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1. INTRODUCTION

Let K be a finite extension of Q,, , the field of p-adic numbers. Let L/K be a
galois extension. Local class field theory studies the cokernel of the norm
map N g:L* — K* Let A, , Ag be the ring of integers of L, K and let
U(L), U(K) be the group of units of 4; , Ax . The most difficult part of the
determination of Ny ,(L*) is the determination of the image (or cokernel)
of Ny U(L)— U(K). This map can also be viewed as follows. Let G,, be
the multiplicative group. Then G,,(4,) = U(L), G,,(4x) = U(K) and the
map Ny g is: N g(x) = sum of all the conjugates of x in G,,(L).

The following generalization is now natural and also interesting for various
reasons (cf., [7, Section 4]). Let G be an arbitrary commutative group
scheme over Ay . Define Norm(x) = sum in G(4,) of all the conjugates of x,
for x € G(AL). Problem. Determine the cokernel of Norm: G(4,) — G(4y).
As in the case of G,, an important step is to calculate the cokernel of the
induced map G(4,) — G(Ay) where G is the formal completion of G; G is a
formal group over A .

In the following we study the cokernel of Norm: F(A4;) — F(Ay) where
F'is a one-dimensional formal group over Ay . In case the height of F is equal
to 1 the answer is up to a twist given by local class field theory (cf., [7]).
Important is the fact that Norm: F(47™) — F(Ag>) is surjective if height
(F) =1, where L, , K, 1s the maximal unramified extension of L, K. The
picture changes drastically as soon as height () > 1. It is then not true in
general that Norm (F(L)) = F(K) if L/K is a finite galois extension and the
residue field of K is algebraically closed.

* While the research for this paper was done the author stayed at the Steklov
Institute of Mathematics in Moscow (1969/1970) and he was supported by Z.W.O.,
the Netherlands Organization for the advancement of Pure Research.
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The main part of this paper is devoted to the precise determination of the
cokernel of F(L) — F(K) for one special class of extensions L/K. We take
K = Q,, the p-adic numbers. Let L, be the extension of Q,, obtained by
adjoining all p™-th roots of unity. Gal(L./Q,)~ U(Q,) ~ 4 X Z, where 4 is
the torsion subroup of U(Q,,). Let K, be the invariant field of 4. Gal(K../Q,) ~
Z,, ie, K./Q, is a I-extension. Let K, be the invariant field of
" Gal(K,,/Q,). We determine Im(F(K,) — F(Q,)), where F is any formal
group over Z,, of height (F) = 2.

The results and proofs turn out to be generalizable to some extent (cf., [3]).

The motivation to study precisely I-extensions came from [7].

It remains for me to thank the reviewer who thoroughly criticized an earlier
version of this note.

2. GENERALITIES ON ForMAL GROUPS

2.1. Some Notations and Definitions

K will always denote a local field of characteristic O and residue charac-
teristic p > 0; Ay is its ring of integers; 7y is a uniformizing element and vy
is the normalized exponential valuation on K (i.e., vg(mg) = 1); My is the
maximal ideal of 4y .

A one dimensional formal group over A is a formal power series in two
variables over Ay of the form

FX,Y)=X4+Y+ Y a;XV, a;edg, (2.1.1)
4,=1
which satisfies
F(X,F(Y, Z)) =FF(X,Y), Z). (2.1.2)
All formal groups considered in this paper will be one dimensional. A one
dimensional formal group over Ay is automatically commutative; i.e., it

satisfies F(X, V) = F(Y, X) (cf. [4]).

2.2. Points and Norm Maps
|

Let L be a finite extension of K. One can use a formal group over A to
define an abelian group structure on the set M, . In fact one simply sets

x +Fy = F(x) y)s x;y € SUEL . (2.2.1)

(The series F(x, y) converges in M, .) This group is denoted F(L). If
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o, ye Mt =m 4, t=1,2,.., then x+4+rye Mt The group F(L)
therefore has a natural filtration by subgroups F¥(L) where the underlying set
of F{(L) is m !4, .

Because F(X, V) = X" + Y mod(degree 2), cf. (2.1.1), we have

FUL)FY(L) = I+, (2.2.2)

where [* is the underlying additive group of the residue field / of L.
Now let L/K be a galois extension with galois group G = Gal(L/K) =
{01 5.-sy 0,}. We define a norm map F-Norm: F(L) — F(K) by the formula

F-Norm: F(L) — F(K), x> o X Fpogx g Fpo(x). (2.2.3)
(The F-sum of the conjugates of x is in K because it is invariant under G.)

Exameirs. If F = G, , the additive group, given by G,(X, Y) = X + ¥,
then F(L) = M, (with its original additive group structure) and F(K) = D .
The norm map, G,-Norm, is equal to Ty , the trace map.

