramified extension). Let $h = h(F) \ge 2$. Then we have $(n \ge 1)$

$$F-Norm_{n/o}(F(K_n)) = F^{\alpha}(K)$$

where α_n is equal to $\alpha_n = n - \left[\frac{n-1}{h}\right]$

6.2. <u>Remark</u>.

The theorem is also true for $h = \infty$; $\left[\frac{n-1}{h}\right] = 0$.

6.3. Proof of Theorem (b1) in case $h = \infty$.

For each $s \ge n$, let $t_s = \frac{p^n - 1}{p - 1} + (s - n)p^n$. It is not difficult to calculate $\sigma_{n/k}(t_s)$ and $\sigma_{n/k}(t_s+1)$ for k = n-1, n-2, ..., 2, 1. One finds

(6.3.1)
$$\sigma_{n/k}(t_s) = \frac{p^k - 1}{p - 1} + (s - n)p^k + (n - k)p^k$$

 $\sigma_{n/k}(t_s + 1) = \frac{p^k - 1}{p - 1} + (s - n)p^k + (n - k)p^k + 1$

It is now easy to check that

(6.3.2)
$$\sigma_{k/k-1}^{\circ}(\sigma_{n/k}(t_s)) < \sigma_{k/k-1}^{1}(\sigma_{n/k}(t_s))$$

It follows from this, (2.4.2) and (6.3.1) that the induced map

(6.3.3) Norm_{k/k-1} :
$$F^{\sigma_n/k}(t_s)(K_k)/F^{\sigma_n/k}(t_s)+1}(K_k) \longrightarrow F^{\sigma_n/k-1}(t_s)(K_{k-1})/F^{\sigma_n/k-1}(t_s)+1}(K_{k-1})$$

is equal to the map

(6.3.4)
$$\operatorname{Tr}_{k/k-1} : \pi_{k}^{\sigma_{n/k}(t_{s})} \xrightarrow{\sigma_{n/k}(t_{s})+1} A_{k} \xrightarrow{} A_{k}$$

+
$$\pi_{k-1}^{\sigma_{n/k-1}(t_s)} A_{k-1}^{\sigma_{n/k-1}(t_s)+1} A_{k-1}^{\sigma_{n/k-1}(t_s)+1}$$

This last map is surjective because $\sigma_{k/k-1}^{o}(\sigma_{n/k}(t_{s}) + 1) =$

= $\sigma_{k/k-1}^{o}(\sigma_{n/k}(t_s)) + 1$, and K_k/K_{k-1} is totally ramified (Cf. 4.2.1).

It follows from this and the fact that (6.3.3) and (6.3.4) are the same maps that the map

(6.3.5) Norm_{n/o}:
$$F^{s}(K_{n}) \rightarrow F^{\sigma}n/o^{(t_{s})}(K)/F^{\sigma}n/o^{(t_{s})+1}(K)$$

is surjective. In view of lemma (3.2) and corollary (5.10) this concludes the proof in case $h = \infty$ because $\sigma_{n/o}(t_n) = n = \alpha_n$ if $h = \infty$. 6.4. Idea of the proof of theorem (6.1) in case $h < \infty$.

A first step in the proof of theorem (6.1) is to show that for every $s \ge n - \left[\frac{n-1}{n}\right]$ there exists a t_s , and an element $x_s \in \pi_{n} K_n$ such that $v_o(Norm_{n/o}(x_s)) = s$. For $s \ge n$ one can take $t_s = \frac{p^n - 1}{p-1} + (s-n)p^n$ (cf. (6.3)). Let $\ell = \left[\frac{n-1}{n}\right]$. For $n - \ell \le s < n$ a natural choice of t_s is

(6.4.1)
$$t_s = \frac{p^{n-(n-s)h}-1}{p-1}$$

Then $j_n(t_s) = n - s$ (cf. (5.7)). It is easy to calculate $\sigma_{n/k}(t_s)$, for k = n-1, n-2, ..., 1, 0. The result is

$$\sigma_{n/m}(t_s) = p^{(n-m)(h-1)}t_s \quad \text{for } n \ge m \ge s$$

 $(6.4.2) \sigma_{n/m}(t_s) = p^{(n-s)(h-1)}p^{-(s-m)}t_s + (s-m)p^m \quad s \ge m \ge n-(n-s)h$ $\sigma_{n/n-(n-s)h}(t_s) = t_s + (n-s)(h-1)p^{n-(n-s)h}$

