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Let K be a finite extension of ~, the field of p-adic nL1.-11be1.s. 

Let L/K be a galois extension. Local class field theory- studies the 

cokernel of the norm map NL/K : L. *+ K ~: Let AL, ~ be the ring of 

integers of L, Kand let U{L), U(K) be the group or units of'~,~· 

The most difficult part of the determination of' NL/K(L*) is the 

determination of the image (or cokernel) of :NL/K : U(L) + U(K). This 

map can also be viewed as follows. Let G be the multiplicative group. 
m 

Then Gm{~)• U{L}, Gm(Ax:) • U(K) and the map NL/K is : NL/K(x) = 

sum of all the conjugates of x in Gm(L). 

The f'olloving generalization is now natural and also interesting 

for various reasons (cf'. ( 7] , § 4). Let G be an arbitrary- commul:ati ve 

group scheme over ~· Define Nonn( x) • sum in G(AL) of all the con,jugates 

of x, for x € G(AL). Problem: determine the cokernel of Norm : 

1) While the research for this paper was done the author stayed at the 
Steklov Institute of Mathematics in Moscow (1969/1970) and he was 
supported by z.w.o., the Netherlands Organization for the advancement 
of Pure Research. 
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G(A_) + G(.L). As in the case of G an important step is to calculate 
--i, -x .... m 6'o. ,.. 

the cokernel 'or t~e induced map G(AL) + G(~) vhere a is the formal 

completion of G; G is a formal group over ~· 

In the following we study the cokernel of' Norm: F(~) + F(~) where 

Fis a one dimensional formal group over~- In case the height of F 

is equal to 1 the anaver is up to a twist given by local class field 

theory (cf. [7]). Important is the fact that Norm: F(A1 ) + F(~ ) 
ur ur 

is su~jective if height(F) • 1, where L , K is the maximal ur ur 
unramified extension of' L, K. The picture changes drastically as soon as 

height(F) > 1. It is then not true in general that Norm (F(L)) • F(K) 

if L/K is a finite galois extension and the residue field of K is 

algebraically closed. 

The main part of this paper is devoted to the precise determination 

of the cokernel of F(L) + F(K) f'or one special class of extensions L/K. 

We take K = o.,,, the n-adic numbers. Let L be the extension of' fl obtained 

by adjoining all pr-th roots of unity. Gal(Lm/~): U(C\): A! ZP 

where A is the torsion subgroup of U( Q ) • Let K be the invariant field 
p 

of A. Gal(Km/~): ZP, i.e. Km/\ is a r-extension. Let Kn be the 

invariant field of pnGal(Km/~}. We determine Im(F(Kn) + F(~)), where 

F is any formal group over Z of' height(F) > 2. 
'· a.rid JJ'l.;c/S ) p -

The results'l"turn out to be generalizable to some extent. (Cf. [3]). 

The motivation to study precisely r-extensions came from [7]. 

It remains for me to thank the reviewer who thoroughly criticised 

an earlier version of this note. 

2. GENERALITIES ON FORMAL GROUPS. 

( 2. 1) Some Notations and Definitions. 

K will alw~s denote a local field of characteristic O and residue 

characteristic~> O; ~ is its ring of' integers; 'ITK is a uniformizing 

element and vK is the normalized exponential valuation on K 
(i.e. vK('ITI(:) = 1); Tl\: is the maximal ideal of~• 

A one dimensional formal group over -¾c is a formal power series 

in two variables over ~ of' the form 



(2.1.1) 

vhich satisfies 

(2.1.2) 

F(X,Y) • X + Y + E 
i ,js1 

i j. 
& •• x Y. 
lJ 

F(X,F(Y,Z)) • F(F(X,Y),Z) 

3 

All formal groups considered in this paper will be one dimensional. 

A one dimensional formal group over ~ is automatically commute.ti ve; 

i.e. it satisfies F(X,Y) • F(Y,X), cf [4]. 

2.2. Points and Norm Maps. 

Let L be a finite extension of K. One can use a formal group over 

~ to define an abelian group structure on the set 'll'tL. In fa.ct one 

simply sets 

(2.2.1) X + y = F(.r ,g) , X, y € rt.L 
F 

(The series F(.r,y} converges in~). This group 

If X, !/ € { "' ,{ AL , t = 1 , 2 , • • • then X + V € 
F 

therefore has a natural filtration by subgroups 

underlying set of Ft(L) is W~A1 . 

is denoted F( L) • 
t 

ni.1 • The group F(L) 

t F ( L) where the 

Because F(X,Y) = X + Y mod(degree 2), cf (2.1,1), we have 

(2.2.2) 

+ vhere t is the underlying additive group of the residue field t or L 

How let L/K be a galois extension with galois group G • Gal(L/K} • 

• fo 1 , ••• , ar}. We define a norm map F-Norm : F(L) ..., F(K) by the 

formula 

(The F-sum of the conjugates of .r is in K because it is invariant under 

G) • 

Examples. If F • Ga, the additive grouptgiven by Ga.(X,Y) • X + Y, 
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then F(L) = m1 (vith its_original additive group structure) and 

F(K) = m. The norm map G -Norm is equal to TrL/K' the trace map. 
K ' a ' 

If F = G, the multiplicative group given by 
m 

A 

G (X,Y) • X + Y 
m , 

then F(L) = u1 , the group of units congruent to 1 mod w1 of~• 

1 1 The norm map Gm-Norm becomes the ordinary norm map u1 + UK under 

the isomorphisms F(L) ~ U~ and F(K) ~ ur 
2. 3, Heigpt of.!. Formal Group. 