IfF = G,, , the multiplicative group given by G,(X, ¥) = X 4 ¥V + XV,
then F(L) = U,, the group of units congruent to 1 mod =, of A, . The
norm map, G,,-Norm, becomes the ordinary norm map U,* — Up! under
the isomorphisms F(L) = U, and F(U) = U,

2.3. Height of a Formal Group

Let F be a formal group over Ag . We define inductively

F2(X1 ’ Xz) = F(Xl ’ XZ)"":Fn+1(X1 yerey £ n+1)
= F(F Xy oor X1y Xsr)seor - (2.3.1)

Because F is associative and commutative, one has that F(X,,..., X,) =
F(X,4) y-es Xy(m) for every permutation of {1, 2,..., n}.

Let p be the residue characteristic of Ay . One defines [ p](X) as [ p](X) =
F (X, X,....,X). We consider [p]z(X)mod 7y . There are two possibilities
(cf., [1, 4)).

(i) There exists a number % €N such that [p]x(X) = 2(X7") mod
where g(Z) = b;Z + b,Z? + ---is a power series over A with b; 5= 0 mod 7y .
The number % = A(F) is called the height of F.

(i) [p]p(X) = 0 mod =g . In this case one defines # = A(F), the height
of F, as h = co.
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2.4. Lemma on F-Norm

Let F, be a formal group over Ag . If M is a monomial in X, ,..., X,
e.g., M = X] -+ X, we define

n I

Tl‘(M) — X;l X:zn + ng X:;IFIXI" 4 X:Llefz van

n—1"

We write N{(X) for X;* --- X,,’. Using these notations one has the following.
Lemma 2.4.1.

Fo(Xy 10 X,) = TH(X,) + T @N(X) + T an Tr(M),
i=1 M
where a; , ay; € Ay , and M runs through a set of monomials of total degree = 2
which are not of the form NU(X). If moreover n = p, the residue characteristic
of K, thenvy(a;) = lunlessi = kp"=1, k = 1, 2,..., and vg(a;) = 0¢f ¢ = p*-7,
where h is the height of F. (If h = o0, v(a;) = 1 for alliif p = n.)

Proof. 'The first statement follows from the fact that F(X, V) = X + ¥V
mod (degree 2) and the fact that F(X ,..., X)) is invariant under permutations
of the X, ,..., X, . The second part of the lemma follows from the first part
and (2.3), because substituting X for the X, in Tr(M) results in something
=0 mod p if M is not of the form N(X). Q.E.D.

Now let L/K be a cyclic galois extension of degree n. Let Tr, - and Ny
denote the trace and norm maps. We write N, (x) for (N, x(x)¢. From the
definition of F-Norm and (2.4.1) one then immediately obtains the following.

CoroLLARY 2.4.2.

F-Normyx(x) = Trpx(x) + Y a;Nix(x) mod Trpx(x*4,)
i=1
for all xeF(L). If n = p one has the same statements on the valuations of the
a; as in (2.4.1).

3. UNrRAMIFIED AND TAMELY Ramiriep EXTENSIONS

In the case of an unramified or tamely ramified extension L/K, the image
of F-Norm: F(L) — F(K) is very easy to calculate.

ProrostTiON 3.1. Let L/K be a tamely ramified galois extension, then
F-Norm: F(L) — F(K) is surjective.
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Proof. First suppose that L/K is unramified. F~-Norm maps F*(L) into
F3(K) and for every y € F(K) of valuation vg(y) = s, there exists an x € F5(L)
such that

F-Norm(x) = y mod(=%).
Indeed, according to (2.2.1) and (2.2.3) we have
F-Normyg(x) = Trp/x(x) mod(sg),

and it thus suffices to select an x € F$(L) such that Tr;,,(x) = y which can
be done because L/K is unramified. It follows that the induced map F$(L) —
Fs(K)[F}(K) is surjective and this proves the proposition in this case
according to Lemma (3.2) below.

Now let L/K be totally and tamely ramified. Because Gal(L/K) is cyclic of
order prime to p (cf. [8], Chapter IV, Section 2]), it suffices to treat tamely
and totally ramified extensions of prime degree J, (I, p) = 1. For such exten-
sions one has '

Trp (m tAL) = m" Ay, r=[(—1)+ 1] (3.1.1)

where [s//] denotes the entier of s/I. (cf. [8, Chapter V, Section 3].) It follows
that for every s € N there exists a number ¢, such that

@) t,>s5
(i)  wk(Trpx(*)) > sif v (x) > 1,
(iii)  vg(Trp k() = s if v.(x) = £,.

It follows from this and (2.4.2) that
F-Normy g(zx) == 2 Trpx(x) mod(nrk A g)

if v,(x) =t,, e Ay . Using this, (2.2.2) and (iii) above we see that the
induced map Fis(L) — F¥(K)/Fs+(K) is surjective, which proves the proposi-
tion in this case.

Finally let L/K be tamely ramified. The extension L/K can be decomposed
into a tower K CL,,CL, where L,,/K is unramified and L/L,, is totally and
tamely ramified. As F-Normj; = F-Norm, . F-Norm,, — we are

through. Q.E.D.

For completeness sake we state the lemma which was used twice in the
proof above, and which we shall use a few more times in the sections below.

