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1. INTRODUCTION

Let K be a finite extension of Qp, the field of p-adic numbens.
Let L/K be a galois extension. Local class field theory studies the
L/K ° L** X% Let AL, A!( be the ring of
integers of L, K and let U(L), U(K) be the group of units of AL’ Ay
The most difficult part of the determination of NL/K(L*) is the
determination of the image (or cokernel) of NL/K : U(L) » U(K). This
map can also be viewed as follows. Let Gm be the multiplicative group.

Then Gm(AL) = U(L), Gm(AK) = U(K) and the map N

cokernel of the norm map N

Lk 18 ¢ Ny () =
sum of all the conjugates of x in Gm(L).
The following generalization is now natural and also interesting

for various reasons (cf. [7], §4). Let G be an arbitrary commutative

group scheme over AK. Define Norm(x) = sum in G(AL) of all the conjugates

of x, for x EG(AL). Problem: determine the cokernel of Norm :

g

4

[
Y

") While the research for this paper was done the author stayed at the
Steklov Institute of Mathematics in Moscow (1969/1970) and he was

supported by Z.W.0., the Netherlands Organization for the advancement

of Pure Research.

R T A S
o TUUUATISTH CENTRUM
T A LU A ety



G(AL) ->G(AK). As in the case of G an igportant step is to calculate
the cokernel of the induced map G(AL) ->G(AK) where G is the formal
completion of G; G is a formsal group over AK.

In the following we study the cokernel of Norm: F(AL) *-F(AK) vhere
F is a one dimensional formal group over AK' In case the height of F
is equal to 1 the angwer is up to a twist given by local class field

theory (cf. [7]). Important is the fact that Norm: F(A, ) » F(AK )
. ur ur

is sutjective if height(F) = 1, where L Kur is the maximal
unramified extension of L, K. The picture changes drastically as soon as

height(F) > 1. It is then not true in general that Norm (F(L)) = F(K)

.

if L/K is a finite galois extension and the residue field of K is
algebraically closed.
The main part of this paper is devoted to the precise determination

of the cokernel of F(L) + F(K) for one special class of extensions L/K.

We take K = Q”, the p-adic numbers. et L be the extension of Op obtained
by adjoining all pr-th roots of unity. Gal(ym/qp) = U(Qp) = Ax Zp

where A is the torsion subgroup of U(Qp). Let K be the invariant field
of A, Gal(K“/Qp) = Zp, i.e. Kw/Qp is a '-extension. Let K be the

invariant field of pnGal(Km/Qp). We determine Im(F(Kn) - F(Qp)), where
F is any formal group over Z_ of height(F) > 2.
sand_piocfs ) P N
The resultsvturn out to be generalizable to some_  extent. (Cf. [3]).
The motivation to study precisely T-extensions came from [7].
It remains for me to thank the reviewer who thoroughly criticised

an earlier version of this note.

2. GENRERALITIES ON FORMAL GROUPS.

(2.1) Some Notations and Definitions.

K will always denote a local field of characteristic O and residue

characteristic p > O; AK is its ring of integers; ﬂK is a uniformizing

element and v, is the normalized exponential valuation on K
(i.e. VK("K) 1);'mK is the maximal ideal of A.

A one dimensional formal group over AK is a formal power series

in two variables over AK of the form




(2.1.1) F(X,Y) =X+ Y+ I a XY
. s 1
1,J=1

which satisfies

(2.1.2) P(x,F(Y,2)) = F(P(x,Y),Z)

All formal groups considered in this paper will be one dimensional.
A one dimensional formal group over Ae is automatically commutative;
i.e. it satisfies F(X,Y) = F(Y,X), cf [k].

2.2. Points and Norm Maps.

Let L be a finite extension of K. One can use a formal group over
AK to define an asbelian group structure on the set m_. In fact one

L
simply sets

(2.2.1) x+y=Pxw), xX,V¥ Eli
F
(The series F(x,y) converges in mL). This group is denoted F(L).
It x, ¥ EW{ = ﬂ;AL st =1,2, ... thenx + y € 7n;. The group F(L)
F
therefore has a natural filtration by subgroups Ft(L) vhere the
underlying set of Ft(L) is ";AL'

Because F(X,Y) = X + Y mod(degree 2), cf (2.1.1), we have

(2.2.2) PRt ) 3t

vhere £* is the underlying additive group of the residue field £ of L
Nov let L/K be a galois extension with galois group G = Gal(L/K) =
= {01, ey dr}. We define a norm map F-Norm : F(L) + F(K) by the

formula
- - H + .«
(2.2.3) F-Norm: F(L) + F(X), x> O X4 Ok e 0 _(x)
(The F-sum of the conjugates of x is in K because it is invariant under

G).
- o . .
Examples. If F = G_, the additive group,given by Ga(X,Y) =X + Y,



then F(L) = ™. (with its original additive group structure) and
F(K) = mK" The norm map, Ga—Norm,is equal to TrL/K’ the trace map.

