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1. INTRODUCTION

In [t Jwe wrote down some explicit power series over Q [.., T RS ]

P
which turned out to be the logarithms of a p-typically universal

formal group and a formal group universal over Z(p)—algebras. Both

formel groups are defined over Z (..., T T +e+ ] In this note we show
1Y
how to fit together these formal groups for different p to get a universal

formal group (over 2, T . If £(X) is the logarithm of this

3’ e 0 9
. @ i
universal group f(X) = zaixl, then its p-typical part,X + I a iXp, is
i=1 p

precisely the logarithm of the p-typically universal formal group
constructed in [1 1

It turns out that there many ways of fitting together the p-typical
formal groups. Most of them do not give nice formulas for the Ti in
terms of the a,. One special choice gives inverse formulas comparable
to formulas (8) of [1]). In [1] we used these formulas to get generators
in dimensions 2(p"=1) of 9% (pt), the complex cobordism ring modulo
torsion. Using the universal formal group constructed in section UL

. v
of this note we get a complete set of free generators of Qe (pt) over Z.



Section 2 contains some preliminaries; section three gives the
general construction of a universal formal group. In section L we
discuss a special case with nice properties of the construction of
section 3. Section 5 contains the application to complex cobordism
theory alluded to above. In section 6 we discuss the more dimensional
case which is completely analogicat. In section 7 we discuss isomorphisms.
Section 8, finally, is independant of [1] and the rest of this
paper. It is elementary (given the existence of universal formal
groups and some more results of Lazard) and it would surprise me if

it were not already known.

2. PRELIMINARIES.

Let F(X,Y) be a power series ovet Z[T,, T
)

3’

(X,Y) the power series

ceid or 2 [Ty, Toy ne ]

k
in X,Y. We denote (cf. also [1]) with F(p

obtained from F(X,Y) by replacing the parameters TQ, T3, ees With
k k
T‘Q’ ,TI:;,...

2.1, Lemma. Let F(X,Y) € Z(p)[T2, «e+][[X,Y]]. Then we have
k k k k
;}(F(X,Y)p )" = %(F(P Jx® ,¥" )™ mod p

. T ., .
The proof 1s completely elementary. For n = p it is contained in
the proof of theorem (1.2) of [1].
Let fT(X) be a power series in X over Q[Tz, T3, ««+]. The power
k
)

(p

series f (X) is obtained by raising the parameters T, to the

pk-th power,

2.2. Theorem. Let fT(X) be a power series in X over QAIT,s T3y one ]

such that
T . . .
(2.2.1) £, (X) -Z-E}- f(pl)(xpl) € Z, \[TI[[X]] £ :
.2, T p Ir (p) [X]] for all primes p

-1
Let F&(X,Y) = fT (fT(X) + fi(Y)). Then all coefficients of Fb(x,y) are

in Z[T].



Proof. Fix a prime p for the moment. Then we have
gi (p*),,p*
f 5
£n(X) = gp(X) * T (x7 )

for some power series gp(X) € Z(p)[T][[X]]. Now repeat the proof
of theorem (1.2) of [1] , using lemme (2.1) instead of formula (11)
of [1], to show that

F(X,Y) € Z(p)[T]([X,Y]]

This must hold for all p, which concludes the proof. y«u

2.3. Remark. Let f(X) be a power series over Q[T] such that
Ti(i) i
(2.3.1) £f(X) - % —g—f P(xP)e 2oy [TIIX]]

and let u(X) = X + u2X2 + ... € z(p)[Tll[x]]; let g(X) = £(u(X)).
Then g(X) also satisfies

i, i i
p_(p7),yp
(2.3.2) g(x) - = - (x* ) € z(p)[T][[x]]

This follows immediately from lemma (3.1) of [1]. Now let G(X,Y)
be a universal formal group law over Z[T] and let g(X) be its
logarithm. Consider G and g over Z(p)[T). Over Z(p)[T],G(X,Y) must
be isomorphic to the universal formal group law constructed in (1.3)
of [1]. Combining this with (2.3.2) we see that a universal formal
group must have a logarithm which satisfies (2.2.1) for all p.

In view of (2.2) it therefore only remains to construct
reasonable power series fT vhich satisfy (2.2.1) for all p. This
is the subject matter of the next section.

