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1. INTRODUCTION 

Let K be a finite extension of Qi, , the field of p-adic numbers. Let L/ K be a 
galois extension. Local class field theory studies the cokernel of the norm 
map NL1K:L*-+ K*. Let AL, AK be the ring of integers of L, Kand let 
U(L), U(K) be the group of units of AL, AK. The most difficult part of the 
determination of NL1K(L*) is the determination of the image (or cokernel) 
of NLIK: U(L)-+ V(K). This map can also be viewed as follows. Let Gm be 
the multiplicative group. Then Gm(AL) = U(L), Gm(AK) = U(K) and the 
map NLIK is: NL!K(x) = sum of all the conjugates of x in Gm(L). 

The following generalization is now natural and also interesting for various 
reasons (cf., [7, Section 4]). Let G be an arbitrary commutative group 
scheme over Ax. Define Norm(x) = sum in G(AL) of all the conjugates of x, 
for x E G(AL)- Problem. Determine the cokernel of Norm: G(AL) -+ G(AK)­
As in the case of G,,, an important step is to calculate the cokernel of the 
induced map G(AL)-+ G(AK) where G is the formal completion of G; G is a 
formal group over AK. 

In the following we study the cokernel of Norm: F(AL)-+F(AK) where 
F is a one-dimensional formal group over AK . In case the height of F is equal 
to 1 the answer is up to a twist given by local class field theory (cf., [7]). 
Important is the fact that Norm:F(A[')-+F(Af') is surjective if height 
(F) = 1, where Lur , Kur is the maximai'unramified extension of L, K. The 
picture changes drastically as soon as height (F) > 1. It is then not true in 
general that Norm (F(L)) = F(K) if L/K is a finite galois extension and the 
residue field of K is algebraically closed. 

* While the research for this paper was done the author stayed at the Steklov 
Institute of Mathematics in Moscow (1969/1970) and he was supported by Z.W.O., 
the Netherlands Organization for the advancement of Pure Research. 
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The main part of this paper is devoted to the precise determination of the 
cokemel of F(L) -. F(K) for one special class of extensions L/ K. We take 
K = Q:1> , the p-adic numbers. Let L,,, be the extension of QP obtained by 
adjoining all pr-th roots of unity. Gal(L00 /Q2>) ~ U(Q:1>) ~ LI X ZP where LI is 
the torsion subroup of U(Q:P). Let K 00 be the invariant field of LI. Gal(Kco/Q:P) ~ 
Z:P , i.e., Kco/Q:1> is a I'-extension. Let K,. be the invariant field of 
pn Gal(Kco/Q:P). We determine Im(F(Kn)-.F(Qi,)), where Fis any formal 
group over Z:1> of height (F) ;;?::: 2. 

The results and proofs turn out to be generalizable to some extent (cf., [3]). 
The motivation to study precisely I'-extensions came from [7]. 
It remains for me to thank the reviewer who thoroughly criticized an earlier 

version of this note. 

2. GENERALITIES ON FORMAL GROUPS 

2.1. Some Notations and Definitions 

K will always denote a local field of characteristic O and residue charac­
teristic p > O; Ax is its ring of integers; -rrx is a uniformizing element and Vx 

is the normalized exponential valuation on K (i.e., vK(-rrK) = I); WlK is the 
maximal ideal of Ax . 

A one dimensional formal group over Ax is a formal power series in two 
variables over Ax of the form 

"' 
F(X, Y) = X + Y + L a0 XiYi, (2.1.1) 

i,J=l 

which satisfies 

F(X, F(Y, Z)) = F(F(X, Y), Z). (2.1.2) 

All formal groups considered in this paper will be one dimensional. A one 
dimensional formal group over Ax is automatically commutative; i.e., it 
satisfies F(X, Y) = F(Y, X) (cf. [4]). 

2.2. Points and Norm Maps 
I 

Let L be a finite extension of K. One can use a formal group over AK to 
define an abelian group structure on the set \mL . In fact one simply sets 

x,y E WlL. (2.2.1) 

(The series F(x, y) converges in 9JlL .) This group is denoted F(L). If 
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x, y E 9JIL1 = -rrL1AL, t = l, 2, ... , then x + F y E 9JlLt· The group F(L) 
therefore has a natural filtration by subgroups Ft(L) where the underlying set 
of F 1(L) is 71'L1AL. 

Because F(X, Y) = X + Y mod(degree 2), cf. (2.1.1), we have 

(2.2.2) 

where l+ is the underlying additive group of the residue field l of L. 
Now let L/K be a galois extension with galois group G = Gal(L/K) = 

{a1 , •.. , a,}. We define a norm map F-Norm: F(L)-+F(K) by the formula 

F-Norm:F(L)-+F(K), 

(The F-sum of the conjugates of xis in K because it is invariant under G.) 

EXAMPLES. If F = Ga , the additive group, given by Ga(X, Y) = X + Y, 
thenF(L) = 9)lL (with its original additive group structure) andF(K) = 9JlK. 
The norm map, G0 -Norm, is equal to TrLIK, the trace map. 