If F =G, the multiplicative group given by Gm(x,Y) =X +Y + XY,
1
L’
The norm map Gm-Norm becomes the ordinary norm map U1 -+ U1 under

. . v v L K
the isomorphisms F(L) + U, and F(K) + Uy -

then F(L) = U , the group of units congruent to 1 mod T of A‘L

2.3. Height of a Formal Group.

Let F be a formal group over AK We define inductively

(2.3.1) F2(x1,x2) = F(X1,X2) »oeee 5 B (x1, ey X ) =

1 n+1

= F(Fn(x1, cees xn),jxh*1), ces

Because F is associative and commutative, one has that

F(X1, cees xn) = 11‘()(0m s eees Xa(n’) for every permutation of {1, 2, ..., n}
Let p be the residue characteristic of A . One defines [p]F(X) as
[p]F(X) = FP(X,X, veey X). We consider [p]F(X) modn, . There are two

possibilities: (ef [1], [k]).
h
1° There exists a number h € N such that [p]F(X) & g()(p ) modm

K
vhere g(Z) = b.Z +h
b, # 0 modm

2 . . .
22 + ... 18 a power series over AK with

- The number h = h(F) is called the height of F.
(P]F(X) =0 modﬂK. In this case one defines h = h(F), the
height of F, as h = =,

20

2.4, Lemma on F-Norm.

Let Frbe a fopnal group over AK If ¥ is a xll.lonomal in X1, ceey X

1 n . - 1 n
e.g. M = X1 Xn , we define Tr(M) LSRR Xn +

n’

r r r r.r r
e, ox e e x B x ?

. i
. : 1 . We write N (X) for

1

X? v X:. Using these notations one has



2.4.1, Lemma

Fn(X1, cees xn) = Tr(x1) +

nm~m g

aiNi(X) + f{ a,Tr (M)

1=1

vhere ai, ay € AK’ and M runs through a set of monomials of total degree

> 2 which are not of the form N (X).

If moreover n = p, the residue characteristic of K, then vK(ai)-z 1

~ . . -1
unless i = kph 1 k=1,2, ..., and VK(ai) =0ifi = ph , where

h is the height of F. (If h = w,v(ai).z 1 for all i if p = n)

Proof. The first statement follows from the fact that F(X,Y)= X + Y

mod(degree 2) and the fact that F(X1, e Xn) is invariant under
permutations of the X1, ey Xn. The second part of the lemma follows

from the first part and (2.3), because substituting X for the Xi
in Tr(M) results in something =0 mod p if M is not of the form
N (X).
q.e.d

Now let L/K be a cyclic galois extension of degree n. Let

. i
TrL/K and NL/K denote the trace and norm maps. We write NL/KCz)
for (N (Jﬂl. From the definition of F-Norm and (2.4.1) one then

L/K

immediately obtains the

2.4.2. Corollary.

(A,)

F-NormL/K( 0= TrL/K(x) + 0z a.Ni/K(x) mod Tr

j=q 1 L L/K

for all x € F(L). If n = p one has the same statements on the

valuations of the a; as in (2.4%.1).

3. UNRAMIFIED AND TAMELY RAMIFIED EXTENSIONS.

In the case of an unramified or tamely ramified extension L/K,
the image of F-Norm: F(L) » F(K) is very easy to calculate.
3.1. Proposition.

Let L/K be a tamely ramified galois extension, then F-Norm:

F(L) » F(K) is surjective.



Proof. First suppose that L/K is unramified. F-Norm maps F°(L) into
F°(K) and for every y € F(K) of valuation vK(y) =3,
there exists an x € F°(L) such that

F-Norm(x) = ¢ mod(r")

Indeed, according to (2.2.1) and (2. 2.3) we have

t

F-Norm, . (x) (x) mod(nis)

TrL/K
and it thus suffices to select an x € F° (L) such that TrL/K(I) =

which can be done because L/K is unramified. It follows that the
induced map F° (L) - FS(K)/FS+1(K) is surjective and this proves
the proposition in this case according to lemma (3.2) below.

Now let L/K be totally and tamely ramified. Because Gal(L/K)
is cyclic of order prime to p (ef. [8], Ch.IV, §2), it suffices
to treat tamely and totally ramified extensions of prime degree 2,

(2,p) = 1. For such extensions one has

(3.1.1) (nfny) = mia = (22t

L/K

where [%—]denotes the entier of %-. (cr. [8], cn. v, §3)

It follows that for every s € N there exists a number ts such that

o

1 t > s
s
o .
2 vK(TrL/K(I)) >s if vL(x) > ts
o . _
3 vK(TrL/K(I)) =5 if VL(I) =t

It follows from this and (2.4.2) that

F—NormL/K (zx) = = TrL/K(x mod(w AK)

if v (x) =t, z€ Ag. Using this, (2.2.2) and 3° above we see that

t

the induced map F (L) + F (K)/FS+1( K)

is surjective, which proves

the proposition in this case.