Let F be a formal group over ~- We define inductively 

(2.3.1) 

Because F is associative and commul;ati ve, one has that 

+ XY, 

F(X 1 , ••• , Xn) • F(Xai.l) , ••• , Xcr{n)) f'or every permutation o'!" {1, 2, ••• , n} 

Let p be the residue characteristic of~· One defines [p],(X) as 

[p]F(X} = Fp(X,X, ••• , X). We consider [p]F(X) modwK. There are two 

possibilities: (cf [1], [4]). 

1° There exists a number h € N such that 
h 

[p]F(X) i.. g(Xp) modwK 

20 

2 where g(Z) • b 1Z + h2Z + ••• 

b 1 1 0 modWK, The number h = 

is a power series ovei" ~ vi th 

h(F) is called the height of F. 

[p]F(X) = 0 modnK. In this case one defines h • h(F), the 

height of F, as h = oo, 

2.4. Lemma .2E_ F-Norm. 

Let F be a fopnal group over ~. If M is a monomial in 
r, n r 1 rn 

e, g. M • x1 ••• Xn , ve define Tr(M) = x1 ••• xn + 

r r r r 1 r 2 r 
'We vri te Ni (X) + X 1 X n-lx n n . . . + . . . + xn x1 ... X 1 • 2 n 1 n-

Xi 
1 ••• Xi. Using these notations one has 

n 

x,. •.• , xn, 

for 
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2.4.1. Lemma 

CIO • 

Fn(x,, ..• , xn). Tr(x,) + E a.N1 (X) + E 9MTr(M) 
i=1 1 M 

where a.i, ~ € ~, and M runs through a set of monomials of total degree 

i > 2 which are not of the form N (X). 

If moreover n • p, the residue characteristic of K, then vK(a.) > 1 
h-1 h-1 1 -

unless i = kp , k • 1, 2, .•• , and vK(ai) = 0 if i = p , where 

his the hei~ht of F. (If h = oo,v(a..) > 1 for all i if p = n) 
l -

Proof. The first statement follows from the fact that F(X ,Y) ■ X + Y 

mod(degree 2) and the fa.ct that F(X1 , ••• , Xn) is invariant under 

permutations of the x1 , ••• , Xn. The second pa.rt of the lemma follows 

from the first part and (2,3), because substituting X for the X. 
l 

in Tr(M) results in something = 0 mod p if M is not of the form 
N1.(X). 

Nov let L/K be a cyclic galois extension of degree n, Let 

Tr L/K and NL/K denote the trace and norm maps. 'We write Nt/K(.x) 

for (NL/K( :c) 1 • From the definition of F-Norm and { 2. 4. 1) one then 

immediately obtains the 

2.4.2. Corollary. 

q_.e.d 

OI) 

F-No~/K( x) = TrL/K( x) + E aiNt/K(z) mod TrL/K(z2~) 
i=1 

for all z E F(L). If n =~one has the same statements on the 

valuations of the a. as in (2.4.1). 
1 

3, UNRAMIFIED AND TAMELY RAMIFIED EXTENSIONS. 

In the case of an unramified or tamely ramified ex.tension L/K, 

the image of F-Norm: F(L) + F(K) is very easy to calculate. 

3,1. Proposition. 

Let L/K be a tamely ramified p;alois ex.tension, then F-Norm: 

F(L) + F(K) is surjective. 
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Proof. First suppose that L/K is unramified. F-Norm maps Fs(L) into 

F5(K) and for every y E F(K) of valuation vK(y) = s, 

there exists an r € Fs(L) such that 

F-Norm(x) = y 
2s 

mod(nK) 

Indeed, accordin~ to (2.2.1) and (2. 2,3) we have 

2s) mod(nK 

and it thus suffices to select an x E Fs(L) such that TrL/K(r) = y 

which can be done because L/K is unramified. It follows that the 
. s( ) s( )/ s+1( ) . • . . induced map F L + F K F K is surJective and this proves 

the proposition in this case according to lemma (3.2) below. 

Now let L/K be totally and tamely ramified. Because Gal(L/K) 

is cyclic of order prime top (cf. [8], Ch.IV, §2), it suffices 

to treat tamely and totally re.mi fied extensions of' prime degree t, 

(t,p) = 1. For such extensions one has 

(3.1,1) , r = [ (i-1 )+t ] 
t 

where [i° ]denotes the entier off. (Cf. [8), Ch. V, §3) 

It follows that for every s EN there exists a number t such that 
s 

,o t > s s 
20 vK(TrL/K(.:r)) > s if v1 (x) > t s 
30 vK(TrL/K(.:r)) = s if v1 (x) = t s 

It follows from this and (2.4.2) that 

if v1 (.:r) = c5 , z E ~- Using this, (2.2.2) and 3° above we see that 

t 
the induced map F ~(L) + F5 (K)/Fs+1(K) is surjective, which proves 

the proposition in this case. 
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Finally let L/K be tamely ramified. The extension L/K can be 

decomposed 'into a tower Kc:: L c:: L, where L /K is unrami:fied and ur ur 

L/L is totally and tamely ramified. As F-No~/K = F-No~ /K 0 

ur ~ 

F-No~/L we are through. 
ur 

q_.e..-d, 

For completeness sake we state the lemma which was used twice 

in the proof above, and which we shall use a 'f'ev more times in the 

sections below. 