2.4. Remark. If fT,é(X) is a power series over Q[T,S], where the S
are additional variasbles, such that (2.2.1) holds for
all p, then also

FT’S(X,Y) € Z[T,s][[X,Y]]

-1
where FT,S(X’Y) = ff’s(fé’s(x) + ff,S(Y))‘ Same proof.



3. CONSTRUCTION OF A UNIVERSAL FORMAL GROUP.

3.1. The Induction Step.

Suppose we have constructed a power series ﬁT up to and
including degree s-1 such that (2.2.1) holds for all primes p
mod degree s.

Let p be a prime dividing s, and let q be a power of p which

divides s. Then according to (2.2.1) there must be a term

(3.1 a (a)

-1 . . d
> % o d=gq s, a, de coefficient of X

. . . . . . -1
in the coefficient offxg. The coefficient ad looks like 4 cd,

4 € Z{T], which can be written as a sum

cd’q,

(3.1.2) a =

X n , Q' & power of a prime,
a q'la @

Substituting this in (3.1.1) we find a contribution

()
_d.,a’
ql

"dlar-i

(3.1.3) X
a'la

to a. We get such a contribution for every prime power q dividing
s. We find therefore that a must contain

T cgq),
(3.1.L) D A

-1 .
s d=a n, q, q' prime powers.
alnq'fa® 1

If we use (3.1.4) to define as*(2'2’1) is in general not satisfied.

This can be repaired by adding to each summand p‘1(q')‘1.'l'q c(Q)

d,q'
a term of the form m(q,q") p-1(q')-1 Tq cgq;,, vhere m(q,q') € 2
9

is such that

’ 1 mod p
(3.1.5) 1+ m(q,q') = 0 mod q' if (q,q") = 1
(3.1.6) 1+ m(q,q')s 1 mod pg' if (q,q') = p°

Let n(q,q') = 1 + m(q,q'), and define



r old)
(3.1.7) a = I z —9-——‘3- n(q,q') + a T
® aln q'ja?® @

where a = 1 if 8 is not a power of a prime and a = 0 otherwise.
We maintain that f&(x) =X + aex? + ...+ asXs then satisfies

(2.2.1) for all p mod. degree s + 1.

Indeed, fixe a prime Py then we must show that

(3.1.8) a - I —3 (Q) (T 1
s lal -1 (p)
p lals Po q7's

The sum (3.1.8) is equal to

r 3z & p'q71 T, ° é?; + T Z p'q71 T, ° éq;

9 ? 9
pla p la’ o v la.p fa 0

(3.1.9)

. 5 n Dop Gl r nfa,a') ¢ (@) , oo

pa’ a %d,q '’ q d4d,q' n'n

P fa-p la’ P fa.pfa’

(where 4 = q"s; q a power of p in the third and fourth terms).
The first term of (3.1.9) is in Z(p )[T] because of (3.1.6); the
)

second term of (3.1.9) is in Z [T] because (q')"1 €2 and
(P) ( )
o P,
(3.1.5); the third term because p-1 € 2 and (3.1.5) and the
(p,)
fourth term because p“1, (q')"1 €2 ; finally: o T € z[T].
(p, )

Note that we can choose for the n(q,q') any numbers in Z which
have properties (3.1.5), (3.1.6); in particular we can, if we wish,
let n{q,q') depend not only on q,q' but also on s and on the way

in which the term ¢ , arose.
d,q

3.2. Ordered Factorizations.

An ordered factorigation of s € N is a sequence of numbers

(q1, Qys oovs qt’d) where the q, are povers of primes and 4 € N is



not a power of a prime (but 4 = 1 is possible). Example: the
different ordered factorizations of s = 12 are

(29 2, 3’ 1)’ (hﬁ 39 1)$ (2’ 3’ 29 1)’ (39 2’ 2’ 1)’ (3’ h’ 1),
(2, 6), (12).

3.3. Lerma. If we use the procedure of (3.1) to comstruct f_, then
the monomials in T occurring in a_ are of the form
9, 449, q1‘12""lt.-1,1,q1‘12""1t

R
% %2 93 % a

vhere T, = 1 and (ql, Qps +ovs Lo d) is an ordered factorization

of s.