Finally let L/K be tamely ramified. The extension L/K can be

decomposed into a tower Kc Lur cL, vhere Lur/K is unramified and

L/Lur is totally and tamely ramified. As F—NormL/K = F—NormLur/K °

F-KRo we are through. q.exd:
ImL/Lur

For completeness sake we state the lemma which was used twice
in the proof above, and which we shall use a few more times in the

sections below. |
3.2. Lemma.

Let A and B be abelian groups filtered by subgroups A = A1 o A2 2

B=3B 2B,>... such that A = 1im A/A_, and 2 B = {o}.

Let u : A+ B be a homomorphism and suppose that there exist indices

<t <... < B. : jecti
ty <t, such that u(Ati) B; and u Ati+ BllBl+1 is surjective

for all i =1, 2, .... Then u : A > B is surjective.

Proof. Very easy, cf. e.g. [8], Ch. V, §1, lemma 2.

k., THE CYCLOTOMIC r-EXTENSION.

A T-extension of a field K is an (infinite) galois extension
K_/K such that Gal(K_/K) = Zp, the p-adic integers.

L.1. The Cyclotomic '~-Extension of Qp.

Let Qp be the field of p-adic numbers. Adjoin to Qp all

pr—th roots of unity, for all r. The result is a totally ramified
abelian extension Lm/Qp of galois group isomorphic to U(Qp). Let
A Ybe the torsion subgroup of U(Qp). If p > 2, this is the subgroup

of the (p-1-st roots of unity; if p = 2 this is the subgroup {1,-1}.
Let K_ be the invariant field of A. Then Km/Qp is a T'-extension
(associated to the prime p). We shall call this extension the
cyclotomic T'-extension of Qp. Let K be the invariant field of the
closed subgroup pnGal(Km/Qp). We obtain a tower of totally ramified

extensions of degree p



"'-Kn+1‘-K-'“-K QpSK

Another way to construct this I'-extension of K = Qp for p > 2

is as follows. Let £(X) = XP + p ; Let £™)(X) be the m-th iterate
of £(x), i.e. £ (x) = £™Vex)), #9000 = x. Let (xm)_,,

(the (n+1)-st Lubin-Tate extension of K; ef [6] or [2]) be the
extension generated by any root A of f‘“*‘)(x) which is not a
root of f(n)(X) The extension (LT) /K is galois and totally
ramified; the galois group is 1somorph1c to U(Qp)/Un+1(Qp). !

(ce. [6) or [2]; U(Qp) = units of 2.5 U“(Qp) = {u € U(Qp)| £ 1 mod p°}),
The action of u € U(Qp) is given by xn+1h* [u]f(kn+1), where

[u]f(x) is the unique power series such that [u]f(x) = uX mod(degree 2)
and [u]fo f= ftv[u]f. Let  be a (p-1)-st root of unity, then

[K]f(X) = X , because (£X)P + p(zX) = g(Xx’+ p ). The element
uoo= l::l is therefore invariant under the action of A. The
extension g Qp(nn) / QP is the cyclotomic '-extension of Qp. (If p=2

one obtains in this way the whole extension LQ/Q2).

4.2, The Number m(L/K).

Let L/K, be a totally ramified extension of degree p. Then there
exists a certain number m(L/K) € N such that

r o= (LK) + )(p-1)4t,

t r
(4k.2.1) TrL/K("LAL) = “KAK where >

cr B1, ch. IV, §2.

4.3. Equations for M

It is not difficult to find equations for the My defined in (4.1)

Indeed, we can choose Ays 12, «+. inductively such that

-1
1§+1 + p) = An’ n>1, 1? = -p. We have H, Ap+1, it follows

n+1

that U, = =P and that

-1
(L.3.1) X(X + P)p - un-1

is the minimal polynomial of u over Kn-1



4.4, The Numbers m
—_— =
Let m = m(Kn/Kn-1)’ n=1,2, ... One finds by explicit

calculations from equation (4.3.1) above that

Tr_, L (u) = ~(p=1)p

n/n-1

(k.h.1) ngm4h€)=(p4b2

e T = (2P (pe1)pP

(We have written TT, /oy fOT Trg /Kn-1). Comparing this with (L4.2.1)

one finds that
(h.4.2) mo=1+p+... ¢ ‘pn.1

In the sections below we shall need to know something about

Trn/n_1(u§), especially to for the case that k is a multiple of p.

4,5, Trace Lemma.

+Cy - k
Trn/n-1(u£p c) = 0 mOd ]Jn__1pc| c = 1’ 29 e ey p-1', k = 0, ‘, 2,
kpy = _ K k-1 p
Trp /o1 (Mg ) S PH_j mod W Zupt, k=1, 2, ...

Proof. The formulas (4.L.1) above take care of the cases k = 0,

c=1,2, ..., p=1v We have the relation
p , (P-1y p-1 + p=1, p-1 _
(h'5'1) Un ( 1 )un p + e un(p_1 )p

Applying Trn/n_1 and using (4.4.1) we see that

(k.5.2) Trn/n_1(u§) pu _, mod (p")

To prove the lemma for kp + ¢ > p, multiply the relation (L4.5.1) with
(k=1)p+c
Hn

and use induction .
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. 5. SOME PRELIMANARY CALCULATIORS.
In this and the following sections 6, T, K = K, = Qp' and
uo'-Kn-on--K1-K
is the tower of extensions constructed in (L.1), K = Kn_1(un).