LevmMa 3.2. Let A and B be abelian groups filtered by subgroups
A=A4,24,2B=B; 2B, - suchthat A =lim 4|4, , and (N, B, ={0}.
Let u: A — B be a homomorphism and suppose that there exist indices t, < t, << -
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such that w(A4,)C B; and u: Ay — By|B;y is surjective for all i = 1,2,....
Then u: A — B is surjective.

Proof. Very easy, cf,, e.g., [8, Chapter V, Section 1, Lemma 2].

4. Tue Cycrotomic I-EXTENSION

A Iextension of a field K is an (infinite) galois extension K /K such that
Gal(K,,/K) ~Z,, the p-adic integers.

4.1. The Cyclotomic I'-Extension of Q,

Let Q, be the field of p-adic numbers. Adjoin to Q,, all p"-th roots of unity,
for all 7. The result is a totally ramified abelian extension L../Q,, of galois
group isomorphic to U(Q,). Let 4 be the torsion subgroup of U(Q,). If
P > 2, this is the subgroup of the (p — 1)-st roots of unity; if p == 2 this is
the subgroup {1, —1}. Let K, be the invariant field of 4. Then K, /Q, is a
I'-extension (associated to the prime p). We shall call this extension the
cyclotomic I-extension of Q, . Let K, be the invariant field of the closed
subgroup p” Gal(K,,/Q,). We obtain a tower of totally ramified extensions of
degree p - —K,,3, — K, — - —K,— K, —Q, = K.

Another way to construct this I-extension of K = Q, for p > 2 is as
follows. Let f(X) = X? 4 pX; Let f™(X) be the m-th iterate of f(X), ie.,
fm(X) = fin(f (X)), fOX) = X. Let (LT),,; (the (n + 1)-st Lubin-
Tate extension of K; cf. [6] or [2]) be the extension generated by any root
Ay of fU(X), which is not a root of f(™(X). The extension (LT),,,/K is
galois and totally ramified; the galois group is isomorphic to U(Q )/ U**1(Q,).
(Cf. [6] or [2]; U(Q,) = units of Z,;; UM(Q,) = {ue U(Q,) | u == 1 mod p}).
The action of ue U(Q,) is given by A, > [u];(A,;), where [4](X) is the
unique power series such that [u](X) = «X mod (degree 2) and [u], o f =
foluly. Let { be a (p — 1)-st root of unity, then [{](X) = {.X, because
(LX) + p(LX) = {(X? + pX). The element p,, == AZ7] is therefore invariant
under the action of 4. The extension |J, Qu(u,)/Q, is the cyclotomic
I'-extension of Q, . (If p = 2 one obtains in this way the whole extension

L,/Q..)
4.2. The Number m(L|K)

Let L/K, be a totally ramified extension of degree p. Then there exists a
certain number m(L/K) e N such that

Trpjp(mtAr) = my" Ay where 7 = [{(m(L/K) 4 1)(p — 1) + }/p]
(4.2.1)
(cf. [8, Chapter IV, Section 2]).
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4.3. Equations for .,

It is not difficult to find equations for the y, defined in (4.1). Indeed, we

can choose A, Ay ,... inductively such that A2, +p\,,; = X,, 2 = 1,

A7! = —p. We have p, = A271; it follows that g, = —p and that
XX + )P — s (4.3.1)

is the minimal polynomial of u, over K,_, . (Note that u, is a uniformizing
element of K, .)

4.4. The Numbers m,,

Let m, = m(K,/K,_,), n = 1,2,.... One finds by explicit calculations
from Eq. (4.3.1) above that

Trn/n—l(l"-n) = —(P - 1)P1
Tromalpa?) = (p — 1) p2, (4.4.1)
Trpmalpn ) = (=17 (p — 1) p"™

(We have written Tr,/,_y for Try ;x ). Comparing this with (4.2.1) one
finds that

My =1 pt o prt (4.42)

In the sections below we shall need to know something about T, ,_y(4.*),
especially in the case that & is a multiple of p.

TRACE LEmMMmA 4.5.

kp+e

Trn/ﬂ—l(""’n ) = O mOd f"'ﬁ—lpc, ¢ = lv 2)"'1P - l; k= 01 ]) 21""
Trn/n—l(l"}:zp) = p/“’ﬁ-*-l mod u’;:i P k=1,2,...

Proof. The formulas (4.4.1) above take care of the cases & =0,
¢ =1,2,..,p— 1. We have the relation

p—1

s’ + (PT 1\) pn P+ -th(P_ .

) 2" = - (451
Applying Tr,,,_, and using (4.4.1) we see that

Tro/n-a(pn?) = Ppin-y  mOd(P"). (4.5.2)

To prove the lemma for kp + ¢ > p, multiply the relation (4.5.1) with
w12+ and use induction.