Proof. By induction; elementary.

3.4. A Formula for a
B o K K
For every ordered factorization (p11, vees Py
k k
n(p1 s cees ptt, d) be a number ¢ Z such that

t 4) of s let

1mod p, ifp #0p, (t >2)

(t > 2)
r+2

k k k

(3.k.1) n(p11, p22, cees ptt

)]

r . _
, d) 0 mod p, if p1#p2=...—pr+1#p

1 mod pﬁ if p1=p2=...=pr#prﬂ
(t > 1)

We define a_ by the formula

n(q 9e e 9Q 9d) n(q se s ’d)
(3.4.2) a_= > ! ¢ 2 LA

K, K Py b

t
(p1 !"‘ipt’d)

n(q, ,d) q Qieee@ s Qoeeeq
—L& o .p! T
P 414 9% %
k. k1 kt
where q, = pil, and (p1 s eees Py s d) runs through all ordered

factorizations of s;;8s above we set T1 = 1,

3.5. Theorem.

Define'fT(X) as



(3.5.1) fT(X) = a X°

S

o8

s=1

where a_ is given by formula (3.4,2). Then fé(x) satisfies (2.2.1)
-1 .

for all p. Let FT(X,Y) = f (fT(X) + £,(Y)), then FT(X,Y) is a

universal formal group.

Proof. The product

n(q1,...,qt,d) n(qe,...,qt,d) n(qt,d)
Py Py Py

where q. is a power of P; is of the form

o

r
Py
with ¢ € Z, if P, = D,= ... =P # Pryq This follows immediately from

(3.4.1) by induction. It follows from this and (3.3) that the a_ are

related to each other in the manner discussed in (3.1). The power series
ﬁT(X) therefore satisfies (2.2.1). Theorem (2.2) then shows that all

coefficients of FT(X,Y) are in Z[T]. Finally writing FT(s) for

F we have
(T1,T2,...,TS,O,O,...)

(3.5.2) FT(X,Y) = FT(S)(X,Y) + B(s+1)Ts+1 mod degree s + 2

. . . 1 .
where B8(s + 1) = 1 if s + 1 is not a power of a prime and B(s + 1) = > if

s + 1 is a power of p. This follows immediately from (3.4.1). The

relation (3.5.2) implies that FT is a universal formal group, [2].

3.6. Examples.

The different ordered factorizations of 12 are
(2,2,3,1), (4,3,1), (3,2,2,1), (2,3,2,1), (3,4,1), (2,6), (12)
Let n(2, Qys Qps +ves qt,d) = n(q1, cees qt), t > 2, n(q,d) =1
n(2,2,3) = 1, n(2,3) = 3, n(4,3) = 3, n(3,2,2) = Lk, n(2,2) = 1,

n(2,3,2) = 3, n(3,2) = 4, n(3,4) = 4, Then we find for 85



2
a,_ = iT T2T

N
12 2 3

N 1 6 2 6 2 3 2
+ 3TuT3 + =T TST + TI.T, + STT + 3T2T + T
The ordered factorizations of 6 are

(2,3,1), (3,2,1), (6)

Using the same n's we find for a¢

a = Ly T2 + gT T

3
oT3 * 33T, * T

L, INVERSE FORMULAE.

The formula (3.4.2) permits us of course to write T, in terms of

the agij, dls and the Tots s'|s, s' < s. In anology with formula (8)

of [l } however, we would like to find a formula for Ts in terms of the
2 and the Ts" where 4 and s' divide s.

Note that this is not possible with the choices for the
n(q, , Qs vees qt’d) vhich we used in (3.6).(A redefinition of
n(3,2,2) as n(3,2,2) = 16 remedies this),

L.1. Some Special n(q1, Qs rees qt.d)

We define inductively
k1 kt
‘ta(p1 s sees Py ,d) =b(p1, cees pt)

(k.1.1) b(pi) = 1, b(d) = 1

b(p,s «ees b ) = I elp,p,) Blpys covs py_y)s

ped
where J : {r. ol awd
c(p,p') = 1 ifp=op'
(4. 1.2) c(p,p') =1 mod p if p # p'

c(p,p') = O mod p' if p ¥ p'



(One can e.g. take c(p,p') = (p')P7", if p' # p).