IfF = G,,, , the multiplicative group given byGm(X, Y) = X + Y + XY, 
then F(L) = UL\ the group of units congruent to 1 mod 'Tl"L of AL. The 
norm map, Gm-Norm, becomes the ordinary norm map Ul-+ UK1 under 
the isomorphisms F(L) ~ UL1 and F(U) ~ UK1• 

2.3. Height of a Formal Group 

Let F be a formal group over AK. We define inductively 

F2(X1 , X2) = F(X1 , X2), ••• ,Fn+1(X1 , •.. , X.,.+1) 

= F(F,.(X1 , ... , Xn), Xn+1), ... • (2.3.1) 

Because F is associative and commutative, one has that F(X1 , ... , Xn) = 
F(Xa(l) , ... , Xa(nl) for every permutation of {I, 2, ... , n}. 

Letp be the residue characteristic of AK. One defines [p]F(X) as [p1F(X) = 
F,iX, X, ... , X). We consider [p]F(X) mod -rrK. There are two possibilities 
( cf., [1, 4]). 

(i) There exists a number h EN such that [p]F(X) == g(XPh) mod 7TK 
whereg(Z) = b1Z + b2Z2 + ··· is a power series over AK with b1 ~ 0 mod -rrK. 
The number h = h(F) is called the height of F. 

(ii) [p]F(X) == 0 mod 7TK. In this case one defines h = h(F), the height 
of F, ash = co. 



92 MICHIEL HAZEWINKEL 

2.4. Lemma on F-Norm 

Let F, be a formal group over AK. If Mis a monomial in X1 , ••• , Xn, 
e.g., M = xr1 ... x:", we define 

We write Ni(X) for X 1i ... Xn;• Using these notations one has the following. 

LEMMA 2.4.1. 

co 

Fn(X1 , ••• , Xn) = Tr(X1) + L a;Ni(.X) + L aM Tr(M), 
i=l M 

where a; , aM E AK , and M runs through a set of monomials of total degree ~ 2 
which are not of the form Ni(X). If moreover n = p, the residue characteristic 
of K, then vK(a;) ~ 1 unless i = kph-1, k = I, 2, ... , and vK(a;) = 0 if i = ph-1, 

wherehistheheightofF.(Ifh = oo,v(a;) ~ Iforalliifp = n.) 

Proof. The first statement follows from the fact that F(X, Y) = X + Y 
mod (degree 2) and the fact thatF(X1 , ... , X,.) is invariant under permutations 
of the X1 , ... , X,.. The second part of the lemma follows from the first part 
and (2.3), because substituting X for the X; in Tr(M) results in something 
=0 mod p if Mis not of the form Ni(X). Q.E.D. 

Now let L/K be a cyclic galois extension of degree n. Let TruK and NLIK 
denote the trace and norm maps. We write NLK(x) for (NuK(x)i. From the 
definition ofF-Norm and (2.4.1) one then immediately obtains the following. 

COROLLARY 2.4.2. 
00 

F-NormL!K(x) = TrL!K(x) + I a;NfiK(x) mod TrL1K(,,:2AL) 
i=l 

for all x EF(L). If n = p one has the same statements on the valuations of the 
a; as in (2.4. l ). 

3. UNRAMIFIED AND TAMELY RAMIFIED EXTENSIONS 

In the case of an unramified or tamely ramified extension L/K, the image 
of F-Norm: F(L) -F(K) is very easy to calculate. 

PROPOSITION 3.1. Let L/ K be a tamely ramified galois extension, then 
F-Norm: F(L)-+F(K) is surjective. 
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Proof. First suppose that L/K is unramified. F-Norm maps P(L) into 
F•(K) and for every y EF(K) of valuation vK(Y) = s, there exists an x EP(L) 
such that 

F-Norm(x) == y mod(,ri'). 

Indeed, according to (2.2. I) and (2.2.3) we have 

and it thus suffices to select an x EF8(L) such that TrLtK(x) = y which can 
be done because L/ K is unramified. It follows that the induced map F-'(L) ---+ 

F•(K)/Pc1(K) is surjective and this proves the proposition in this case 
according to Lemma (3.2) below. 

Now let L/K be totally and tamely ramified. Because Gal(L/K) is cyclic of 
order prime top ( cf. [8], Chapter IV, Section 2]), it suffices to treat tamely 
and totally ramified extensions of prime degree I, (l, p) = l. For such exten­
sions one has 

r = [((l - 1) + t)/l] (3.l.1) 

where [s/l] denotes the entier of s/l. (cf. [8, Chapter V, Section 3].) It follows 
that for every s EN there exists a number t 8 such that 

(i) ts > s, 

(ii) vK(TruK(x)) > s if vL(x) > ts, 

(iii) vK(TruK(x)) = s if vL(x) = ts. 

It follows from this and (2.4.2) that 

if vL(x) = t 8 , z E AK. Using this, (2.2.2) and (iii) above we see that the 
induced map P•(L )-► P(K)/PH(K) is surjective, which proves the proposi­
tion in this case. 

Finally letL/K be tamely ramified. The extension L/K can be decomposed 
into a tower KC Lu,. CL, where L,,r/K is unramified and L/L,,r is totally and 
tamely ramified. As F-NormuK = F-NormL 1x. F-NormuL we are 
through. '" ur Q.E.D. 