481/32/1~7
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5. SomE PRELIMINARY CALCULATIONS

In this and the following Sections 6, 7, K = K, = Q,,, and
- K,— - — K, — K

is the tower of extensions constructed in 4.1, K, = K,_,(p,). If p > 2,
Un K, is the cyclotomic I-extension: if p = 2, (), K,/K has galois group

isomorphic to U(Qy) ~Z, X {1, —1}. We write F-Norm,, ,, or Norm,,,; for
F-Normy /¢, and Ny, for Ng . Further vy = v, , Ay = 4,.

Lemma 5.1, Let x e F(K,). Then
pa(Norm, () = min{[p=X((m, 4 1)(p — 1) +- 1)], p*~2}.

Proof. It follows from (2.4.2) that

Opa(Normy, (%) = min{[p~Y((m, + 1)(p — 1) + D], vuoa(a;) + ti}.

Because v,_;(a,-1) = 0, we can omit v, _,(a;) + ti for ¢ > p"*! without
changing the minimum. If 1 <7 <p*, then p | a;, and v,_y(a;) + i >
P4t > pH(m, + 1)(p — 1) 4 t), because m, = 1 + p + - 4 pr-1
and t > 1,7 > 1. QE.D.

Lemma 5.1 shows that the numbers [p~Y((m, + 1)(p — 1) + #)], p*~tare
probably important in the determination of Norm,, ,,(F(K,,))-

5.2. The Functions o,,,(t) and v, ;,(t)

We define inductively

on/n(t) =t, a'n/k(t) = ak+1/lc(°'n/k+l(t))’

) (5.2.1)
Opma(t) = min{[p~}((m, + 1)(p — 1) + 1)], p"~t}.
It is also convenient to define
Tnma(t) = [P (mn + D(p — 1) + 1)],
(5.2.2)

U}; /n—l(t) = Ph‘-lt’

and
tane(t) = —1if 0f je_y(oan(t)) < % e-1(0n (1))

=h — 1if o} _y(0nn(t)) > L G (5) (5.2.3)
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It follows immediately from the definitions thatif & <=

Opit) = min{of k(0 /k41(2)), T (O sisa(D))}- (5.2.4)

The function () indicates whether it is the value of o},,_, or o},,_; which
determines o, /,_,(2), or in other words whether in the step from K, to K,,_,
(having started in K, with an element of valuation t), it is T/, _;(Norm,, ;(x))
or N ,f/hk__ll(Norm,, (%)) for which the lower bound on the valuation is sharpest.

Lemma 5.3.
Norm,, o(F(K,)) C Fr(K).
This follows immediately from (5.2.1) and Lemma 5.1.

We now proceed to calculate the functions o, ,(t). In case A = 1, the
functions o,(t) are determined by the Herbrand functions Y, /x(s). Indeed
P, x(8) <1t <k k(s + 1) is equivalent to o, o(f) = s + 1.

Lemma 5.4.
wn(t) = =Lt = (p" = D)(p" — 1)
Proof. 1,,,(t) = —1 is equivalent to 03, _;(t) < o,,_1(2); i-e., t(t) =
—1iff

(1 4+ =+ 77 1)(p — 1) + 0] <

cp I +p+ At D -+ <p 4 (p—Dip

c@r=D+(-DF+e<pt+(p—1)
ot = (= D" = 1)
Lemma 5.5, If k = 2 and v,,(t) = —1, then v, (1) = —1.
Proof. Lets = a,,(t). Then i, (s) = —1.Let s’ = 0y/5_1(s) = 0%5,_1(5).
We must show that ¢;_,,_,(s") = —1. We know that
= (2 — DI — 1),

Hence

L[ D)=t mp—1)  p—1
¢ =| » |= 5 T —1p
Pr—1 pr—1 _prr—l
5 T =p” P

Using (5.4), (5.5) and (4.2) it is not difficult to calculate o, () for large
enough t. We find the following.
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Lemma 5.6.

n_l n__l
T <t< By~ oul =n

Pn_l n P"
P~1-+@ <t <

1
1 +(k+ 1)p" = 0n(t) =n 4k + 1.

Let j,(t) be the number of indices £ = n,7 — 1,..., 2, 1 such that ¢, ,(f) =
h~1.Inview of (5.5) we have j,(£) = s = 1 <> ty/n(t) = b = L ety n_sia(t) =
h—1, ‘n/n—s(t) = —1,.., "'n/l(t) = —1

Lemma 5.7.

. pn—sh — ps—sh
W) =s 2 lo—F=7—

. " — 1
]n(t)=0<—>£h_1 <t

—(s=1Dh __ #(s=1)=(s=1)h
P p
<t <

Ph__l ’

Proof. The second formula follows from (5.4) and (5.5). As to the first

— (8— h—
Jnll) = s = 1 pst-t < [(mﬂ—s+l + D(p — 1) + ple-Dtr-1y

5 ]
and p+D-D > [(mn—-s + I)(p—1) "‘PS(h_l)t].
P
(Use (5.5) and the fact that ¢, (') = —1 if 4, (¢") = —1 and ¢’ = ¢ (cf.

(54)) and p™*-Vt > o,/ ,,(2).) The same calculations as in (5.4) now
prove (5.7).