16

$$\sigma_{n/m}(t_s) = \frac{p^m - 1}{p - 1} + (s - m)p^m \qquad n - (n - s)h \ge m \ge 0$$

$$\sigma_{n/o}(t_s) = s$$

17

As in (6.3) it is usefull to calculate also $\sigma_{n/k}(t_s+1)$. Because h > 1, also $j_n(t_s+1) = n - s$. Let $\alpha_{n/k}(t_s)$ be defined by

 $\alpha_{n/k}(t_s) = (n-m)(h-1) \qquad \text{for } n \ge m \ge s$

 $(6.4.3)\alpha_{n/k}(t_s) = (n-s)(h-1) - (s-m)$ for $s \ge m \ge n-(n-s)h$

$$\alpha_{n/k}(t_s) = 0 \qquad \text{for } n-(n-s)h \ge m \ge 0$$

One then has

(6.4.4)
$$\sigma_{n/k}(t_s+1) = \sigma_{n/k}(t_s) + p^{\alpha_{n/k}(t_s)}$$

(In all these calculations the simple fact $\sigma_{k/k-1}^{o}(rp) = r + p^{k-1}$,

 $k \ge 2$ is very usefull. It follows immediately from $m_k = (1+p+\ldots+p^{k-1}))$. A convenient picture of $\sigma_{n/k}(t_s)$ and $\sigma_{n/k}(t_s+1)$ is sketched below

According to lemma (6.5) below to calculate $\operatorname{Norm}_{n/k}(x) \mod \pi_k^{(t_s+1)}$ where x has valuation $v_n(x) = t_s$, we can disregard for all m, $n \ge m \ge k$, all terms of $\operatorname{Norm}_{n/m}(x)$ of which the valuation falls below the lower line in the picture above. In §7 below we shall show that in fact for $x \in \pi_m A_m$

(6.4.5) Norm_{m/m-1}(x) =
$$N_{m/m-1}^{p-1}(x) \mod \pi_{m-1}^{n/m-1}(t_s)$$
, if $v_m(x) = \sigma_{n/m}(t_s)$
and $n \ge m \ge s$

and for
$$x \in \pi_{k}^{A}$$

(6.4.6) Norm_{k/k-1}(x) = Tr_{k/k-1}(x) mod $\pi_{k-1}^{\sigma_{n/k-1}(t_{s})}$ if $v_{k}(x) = \sigma_{n/k}(t_{s})$
and $s \ge k > 0$

6.5. Lemma.

Let $t > t' \ge 1$, $\sigma_{m/k}(t) = s$, $\sigma_{m/k}(t') = s'$. If $x, y \in \pi_{m,m}^A$, $v_m(x) = t$, $v_m(y) = t'$, then

$$\operatorname{Norm}_{m/k}(x+y) \equiv \operatorname{Norm}_{m/k}(x) \mod \pi_k^{s'}$$

<u>Proof.</u> Because A_m is complete and (2.1.1), (2.2.1), there is an $y' \in \pi_m^{t'}A_m$ such that $x + y = x + {}_F y'$. Now $\operatorname{Norm}_{m/k}(x + {}_F y') =$ $\operatorname{Norm}_{m/k}(x) + {}_F \operatorname{Norm}_{m/k}(y')$. Because $\sigma_{m/k}(t') = s'$, $\operatorname{Norm}_{m/k}(y') \equiv 0$ $\operatorname{mod} \pi_k^{s'}$. Another appeal to (2.1.1) concludes the proof.

7. PROOF OF THEOREM (6.1).

7.1. Proposition.

Let F, K_n , h, α_n be as in theorem (6.1). Then for every s $\geq \alpha_n = n - [\frac{n-1}{h}]$, there is a t_s such that

(i)
$$F-Norm_{n/o}$$
 maps $F^{s}(K_{n})$ into $F^{s}(K)$

(ii) F-Norm_{k/o} maps
$$F^{\sigma_n/k}(t_s^{\pm 1})(K_k)$$
 into $F^{s+1}(K)$ for all $0 \le k \le n$

(iii) The induced map

$$\mathbf{F}^{\mathbf{t}}(\mathbf{K}_{n}) \neq \mathbf{F}^{\mathbf{s}}(\mathbf{K})/\mathbf{F}^{\mathbf{s+1}}(\mathbf{K})$$

is surjective.