For completeness sake we state the lemma which was used twice in the 
proof above, and which we shall use a few more times in the sections below. 

LEMMA 3.2. Let A and B be abelian groups filtered by subgroups 
A = A 1 "J A 2 "J B = B 1 "J B 2 "J ···such that A = Jim A/An, and n,, B,, = {0}. 
Let u: A---+ B be a homomorphism and suppose that there exist indices t1 < t2 < · · · 
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such that u(At .) C Bi and u: At.-+ B;/Bi+1 is surjective for all i = l, 2, .... 
Then u: A-+ B is surjective. ' 

Proof. Very easy, cf., e.g., [8, Chapter V, Section 1, Lemma 2]. 

4. THE CYCLOTOMIC I'-EXTENSION 

A I'-extension of a field K is an (infinite) galois extension K'"'/K such that 
Gal(K,,/K) ~zl'l, the p-adic integers. 

4.1. The Cyclotomic I'-Extension of Qj') 

Let Ql'l be the field of p-adic numbers. Adjoin to Ql'l all pr-th roots of unity, 
for all r. The result is a totally ramified abelian extension L,,)QP of galois 
group isomorphic to U(Q:11)· Let L1 be the torsion subgroup of U(Q:11)- If 
p > 2, this is the subgroup of the (p - I )-st roots of unity; if p = 2 this is 
the subgroup {I, - I}. Let K 00 be the invariant field of L1. Then K,)Ql'l is a 
I'-extension (associated to the prime p). We shall call this extension the 
cyclotomic I'-extension of Q1> . Let Kn be the invariant field of the closed 
subgroup pn Gal(K.,/Ql'l). We obtain a tower of totally ramified extensions of 
degree p · · · -Kn+l - Kn - · · · - K 2 - K 1 - Q:11 = K. 

Another way to construct this I'-extension of K = QP for p > 2 is as 
follows. Let f(X) = XP + pX; Let pml(X) be them-th iterate off (X), i.e., 
pm>(X) = f<m-ll(f (X)), f<0>(X) = X. Let (LT)n+1 (the (n + 1)-st Lubin­
Tate extension of K; cf. [6] or [2]) be the extension generated by any root 
An+1 of pn+il(X), which is not a root of J<nl(X). The extension (LT)n+1/K is 
galois and totally ramified; the galois group is isomorphic to U(Q 1,)/ U11+I(Qv)· 
(Cf. [6] or [2]; U(Q1>) = units ofZ'P; U"(Qp) = {u E U(QP) I u =.c I mod pn}). 
The action of u E U(Q1>) is given by An+i 1-+ [u]r(An+1), where [u]tCX) is the 
unique power series such that [ u ]tCX) = uX mod ( degree 2) and [ u ]1 o j = 
f o [u]1 • Let { be a (P - 1)-st root of unity, then [~1t(X) = {X, because 
ax)1> + p({X) = t(XP + pX). The element µn = ><t:;:Ps therefore invariant 
under the action of .d. The extension Un Q.p(µn)/Qj') is the cyclotomic 
I'-extension of Q11 • (If p = 2 one obtains in this way the whole extension 
Loo/Q2 .) 

4.2. The Number m(L/K) 

Let L/K, be a totally ramified extension of degree p. Then there exists a 
certain number m(L/K) EN such that 

TrL1x(1rLtAL) = 1rxrAx where r = [{(m(L/K) + l)(p- I)+ t}/p] 
(4.2.1) 

( cf. [8, Chapter IV, Section 2]). 
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4.3. Equations for /1-n 

It is not difficult to find equations for the µn defined in ( 4.1 ). Indeed, we 
can choose ,\ , ,\2 , ••• inductively such that ,\~+1 + p,\n+i = ,\n , n ~ I, 
,\f-1 = -p. We have µn = ,\~:;:~; it follows that µ,0 = -p and that 

X(X -f-- p)P-l - fl-n-1 (4.3.1) 

is the minimal polynomial of µn over Kn-I . (Note that µn is a uniformizing 
element of Kn . ) 

4.4. The Numbers mn 

Let mn = m(Kn/Kn_1), n = I, 2, .... One finds by explicit calculations 
from Eq. (4.3. l) above that 

Trn!n-1(µn) = -(p - l)p, 

Trn!n-1(µn 2) = (p - I) p2 , 

Trn1n-1(µ~-1) = (-1)2'-I(p - l)pv-1_ 

(4.4.1) 

(We have written Trn/n-i for TrK IK ). Comparing this with (4.2.1) one 
n n-1 

finds that 

(4.4.2) 

In the sections below we shall need to know something about Trn!n-lµ,/'), 

especially in the case that k is a multiple of p. 

TRACE LEMMA 4.5. 