Q.E.D.

ProposiTION 5.8. Writen = lh + v, with | < v << h. Then we have

1<f<}_;1-—>0n/o(t):"~l,
r— 1 r+h |
‘2_1 <t<P—p—_—l—*—’0n/o(t):”—l+1,
Pr+kh —1 P'r+kh+h__ 1

p—l <t\——5—_—1———+0",0(t)::n—l+k+l,

B=0,1,.,1—1,
n__l h__l
T <t<E=g+pr o = n+1,

1;_1 thpr <t <E g R Dp o =1,

k=1,2,...
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5.9. Remark
These formulas are also true if A = o0; take [ = 0,7 = n.
CoroLrary 5.10.
F-Norm,, ,(F(K,)) CF*(K),
where o, = n — [(n — 1)/h].
5.11. Proof of Proposition 5.8
Let j,(t) = s = 1. Then according to (5.7)

Pn—sh — ps-sh pn——sh+h — Ps—l«sh+h
_— L

PIL — 1 st < Ph —1
Further
n—s ___ 1 n+h—s __ ph—1
P—pn‘_—r < Gupnnslt) = pUE < P—pn—_ip—* '
We have t,_g/n_o(0pnm-s(2)) = —1 (because j,(t) = s) and we can therefore

now calculate o,,_/o(05/n—s(2)) = 0, ,4(t) by means of Lemma 5.6. The result is

n—sh __ —sh n—sh __ 5s$—sh
'P_PT:PIS—‘ <t < z)-—;t—lg———* onp(t) =n—s (5.11.1)

and

Pn—sh —_— ps-—sh
o <t < o

pn+h—sh . PS—1—9h+h

o) =n—s 1. (5.11.2)

Because & > 1, we have that 0 < ps=s* <{ 1 foralls = 0, 1, 2,... . It follows
that

n—sh __ ps—sh —sh __
Pl T (5.11.3)

Now put the formulas (5.11.2) and (5.11.1) for s = 1, 2,..., [ together (note
that s = [/ 4 1 gives nothing if n = Ih + h); use (5.11.3) and combine this
with the result of (5.6). The result is Proposition 5.8.

6. STATEMENT OF THE THEOREM AND OQUTLINE OF THE PROOF

THEOREM 6.1. Let F be a formal group over Z,, . Let
=K, — K, ;- —K,—-K=Q,

be the tower of extensions constructed in Section 4. (If p > 2, (J, K, is the
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cyclotomic I'-extension of Q,: if p = 2 it is a slightly larger abelian totally
ramified extension). Let b = h(F) = 2. Then we have (n > 1)

F-Norm,, (F(K,)) = F*"(K),
where o, 1s equal to o, = n — [(n — 1)/k].
Remark 6.2. The theorem is also true for # = oo; (n — 1)/h = 0.
6.3. Proof of Theorem 6.1 in case h = co. For each s = n, let
t,=(p" — DI(p — 1) + (s — n)p".

It is not difficult to calculate o,,(¢,) and o,,(t, + 1) for & =n — |,
n—2,..,2,1,0. One finds

ounlts) = (p¥ — DI(p — 1) + (s — n) p* + (n — k) p*
for k> 1 and o,,(t) =s
(6.3.1)
ouilts 1) = (pF = D/(p— 1) + (s —=n) p* + (n — k) p* + 1
for k=1 and o,,(t,+1)=1s+1.

It is now easy to check that

ohe-1(Tnn(ts)) < Ohsia(onnlts))- (6.3.2)

It follows from this, (2.4.2) and (6.3.1) that the induced map

Normy, .y : F“"/"(t‘)(Kk)/FU"/k(t")H(Kk) s Fayl/krl(ts)(Kk—l)/I:’”’ﬂ//I« l(ts)+1(Kk—l)

(6.3.3)
is equal to the map

. 074/}:(!3) 071/};(%)"'1 0n/lc--1<':¢) Un/k—-l(’e()"*]
Trk/k—l " Ayl A — Ay [ A, (6.3.4)

This last map is surjective because

O i-1(Cnit) + 1) = oRpia(onn(ty) + 1,

and K;/K,_, is totally ramified (cf. 4.2.1). It follows from this and the fact
that (6.3.3) and (6.3.4) are the same maps that the map

Norm,, , : F'(K,)) — Fo(K)Font 1K) (6.3.5)

is surjective. In view of Lemma 3.2 and Corollary 5.10 this concludes the
proof in case & = o0 because o, (t,) =7 = o, if b == c0.
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6.4. Idea of the proof of Theorem 6.1 in case h << co. A first step in the proof
f Theorem 6.1 is to show that for every s = n — [(n — 1)/A] there exists
t,, and an element x € m,4, such that yo(Norm,, 4(x,)) = s. For s > n one

an take 7, = (p™ — 1)/(p — 1) + (s — n) p" (cf. (6.3)). Let [ = [(n — 1)/A].