3.2. Lemma. 

Let A and B be abelian groups 'f'iltered by subgroups A • A1 :::> A2 :::> 

B • B1 :::> B2 :::> ••• such that A • li.m A/ An, and 

Let u : A + B be a homomorphism and suppose that 

t 1 < t 2 < ••• such that u(At_) <=Bi and u: At.+ 
i i 

n B • {o}. 
n n 

there exist indices 

B./B. 1 is surjective 
i i+ 

for all i = 1, 2, Then u: A+ Bis surjective. 

Proof. Very easy, cf. e.g. [8], Ch. V, §1, lemma 2. 

4. THE CYCLOTOMIC r-EXTENSION. 

Ar-extension of a field K is an (infinite) galois extension 

K /K such that Gal(K /K) = Z , the p-adic integers. 
OD OD P 

4. 1. The Cyclotomic r-Ertension of '¾,. 

Let QP be the field of p-adic numbers. Adjoin to \ all 

pr-th roots of unity, for all r. The result is a totally ramified 

abelian extension L /Q of galois group isomorphic to U{Q ). Let' 
OD p . p 

6. be the torsion subgroup of U( ~). I:f p > 2, this is the subgroup 

of the (p-1-st roots of unity; if p • 2 this is the subgroup {1,-1}. 

Let K00 be the invariant field of 6.. Then K00/~ is a r-extension 

(associated to the prime p). We shall call this extension the 

cyclotomic r-extension of~• Let Kn be the invariant field of the 

closed subgroup pnGal(KOD/\). We obtain a l;ower of totally ramified 

extensions of degree p 
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... - K - K - ••• - K - K1 - Q • K n+1 n 2 'P 

Another way to construct this r-extension of K =\for p > 2 

is as follows. Let f(X) = xP + p; Let f(m)(X) be them-th iterate 

of f(X), i.e. f(m)(X) • f(m-l)(f(X)), f(o)(X) = X. Let (LT)n+l 

(the (n+l)-st Lubin-Tate extension of K; cf [6] or [2]) be the 
. ' (n+ 1) ( ) . • t extension generated by any root An+i off X which is no a 

root of f(n)(X). The extension (LT)n+l/K is galois and totally 

ramified; the galois group is isomorphic to U(\)/Un+i(~). 

(er. [6] or [2]: U(~) • units of ZP; ~(\) • {u € U(\)I u= 1 mod p0 }), 

The action of u € U(~) is given by ).n+it-+ [u]f().n+l), where 

[u]f(X) is the unique power series such that [u]f(X) • uX mod(degree 2) 

and [u]f 0 f • f o [u]f. Let z; be a (p-1 )-st root of unity, then 

[z;]f(X) • z;X, because (z;x)P + p(z;X) • z;(xP+ p ). The element 

p-1 µn = >.n+l is therefore invariant under the action of~. The 

extension U ~(µn) / Qp is the cyclotomic r-extension of\· (If p•2 
n 

one obtains in this way the whole extension L.,/Q2 ). 

4.2. The Number m(L/K). 

Let L/K, be a totally ramified extension of degree p. Then there 

exists a certain number m(L/K) € N such that 

(4.2.1) 

Cf (8 ], Ch. IV, §2. 

4.3. Equations for µn. 

It is not difficult to find equations for the µn defined in (4.1) 

Indeed, we can choose >. 1 , >.2 , ••• inductively such that 

P p-1 p-1 
An+l + PAn+l • An• n ~ 1, >. 1 • -p. We have µn = ).n+l; it follows 

that µ 0 = -p and that 

(4.3.1) x(x + p)p-1 - µn-1 

is the minimal polynomial of ~ over K 1 n-



4.4. The Numbers m -- ~ 

Let m = m(K /K 1), n = 1, 2, ••• One finds by explicit 
n n n-

calculations from equation (4.3,1) above that 

(4.4.1) 

Tr / 1 ( µ ) n n- n 
= -(p-1 )p 

Trn/n-1(µ!) = 
2 (p-1 )p 

( -1 ) p-1 ( p-1 }pp-1 

9 

(We have written Trn/n-1 for TrK /K ). Comparing this with (4.2.1} 
n n-1 

one finds that 

(4.4.2) n-1 m =1+p+ •.• +p 
n 

In the sections below we shall need to know something about 

Tr/ 1(µk), especially to for the case that k is a multiple of p. n n- n 

4 . 5. Trace Lemma. 

k c 
Omodµn_,P ,c= 1,2, ••• ,p-1;k= 

Proof. The formulas ( 4. 4. 1 ) above take care of the cases k = 0, 

c = 1, 2, •• , , p-h 'We have the relation 

(4.5.1) p (p-1) p-1 + 11 (p-1 )pp-1 = 
µn + 1 µn P + ••• ~n p-1 µn-1 

Applying Tr/ 1 and using (4.4.1) we see that 
n n-

(4.5.2) 

o, 1, 2, 

To prove the lemma for kp + c > p, multiply the relation (4,5,1) with 

µ~k-l)p+c and use induction, 
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5. SOME PRELIMANARY CALCULATIONS, 