Proof. The formulas ( 4.4.1) above take care of the cases k = 0, 
c = 1, 2, ... , p - I. We have the relation 

v (p- J) v-1 (p- ]) P-1 
/-Ln -f-- I µn P -f-- ·•• + /1-n p _ I P = fl,n-1 · (4.5.1) 

Applying Trn!n-l and using (4.4.1) we see that 

(4.5.2) 

To prove the lemma for kp + c > p, multiply the relation (4.5.1) with 
µ~c-l)p+a and use induction. 
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5. SOME PRELIMINARY CALCULATIONS 

In this and the following Sections 6, 7, K = K 0 = QP , and 

is the tower of extensions constructed in 4.1, Kn = Kn_i(µ,n). If p > 2, 
Un K 11 is the cyclotomic I'-extension: if p = 2, Un Kn/K has galois group 
isomorphic to U(Q2) ~Z2 X {I, -1}. We writeF-Normn/k or Normntk for 
F-NormK IK and Nntk for NK 'K . Further vK = Vn, AK =An. 

n k n' k n n 

LEMMA 5.1. Let x eFt(K,.). Then 

Proof. It follows from (2.4.2) that 

Because Vn_1(aph-1) = 0, we can omit Vn_1(a;) + ti for i > ph-I without 
changing the minimum. If I ::;;;; i < ph-i, then p I a;, and Vn_1(a;) + ti;;?: 
pn-1 +ti> p-1((mn + 1)(p - 1) + t), because m11 = 1 + p + ··· + pn-i 
and t ;;?: 1, i ;;?: I. Q.E.D. 

Lemma 5.1 shows that the numbers [p-1(( mn + 1 )( p - I) + t)], ph-1t are 
probably important in the determination of Normn10(F(K11)). 

5.2. The Functions un1it) and i,.11;;(t) 

We define inductively 

<1ntn(t) = t, Unfit) = Uk+ltk(unlk+l(t)), 

Untn-1(t) = min{[p-1((m,. + l)(p - I) + t)], p1Ht}. 
(5.2.1) 

It is also convenient to define 

(5.2.2) 

and 

'ntk(t) = -1 if ag,k_i(antk(t)) ::;;;; altk-1(a11 11c(t)) 

= h - l if ug1k-1(an11;;(t)) > aLk-i(u11 ,,c(t)). (5.2.3) 
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It follows immediately from the definitions that if k < n 

(5.2.4) 

The function tn 1it) indicates whether it is the value of a'lcik-l or a1n-i which 
determines an 1,,_i(t), or in other words whether in the step from Kk to Kk-l 

(having started in Kn with an element of valuation t), it is Trk1k_i(Normn1k(x)) 
or Nf1~~i(Normn1ix)) for which the lower bound on the valuation is sharpest. 

LEMMA 5.3. 

This follows immediately from ( 5.2.1) and Lemma 5.1. 

We now proceed to calculate the functions an1o(t). In case h = I, the 
functions an!O(t) are determined by the Herbrand functions 'PK !K(s). Indeed 
'PK 1K(s) < t ~ 'PK IK(s + I) is equivalent to an 10(t) = s + 1. n 

n n 

LEMMA 5.4. 

ln/n(t) = -1 Ht ?,: (p" - 1)/(ph - I). 

Proof. Lnin(t) = -1 is equivalent to a~1n_/t) ~ a;,1n_/t); i.e., Ln/n(t) = 
- I iff 

[p-1((1 + p + ... + pn-1 + I)(p _ J) + t)] ~ ph-It 
+-+ p-1((1 + p + ... + pn-1 + J)(p _ ]) + t) ~ p'Ht + (p - 1)/p 

<-+ ( pn - 1 ) + ( p - 1 ) + t ~ pht + ( p - I) 

<-+ t?,: (P" - 1)/(p" - ]). 

LEMMA 5.5. If k ?,: 2 and tnn.,(t) = - I, then in/k-r(t) = -1. 

Proof. Lets = a111k(t). Then ik1is) = -1. Let s' = aw,-i<s) = ai!k-1(s). 
We must show that ik-I/k-r(s') = -1. We know that 

S?,: (pk - 1)/(ph - 1). 

Hence 

s' = [(m1c + l)(p - 1) + s] > m1c(P - I)+ pk - I 
p =""' p (ph - l)p 

pk - 1 p1•' - } plH - ] 
= p + ( p" - 1 )p ?,: P" - I . 

Using (5.4), (5.5) and (4.2) it is not difficult to calculate an 10(t) for large 
enough t. We find the following. 
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LEMMA 5.6. 

pn - 1 P" - 1 
k I ~ t ~ l -+ O-n1o(t) = n p - p-

pn-1 pn-1 
--1- + kpn < t ~ l + (k + l)p"-+ an1o(t) == n + k + l. p- p-

Letjn(t) be the number of indices k = n, n - !, ... , 2, 1 such that 'niit) = 
h-1. In view of (5.5) we havejn(t) = s?, I <--7 Ln1n(t) = h - l, ... ,,n/n-s+1(t) = 
h - 1, 'nln-sCt) = -1, ... , Ln11(t) = -1. 

LEMMA 5.7. 
• pn-sh _ ps-sh p11-(s-l)h _ p(s-1)-(S-·l)h 

Jn(t) = S ?, l +-> ph - I ~ t < P" - I , 

. P" - 1 
J,,(t) = 0 +-> ph _ l ~ t. 

Proof. The second formula follows from (5.4) and (5.5). As to the first: 

jn(t) = S ?, 1 +-> ps(h-l>t < [(mn-Hl +· ])(p ; I) + p(s-l)(h-llt] 

and p(s+l)(l!-llt ?, [ (mn-s + l)(p; I) + psU•-llt]. 