‘or n — | < s < m a natural choice of ¢, is

. P'n—(n—-s)h — 1

£ rE=

(6.4.1)

“hen j,(2;) = n — s (cf. (5.7)). It is easy to calculate o, ,(¢,) for k. =n — 1,
— 2,..., 1, 0. The result is

On/mlts) = pm—m-—Lig for nz=2m=s,

Camlts) = PRIpom L (s — mpm, s> m = m— (n— s)h,
‘win-tu-s(ts) = ts + (m — s)(b — 1)pn= =91,

Tam(ts) = (" = DI(p =D+ (s —mp", n—(@m—99h=m=0,

Oty = 5. (6.4.2)

As in (6.3) it is useful to calculate also o,/ (¢; + 1). Because £ > 1, also
a(ts + 1) = n — 5. Let o, ,(2,) be defined by

ti(ts) = (n — m)(h — 1), for n>m>=s,
) =m—)h—1)—(s—m), for s=m>=n— (n—s)h (64.3)
tyi(ts) =0, for n—(n—sh=m=0.
Jne then has
an/k(ts -+ 1) = an/k(ts) "\_ pm"/k(tk)- (644)

In all these calculations the simple fact o,,_,(rp) = r + p*~1, k = 2is very
usefull. It follows immediately from m; = (1 + p + - + p*~1)).
A convenient picture of o,,/,(2,) and o, (¢, + 1) is sketched below.
According to Lemma 6.5, to calculate Norm,,,(x) mod #r/!%+1) where
¥ has valuation v,(x) = #,, we can disregard for all m, where n = m >k
all terms of Norm,, ,,,(x) of which the valuation falls below the lower line in
the picture above. In Section 7 below we shall show that in fact for x € 7, 4,,

— - n/m- (ts ) —
Norm | /m_l(x) =N Zy’lh /Wtal(x) mod 7nm Y if g () = o /m(ts)

and n>=m>s (6.4.5)

BIBLIOTHEEK MATHFMATISCH CENTRUM
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n Koy Kg K Kn—(n-—s)h K=Kq

‘S

1
;S +1

tg %afn-in-sihlts)
h 1
'ls+1
Gn/fkits)

)p"n/k tsT

s(ts) S

onfi(ts+1)
pih-11(n-s)

lnjnltgl=h-1 Tnfmflts)=h-1  tpslig)=-1 gk ()= -1

and for x € m A4,
— np-1ttl) s
Norm, ;. ,(x) = Try, _,(x) mod w74~ SV gx) = o, ,(t)

and s =k > 0. (6.4.6)

LemMa 6.5. Let t >t =1, opuplt) =5, opult’) =5" If %,y em, Ay,
V(%) = t, Op(y) = t', then

Norm,, x(x + ¥) = Norm,,;;(x) mod .

Proof. Because 4, is complete and (2.1.1), (2.2.1), there is an )" € A,
such that x +y = x 4+ »". Now

Norm,, (¢ +F 3") = Norm,x(x) +r Norm,, ().
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Because o,,;(t') = s, Norm,,;(¥") = 0 mod =} . Another appeal to (2.1.1)
concludes the proof.

7. PrROOF OF THEOREM 6.]

PropositioN 7.1. LetF, K, , h, o, be as in Theorem 6.1. In this section we
take the uniformizing element m, of K, equal to ., . Then for every s = o, =
n — [(n — 1)k, there is a t, such that

(1) F-Norm,,, maps Fts(K,) into F¥(K).
(it) F-Normy,, maps FerletstD(K ) into Fs+Y(K) for all 0 < k < n.
(i)  The induced map
FY(K,) — F(K)/F*(K)
1S surjective.

Proof. Letn = Ih+r, 1 <r < h. Fors > n take

ty=(p" — DI(p— 1) + (s —n)p™.

For n — I <s < m take ¢, = (p~»=9» — 1)/(p — 1). Parts (i) and (ii) of
the proposition then follow from (6.4.2)—(6.4.4). For s > = (iii) follows from
(6.3) (the proof for 2 = co) and (6.5). Now let » — I << s < n. We shall
first establish (6.4.5) and (6.4.6).

Letn > j > s. To prove (6.4.5) we must show that

Y ia(onii(te) = onpsalty) + poia®, (7.1.1)
v.i-—l(ai) + z.a'n/i(ts) 2 U'n/j—l(ts) + P“n/j—l(t“)y iEN, t 7 Ph_l, (712)

where a;, 7 = 1, 2,... are the coeflicients appearing in formula (2.4.2) for
F-Norm.