Note that the factor c(p,pt) occurs precisely once in I c(p,pt) if p € J.
pEJ
Now define n(q1, cees qt,d) by the formula

b(q1, cees qt,d)
b(qz, cees qt,d)

(k.1.3) n(q1, cees qt,d) = , n(d) = 1

4.2, Lemma,
The n(q1, cees qt,d) as defined by (4.1.3) satisfy the conditions
(3.4.1). £, £, t,
Proof. One checks directly that n(p1 ) = 1, n(p1,p2 ) = n(p1,p2) =
= c(p1,p2); further n(ql, cees qt,d) = n(p1, cees pt) if a;

is a power of P; - By induction we get from (L.1.1) that

(b.2.1) ©blp.,s eeer,p,) = N c(pyp,) oo N clpyp,)s J: = {Dys ¢vvs P:}
1 t t 2 1 1 1
EJ, eJ,

Let It = {p2, coe gy pt} 9 Ii = {pz, so 0 g pi} 'y i = 2, co0 g t- The Huml)elS

n c(p,pi) and I c(p,pi)
EJ, eI,

are either equal or differ by a factor c(p1,pi) depending on whether

P, is in Ii or not. It follows that

(4.2.2) n(p1, ey pt) = I C(P1,pi)a
LN 29

The first congruence of (3.4.1) follows immediately from this.

Moreover if P, = P, then p, € I, for all i=2, ..., t so that
(b.2.3) n(p1,p2, cees B =0 if p, = p,

Finally, suppose that P, # P, = Py = Then for

cer TP g
i=2, .., r+1 ve have p, = p, and I. = {pz} » P, ¢ I,, so that
n(p1,p2, seay pt) contains r factors c(p1,p2) vhich proves the

second congruence of (3.4.1).
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Remark. The formula (4.2.2) can be rephrased as

n(p1,p2’ ooy Pt,) = c(p1,p2) ee e c(p1,pt) if pi # P1, i = 2’ o-o,t)
(k.2.4) n(p1,p2, cees B) =1 ifpy =,

n(p1’p2a ceey Pt) = n(P1a cacy PI) if Pi # Py i=2, ..., r,
P =D
J— r+1 1
f Jom 3y a) )

Let a! be the element of Q[T] obtained(by setting T. = 0 for all

d
d # 1 which are not a power of a prime. Let NP = {n € Nl n#1,

n not a power of a prime } . We have

(L4.2.5) a; = ; n(q1’.'.’qt’1) n(qt|1)

k k p * LN ) L] p
, 1 t 1 t
‘p1 "",pt’1)
q q R
rop Lt
%'e T e

4.3. Proposition.

Let the n(q1, cees qt,d) be defined by (4 .1.3). Then we have

m(s,d) , s/a
(4.3.1) assdeJ;T(.ﬁ%as/d Ty
a¥1

where m(s,d) = 1 if d € NP, m(s,pt) = T c(p',p), vhere J is the set
r'eJ

of primes occurring in s; and d) = 1 if 4 € NP, u(p") = p.
Further we have

/d
(4.3.2) a'=a - 5 a', 7
‘ s 8 4)s.aenp /274
da#1

Proof. Both these formulas are proved by looking at the formula (3.4.2)
for a_. Take a fixed d, and consider all ordered factorizations
k1 k

( t
Pqys sees Py

,4) of s. First suppose that 4 is not a power of a prime,

d # 1. The part of a_ consisting of terms involving Td is then
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n(q,,q,5004,q, ,d) n(q, ,d) gq Qoo
(h03l3) Z: 1 2 qt ¢ eoe o "_‘E"’—"T T ];ooT 1 q't'.’
k. k, Py Py 9, % Y
(p1,-.-,pt s1)
q_ L)
12
Ty

where the sum is over all ordered factorizations of s/d ending in 1.
Combining this with (4.1.3) and (4.1.1) proves formula (k4.3.2).

Cf. (4.2.5). Now let d = q be a power of a prime, and consider the

s/q

coefficient of Tq in ag. This is equal to

ey T Mapeeggad) o mlaaD g
(aq500453,,2,1) P Py P
q seeQq
I JEUORE. S
q, a,

where the sum is over all factorizations ending in (...,q,1), and
these correspond bijectively to all factorizations ending in 1 of
q'1s.