(Use (5.5) and the fact that tk/k(t') = -1 if im(t") = - I and t' ?, t" (cf. 
(5.4)) and pm(h-llt ?, anln-rn(t).) The same calculations as in (5.4) now 
prove (5.7). Q.E.D. 

PROPOSITION 5.8. Write n = lh + r, with 1 ~ r < h. Then we have 

P'"- 1 I ~ t ~ --1 -+ anio(t) = n - l, p-

pr - 1 pr+h - I 
--1 < t ~ I -+ an1o(t) = n - l + 1, p- p-

pr+kh _ ] pr+kh+h _ l 
I <t~ l -+an1o(t)=n-l+k+l, p- p-

k= 0, I, ... , l - 1, 
pn-1 p"-1 
--1 < t ~ --1 + P" -+ an1o(t) = n + 1, p- p-

pn 1 P" 1 -=-1 + kpn < t ~ --=-1 + (k + l)P"-+ an 10(t) == n + k + I, p- p-
k= 1, 2, .... 
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5.9. Remark 

These formulas are also true if h = cx:i; take l = 0, r = n. 

COROLLARY 5.10. 

F-Normn 10(F(Kn)) C r•(K), 

where cxn = n - [(n - 1)/h]. 

5.11. Proof of Proposition 5.8 

Letjn(t) = s ? I. Then according to (5.7) 

pn-sh _ ps-sh pn-sh+h _ ps-1-sh+h 

P" - 1 ~ t < P" - l 

Further 

99 

We have in-sln-s(anln-it)) = -1 (because jn(t) = s) and we can therefore 
now calculate an-s;o( anln-s(t)) = an 10(t) by means of Lemma 5.6. The result is 

pn-sh _ ps-sh pn-sh _ ps-sh 
"1 ~t~ l -+an1o(t)=n-s (5.11.l) p - p-

and 

pn-sh _ ps-sh pn+h-sh _ p•-1-sh+h 

l < t < 1 l -+ an;0(t) = n - s + I. (5.11.2) 
p- P'-

Because h ? I, we have that O < p•-sh ,( 1 for all s = 0, 1, 2, .... It follows 
that 

pn-sh _ ps-sh pn-sh _ J 
t ? 1 +--+ I ,s;: t. p- p-

(5.11.3) 

Now put the formulas (5.11.2) and (5.11.1) for s == 1, 2, ... , l together (note 
that s = l + 1 gives nothing if n = lh + h); use (5.11.3) and combine this 
with the result of (5.6). The result is Proposition 5.8. 

6. STATEMENT OF THE THEOREM AND OUTLINE OF THE PROOF 

THEOREM 6.1. Let F be a formal group over zp . Let 

... - Kn - Kn-1 - ... - K1 - K = Q,, 

be the tower of extensions constructed in Section 4. (If p > 2, Un Kn is the 



100 MICHIEL HAZEWINKEL 

cyclotomic I'-extension of QP: if p = 2 it is a slightly larger abelian totally 
ramified extension). Leth = h(F) ;? 2. Then we have (n ? I) 

where <Xn is equal to <Xn = n - [(n - 1)/h]. 

Remark 6.2. The theorem is also true for h = oo; ( n - I)/ h = 0. 

6.3. Proof of Theorem 6.1 in case h = oo. For each s? n, let 

t 8 = (pn - 1)/(p - I)+ (s - n)p". 

It is not difficult to calculate an;k(t,) and an;k(ts + l) for k = n - 1, 
n - 2, ... , 2, 1, 0. One finds 

Un1its) = (pk - 1)/(p - I)+ (s - n)p" + (n - k)pk 

for k ? 1 and an1u(t,) = s 

( 6.3.I) 

an/k(ts +I)= (pk - 1)/(p - I)+ (s - n)pk + (n - k)p1· + l 

for k?l and an1o(t,+l)=s+1. 

It is now easy to check that 

(6.3.2) 

It follows from this, (2.4.2) and (6.3.1) that the induced map 

Normk/k-1 : F"•/k(t,)(Kk)/Fan;k(t)+\Kk)-+ pan/k ,(t)(K.,_1)/F"ufk ,(t_,)+I(Kk-1) 

(6.3.3) 
is equal to the map 

This last map is surjective because 

aL,,_i( Un/lc(ts) + 1) = aZ,lk-/ an1it.s)) -j I, 

and Kk/Kk-l is totally ramified ( cf. 4.2.1 ). It follows from this and the fact 
that (6.3.3) and (6.3.4) are the same maps that the map 

(6.3.5) 

is surjective. In view of Lemma 3.2 and Corollary 5. 10 this concludes the 
proof in case h = w because an 10(tn) = n = an if h = oo. 