Now
 + D(p— 1 (=) =1) 4
03 1i-1(0n/i(ts) = [(m, +Dp—1)+p ]
P
j— _ N pn~(n—s)h_1 1
= pt wo-pe-n P71 2
pt+pp = .
and
Pn—(n—s)h . 1

Onsjma(ts) + p«,.,j_l(ts) - p(n—-i+1)(h—1) . + p(n—~j+1)(h—l)

p—1

— Ph+sh—jh+i—2 4 e +P(n—i+1)(h—1)+l + Zp(n-i-i-l)(h—l)

< Pi—-l
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because j —1 > (h+sh —jh4j—2)+ 1 (as j = s + 1). This proves
(7.1.1). If 7 is not a multiple of p*%, v;_4(a;) + 7. t > of,;_y(t) for all teN,
this proves (7.1.2) for those ¢ % p"~1, which are not a multiple of p*-L.
Finally if 7 > 2p*1, then

953(@;) + i0y(ts) = PP Vog(t)
= 2Ph—lan/j(ts) = Ph_lan/j(ts) + Ph_l ' Pq"/j(tx)
= p"ou(ts) + pr

because o, /;(t,) = pe=/it%). This proves (7.1.2).
To prove (6.4.6) we must show that (cf., (2.4.2)) fors = j > 0

a}/j—l(anli(ts)) = opyia(ty) + Pa"”hl(ts)a (7.1.3)
0g(@) 41ty > oty + i = 1,23, (1.1.4)
0315-2(200/5(t)) = Oniialty) + pHi . (7.1.5)

First let s > 7 > n — (n — $)h. Then o, ,;(t;) > 0 and p divides o, /(2;)
(cf. (6.4.2)). It follows that

a?/i—l(zon/i(ts)) = Op/ja(ts) + P—lan/j(ts)'

As 0,i(ts) = peni(ty), and ay/;_4(f) = a,(t;) — 1, this proves (7.1.5) for
szj>n—(m—h If n—(n—s)h =7 >0, then o,,(t) = p and
hence

05/5-1(20515(25)) = 05/54(0n5(2)) + 1
= oyt + 1= oy(t,) + po 9,

This proves (7.1.5). As to (7.1.4), let i be not divisible by pt-1. Then
v;_4(a;) = p'~* and we have

[(mf +D(p—1) + 2t] cm D=1 +2
2 = »
2=l 2 i S opy(a)
p p

providedp > 2and ¢ = p. If p = 2 then

=7+

[(mi +D(p—1) +2

5 ] =21 bt < oy (ay) + it
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forallt = 1. As 0,;(t,) = p for all s > j > 0 this shows that (7.1.5) implies
(7.1.4) for those ¢ which are not divisible by p*~1. If 7 is divisible by p*-1
(7.1.4) follows from (7.1.3) (which is the case { = p*~1 of (7.1.4)). It therefore
remains to prove (7.1.3). We have

hialon(ty)) = prr - pm IOV Lyl (s —jyp? - p

and

Crn/j_l(ts) —+ p“n/}'—l(ts)
= p('n—s)(h—l) .P—(s—j+1) i+ (S —Jj+ I)Pf—l +p("'3)(h“1)p—(8—j+1)‘

If s > 7 >n— (n— s)h, we have (s — ) pip"t — (s —j + 1)p'* = 3pi—?
and(n — s)(h— 1) — (s —j+ 1) <j— l because s = n — I > n — (n/h).
This proves (7.1.3) in this case. If s >n— (n—s)h =7 >0, then
oy si-(ts) = 0 and (s — ) pip** = (s —j + 1)p'~! -+ 1. It remains to prove
(7.1.3) in the case s = j. We have to prove that

Ph——l . p(n—-s)(h—l) . ts 2 p—l . P(n—s)(hvl) . ts + Ps—l _|_ P~1 . p(n~s)(h—1)
or equivalently
ts > (Pn—(n—s)h + 1)/(Ph —_ ])

as ty = (p — 1)"Y(pr—n=9% — 1), this follows from the fact that

=D =D=0@"-DH+ 1D

if f>1, and £ > 2 and the fact that n — (n — s)h = n — nh + sh =
n—nh+mn—NDh=n—1h=r_>=1becauses 2n—1Iland n = lh 47,
1 < 7 < h. This concludes the proof of (6.4.6).

Let @ = a-1, the coefficient of N*" ™ in (2.4.2). Let s € Ay = Ay = Z,, .
According to (6.4.5) and (5.5) we have

(n—-8)n ay

- ,(i,,) /s(ts+1)
an—>s - I“Ln—{:s mod 'uo_/s -+ (716)

n

By ——
Norm, (2p,) = =+ 2*

(the signis + if p > 2, and (—1)"* if p = 2).

For kB < s, it is Try/,_, which is the most important part of F-Norm;,,_;
according to (6.4.6). We wish to apply (4.5) and shall therefore need to show
thatfors >k >n— (n — s)h

~(s=k) " ~(s—k+1)
Trk/k_l(ps—k/“‘]f onyslts) = Ps—k+l/~":__1 onyste) mod :"‘Zi/f_l(i“+l)' (117)

(Note that v, (p5F) + p~tsBo, ,(t,) = o, (t)for s 2 k = n — (n — sk
furthermore, n — (n — $)h = r = 1, and for k << n — (n — h, o,ult)
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contains no factors p so that we cannot apply (the second formula of)
Lemma 4.5 for k < n — (n — s)h).