Iftp>2, UK is the cyclotomic '-extension: if p = 2, U Kn/K has
n n

galois group isomorphic to U(Q2) =2, x {1,-1}. We write

F-Norm .or Norm for F-No and N for N

n/k n/x ™ /e 0 e TOT UK /K
Further vK = vn, AKn = An.
5.1. Lemma,

m +1)(p-1)+t 1
Let x € Fk(Kn). Then v, _,(Norm , .(x) > min{[ - > o)

Proof. It follows from (2.4.2) that
(m_+ 1) (p-1)+t
P

v 1(Normn

- (x) > min{[

/n-1 1, vn-1(ai)+ti}

Because v 1(a h-1) = 0, we can omit v !

. A h-
_ n_1(ai)+tc. for i > p

without changing the minimum. If 1 <i < ph-1, then p|ai, and

1

vh_1(ai) + ti 2_Pn- + ti > p‘1(mn+1)(p-1) + t), because

mn==1+p+...+pn-1 andt_>_1,ii1. qre.d.

(mn+1)(p-1)+t he1
Lemma 5.1. shows that the numbers {[ > 1, p t}

are probably important in the determination of Normn/o(F(Kn)).

5.2. The Functions On/k(t) and ln/k(t)

We define inductively

(5.2.1) On/nlt) = ts 0 (£) =0 (0, (t))

(m+1)(p-1)+e

°n/n-—1(t) = min{[ = 1, p 't}
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It is also convenient to define

(mn+1)(p-1)+t

o
(5.2.2) Onfn-1(t) = [=
-1
n/n (8) = Pk
and
(5.2.3) 1 (8) = =1if R, (g, (0) o-k'/&_1(§,,<lk))

. o
- o k '
=h-1if oy, (o) > g /& (%
It follows immediately from the definitions that if kX < n

(5.2.4) on/k(t) = min{c® (o (t))}

(o

k+1/kCn 1 (t))s © k+1/k n/k+1

The function 1 n/k (t) indicates whether it is the value of O° or

k/k-1
011 Jk=1 which determines © /k-l(t) , Or in other words whether in
the step from Kk to Kk 1 (naving started in Kn w;th an element
of valuation t), it is Trk/k 1(Norm /k(x)) or Nk/k 1(Norm /k(x))
for which the lower bound on the valuation is sharpest.

5.3. Lemma

g /o(t)

Norm , (F°(K ) « F ™/° (k)

This follows immediately from (5.2.1) and lemma (5.1).
We now proceed to calculate the functions on/o(t). In case h = i, the

functions on/o(t) are determined by the Herbrand functions ¥ (s).

K_/x
n
Indeed llJ /K(s) <t < le /K(sH) is equivalent to on/o(t) = g+1,

n

5.4, Lemma.
tn/n(t) =~ e t _>__}3-—'i

Proof. 1 -1 is equi o 1
Proof. 1, (t) = -1 is equivalent to O /n=1(t) O q(t). Tee.
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[(1+p+...+pn'1+1)(p~1)+t ] ph—1t
p ——
- (1+p+...+p“"+1)(p—1)+t < ph-1t + P
p - p
- (p"=1)+(p=1)+t < Pt + (p-1)
n
o t > p -1
ph-1
5.5. Lemma.

If k> 2andt ,(t) =-1, then 1 (t) = -1

n/k-1
Proof. Let s = qn/k(t). Then lk,k(s) = .1, Let s' = ak/k-1(‘) = c:,k_1(5)

We must show that 1 (s') = -1, We know that

k-1/k-1

X_

s > 2 =1

i ph—1

Hence
+1)(p-1)+ -1 k k -1
o' = [(mk )(p-1) °1 > = (p-1) LE=1 P11, p S Pl

P - P (®-1)p P (p-1)p = pt-
' q.e.d.

Using (5.4), (5.5) and (4.2) it is not difficult to calculate
Un/o(t) for large enough t.

We find
5.6, Lemma.
po=1 p -1
pk_1 <t< p-1 - Gn/o(t) =n

n n
9;:7 +kp <t E.EEIT * (k+)p" wo,  (t) =n 4k + 1,

Let jn(t) be the number of indices k = n, n-1, ..., 2, 1 such that
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ln,k(t) = h-1. In view of (5.5) we have j (t) =8> 1o, , (t) =

=h"1, o-.,l

n/neger(8) ThR=Ty 1 (6] = =1, ey () = -1
5.7 Lemma.
n-sh _s-sh n-(s-1)h_(s-1)-(s-1)h
J (t) =3 > 1 -;p =P <t < P -D
n — h - h
p -1 p -1

n
n . ph-1 - [

7’

Proof. The second formula follows from (5.4) and (5.5). As to the first:

(s=1)(h=1)
S(h—1)t < [(lun-s*-f")(p"”+p ° t

J () =8> 1 e 1

(h-1)
(s+1)(b=1)_ | [(mn_s+1)(p-1)+ps .