<u>Proof.</u> Let n = lh + r, $1 \le r \le h$. For $s \ge n$ take $t_s = \frac{p^n - 1}{p - 1} + (s - n)p^n$. For $n - l \le s < n$ take $t_s = \frac{p^{n - (n - s)h} - 1}{p - 1}$. Parts (i) and (ii) of the proposition then follow from (6.4.2) - (6.4.4). For $s \ge n$ (iii)

follows from (6.3) (the proof for $h = \infty$) and (6.5). Now let $n - \ell \leq s < n$ We shall first establish (6.4.5) and (6.4.6).

Let $n \ge j > s$. To prove (6.4.5) we must show that

(7.1.1)
$$\sigma_{j/j-1}^{o}(\sigma_{n/j}(t_s)) \ge \sigma_{n/j-1}(t_s) + p^{n/j-1}(t_s)$$

(7.1.2)
$$v_{j-1}(a_i) + i\sigma_{n/j}(t_s) \ge \sigma_{n/j-1}(t_s) + p^{n/j-1}(t_s), i \in \mathbb{N}, i \neq p^{h-1}$$

where a_i , i = 1, 2, ... are the coefficients appearing in formula (2.4.2) for F-Norm.

Now
$$\sigma_{j/j-1}^{o}(\sigma_{n/j}(t_s)) = \left[\frac{(m_j+1)(p-1)+p^{(n-j)(h-1)}t_s}{p}\right] \ge$$

 $= \rho^{j-1} + \rho^{-1} \rho^{(n-j)(h-1)} \frac{p^{n-(n-s)h}}{p^{-1}} + \frac{1}{p}$
and $\sigma_{n/j-1}(t_s) + p^{\alpha_n/j-1}(t_s) = p^{(n-j+1)(h-1)} \cdot \frac{p^{n-(n-s)h}-1}{p^{-1}} + p^{(n-j+1)(h-1)} =$
 $= p^{h+sh-jh+j-2} + \dots + p^{(n-j+1)(h-1)+1} + 2p^{(n-j+1)(h-1)+1}$

because $j-1 \ge (h+sh-jh+j-2)+1$ (as $j \ge s + 1$). This proves (7.1.1). If i is not a multiple of p^{h-1} , $v_{j-1}(a_i) + i \cdot t \ge \sigma_{j/j-1}^{o}(t)$ for all $t \in N$, this proves (7.1.2) for those $i \ne p^{h-1}$, which are not a multiple of

p^{h-1}. Finally if
$$i \stackrel{\geq}{=} 2p^{h-1}$$
, then $v_{j-1}(a_i) + i\sigma_{n/j}(t_s) \ge p^{2(h-1)}\sigma_{n/j}(t_s)$
 $\stackrel{\geq}{=} 2p^{h-1}\sigma_{n/j}(t_s) \ge p^{h-1}\sigma_{n/j}(t_s) + p^{h-1} \cdot p^{n/j}(t_s) = p^{h-1}\sigma_{n/j}(t_s) + p^{n/j-1}(t_s)$
because $\sigma_{n/j}(t_s) \ge p^{n/j}(t_s)$. This proves (7.1.2).

To prove (6.4.6) we must show that (cf. (2.4.2)) for $s \ge j > 0$

(7.1.3)
$$\sigma_{j/j-1}^{1}(\sigma_{n/j}(t_{s})) \ge \sigma_{n/j-1}(t_{s}) + p^{n/j-1}(t_{s})$$

.

(7.1.4)
$$v_{j-1}(a_i) + i.t_s \ge \sigma_{n/j-1}(t_s) + p^{n/j-1}(t_s)$$

 $i = 1, 2, 3, ...$

(7.1.5)
$$\sigma_{j/j-1}^{o}(2\sigma_{n/j}(t_s)) \ge \sigma_{n/j-1}(t_s) + p^{n/j-1}(t_s)$$