In this and the following sections 6, 7, K = K0 •~•and 

is the tower of extensions constructed in (4,1), K = K 1(u ). n n• n 

If p > 2, UK is the cyclotomic r-extension: if p • 2, UK /K has n n n n 

galois group isomorphic to U(Q2 ) ~ z2 x {1,-1}, We write 

F-Normn/k. or Normn/k for F-Nornxn/Kic ,_and Nn/k ror NKn/l<ic 

Further vK 
n 

= V , 
n 

5. 1. Lemma. 
~ +1 )(p-1 )+t 

Let x E ~(K ) • Then v 1 (Norm / 1 (x) > min{[ n P h ph-it) 
n n- n n-

Proof. It follows from (2.4.2) that 

( m + 1 )( p- 1 ) +t 
v 1(Norm / 1(x) > min{[ n ], v 1(a.)+ti} 
n- n n- p n- i 

Because vn_ 1(a h-l) = O, we can omit vn_ 1(ai}+tt for i > ph-l 
p 

without changing the 

v 1(a.) +ti_> pn-l 
n- l 

. . I . h-1 I minimum. f 1 < 1 < p , then pa., 
- l 

+ ti > p -l ( m + 1) ( p-1} + t) , because 
n 

n-1 mn "' 1 + p + ••• + p and t > 1, i ~ 1. q,e.d. 

and 

(m +1)(p-1)+t 
Lemma 5.1. shows that the numbers {[ n ], ph-1t} 

p 

are probably important in the determination of Norm/ (F(K )). n o n 

5.2. The Functions crn/k(t) and 'n/k(t) 

We define inductively 

0n/n(t) "'t, 0n/k(t) "' 0k+1/k( 0n/k+1(t)) 

(m +1 )(p-1 )+t 
o I ,(t) = min{[ n ], Ph-\} n n- p 



It is also convenient to def'ine 

and 

(ln +1}{p-1)+t 
ao/ ,(t) = [ n ] 

n n- p 

1 h-1 L a I 1Ct) = p i; 
n n-

tn/k(t) • -1 i:f ak/k-1<°n;k(bl} ~ fT;/,-1(~;f<.(~)} 

• h-1 if ak/k-,<~/l(~l) > °ic~k-t l~1kl~)) 

It follows immediately from the definitions that if k < n 

11 

The function tn/k(t) indicates whether it is the value o:f a~/k-l or 

a~/k-l which determines an/k- 1{t), or in other words whether in 

the step from~ to ~-1 (having started in Kn w!:~ an element 

of valuation t), it is Trk/k-1(Normn/k(.x)) or Ni/k-1(Normn/k(.r)) 

for which the lower bound on the valuation is sharpest. 

5.3. Lemma 
a (t) 

Norm / (P't(K )) c: F n/o (K) 
no n 

This follows immediately from (5.2.1) and lemma (5.1). 

We now proceed to calculate the functions a I ( t). In case h ·• 1 , the no 

functions "n/o (t) are determined by the Herbrand functions ii, K /K( s). 
n 

Indeed WK /K(s) < t ~ ,K /K(s+l) is equivalent to an/o(t) • s+l. 
n n 

5.4. Lemma. 

t / (t) • -1 ... n n 
pn_, 

t ~ h p _, 

Proof. t / (t) = -1 is equivalent to a0 1 1(t) <a11 1(t). I.e. 
n n n n- - n n-



\/ (t)•-1iff n n 

c<1+,:,+ ••• +,,n-1+1)Cp-1l+t 
p 

... {1+p+ ••• +pn-1+1){p-1)+t 
p 

... l1>n -1 >+< "P-1 )+t 

... t 

5.5. Lemma. 

)< h-t p t 

< h-1 +~ p t - p 

< pht + (p-1) -
n 

> IL.::.! _, 

ph-1 

If' k ~ 2 and tn/k(t) • -1, then 'n/k-1(t) • -1 · 

Hence 

W:e must show that \k- l /k- l ( s ' ) • -1 • We knov that 

k 
8 > lL=.l 

- ph-1 

s' • 

12 

I 

q.e.d. 

Using (5.4), (5.5} and (4.2) it is not difficult to calculate 

a I (t) :f'or large enough t. n o 

We :find 

5.6. Lemma. 

.. a I (t) • n n o 

.._n_1 D 1 
~ + kpn < t < P....=!. + (k+1}pn .. an/o(t} • n + k + 1 • 

p-1 - p-1 

Let j (t) be the number of indices k • n, n-1, ••• , 2, 1 such that n 
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\ /k(t) = h-1. In view of (5.5) we have j (t) = s > 1 ... , / (t) = n , n - nn 

= h-1 , ••• , \ / 1 ( t) • h-1, \ / ( t) = - 1 , •• ., l / 1 ( t) = - 1. n n-s+ n n-s n 

5.7 Lemma. 

j (t) = 0 
n 

... 

n-sh s-sh 
p -p 

..,._ h 
p _, 

n p -1 
h p -1 

< t 

n-(s-1)h (s-1)-(s-1)h 
p -p 

< t < h 
p -1 

Proof. The second formula follows from (5.4) and (5.5). As to the 

(m +1)(p-1)+p(s-1)(h-1)t c-n_-_s_+_1 __________ ] 
p 

( )( ) s(h-1) 
(s+1)(h-1) mn-s +l p-l +p t 

and p t .::_ [ p ] 

(Use (~.5), the fact that 'k/k(t') = -1 if lk/k(t") = -1 and 

f'irst: 

t' > t" (cf. (5.4)) and pm(h-l\ > cr / {t)). The same calculations 
- - n n-m 

as in (5.4) now prove {5.7). q.e.d. 