- P

and p

(Use (5.5), the fact that 1., (t') = -1 if lk/k(t") = -1 and

k/k
t' > t" (ef. (5.4)) end pm(h-1)t Z_o‘n/n_m(t)). The same calculations

as in (5.4) now prove (5.7). q.e.d.

5.8. Proposition.

Write n = &h + r, with 1 < r < h. Then ve have

r
p -1
1StsERT e o) =n-t
n_ o,
P - o — w 0 ,(t)=n-2+1
p-1 - p-1 n/o
r+kh r+kh+h
-1
E—p_—1<ti2—p_—1—— - Onlo(t)ﬂn—li'k*-1,k=0,1,’...,9«71
po=1 p’=1 . .n
p__1<t_<_p_1+p - cn/o(t)=n+1

n n
L;L.‘.k n "“ n
ooT kP <t 5.25:7 *+ (k#1)p = o, ()

L]
=4
+

k+ 1, k=1, 2, ...

5.9. Remark.

These formulas are also true if h = » ; take £ = 0, r = n
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5.10. Corollary.

a
F-Normn/O(F(Kn)) < F (k)

where & =n - [E:l
n h

5.11. Proof of Proposition (5.8).

Let jn(t) = 8 > 1. Then according to (5.7)

n-sh _s-sh n-sh+h _s-«1-sh+h ' !
p—-—L <t < P =P
- h
pP-1 ph-1
Further
n-s n+h-s h-1
L_‘:l <g (t) = pS(h—1)t < -
h - “n/n-s h
p -1 p -1
We have 1n—s/n-s(°n/n-s(t)) = -1 (because Jn(t) = g) and we can

therefore now calculate o (o
n-s/o' n/n-s

lemma (5.6). The result is

(t)) = Un/o(t) by means of

n-sh _s-sh n-sh _s-sh
(5-11-1) P P <t<L-——L-—-. -» o (t)tn-s
Ph-1 - = p-1 n/o
and
n-sh _s-sh Pp+h-sh ps-1-sh+h
= = -
(5.11.2) EL——;;%%———— <t ph-1 - on/o(t) =n-3g +1

Because h > 1, we have that 0 < ps-Sh'i 1 for all s =0, 1, 2, ...

I+ follows that

n-sh _s-sh n-sh 1
- -
(5.11.3) t 3.IL——;;§}———— - ILE;:;——- £

Now put the formulas (5.11.2) and (5.11.1) for s = 1, 2, ..., &
together (note that s = £ + 1 gives nothing if n = g£¢h + h); use
(5.11.3) and extend with the result of (5.6). The result is proposition
(5.8).
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6. STATEMENT OF THE THEOREM, OUTLINE OF THE PROOF.

6.1. Theorem.
Let F be a formal group over Zp. Let ...-Kn - Kn-1_ cee = K1 - K= Qp

be the tower of extensions constructed in §4. (If p> 2,U Kn is the
n

cyclotomic I'-extension of @ : if p = 2 it is a slightly larger abelian
P

totally ramified extension). Let h = h(F) > 2. Then we have (n > 1)

a
n |
F Nomn/O(F(Kn)) = F (K)
. n-1
where a, 1s equal to a, =n - [T }
6.2. Remark.

The theorem is also true for h = o; [P—ﬁlk 0.

6.3. Proof of Theorem(fl) in case h = w.

n
For each s > n, let ts = 21-):—%- + (s-n)p”. It is not difficult to

calculate cn/k(ts) and on/k(tsﬂ) for k = n-1, n-2, ..., 2,1.

One finds
Ek-1 k k
.3. + - + -
(6.3.1) Gn/k(ts) = o1 (s-n)p (n-k)p
x 1 k k
— + (s- + (n- + 1
cn/k(tsﬂ) = B—p_1 (s-n)p (n-k)p
It is now easy to check that

(6.3.2) 0 et (O i (t)) < Oy e (0 e (8g))

It follows from this, (2.4.2) and (6.3.1) that the induced map

(t.) o (t_)*
(6.3.3) Norm‘_:/k 1 Fcn/k s (Kk)/F‘ n/k’"s (Kk) —_—
(t.) (t_ )+
- n/k-1""s (Kk_1)/F°n/k—1 s (Kk-1)

is equal to the map
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o ,(t_) (t )+1
(6.3.4) Tr /-1 © Tk nfk*"s Ak/'rrkn/k A >
o )+1
/k— Jx- 1
> “k31 Ak 1/“kn A1

This last map is surjective because o° n/k(t ) +1) =

k/k=-1

o L4 . .
Ok/k—'l(on/k(ts)) + 1, and Kk/Kk_1 is totally ramified (Cf. 4.2.1).

!
It follows from this and the fact that (6.3.3) and (6.3.4) are the
same maps that the map

t (t ) °h/o(ts)+1

(6.3.5) Norm_ i F o) »F ™% % (x)/e (x)

is surjective. In view of lemma (3.2) and corollary (5.10) this

concludes the proof in case h = ® because 0 , (t ) =n=q ifh =
n/o' ‘n n

6.4, Idea of the proof of theorem (6.1) in case h< = .