First let $s \ge j \ge n-(n-s)h$. Then $\alpha_{n/j}(t_s) \ge 0$ and p divides $\sigma_{n/j}(t_s)$. (Cf. (6.4.2)). It follows that

$$\sigma_{j/j-1}^{o}(2\sigma_{n/j}(t_{s})) = \sigma_{n/j-1}(t_{s}) + p^{-1}\sigma_{n/j}(t_{s}). \text{ As } \sigma_{n/j}(t_{s}) \ge p^{n/j}(t_{s}), \text{ and}$$

$$\alpha_{n/j-1}(t_{s}) = \alpha_{n/j}(t_{s}) - 1, \text{ this proves } (7.1.5) \text{ for } s \ge j > n-(n-s)h. \text{ If}$$

$$n-(n-s)h \ge j > 0, \text{ then } \sigma_{n/j}(t_{s}) \ge p \text{ and hence } \sigma_{j/j-1}(2\sigma_{n/j}(t_{s})) \ge c$$

$$\sigma_{j/j-1}(\sigma_{n/j}(t_{s})) + 1 = \sigma_{n/j-1}(t_{s}) + 1 = \sigma_{n/j-1}(t_{s}) + p^{n/j-1}(t_{s}).$$

This proves (7.1.5). As to (7.1.4), let i be not divisible by p^{h-1} . Then $v_{j-1}(a_i) \ge p^{j-1}$ and we have

$$\frac{(m_{j}+1)(p-1)+2t}{p} \leq \frac{(m_{j}+1)(p-1)+2t}{p} = p^{j-1} + \frac{p-1}{p} + \frac{2t}{p} \leq p^{j-1} + i.t \leq \frac{(m_{j}+1)(p-1)+2t}{p} \leq \frac{v_{j-1}(a_{j}) + it}{p}$$

provided p > 2 and $t \ge p$. If p = 2 then

$$\begin{bmatrix} (\underline{m}_{j+1})(p-1)+2t \\ p \end{bmatrix} = 2^{j-1} + t \le v_{j-1}(a_{j}) + it$$

for all $t \ge 1$. As $\sigma_{n/i}(t_n) \ge p$ for all $s \ge j > 0$ this shows that (7.1.5) implies (7.1.4) for those i which are not divisible by p^{h-1} . If i is divisible by p^{h-1} (7.1.4) follows from (7.1.3) (which is the case $i = p^{h-1}$ of (7.1.4)). It therefore remains to prove (7.1.3). We have

$$\sigma_{j/j-1}^{1}(\sigma_{n/j}(t_{s})) = p^{h-1}.p^{(n-s)(h-1)}.p^{-(s-j)}t_{s} + (s-j)p^{j}.p^{h-1}$$

$$\sigma_{n/j-1}(t_s) + p^{(n-s)(j-1)} = p^{(n-s)(h-1)} \cdot p^{-(s-j+1)} \cdot t_s + (s-j+1)p^{j-1} + p^{(n-s)(h-1)}p^{-(s-j+1)}$$

If s > j > n-(n-s)h, we have $(s-j)p^{j}p^{h-1} - (s-j+1)p^{j-1} > 3p^{j-1}$ and $(n-s)(h-1) - (s-j+1) \le j-1$ because $s \ge n - l \ge n - \frac{n}{h}$. This proves (7.1.3) in this case. If $s > n-(n-s)h \ge j > 0$, then $\alpha_{n/j-1}(t_s) = 0$ and $(s-j)p^{j}p^{h-1} \ge 0$

 \geq (s-j+1)p^{j-1} + 1. It remains to prove (7.1.3) in the case s = j. We have to prove that

$$p^{h-1} \cdot p^{(n-s)(h-1)} \cdot t_s \ge p^{-1} \cdot p^{(n-s)(h-1)} \cdot t_s + p^{s-1} + p^{-1} \cdot p^{(n-s)(h-1)}$$

or equivalently

$$t_{s} \geq \frac{p^{n-(n-s)h_{+1}}}{p^{h}-1}$$

as $t = (p-1)^{-1}(p^{n-(n-s)h} + 1)$, this follows from the fact that $(p-1)^{-1}(p^{f}-1) \ge (p^{h}-1)^{-1}(p^{f}+1)$ if $f \ge 1$, and $h \ge 2$ and the fact that $n-(n-s)h = n-nh+sh \ge n-nh+(n-l)h = n-lh = r \ge 1$ because $s \ge n - l$ and , n = lh+r, $1 \le r \le h$. This concludes the proof of (6.4.6). Let a = a ______, the coefficient of N^p in (2.4.2). Let $z \in A_{c} = A_{c} = Z_{p}$.