NORM MAPS FOR FORMAL GROUPS I 101 

6.4. Idea of the proof of Theorem 6.1 in case h < oo. A first step in the proof 
f Theorem 6.1 is to show that for every s ? n - [(n - 1)/h] there exists 
ts, and an element X 8 E 7TnAn such that v0(Normn;o(X8 )) = s. Fors ? none 
an take ts= (pn - 1)/(p - 1) + (s - n)pn (cf. (6.3)). Let l = [(n - 1)/h]. 
'or n - l ~ s < n a natural choice of t 8 is 

pn-(n-s)h _ 1 
ts = --p---1-- (6.4.1) 

~henjn(ts) = n - s (cf. (5.7)). It is easy to calculate an1its) fork = n - 1, 
- 2, ... , 1, 0. The result is 

for n? m? s, 

an:m(ts) = p(n-s)(h-llp-(s--mlt8 + (s - m)p-m, s? m? n - (n - s)h, 

'n!n-(n-s)h(ts) = ts+ (n - s)(h - l)pn-(n-s)h, 

an1,.,,(ts) = (pm - 1)/(p - 1) + (s - m)p"', n - (n - s)h ? m ? 0, 

On;o(ts) = S. (6.4.2) 

\s in (6.3) it is useful to calculate also an1its + 1). Because h > 1, also 
n(ts + 1) = n - s. Let a:n 11c(t8) be defined by 

in;k(ts) = (n - m)(h - 1), for n > m > s, 
tnik(ts) = (n - s)(h - 1) - (s - m), for s? m? n - (n - s)h, (6.4.3) 

for n - (n - s)h > m ?:: 0. 

)ne then has 

(6.4.4) 

Jn all these calculations the simple fact a1//,-1(rp) = r + p"-1, k > 2 is very 
l!Sefull. It follows immediately from mk = (I + p + ·· · + p1H)). 

A convenient picture of an 1its) and an 11c(t8 + 1) is sketched below. 
According to Lemma 6.5, to calculate Normn;k(x) mod 7Trn/k(t,+11, where 

v has valuation vn(x) = t., , we can disregard for all m, where n ? m ?:: k 
all terms of Normn;,n(x) of which the valuation falls below the lower line in 
the picture above. In Section 7 below we shall show that in fact for x E 7TmAm 

Norm (x) = Nvh-i (x) mod 7Ta"/m-i (t,+1) if v (x) = a (t ) 
'"'/'m-1 rn/m-1 m-1 ' m n/m s 

and n > m > s 

Sll:ILJUfHl:EK MATHFMATISCH CENTRUM 
AMS1f.:HDAM 

(6.4.5) 
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Kn-ln-s I h 

and for x E TT~k 

N ( ) - T ( ) m d an/k-,(t,+1) "f ( ) ( ) ormk/k-lx = rk/k-lx o TTk-1 1 vkx =an/kts 

and s ~ k > 0. (6.4.6) 

LEMMA 6.5. Let t > t' ;?, 1, amncCt) = s, am!k(t') = s'. If x, y E TT,,.Am, 

Vm(x) = t, Vm(Y) = t', then 

Proof. Because Am is complete and (2.1.1 ), (2.2. I), there is any' E TT~A,,. 
such that x + y = x +F y'. Now 
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Because arn1it') = s', Norm,,,1,,(y') "= 0 mod7Tf. Another appeal to (2.1.l) 
concludes the proof. 

7. PROOF OF THEOREM 6.] 

PROPOSITION 7.1. Let F, Kn , h, Ctn be as in Theorem 6.1. In this section we 
take the unzformizing element 7T n of Kn equal to P.n . Then for every s 3 an = 
n - [(n - 1)/h], there is at., such that 

(i) F-Normnlo maps F1•(Kn) into F8(K). 

(ii) F-Normk!O maps pan/k(t,+l)(Kk) into F•+I(K) for all O < k ~ n. 

(iii) The induced map 

F 1•(Kn)---,.. F 8(K)/Ps+1(K) 

is surfective. 

Proof. Let n = lh + r, l ~ r ~ h. For s 3 n take 

ts= (P" - 1)/(p - 1) + (s - n)pn. 

For n - l ~ s < n take t8 = (pn-(n-s)h - 1)/(p - 1). Parts (i) and (ii) of 
the proposition then follow from (6.4.2)-(6.4.4). Fors 3 n (iii) follows from 
(6.3) (the proof for h = oo) and (6.5). Now let n - l ~ s < n. We shall 
first establish (6.4.5) and (6.4.6). 

Let n 3 f > s. To prove (6.4.5) we must show that 

(7.1.1) 

(7.1.2) 

where ai , i = I, 2, ... are the coefficients appearing in formula (2.4.2) for 
F-Norm. 

Now 
O [(mi+ l)(p - Ip)+ pln-j)(h-1) ts] 

aj/i-1(a,.li(ts)) = 

Pn-(n-s)h _ I 
~ pi-I + p-lp(n-j)(h-l) p _ I _ p, 

and 

( ) ( )( ) Pn-(n-s)h 1 ( )( ) 
a . (t ) + p"nJi-1 t, = p n-i+I h-I . - + p n-i+l h-1 

n/J-l s p _ I 

= ph+sh-ih+j-2 + ... + pln-j+l)(h-ll+l + 2p(n-i+l)(h-ll 

~ pi-I 
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because j - 1 ? (h + sh - jh + j - 2) + 1 (as j ? s + 1). This proves 
(7.1.1). If i is not a multiple of p1t-1, V;_i(ai) + i. t ? a1n-1(t) for all t EN, 
this proves (7.1.2) for those i =fa p 11-·1 , which are not a multiple of ph-1• 