A first step in the proof of theorem (6.1) is to show that for

every s > n - [n—;-l] there exists a ts’ and an element

w .
x € nKn such that vo(Normn/O(xs)) = s. For s > n one can teke

n
t, = P;f% + (s-n)p" (cf. (6.3)). Let & = [n—;l]. Forn-£<8s<n

a natural choice of ts is

n-(n-s )h_1

(6.4.1) ty = B

Jn(ts) =n-3s (cf. (5.7)). It is easy to calculate Un/k(ts) .
for x = n-1, n-2, ..., 1, 0. The result is

(n-m)(h-1)t

n/m(t)-'-'p for n>m>s

(6.4b.2)0 , (¢t ) = p(n-s)(h-1)p—(s-m)t + (s-m)p" s> m > n-(n-s)h

n/m'’s ' s -

n-(n-sjh
vn/n_(n-s)h(bs) = l:s + ln._ 5)[h-1) p



ln/!‘i(ts)ﬂ‘h'1

cn/m

iy 1]

(ts) =

"1 m
B+ (s-mp

n/o t ) =8

As in (6.3) it i

8

h > 1, also jn(ts

@ (tg)

(6.h.3)an/k(ts)

an/k(ts)

One then has

(6.4.k)

(In all these calculations the simple fact o°

k > 2 is very usefull. It follows immediately from m = (1+p+.

A convenient picture of on/k

K K

t /m(ts)=h—1

3

usefull to calculate also O n/k (t +1). Because

+1) =n - s.

(n-m) (h=1)

(n-s)(h=-1) -

/k(t +1) =0

Is (t S--)‘”’///

L

p(h-1)(n-s)

(t8+1)

Let an/k

n-(n-sh>m>0

(t ) be defined by

for n > m‘z s

(s-m)

for s > m > n-(n-s)h

for n-(n-s)h > m > 0

/k(t ) +

g

(t

n/k(ts+1)

k/k-1

n/k(ts)

(rp) =r + p

Kn--(n~s; )h

k-1

K=K

_—

%/»(giw‘*?’//

17

~

;

L)),

(ts) and an/k(ts+1) is sketched below

+1

o
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. cn/k(ts+1)
According to lemma (6.5) below to calculate Normn/k(x) modm, :

where X has valuation vn(x) =t_, we can disregard for allm, n > m> k,
all terms of Nomn/m(x) of which the valuation falls below the lower

line in the picture above. In §7 below we shall show that in fact

for x € M A
mm

h-1

o ()
(x) = N, 4(x) mod

O Jmet
n/m= ,if v (x) =0

(6.4.5) Normm/ LA

e n/m(ts)

I
and n > m>s

and for x E‘rrkAk

(6.4.6) Normk/k_1(.r) = Tr =1 - if vk(x) = on/k(ts)

a.ndsik>0

6.5. Lemma.

Let t > t' > 1, om/k(t) =g, (t*) =s'. If x,y € LA

Tm/x
vm(.@ =t, vm( Y) = t', then

Norm /

o k(x+y ) = Normm

Proof. Because A_ is complete and (2.1.1), (2.2.1), there is an

t'
= . b4
v e n A such that X+¢ X+ Y. Now Normm/k( + V) =

F
Normm/k( X + F Normm/k(u '). Because om/k(t') =g', Normm/k(y') =0

mod 'n'; . Another appeal to (2.1.1) concludes the proof.

7. PROOF OF THEOREM (6.1).
T.1. Proposition.
Let F, K> hs a be as in theorem (6.1). Then for every

- n-1 .
s>a =n - [-——h ], there is a t, such that
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t
(i) F-Normn/O maps F s(Kn) into F°(K)
‘ o, (t_+1)
(ii) F--Normk/o maps F n/k’"s (Kk) into FS+1(K) for al1 0 < k < n

(iii) The induced map

t
F oK) > FPR)/F (k)

is surjective.

n
Proof. Let n=2%h + r, 1 <r < h. For s > n take ts = 2;5% + (s-n)pn.
n-(n—s)h_1 '
For n- < s < n teke t_ = ~— . Parts (i) and (ii) of the .

proposition then follow from (6.4.2) - (6.4.4). For s > n (iii)
follows from (6.3) (the proof for h = @) and (6.5). Now let n - £ < s <n
We shall first establish (6.4.5) and (6.k4.6).

Let n > j > s. To prove (6.4.5) we must show that

a

. L ()
(ts) +p n/j-1""s

(7.1.1) o‘;/j_1(o (t_)) >

n/j s on/j-‘l

h~1

a ;. .(t)
n/j-1""8" €N, idop

(7.1.2) v, _,(a;) + o, (t.) >0 ,.(t) +p

where a., i=1,2, ... are the coefficients appearing in formula (2.4.2)

for F-Norm,.