If s >k >n— (n— s)k, there is a factor p in p~Fg, , (2,) so that we
can apply the second formula of Lemma 4.5. The result is that formula
(7.1.7) holds modulo

ﬂ—(s~k+1)a"/_\.(ts) o

TR uiy My -

?
We must show that the valuation of this is larger than or equal to o,;_,(2,).
But o;_,(ps*+) 4 pts—ktlg, (1) = o,/k-1(%s) so that it suffices to show
that

g (P7 aity) = e (7.1.8)
We have

Gea(P" ) Z 2" = 15 anpa(t) = (n = s)(h — 1) — (s — k +1).

(7.1.8) follows from this because (k — 1) —{(n —s)}(h — 1) — (s —k + 1) =
—nh+sh+n>= —nh+Mm—Dh+n =mn—1Ih = r = 1. This proves
(7.1.7).

Using (6.4.6), (7.1.6), (7.1.7), and (6.5) we now obtain, writing /(s) for
n— (n— s)h,

(n—-slh

ts\ Loom=s , as=ls) |t on (t,+1)
Norm,, ;. (2w,7) = + 27 at-p’ Py mod pfeite T (7.1.9)

(because p=(s=Hsg, /(1) == p=s—minh=sh . pn=9-1¢ — ¢ ) Now

_ pn—(n—-s)h —1 _ Pl(s) — 1

ks p—1 p—1

It follows from (4.2.1) that
”z(s>-1(Trz(s)/z(s)-1(f"tzfs))) = (pl(S)*l —D/(p—1 + P”S)—l

and (using induction) one finds

vo(Trl(s)/o(p;‘(’s))) = I(s). (7.1.10)
Combining this with (7.1.9) and (6.4.6) we find
(n—s)h

Normn/o(zp.f:) = +2*  a"p’b mod p**?, (7.1.11)
where b is some elemnt of Z, of valuation v(b) = I(s). Part (iii) of Proposi-

tion 7.1 follows because w(a) = 0 and we can extract p-th roots in Z/(p).
Q.E.D.
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7.2. Proof of Theorem (6.1). Combine (7.1) and (5.10) and use the
Lemma 3.2 on filtered abelian groups.

CororrarY 7.3 (of the proof of Theorem 6.1). Let L be an unramified
algebraic extension of Q,; let L, = K,, + L where K, is as in Theorem 6.1. Then
Theorem 6.1 also holds with K, replaced by L, .

CoroLLARY 7.4. Let L be an unramified algebraic extension of Q,, , and let
o+ — L, — -+ — L, — L be an extension such that there exists a finite unramified
extension K' of L such that L, - K' = K' - K,, . Then Theorem 6.1 also holds
with K, replaced by L, .

Proof. Consider the commutative diagram

Normg .7 ,
F(L,) ~——"F(K'-L,) = F(K,")
Norm, ,p Normg k- |

Normg.;z

F(L) «——F(K")

The map Normy -/, is surjective according to Proposition 3.1. The image of

Normy -/ is F*+(K') according to (7.3). The same arguments as used to

prove (3.1) in the unramified case show that Normy-,,(Fe»(K")) = Foa(L).
Q.E.D.

8. CONCLUDING REMARKS

8.1. A Counter Example

Let K, be as in Theorem 6.1. Fix an index 7 and consider the I-extension
-+ — K, — - — K;,; — K;of K, . It is not difficult to check that Theorem 6.1
is not true for this -extension if 7 is large enough, even if F is defined over Z,, .

8.2. More General I'-Extensions

Let K be a local field of characteristic 0 and residue characteristic p, and
let K,/K be a totally ramified extension of galois group Gal(K,/K)~Z,.
Let K, be the invariant field of p» Gal(K/K). Let F be a formal group of
height 2 > 2 over K. For each n we define

¥ is the smallest natural number such that Norm,, ,(F(K,)) CF¥«(K),

8, is the largest natural number such that Fé(K) C Norm,, ,(F(K,)).

Then one can prove the following.
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If the residue field of K is algebraically closed then the differences

Sn_.(_h_%_ﬂngK and -yn__.(ﬁ__;.l_).nel(

are bounded independently of # (cf. [3]).

Remark 8.3. In the case considered in this paper, i.e., the situation
F-Norm: F(K,)—F(K), where K =Q,,K, is the n-th level of the
cyclotomic [-extension of Q, and F is a formal group defined over Z,, the
cokernel of F-Norm depends only on the height # of F and the extension
K, /K.

Now consider the following situation
F-Norm: F(L) — F(K),

where K is the quotient field of the ring of Witt-vectors, W(F,), over the
finite field of g elements, F,; where F is defined over W(F,) and L/K is a
finite (galois) extension. In this situation one can conjecture that the cokernel
of F-Norm depends only on the reduction F* over F, of F and the extension
L/K. This is certainly the case if K = Z,, because two formal groups over Z,,
with isomorphic reductions are isomorphic. Moreover, in the situation
described above, one can show that the image of F-Norm is necessarily of the
form F¥(K), i.e., a filtration subgroup of F(K).
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