Finally if i ? 2ph-1, then 

Vi-1(a;) + ianli(ts) ? p2<1t-llan1its) 

>- 2p11- 1a -(t ) >- p"-1a -(t ) + ph-l · p"-n;/t,) -;::;.- n/J s :::--- n/J s 

because a .. 1;(t8)? rn1;<t,l. This proves (7.1.2). 
To prove (6.4.6) we must show that (cf., (2.4.2)) for s ? j > 0 

V . (a•)+ z· · t '- . (t) +p•n;;-i(t) z· =-- 1 2 3 J-1 l S 1/ Un/J-1 .<; , -- , , , ••• , 

0 (2 (t )) :>; (t) + pCJ.n/i-l(t,) UjfJ-1 Unfj s 1/" UnU-1 s • 

(7.1.3) 

(7.1.4) 

(7.1.5) 

First let s ? j > n - (n - s)h. Then cxn!i(t,) > 0 and p divides an1;(t8 ) 

(cf. (6.4.2)). It follows that 

As an1J(t8)? p•nli(t8), and C>'.n/j-1(ts) = cxn 1its) - I, this proves (7.1.5) for 
s ? j > n - (n - s)h. If n - (n - s)h ? j > 0, then an 1lts) ? p and 
hence 

aili_i(2an/J(ts)) ? a;;;-1(an1;(t;)) + I 

- (t) 1 1 - a (t ) + p"n/i ,(t,) - Un/j-1 s 7- - n/J-1 s • 

This proves (7.1.5). As to (7.1.4), let i be not divisible by ph-1• Then 
v3_i(a;) ? pi-1 and we have 

[(m; + l)(p - 1) + 2t] ~ (m; + I)(p - I)+ 2t 
p '--" p 

. 1 p - I 2t . 1 . ( ) . = pJ- + -p- + p :S:: pi- + zt :S:: VJ-I ai + tf 

provided p > 2 and t ? p. If p = 2 then 
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for all t ? 1. As an1lts)? p for alls? j > 0 this shows that (7.1.5) implies 
(7.1.4) for those i which are not divisible by ph-1. If i is divisible by ph-I 

(7.1.4) follows from (7.1.3) (which is the case i = ph-i of (7. 1.4)). It therefore 
remains to prove (7.1.3). We have 

a}/j-l(an/j(ts)) = ph-1. p(n-s)(lt-1). p-(s-i\, + (s _ j)pi • p'H 

and 

a . (t) + p~n1;-1(t,) n/J-1 s 

= p<n-s)(h-1). p-(s-j+l). ts+ (s _ j + l)pj-1 + p<n-s)(h-llp-(s-Hll. 

Ifs > j > n - (n - s)h, we have (s - j)piph-1 - (s - j + l)pH ?::: 3pH 
and (n - s)(h - I) - (s - j + 1) ~ j - 1 because s? n - I> n - (n/h). 
This proves (7.1.3) in this case. If s > n - (n - s)h ?:::j > 0, then 
<Xnfi-i(ts) = 0 and (s - j)pjph-l ?::: (s - j + l)pH + 1. It remains to prove 
(7. 1.3) in the cases = j. We have to prove that 

ph-1 . p<n-s)(h-1) . ts ? p-1 . p<n-s)(h-1) . ts+ ps-1 + p-1 . p<n-s)(h-1) 

or equivalently 

ts ? (pn-(n-s)h + ] )/(p" - J) 

as ts = (p - J)-1(pn-<n-slh - 1 ), this follows from the fact that 

if f ? I, and h ?::: 2 and the fact that n - (n - s)h = n - nh + sh ?::: 
n - nh + (n - l)h = n - lh = r ? I because s ;?, n - l and n = lh + r, 
1 ~ r ~ h. This concludes the proof of ( 6.4.6). 

Let a = a,,h-1 , the coefficient of NPh-i in (2.4.2). Let z E A0 = AK = Z,, . 
According to (6.4.5) and (5.5) we have 

Norm / (z11.t') = ± zP<n-,)•an-s. 11.0 "/'(t,) mod 11""/'(t,+l) (7.1.6) 
n s •-n rn-s rn-s 

(the sign is + if p > 2, and ( -1 )'i-.< if p = 2). 
For k ~ s, it is Trk/1,-l which is the most important part of F-Norm1ci1c-i 

according to (6.4.6). We wish to apply (4.5) and shall therefore need to show 
that for s ? k > n - (n - s)h 

-(s-kl ( ) . ··(.s-Hll ( ) ( ) Tr (ps-lc ]} "nf.s t, = ps-k+l p "•!• t, mod "nfk···l t,+J 
k/lc-1 fL1c - fL1c-1 /Lk-1 . (1.1.7) 

(Note that V7c(p 8-"') + p-<s-klan1s(t,) = a,,1k(ts) for s ? k ? n - (n - s)h; 
furthermore, n - (n - s)h ? r ? 1, and for k ~ n - (n - s)h, an;1c(t,) 



106 MICHIEL HAZEWINKEL 

contains no factors p so that we cannot apply (the second formula of) 
Lemma 4.5 fork :::;;: n - (n - s)h). 