(mifl)(pq)..p(n-j)(h—ﬂt

o = s, 2
Now Oj/,j—1(on/j(ts)) [ P ]
P g agthen g
=P *F p-1 P
on/5-1%7 _ (n-jen)(m-1) P27y (no5e)(het)
and o /5_4(tg) + 2 B ¢ RS *P =

phteh=jh+j=2, | (n-j+1)(n-1)+1,
+ op(n=i+1)(h-1)

< pJ-‘
because j-1 > (h+sh-jh+j-2)+1 (as j > s + 1). This proves (7.1.1). If i
1 . o
, vj_1(ai) + 1.t 3_05/5_1(t) for all t € N,
1

is not a multiple of ph-

this proves (7.1.2) for those i # ph— , wvhich are not a multiple of
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h-1 _. ce . 2 . h=1 . 2(n-1)
P . Finally if i = 2p , then Vs 1(ai) + i0 /.(ts) >p on/j(ts)
‘ a ,.(t ) . L (t
> _ h-1 h- n/j °s h-1 %n/5-1
=2 . > + P = +
p on/J(ts) >p /J(t ) + pt” P n/J(t ) +p
n/J(ts)

. >
because on/J(ts) >p

To prove (6.4.6) we must show that (cf. (2.4.2)) for s > j >0

1 an/j—1(ts)
(1.1.3) 03/5-1000y5{tg)) 20,5 4(t) +p
, a ,. .(t.) !
(7.1.4) vig(ag) +ieg 20 (5) +p n/j-1""s i=1,2,3, ...
o an/j—1(ts)
(7.1.5) oj/j—1(2°n/j(ts)) —>-°n/j-1(ts) +p

i > j > n-(n- . . > 1vi . .
First let s > j > n-(n-s)h. Then an/a(ts) 0 and p divides on/a(ts)

(cf. (6.4.2)). It follows that

° -1 %n/j
(20 /3 (ts)) = on/j_1(ts) +p on/j(ts). As on/j(ts) >p n

95/5-1 (ty), and

an/j_1(ts) = an/j(ts) - 1, this proves (7.1.5) for s > j > n-(n-s)h. If

n/J(ts)) >

() + n/j—1(ts).

n-(n-s)h > j > 0, then 0 n/j (t ) > p and hence oJ/ (20

(on/J(ts)) + 1= on/j_1(ta) + 1=

g.,.
jlj-1 %n/3j-1

This proves (7.1. 5) As to (7.1.4), let i be not divisible by ph-1.

Then vs (a ) > pY =1 and we have

(m.+1)(p-1)+2t (m.+1)(p-1)+2t .
Jd 5 ]< J > :p-+2——;1+g—<p3-1+i.t<'

provided p > 2 and t > p. If p =2 then

[(mjf1)(p-1)+2t
P

]= 2J -1, t < vi_ (a ) + it
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for all t > 1. As on/j(ts) > p for all 8 > j > 0 this shows that (7.1.5)

implies (7.1.4) for those i which are not divisible by ph-1. If i is

divisible by ph—1 (7T.1.4) follows from (7.1.3) (which is the case
is= ph-1 of (7.1.4)). It therefore remains to prove (7.1.3). We have

3 _h=-1

ph-1.p(n-8)(h-1)-P—(s-j)ts + (s-3)p".p

:
9515-10%n75 %)) =

%/5-1%) | (n-s)(n-1) ~(s-j41)

_s -1
on/j—T(ts) +p -ts + (s J+1)P + '

+ P(n-S)(h-ﬂp-(s-jH)

If s > j > n-(n-s)h, ve have (s-j)pIp"~' - (s-j+1)p°"" Z,3PJ-1 and
(n-8)(h-1) - (8-j+1). < j-1 because 3 >n - £ > n - %, This proves (7.1.3)

in this case. If s > n-(n-s)h > j > 0, then an/j-1(ts) = 0 and (8-j)p

Z(s-j-ﬂ)p""1 + 1. It remains to prove (7.1.3) in the case s = j. We have

to prove that

1)11-1‘1)(rx-s)(}1--‘l).ts Z.P-1‘P(n-3)(h-1)'ts . p5-1 . p-1.p(n-s)(h-1)
or equivalently
n--(n--s)hH
t >R *1
s — h
p -1

n-{n-s)h

as ts = (p—1)-1(p + 1), this follows from the fact that

(p-1)""(p%=1) > (pP=1)""(p%+1) if £> 1, and h > 2 and the fact that
n-(n-s)h = n-nh+sh > n-nh+(n-L)h = n-%h = r > 1 because s > n -~ £ and .
n = fh+r, 1 < r < h. This concludes the pggqf of (6.4.6).

et a =
K

® h-1
P
According to (6.4.5) and (5.5) we have

o_, (t_+1)
n/s‘"s

n-s un-s

t (n-8)h g, (t.) mod
(7.1.6) Normh/s(z“ns)E + P a5, n/s'’s

n-s

(the sign is + if p > 2, and (-1)""% if p = 2).