According to (4.1.3) and the first two formulas of (L.1.1)

we have

(4.3.5) n(q1, cees qt,q,1). vee n(qt,q,1).n(q,1) = b(p1, cees pt,p)

and using the third formula of (4.1.1) and again (4.1.3) and the
first two formulas of (4.1.1) we see that

(L.3.6) nla,, ++vs q5a1). ...« nlag,a,1).0(a,1) =
= m(s,q) n(q1, cees qt,1) cee n(qt,1)

This in combination with (L.3.4) and the argument used to establish
(4.3.2) proves (L.3.1).

4.L4. Remark. The formulae (4.3.1) and (4.3.2) permit one to write
T, as an expression in the T4, d < s, d|s and the 845
d|s. This is the reason why this section is headed

"inverse formulae".
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5. GENERATORS FOR THE COMPLEX COBORDISM RING.

Let ﬂev\pt) denote the complex cobordism ring modulo torsion.

It is freely generated by countably many generators over Z. There is

also a canonically defined formal group over it. Cf. [3]. The logarithm

of this formal group law is equal to

P
n n+1
(5.1) (x) = £ 5%
n=0

where Pn € Q-zn(pt) is the cobordism class of CP". Cf [3]. Quillen [ 3]

has shown that this formal group law is universal. It is therefore

igsomorphic to the formal group law constructed above, in particular

to the one which uses the n(c;,1 s oo q-t’d) defined and used in section L.

We can therefore use proposition (4.3) to find a set of generators for

the complex cobordism ring
5.2. Theorem.

The following inductively defined elements, s = 2, 3, ...,

constitute a set of free generators over Z of the complex cobordism ring

2% (pt).
Pe-1 — msd) Pay g
e =pls) 2L y(s) 2 oy il L
8 da,=s,d, 41,8 nidy 1
m(s,d1) Pd-1 4 44,
dd,d.=s,d €Np H'%4 2 %
2% 2
d1#1,s
s m(s,d1) Paq g 4;
aq, ...d,d,=s gy i %=1

di yo oo ,d2€NP,d1#1 .8

(We take Po = 1)

ot

id dy

1

Proof. This follows immediately from proposition (L.3). Use formula (4.3.1)

and then eleminate the a;/ inductively by means of (L. 3.2).

4
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(If 4 is a prime power a, = a&). Note that u(s)u(d1)-1h(s,d1) is

always an integer.

5.3. Some Examples.

We take c(3,2) = 4, c(2,3) = 3. Using (5.2) one then easily
calculates '

2 =P
t3= P,
. 3
t), §P3 - ;P1
3
e =05 PP P
6 6 3 2
Pg P:
t9® 3" 3 ]
9 3
[N A X 2P, P p1p§ 3

6. MORE DIMENSIONAL UNIVERSAL FORMAL GROUPS.
In this section we study higher dimensional formal groups. All formal
groups considered vill be commutative. To get a universal n-dimensional
formal group, we work over the ring Q[...,Tq(i,j),... 3 cees Sd(i),... ]

vhere the Tq(i,j) and Sd(i) are indeterminates, one for each prime power
q and 1 < i, j < n; and one for each 1 < i < n and multiindex

d=(a;, ..., d),d >0, d¥ (0,0,..., 0) vhich is not of the form
prej vhere e = (0, vees 0, 1, 0, ...,0), the 1 in the j-th place,

J =1, oo 13 P prime; r = 0, 1, 2, ....Llet ’1‘q denote the n x n matrix
(Tq(i,j)) and S, the column vector
S4(1)

Sd(n), .
1

If d is & multiindex d = (d., ..., 4 ) then x? @enotes x¢ = X,

ce. X B,
n

Our first result is completely analogeous to theorem (2.2).



1h

6.1. Theorem.

Let £(X) be an n-dimensional column vector of power series in the

n-variables Xys +e0s X oVer Qf..., Tq(i,j), R Sd(i), ceol

such that

o i i i
v - 2 P )yp
(6.1.1) £(X) - X 151 o f (X* ) € QP}T,SI

for all primes p. (Here X is the column vector of the Xqs soes Xn and
X* 1s short for the column vector of the X1 s soesy an H £}P
denotes (as usual) the power series obtained from f by raising all the

parameters T (i,j), S,(i) to the pover p’). Let F(X,Y) = £ (£(X) + £(Y)),

then all the coefficients of F(X,Y) are in 2[..., Tq(i,j),...;..., Sd(i),...]]