Ifs ;;:=: k > n - (n - s)k, there is a factor p in p-(s-klan 1/t,) so that we 
can apply the second formula of Lemma 4.5. The result is that formula 
(7.1.7) holds modulo 

We must show that the valuation of this is larger than or equal to an!1c-i(t8). 

But vk_1(p•-k+l) + p-(s-k+Ilan;s(ts) = an 11,_1((,) so that it suffices to show 
that 

We have 

V (P P-1 11_-_I ) >- p~n/k ,(t,) 
k-1 rk-1 1/'" ' (7.1.8) 

V1c_1(pP-lµ,,;:1) ;;:=: pk-I - 1; <Xnn-1(t,) = (n - s)(h - 1) - (s - k + 1). 

(7.1.8) follows from this because (k - I) - {(n - s)(h - 1) - (s - k + 1) = 
-nh +sh+ n ;;:=: -nh + (n - l)h + n = n - lh = r ~ 1. This proves 
(7.1.7). 

Using (6.4.6), (7.1.6), (7.1.7), and (6.5) we now obtain, writing l(s) for 
n - (n - s)h, 

t (n-s)h n s !( ) I (I +l) Norm (z11. •) =':' ± zP · a -s · p·-- ' · 11. ' mod 11.0 "1 1<•1 ' (7 1 9) n/l(s) rn rz(.s) r[(s) • • 

(because p-(s-l(sllan;s(ts) = p-,s-n+nh-sh. p(n-sl(h-llts = ts). Now 

pn-(n-s)h _ 1 
ls = =---p---1--

It follows from (4.2.1) that 

pl(s) _ 1 

p-I 

V!(s)-l(Tr!(s) /!(s)-/µ,~(s))) = (p1(s}-l - 1 )/(p - 1) + PZ(s)-l 

and (using induction) one finds 

Combining this with (7 .1.9) and ( 6.4.6) we find 

(7.1.10) 

(7.1.11) 

where b is some elemnt of Zv of valuation v(b) = l(s). Part (iii) of Proposi­
tion 7.1 follows because v(a) = 0 and we can extract p-th roots in Z/(p). 

Q.E.D. 
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7.2. Proof of Theorem (6.1). Combine (7.1) and (5.10) and use the 
Lemma 3.2 on filtered abelian groups. 

COROLLARY 7 .3 ( of the proof of Theorem 6.1 ). Let L be an unramified 
algebraic extension of QP; let Ln = Kn · L where Kn is as in Theorem 6. I. Then 
Theorem 6.1 also holds with Kn replaced by Ln . 

COROLLARY 7.4. Let L be an unramified algebraic extension of QP , and let 
· ·· - Ln - ·· · - L1 - L be an extension such that there exists a finite unramified 
extension K' of L such that Ln · K' = K' · Kn . Then Theorem 6.1 also holds 
with Kn replaced by Ln . 

Proof. Consider the commutative diagram 

The map NormK , IL is surjective according to Proposition 3, I. The image of 
NormK , !K' is F"~•(.K') according to (7.3). The same arguments as used to 
prove (3.1) in the unramified case show that NormK' n(F"n(K')) = F"n(L). 

Q.E.D. 

8. CONCLUDING REMARKS 

8. I. A Counter Example 

Let Kn be as in Theorem 6.1. Fix an index i and consider the I'-extension 
· · · - Kn - · · · - K;+I - K; of K; . It is not difficult to check that Theorem 6.1 
is not true for this I'-extension if i is large enough, even if Fis defined over ZP . 

8.2. l'vlore General I'-Extensions 

Let K be a local field of characteristic O and residue characteristic p, and 
let K":)K be a totally ramified extension of galois group Gal(K00 /K) ".:::::'. ZP. 
Let Kn be the invariant field of pn Gal(K00 /K). Let F be a formal group of 
height h ~ 2 over K. For each n we define 

Yn is the smallest natural number such that Normn 10(F(Kn)) C Fvn(K), 

Dn is the largest natural number such that F6•(K) C Normn 10(F(Kn)). 

Then one can prove the following, 
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If the residue field of K is algebraically closed then the differences 

and 
(h - 1) 

Yn - h neK 

are bounded independently of n ( cf. [3]). 

Remark 8.3. In the case considered m this paper, i.e., the situation 
F-Norm: F(Kn)-+F(K), where K = Q"', Kn is the n-th level of the 
cyclotomic I'-extension of Q"' and F is a formal group defined over Z1> , the 
cokernel of F-Norm depends only on the height h of F and the extension 
K,./K. 

Now consider the following situation 

F-Norm:F(L)-+F(K), 

where K is the quotient field of the ring of Witt-vectors, W(FQ), over the 
finite field of q elements, Fq; where F is defined over W(Fq) and L/K is a 
finite (galois) extension. In this situation one can conjecture that the cokernel 
of F-Norm depends only on the reduction F* over Fq of F and the extension 
L/K. This is certainly the case if K = Z:v because two formal groups overZ:v 
with isomorphic reductions are isomorphic. Moreover, in the situation 
described above, one can show that the image ofF-Norm is necessarily of the 
form Fi(K), i.e., a filtration subgroup of F(K). 
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