According to (6.4.5) and (5.5) we have

(7.1.6) Norm_{n/s}
$$(z\mu_n^s) \equiv \pm z^p$$
 an-s. $\mu_{n-s}^{\sigma_{n/s}(t_s)}$ mod $\mu_{n-s}^{\sigma_{n/s}(t_s+1)}$

(the sign is + if p > 2, and $(-1)^{n-s}$ if p = 2).

For $k \leq s$, it is $Tr_{k/k-1}$ which is the most important part of F-Norm_{k/k-1} according to (6.4.6). We wish to apply (4.5) and shall therefore need to show that for $s \geq k > n-(n-s)h$

(7.1.7)
$$\operatorname{Tr}_{k/k-1}(p^{s-k}\mu_{k}^{p^{-(s-k)}}\sigma_{n/s}(t_{s})) \equiv p^{s-k+1}\mu_{k-1}^{p^{-(s-k+1)}}\sigma_{n/s}(t_{s})$$

$$\underset{k-1}{\overset{\sigma}{\underset{k-1}{\text{mod }}}} u_{k-1}^{(t_{s}+1)}$$

(Note that $v_k(p^{s-k}) + p^{-(s-k)}\sigma_{n/s}(t_s) = \sigma_{n/k}(t_s)$ for $s \ge k \ge n-(n-s)h$; further $n-(n-s)h \ge r \ge 1$, and for $k \le n-(n-s)h, \sigma_{n/k}(t_s)$ contains no factors p so that we cannot apply (the second formula of) lemma (4.5) for $k \le n-(n-s)h$).

If $s \ge k > n-(n-s)k$, there is a factor p in $p^{-(s-k)}\sigma_{n/s}(t_s)$ so that we can apply the second formula of lemma (4.5). The result is that formula (7.1.7) holds modulo

$$p^{\mathbf{s}-\mathbf{k}} \cdot p^{\mathbf{p}} \cdot \boldsymbol{\mu}_{\mathbf{k}-1}^{-(\mathbf{s}-\mathbf{k}+1)} \sigma_{\mathbf{n}}/\mathbf{s}^{(\mathbf{t})} - 1$$

We must show that the valuation of this is larger than or equal to $\sigma_{n/k-1}(t_s)$. But $v_{k-1}(p^{s-k+1}) + p^{-(s-k+1)}\sigma_{n/s}(t_s) = \sigma_{n/k-1}(t_s)$ so that

it suffices to show that

(7.1.8)
$$\mathbf{v}_{k-1}(\mathbf{p}^{p-1}\boldsymbol{\mu}_{k-1}^{-1}) \geq \mathbf{p}^{\alpha}\mathbf{n/k-1}^{(t_s)}$$

We have

$$v_{k-1}(p^{p-1}\mu_{k-1}^{-1}) \ge p^{k-1}-1; \quad \alpha_{n/k-1}(t_s) = (n-s)(h-1)-(s-k+1)$$

(7.1.8) follows from this because $(k-1) - {(n-s)(h-1)-(s-k+1) = -nh+sh+n \ge -nh+(n-k)h+n = n-h = r \ge 1$. This proves (7.1.7)

Using (6.4.6), (7.1.6), (7.1.7) and (6.5) we now obtain, writing l(s) for n-(n-s)h,

(7.1.9) Norm_{n/l(s)}
$$(z\mu_n^s) \equiv \pm z^p \cdot a^{n-s} \cdot p^{s-l(s)} \cdot \mu_{l(s)}^t$$

$$\operatorname{mod} \frac{\sigma_{n/\ell(s)}(t_{s}^{+1})}{\mu_{\ell(s)}}$$

(because $p^{-(s-\ell(s))}\sigma_{n/s}(t_s) = p^{-s-n+nh-sh} \cdot p^{(n-s)(h-1)}t_s = t_s$). Now

$$t_s = \frac{p^{n-(n-s)h}-1}{p-1} = \frac{p^{\ell(s)}-1}{p-1}$$

It follows from (4.2.1) that $v_{\ell(s)-1}(\operatorname{Tr}_{\ell(s)/\ell(s)-1}(\mu_{\ell(s)}^{t})) = \frac{p^{\ell(s)-1}-1}{p-1} + p^{\ell(s)-1}$ and (using induction one finds)

(7.1.10)
$$\mathbf{v}_{o}(\mathbf{Tr}_{\boldsymbol{\ell}(s)/o}(\boldsymbol{\mu}_{\boldsymbol{\ell}(s)}^{\mathsf{t}})) = \boldsymbol{\ell}(s)$$

Combining this with (7.1.9) and (6.4.6) we find

(7.1.11) Norm_{n/o}(
$$z\mu_n^s$$
) $\equiv \pm z^p$ (n-s)h a ps b mod ps+1 mod ps+1

where b is some element of Z_p of valuation $v(b) = \ell(s)$. Part (iii) of proposition (7.1) follows because v(a) = 0 and we can extract p-th roots in Z/(p).

q.e.d.