5.8. Proposition. 

Write n =th+ r, with 1 < r < h, Then we have 

r 
1 < t < !L::l .. an/o(t) • n - R., 

- p-1 

r r+h n _, 
E -1 < t < p an/o(t) • n - R. + 1 

p-1 p-1 -
r+kh r+kh+h _, 

E._< t < p 
p-1 

.. a I ( t > • n - 1 + k + 1, k = 0,1;, •• ,17 1 p-1 n o 

n n 
lL.=.!. t E..=-l n a I (t) • n + 1 < < 1 + p .. 

p-1 p- n o 

n n 
~ + kpn < t < £..-=l + (k+1 )pn• cr / ( t) • n + k + 1, k • 1, 2, ••• 
~1 - ~1 no 

5 • 9 . Remark • 

These formulas are also true if h = m; take t • O, r = n 



5. 10. Corollary. 
I 

a 
F-Norm / (F(K )) c F n(K) n o n 

[n-1) where an= n - h 

5.11. Proof of Proposition (~.8). 

Let j (t) = s > 1. Then according to (5,7) 
n -

Further 

n-sh s-sh p . -p 

ph-1 
< t 

n-sh+h. s-1-sh+h p -p 
< h 

p -1 

n-s ( ) n+h-s h-1 
p -1 <•a (t) • PS h-1 t < p -p 

h - · n/n-s h p -1 p -1 

14 

We have l. (a I (t)) • -1 (because j (t) • s) and we can n-s/n-s n n-s n 

therefore now calculate a I (a I (t)) • a I (t) by means of n-s o n n-s no 

lemma (5.6). The result is 

(5.11.1) n-sh s-sh n-sh s-sh _p __ -__ p ___ < t < p -p 
ph_ 1 p-1 

and 

n-sh s-sh 

.. a I (t) • n - s no 

( ) p -p 
5.11.2 p-1 

n+h-sh s-1-sh+h 
p -p ( ) < t < .. , a I t • n - s + 1 h no 

p -1 

s-sh Because h > 1 , we have that O < p ~ 1 for all s = 0, 1 , 2, ••• 

It follows that 

(5.11.3) 
n-sh s-sh 

t > p -p 
p-1 

... n-sh p -1 
p-1 

Now put the formulas (5.11.2) and (5.11.1) for s • 1, 2, •.• , t 

together ( note that s = t + 1 gives nothing if n • th + h); use 

(5,11,3) and extend with the result of (5,6). The result is proposition 

(5.8). 

-
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6. STATEMENT OF THE THEOREM. OUTLINE OF THE PROOF. 

6. 1. Theorem. 

Let F be a formal group over ZP. Let ••• -K - K - • • • - K - K = Q 
n n-1 1 'P 

be the l:ower of extensions constructed in § 4. ( If p > 2, U K is the 
n n 

cyclotomic r-extension of Q : if p • 2 it is a slightly larger abelian 
p 

totally ramified extension). Let h • h(F) > 2. Then we have (n > 1) 

a 
F-Norm / (F(K }) • F n(K) 

no n 

h . lt -[nh-1]. w ere an is equa o an = n 

6.2. Remark. 

The theorem is also true f'or h • m; [ n~ 1 l• 0. 

6. 3. Proof' of' Theoremtbl) in ~ h = oo. 

n 
For each s > n, let t • IL::.1.1 + (s-n}pn. It is not difficult to 

s p-

calculate an/k(t9 } 

One :finds 

k 
(s-n)pk + (n-k}pk (6.3.1) 0 n/k(ts) 

P...::.! = + p-1 

k k (n-k}pk + 1 0 n/k(ts+i) 
lL::.1. = + (s-n)p + 

p-1 

It is now easy to check that 

It follows from this, (2.4.2} and (6.3.1) that the induced map 

a (t } a /k(t )+1 
( 6 ) F n /k s ( K. ) /F n s ( K.. ) ~ 

.3.3 No~/k-i : -"k -"k 

a (t ) a (t )+1 
F n/k-1 s (K }/F n/k-1 s (K.. ) 

-1c-1 -lt-1 

is equal to the map 
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cr /k 1(t ) cr /k 1(t )+1 n - s / n - s -+'Tr A TI' A k-1 -~-1 k-1 -~-1 

I 
It follows from this and the fact that (6,3,3) and (6.3,4) are the 

same maps that the map 

(6,3,5) 
t a I ( t ) cr / ( t )+ 1 

Nom /: F s(K) -+ F no 8 (K)/F no 9 (K) 
n o n 

is surjective. In view of lemma (3,2) and corollary {5.10) this 

concludes the proof in case h = 00 becal18e a I ( t ) • n = an if h = oo, no n 

6.4. Idea of the proof of theorem 1fu...!.l in™ h< oo , 

A first step in the proof of theorem ( 6. 1) is to show that for 
[n-1] every s > n - - there exists a t , and an element 