Proof. Same proof as of theorem (2.2).

As in the one dimensional case it remains to construct power series such
that (6.1.1) holds for all primes p. We also know that there exist
such power series.. This is exactly the same problem as we encountered

in sections 3,4. We recall and introduce some notation.

6.2. Ordered Factorizations, etc.

Let s be a multiindex s = (31, cees sn). We write NPM for the set of
all multiindices which are not of the form prej, j=1, ..., n; p prime;
r=1,2, ..., (Note that we start with r = 1 here).

An ordered factorization of s = (s1, ceas sn) is a sequence
(q1s ceey q‘t’d)

where q; is a prime power and 4 = (d1. cees dn) is a multiindex which is

in NPM such that Qys coos qtdi =s..

We also introduce the symbols Se (i) as 8 (i) = Gij’ vhere 515
' J J
is the Kronecker index; Se is the column vector of the Se (2).
J J
For every ordered factorization (q1, ceey qt,d) of a multiindex s

we define n(q1, cees qt,d) = n(g|, cees qt) = n(p1, cees pt) = the number

defined in section 4. Now let the column vector a_, 8 8 multiindex,
be defined by
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(@,50005a,,d) (q, ,d)
(6'2'1) a‘ = z n Q1 q‘t ° e o o L] :!-.t—_—.—‘
s (91"-'sqtyd) Py pt

(q,) (Qqese ) (q.e..q,)
T 94 g Qye=y_y s'q1 9,

% 92 % d
where (q1, cees qt,d) runs through all ordered factorizations of s;
Tén) is the matrix (T:(i.j)) and Sgn) is the column vector consisting

of the sg(i).

6.3. Theorem.
Let £(X) be the n-dimensional vector of power series defined by

1...x n
n

8
f(X) =L aX
8 81

wvhere s runs through all multiindices s = (31, cees sn), s. >0,

1
s # (0, 0, ..., 0). Let

F(X,Y) = f"(f(x) + £(Y))

Then we have
(i) f(X) satisfies (6.1.1) for all primes p.
(ii) The coefficients of F(X,Y) are in Z[..., Tq(i,j),...; Sd(i)""]

(iii) PF(X,Y) is a universal commutative n-dimensional formal group.

Proof. (i) follows directly from the definition of a_ and the
properties of n(q1, ceas qt,d), cf. section 3. (ii) follows
from (i) in virtue of theorem 1.1. As to (iii), this follows

from (ii) because we have enough free parameters. More precisely

one uses the result of Lazard cited as proposition (k.1) in [1].
q'leldo

6.4, Remark. As in the one dimensional case one has formulae like
those of proposition (4.3.) which can be used to write

the Tq(i,j) and Sd(i) inductively in terms of the e,

T. ISOMORPHISMS.

In sections 3, 4 we constructed certain power series fT(X)
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over Q {Tz, T3,...] such that

o (%), P
f&(X)-—Z = ftn (X JE€ Z(p)[TJ[[X]]

for all primes p. In & certain sense the construction used there is the

only one possible.

7.1. Lemma. Let f, S(X)€ qT,, T see+5S,.5 S, ««.J[[ X]] be a power

3 2° 73

series such that

i (ni) i
(T g (0 -2 2= 12 70 ) € 2y IT,81((X])

for all p. Then if a, denotes the coefficient of X' we have

T (o]
(1.1.2) a = I I -1

qls q"d P a'

d,q'

n(q sQ') + bn(s sT)

where 4 = q’1n , B, = X(q')-1 ys C € z[T,s)([x]],

a a,q'* “a,q°
b € Z[T,S][[X]] and n(q,q') any numbers such that n(q,q') = 1 mod p,

n(q,q') = 0 mod q' if (q,q') = 1 and n(q,q') = 1 mod pq' if
(a,9') = p°.