7.2. Proof of Theorem (6.1)

Combine (7.1) and (5.10) and use the lemma (3.2) on filtered abelian groups

7.3. Corollary (of the proof of Theorem (6.1)).

Let L be an unramified algebraic extension of Q_p ; let $L_n = K_n L$ where K_n is as in theorem (6.1). Then theorem (6.1) also holds with K_n replaced by L_n

7.4. Corollary.

Let L be an unramified algebraic extension of Q_p , and let ...-L_n-...-L₁ - L be an extension such that there exists a finite unramified extension K' of L such that $L_n K' = K' K_n$. Then theorem (6.1) also holds with K_n replaced by L_n .

Proof. Consider the commutative diagram

The map $\operatorname{Norm}_{K_n^{\prime}/L_n}$ is surjective according to proposition (3.1). The image of $\operatorname{Norm}_{K_n^{\prime}/K^{\prime}}$ is $\operatorname{F}^n(K^{\prime})$ according to (7.3). The same arguments as used to prove (3.1) in the unramified case show that $\operatorname{Norm}_{K_{\prime}^{\prime}/L}(\operatorname{F}^n(K^{\prime})) = \operatorname{F}^n(L)$. q.e.d.

8. CONCLUDING REMARKS.

8.1. <u>A Counter Example</u>.

Let K_n be as in theorem (6.1). Fix an index *i* and consider the Γ -extension ...- $K_n - \ldots - K_{i+1} - K_i$ of K_i . It is not difficult to check that theorem (6.1) is not true for this Γ -extension, if is large enough even if F is defined over Z_p .

8.2. More General <u><u><u>Γ</u>-Extension</u>.</u>

Let K be a local field of characteristic 0 and residue characteristic p, and let K_{∞}/K be a vextension of galois group $Gal(K_{\infty}/K) \cong Z_p$. Let K_n be the invariant field of $p^n Gal(K_{\infty}/K)$. Let F be a formal group of height $h \ge 2$ over K. For each n we define γ

 γ_n = smallest natural number such that Norm $(F(K_n)) \subset F^n(K)$ δ_n = largest natural number such that $F^n(K) \subset Norm_{n/o}(F(K_n))$ Then one can prove If the residue field of K is algebraically closed then the differences $\delta_n - \frac{(h-1)}{h} n e_K$ and $\gamma_n - \frac{(h-1)}{h} n e_K$ are bounded

independently of n. (cf [3]).

REFERENCES.

- [1]. Fröhlich, A (1968), Formal Groups. Lecture Notes in Mathematics <u>74</u>, Springer.
- [2]. Hazewinkel, M (1969), Abelian Extensions of Local Fields. Thesis, Amsterdam.
- [3]. Hazewinkel, M (), On Norm Maps for one Dimensional Formal Groups. II:
 Γ-Extensions of Local Fields with Algebraically Closed Residue
 Field (in preparation).
- [4]. Lazard, M (1955), Sur les Groupes de Lie Formels à un Paramètre. Bull.
 Soc. Math. France 94, 251-274.
 - [5]. Lubin, J (1964), One Parameter Formal Lie Groups over -adic integer Rings. Ann. of Math. <u>80</u>, 464-484.
 - [6]. Lubin, J and J. Tate (1965), Formal Complex Multiplication in Local Fields. Ann. of Math. <u>81</u>, 380-387.
 - [7]. Mazur, B (1969), Rational Points of Abelian Varieties with Values in Towers of Number Fields. Mimeographed, Harvard.
 - [8]. Serre, J.P. (1962), Corps Locaux. Hermann.
- [9]. Tate, J (1967), p-divisible Groups. Proc. of a Conference on LocalFields held at Driebergen, ed. by T.A. Springer. Springer, 158-183.

Michiel Hazewinkel Econometric Institute, Netherlands School of Economics, Burg. Oudlaan 50, ROTTERDAM-3016. The Netherlands.