- n s 

r € 'II' K such that v ( Norm / ( r ) ) = s. For s > n one can take 
s nn o nos -

n 
t = .:e..-=-l + (s-n)pn (cf. (6,3)), Lett• [n-J ]. For n - .t < s 

s p-1 n < n 

a natural choice of t is 
s 

n-(n-s)h 
( = p -1 
6.4.1) ts p-t 

j (t ) = n - s (cf, (5,7)). It is easy to calculate a /k(t ) 
n s n s 

fork= n-1, n-2, ••• , 1, O. The result is 

cr {t ) = p(n-m)(h-l )t for n > m > s 
n/m s s 

(6 4 ) ( ) (n-s)(h-1) -(s-m) ( ) m ( ) • . 2 a I t = p p ts + s-m p s > m > n- n-s h 
nm s 



K 
~ 

t ... sl, 
t +1.J 
s : 

·,,.(t)•h-1 n n s 

m 
a I (t ) = .IL::.!.-+ (s - m)pm nm s p-1 n - (n-s)h ~ m~ 0 

As in (6.3) it is useful! to calculate also on/k(t8 +1). Because 

h > 1, also jn(t8 + 1) = n - s. Let an/k(t8 ) be defined by 

One then has 

(6.4.4) 
a /k(t ) 

a /k(t +1) • a /k(t } + p n 8 
n s n s 

(In all these calculations the simple :fact o~/k- 1(rp) • r + pk-i, 

1T 

k ~ 2 is very usefull. It :follows immediately :from 1\ • ( 1+p+ ••• +pk- 1)). 

A convenient picture of on/k(t8 } and an/k(t8 +1) is sketched below 

K 

t ., (t )•h-1 ,m s 

K 

(h-1Hn-s) /k(t +1) 
~ n s 

i 
l ~ ( t )•-1 n,s s i I Ct >•-1 n s 

K n-(n-s)h K = 1t 
0 
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crn/k(ts +1) 
According to lemma (6.5) below to calculate Normn/k(x) mod'ffk 

where x has valuation v (x) = t , we can disregard for all m, n ~ m ~ k, 
n s 

all terms of Norm / (x) of which the valuation falls below the lower 
nm 

line in the picture above. In §7 below we shall show that in fact 

for IE 'TT' A 
mm 

(6.4.5) 
h-1 crn/m-1(ts) 

Norm I 1 (x) • NP/ 1(x) mod 71' 1 , if v (x) = a I (t ) mm- mm- m- m nm s 

and for r E7T A 
k k 

(6. 4 .6) No"lc/k-l lr) 

6.5, Lemma. 

and n > m > s 

and s > k > 0 

Lett> t' ~ 1, crm/k(t) = s, crm/k(t') • s'. If I ,Y € 'ffmAm, 

v m ( ~ = t , v m ( .!/) = t ' , then 

Proof. Because A is complete and (2.1.1), (2.2.1), there is an 
m 

!IE ,,.!'Am such that x+y = I+ FY'. Now Normm/k( r+ FY') = 

Normm/k ( ~ + F Normm/k (v '). Because crm/k ( t') = s' , Normm/k ( Y') = O 

s' 
mod 1Tk. Another appeal to (2.1.1) concludes the proof. 

7, PROOF OF THEOREM (6.1). 

7,1. Proposition. 

Let F, K , h, o be as in theorem (6. 1). Then for every 
n n 

[ n-1 ] . s ~on= n - h , there is a t 8 such that 
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t 
( i) F-Norm / n o maps F s(K ) 

n 
into F8 (K) 

(ii) F-Nonl\./o maps 
0 /k(t +1) 

F n s (ISt) into F5+1(K) for all O < k ~ n 

(iii) The induced map 

t 
F 8 (K) + F5 (K)/F8+1(K) 

n 

is surjective. n 
Proof. Let n =th+ r, 1 < r < b. Fors> n take t 

- s 
TI -1 a .;.__:.. + 
p-1 

n-(n-s)h I 
For n-.t < s < n take t = P -l . Parts (i) and (ii) of the , 

s p-1 

proposition then follow from (6.4.2) - (6.4.4). Fors~ n (iii) 

follows from (6.3) {the proof for h •~)and (6.5). Nov let n - t < s < n 

We shall first establish (6.4.5) and (6.4.6). 
Let n ~ j > s. To prove ( 6. 4. 5 ) we must show that 

(7.1.1) 
a/" 1(t ) 

a~;· ,ca /.(t )) >CJ/' ,(t ) + p n J- s 
J J- n J s - n J- s 

a/.,(t) h1 
( ) ( ) . ( } ~ ) n J- s . € N • ...1. -7, 1. 2 V. l a. + 1CJ /. t > C1 1 • t + p , l t l. ~ P J- 1. n J s - n J s 

where a., i = 1, 2, ••• are the coefficients appearing in formula (2.4.2) 
1 

f'or F-Norm. 