Jph-ll_

, the coefficient of NP in (2.4.2). Let z € A° = A =

Z

P
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For k < s, it is Trk/k_1 which is the most important part of
F-Normk/k_1 according to (6.4.6). We wish to apply (4.5) and shall

therefore need to show that for s > k > n-(n-s)h

~(s=k+1)
s-k n/s(ts) s-k+1 %n/s

(tg)
(7T.1.7) Trk/k_1(p M = p W1

Gn/k—l(ts+1)

mod uk_1

(Note that vk(ps'#) + p-(s-k)cn/s(ts) = qn/k(ts) for s > k Z.n-(n-s)hﬁ

further n-(n-s)h > r > 1, and for k f_n-(n-s)h,on/k(ts) contains no

factors p so that we cannot apply (the second formula of) lemma (L.5)

for k f_n-(n-s)h).

-(s-k)

If s >k > n-(n-s)k, there is a factor p in p ch/s(ts) so that

we can apply the second formula of lemma (L4.5). The result is that formula

(7.%.7) holds modulo

-(s-k+1),
s-k P 'on/s(ts) -1
PP W,y Hy-1

We must show that the wvaluation of this is larger than or equal to

s-k+1, _ ~(s-k+1)
O /k-1{tg)e But v, (p ) +p 0/s(ts) = Oppe_q(t,) 0 that
it suffices to show that
a (¢.) '
p-1 =1 n/k-1'"s
(7.1.8) Ve (P )2
We have
p-1 -1 k-1_ . - V(e
Vel (P e )20 =1 e g (8) = (ne8) (h=1)-(s-k+1)

(7.1.8) follows from this because (k-1) - {(n-s)(h-1)-(s-k+1) =
= -nh+sh+n > -nh+(n-L)h+n = n~ h = r > 1. This proves (7.1.7)

Using (6.4.6), (7.1.6), (7.1.7) and (6.5) we now obtain, writing
2(s) for n-(n-s)h,
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(n-s)n
(7.1.9) Normn/l(s)(zuns) =+ 2P n s‘ an_s.ps-z(s)‘uz?s) |
o (t_+1)
mod_nz?£§(5) 8

(because p°(8'£(s)on/s(ts) = p—s-n+nh—sh.p(n—s)(h-I)tB = ts)' Now

. - Erj—-(n-s)h_1 ) pl(s)__1

. 8 p-1 p-1 ' |

t

It follows from (4.2.1) that vz(s)_1(Trg(s)/z(s)-I(uz?s))) =

2(s)-1
= E——;;:TJZl + pl(s)-1 and (using induction one finds)'
ty
(7.1.10) vb(Trk(s)/O(uﬁ(s))) = Us)

Combining this with (7.1.9) and (6.4.6) we find

(n-s)n

P aP—spsL . 1

t
8y = s+
(7.1.11) Norm , (zu ) =+ 2 mod p

where b is some element of Zp of valuation v(b) = (s). Part (iii) of
proposition (7.1) follows because v(a) = 0 and we can extract p-th roots

in Z2/(p).
q.e.d.

T.2. Proof of Theorem (6.1)

Combine (7.1) and (5.10) and use the lemma (3.2) on filtered

abelian groups

T.3. Corollary (of the proof of Theorem (6.1)).

Let L be an unramified algebraic extension of Qp; let Ln = Kn.L
where Kn is as in theorem (6.1). Then theorem (6.1) also holds with Kn
replaced by Ln

7.4, Corollary.
Let L be an unramified algebraic extension of Qp, and let

...—Ln— cee = L1 - L be an extension such that there exists a finite
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unramified extension K' of L such that Ln.K' = K'.K . Then theorem
~ n
(6.1) also holds with K, replaced by L .

Proof. Consider the commulative diagram
Norm,,
n/ I‘n
. \
F(L ) «—: F(X .Ln) = F(xg)

Normy, /L Normy s s

n

F(L) +———  F(K')

The map NormK,/L is surjective according to proposition (3.1). The
n’“n
u .
image of Normy, s+ is F ®(K/) according to (T.3). The same arguments as
n

used to prove (3.1) in the unramified case show that

a a
Norm, ,, (F k")) = F (L). q.e.d.

8. CONCLUDING REMARKS.

8.1. A Counter Example.

Let Kn be as in theorem (6.1). Fix an index [ and consider the

I'-extension ...- K - ... - K. - K. of K.. It is not difficult to
n 1+1 1 1 ;
check that theorem (6.1) is not true for this I'-extension, ifYis large

enough even if F is defined over Zp.

8.2. More General I'-Extension.

Let K be a local field of characteristic 0 and residue characteristic

P, and let K /K be,‘%.%%g%%gn of galois group Gal(K,/K) = Z,- Let X
be the invariant field of pnGal(K‘,/K). Let F be a formal group of height
h > 2 over K. For each n we define

Y, = smallest natural number such that Normn/o(F(Kn)) c F %(x)

n
§ = largest natural number such that F (k) Nomn/O(F(Kn))

Then one can prove
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If the residue field of K is algebraically closed then the

di fferences
h-1 (h-1)
Gn - n eK. and Yn -5 e, sare bounded

independently of n. (¢f [3]).
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