(m.+1)(p-1)+p(n-j)(h-1)t > 
Nov a~, -1 (0 1. ( t ) ) = [ s] = 

J J- n J s p 
n-ln-s)h ;-1 .. f tA-jHh-1) p - 1 1 

-:::p tff> ----;;· p . 1 I 

Cln/j-l(ts~ (n-j+1)(h-1) pn-(n-s)h_, (n-j+1)(h-1) 
and o / . 1 ( t ) + p = p • ----- + p • n J- s p-1 

h+sh-jh+j-2 (n-j+1)(h-1)+1 = p + ••• + 'P + 

j-1 
< p 

+ 2p(n-j+l)(h-1) 

because j-1 ~ (h+sh-jh+j-2)+1 (as j ~ s + 1}. This proves (7.1.1). If i 

is not a multiple of ph-l, v. 1(a.) + i.t > a~1. 1(t) for all t € N, 
J- l. - J J-

this proves (7.1.2) for those i; ph-l, which are not a multiple of 
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h-1 . l 1. 4" 1. > h-1 p . Final y ~ = 2p ( ) . ( ) 2 ( h-1 ) ( ) , then v. 1 a. + 1a 1. t > p a 1. t 
J- 1 n J s - n J • 

> 2ph- 1o 1 .(t ) > ph-ia 1.(t ) 
a 1.(t ) a 1. (t ) 

h-1 n J s h-1 { ) n J-1 s 
+ P •P • P an/j ts + P n J s - n J s 

a 1.(t ) 
because cr 1 .(t ) > p n J 8 • This 

n J s -
proves (7 .1.2). 

To prove (6.4.6) we must show that (cf. (2.4.2)) for s ~ j > 0 

(7.1.4) 

1 (J /' ,(t ) 
a.I. ,(a /.(t )) > a 1· ,(t ) + P n J- s 

J J- n J s - n J- s 

(l /' ,(t ) 
v. ,ca.)+ i.t > (J ,. ,<t ) + p n J- s 
J- 1 s - n J- s 

a/' ,ct ) 
a~/. 1 ( 2a 1 · ( t ) ) > a I. 1 ( t ) + P n J- s 

J J- n J s - n J- s 

i•1,2,3, 

First lets~ j > n-(n-s)h. Then a 1.(t ) > O and p divides a 1.(t ). 
n J s n J s 

(Cf. ( 6. 4. 2) ) . It follows that 

a /' 
a<?1. 1(20 1.(t)) = a 1. 1(t) + p- 1a 1.(t ). As a 1.(t) _> p n J\t 8 ), and 

J J- n J s n J- s n J s n J s 

a 1. 1(t ) = a 1.(t ) - 1, this proves (7.1.5) for s > j > n-(n-s)h. If 
n J- s n J s -

n-(n-s)h > j > o, then a ,.(t ) > p and hence a.I. ,<2cr ,.ct )) > 
- n J s - J J- n J s -a,. ,ct ) 

a. 1. 1 (a 1.(t )) + 1 • a 1. 1(t ) + 1 = a 1. 1(t ) + p n J- 8 • 
J J- n J s n J- s n J- s 

Th . ( ) ( 4) . . • • 1 h-1 1s proves 7,1.5 • As to 7.1. , let 1. be not divisib e by p 
• 1 

Then v. 1Ca-) > pJ- and we have 
J- l. -

(m .+1) (p-1 )+2t 
[---"'----] < 

p 

(m.+1 )(p-1 )+2t 

p 
j-1 :e::l + 2t < j-1 + 1·.t < = p + - p p p-

< V, l ( a. ) + it 
- J- l. 

provided p > 2 and t ~ p. If p = 2 then 

Cm.+ 1 )( p- 1 ) +2t . 1 
[------ 1= 2J- + t < v. 1(a.) + it 

p - J- l 
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for all t > 1. As a 1.(t ) > p for alls> j > 0 this shows that (7.1.5) 
- n J s - -

implies (7 .1.4) ·for those i which are not divisible by ph-l I:f i is 

divisible by ph-l (7.1.4) follows from (7.1.3) (which is the case 

h-1 i = p of (7.1.4)). It therefore remains to prove (7.1.3). We have 

"1 (" (t ) ). h-'1 (n-s )(h-1) -(s-j)t + ( • ) j h-1 
v.1. 1 v 1. • p .p .p s-J p .p 

J J- n J s s 

a 1. 1(t ) 
( ) n J- s a 1. 1 t + p . 

n J- s 
(n-s ){h-1) -(s-jt1) ( . ) j-1 • p .p .t + s-J+1 p + s 

(n-s)(h-1) -(s-j+1) +p p 

Ifs> j > n-(n-s)h, we have (s-j)pjph-l - (s-j+1)pj-l ;:_ 3pj-i and 

(n-s)(h-1) - (s-j+1), < j-1 because s > n - 1 > n - !!.. This proves (7.1.3) 
- - h 

in this case. If' s· > n-(n-s)h > j > O, then a./" 1(t ) • 0 and (s-j)pjp~-1 > 
- n J- s 

~ (s-j+l)pj-l + 1. It remains to prove {7.1.3) in the cases• j. We have 

to prove that 

h-1 (n-s)(h-1} -1 (n-s}{b-1) s-1 -1 (n-s)(h-1) 
P •P .ts ~ P •P .ts + P + P .p 

or equivalently 

n-(n-s)h 
t > p +1 

s - h p _, 

( ) -1( n-(n-s)h ) as t • p-1 p + 1 , this follows from the fact that 
s 

(p-1}- 1(pr_,) ~ (ph-1 )-1 (pf'+1) if r ~ 1, and h ~ 2 and the fact that 

n-(n-s )h • n-nh+sh ~ n-nh+(n-l)h • n-th • r ;:_ 1 because s ;:_ n - t and , 

n = .lh+r, 1 < r 5- h. This concludes the Pft2~r of' (6.4.6). _ 
Let a= a h-l' the coefficient of Np in (2.4.2). Let z € A0 •AK• zp. 

p 

According to (6.4.5) and (5.5) we have 

(7,1.6) 
t (n-s)h 

Norm/ (zµ 6 )a + zP a.n-s 
n s n -

(the sign is+ if p > 2, and (-l)n-s if p • 2). 

a I Ct +1) 
modµ n s s 

n-s 
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For k ~ s, it is Trk/k-1 which is the most important part of 

F-No"lt/k-l according to (6.4.6). We wish to apply (4.5) and shall 

therefore need to show that for s ~ k > n-(n-s)h 

(Note that vk(p8 -k) + p-(s-k)a / (t ) • a /k(t ) for s > k > n-(n-s)h; 
ns s n s - - 1 

further n-(n-s)h > r > 1, and fork< n-(n-s)h,a /k(t) contains no 
- - - n s 

factors p so that ve cannot apply {the second formula of) lemma (4.5) 
for k < n-(n-s )h). 

If s > k > n-(n-s )k, there is a factor p in p-( s-k) a I {t ) so that 
- n s s 

ve can apply the second formula of lemma (4.5). The result is that formula 

(7,1.7) holds modulo 

We must show that the valuation of' this is larger than or equal to 
( s-k+1). -(s-k+1) ( ) ( ) 

an/k-1(ts). But vk_ 1 p +p an/s t 8 •an/k-1 t 8 so that 

it suffices to show that 

(7.1.8) 
a / (t ) 

( p-1 -1 ) n k-1 s 
vk-1 p µk-1 ~ p 

We have 

(7.1.8) follows from this because (k-1) - {(n-s)(h-1)-(s-k+l) • 

• -nh+sh+n ~ -nh+(n-1 )h+n • n- h • r ~ 1. This Pl'oves ( 1.1.1) 

Using (6.4.6), (7.1.6), (7.1.7) and (6.5) we now obtain, writing 

1(s) for n~(n-s)h, 
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t (n-s)h t 
(7.1,9) Normn/n(s)(zµn 8 ) = + zP n-s s-t(s) s ~ - _ , a .p .µ.t(s} 

0n/1(s)(ts+1) 
mod,llt(s) 

(because p-(s-.t(s)a (t ) • p-s-n+nh-sh (n-s}{h-l)t • t ). v,..._, 
n/s s •P s s 11-, .. 

t 
It follows from (4.2.1) that vt(s)-1(Tr.t(s)/.t(s)-1(u1(s))} • 

-
Pt(s)-1_1 
------ + pt(s}-1 and (using induction one finds) p-1 

(7.1.10) 
t 

vo(Tr1(s)/0(µ1(s)}) • t(s) 

Combining this with (7.1.9) and (6.4.6) ve find 

(7.1.11) 
t (n-s)h 

( s) - p n-s s, Norm / zµ = + z a p o no n -
d s+1 

mo P 

where bis some element of Z of valuation v(b) • .t(s). Pa.rt (iii) ot p 
proposition (7. 1) follows because v(a) • 0 and we can extract p-th roots 

in Z/(p). 
q.e.d. 

7 .2. Proo:f of Theorem (6.1) 

Combine (7.1) and (5.10) and use the leJlllll& (3.2) on filtered 

abeli an groups 

7. 3. Corollary ( of the proof of Theorem ( 6. 1 ) ) • 

Let L be a.n unramif'ied algebraic extension of Q ; let L • K .L 
"P n n 

where K is as in theorem (6.1). Then theorem {6.1) also holds with K n n 
replaced by L n 

' 7,4. Corollary. 

Let L be a.n unramified algebraic extension of \, and let 

•··-Ln- ••• - L1 - L be an extertsion such that there exists a finite 
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unramif'ied ext.ension K' of L such that L .K' • IC' .K • Then theorem n n 
( 6 • 1 ) also holds with K replaced by L • n n 

Proof. Consider the commul&tive diagram 
No~'/L 

n 11 

-4-----.1. F(K' .L ) • F(K') 
n n 

Norn;:, /L 
n 

No~'/L 
F(L) 

l 
F(K') 

No~, /K' 
n 

The map No"1c, /L is surjective according to proposition (3.1). The 
n n a . 

image of Nonix, /K' is F n(KI) according to (7 .3). The same arguments as 
n 

used to prove ( 3. 1) in the unramitied case show that 
Cl a 

Norn;c,/L(F n(K')) • F n(L). q.e.d. 

8. CO:NCWDING REMARKS. 

8.1. !. Co'l.lllter Example. 

Let K be as in theorem (6. 1). Fix an index t and consider the 
n 

r-extension ••• - K - ••• - K. +l - K. of K •• It is not difficult to n 1 1 1 . 

check that theorem (6 .1) is not true for this r-ext~nsion, it'vfs large 

enough even it' F is defined over zp. 

8.2. More General r-Extension. 

Let K be a local field ot' characteristic O and residue characteristic 
~~111~f~ P, and let Kc/K be a en ion or gal.ois group Gal(K.,/IC) !:r ZP. Let Kn 

be the invariant field of pnGal(K_/K). Let ·F be a formal group of' height 

h > 2 over K. For each n we define 
'Yn 

Y • smallest natural number such that Norm / (F(K )) c:: F (IC) n & no n 

~n is largest natural number such that F n(K) c lormn/o(F(Kn)) 

Then one can prove 
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If the residue field of K is algebraically closed then the 

differences 
c5 - 1h=l}_ n e . and y - (h-1) are bounded n h K n h n eK 

independently or n. ( cf PJ ), 
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