Proof. It follows immediately from (7.1.1) that 8 must be of the
form given by (7.1.2). Assume for the moment that there are
no monomials in S,T which occur both in bn(S,T) and in the

double sum part of a . It then immediately follows from(7.1.1) that

bn(S,T) € Z[T,S}{[{X]]). Necessary and sufficient for (7.1.1) to hold

is then that the expression (3.1.9) be in Z [S,T] for every p
(PO) o

(with anTn left out). First let (q,q') = ps. The necessary and

sufficient condition on n(q,q') is that

(pq')—1{n(q,q’)-1}cd Q" € Z(p)[S,T]. Any n(q,q') = 1 mod pq' works.
9

It may of course happen that c¢ , contains a few factors p so that a

d,q
n(q,q') = 1 modulo a smaller power of p than the exponent of pg' also

1

works. The difference {n(q,q') - fi(g,a')Hpa')" 'c, , is then in

d,q
2{s,T] and can be absorbed in bn(S,T). Now let (q,q') = 1. The

necessary and sufficient conditions on n{q,q’') are (cf. (3.1.9)).
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(Pq')-1(n(q,Q') - 1)(:3331 E Z(p)[SsT]

(pq')'1(n(q,q')c§?;. € Z(p.)[S,Tl

Any n(q,q') such that n{q,q') = 1 mod p and n(q,q’) = 0 mod q' works.

(Q) N
d,q'

case we must have n(q,q') = 1 mod p %, fi(a,q') = 0 mod p' Oq'.

The difference (pq')-T{n(q,q') - ﬁ(q,q')}céq;

?
?

It may of course happen that c¢ is divisible by say pap , Which

is in Z(S,T] and can

be absorbed into b (s,T). g.e.d

T.2. Corollary.

Let fi(x) be the power series f&(x) =¥ asxs, where a_ is given
by (3.h.2). Substitute X + S,X° + ... for X in £,(X) and let the

resulting series be g(X) = stxs.

Then we have

n(q,s...»q, ,d) n(q, ,d) q Qyose
a_= s AARARL At T2 P B Sl
(q_1,°"9q_t,d) p1 pt q1 q2 qt

Qoo (g e0.q,)
(M T )

n(a,seesqy,1) n(qt,1) - PEERL. PPN
+ z p K '——p_-—.— Tq s.‘T pt.
(q1s0e05ay,1) 1 t 1 9.1

(3 21)

(Q 5000y )
p -1
q

(s,T)

Proof. This follows from (7.1) because g(X) satisfies (7.1.1) if
fp(X) satisfies (7.1.1). cf. [1] (3.1) and (3.2).

7.3. Corollary.

Let bd(s’T) be any polynomial in S,T; 4 = 2, 3, .... Let
gT,S(X) =y dsXs be the power series given by (7.2.1). The formal groups
ET(X,Y) and GT’S(X,Y) are then isomorphic over Z[T,S].

Proof. Suppose we have proved this already mod degree n for all series

of polynomials bd(S,T). Let {7 be the power series over Z[T,S]
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establishing the isomorphism mod n. The power series £(¢(X)) and g(X) both
have coefficients of the form (7.2.1) and they coincide mod degree n.
It follows that their polynomials (bé(S,T) and bd(S,T) resp.) coincide

for 4 < n. It follows that we can find a u(S,T) € Z[S,T] such that
£(d(X) + u(S,7)X") and g(X) coincide mod degree n + 1.
qg.e.d.

Now let hg T(X) be the power series h_ _(X) =X bsxs, b given
9

S,T

by (7.2.1) with bd(S,T) =S ., Let t = (te, eoes tn,...), s = (52, 33,...)

d‘
be two sequencesg of elements from a characteristic zero ring A. Let

ht's(x) and ft(X) be the power series obtained from hT,S(X) and
fT(X) by substituting t; and s; for T, and S;. Let Ht,s(X,Y) and

Ft(X,Y) be the formal groups belonging to hy s(X) and ff(x).
9

T.h, Corollary. '\_‘{ Ama c‘mu&u’séic 2w ting

The formal groups Ht B(X,Y) and Ft(X,Y) are isomorphic. Inverselyr\""y-
9

.)

and H(X,Y) is isomorphic over A to Ft(K,Y) then there exist (52, 835 oo

such that the logarithm of H(X,Y) is equal to h, s(X).

Proof. The first part follows from (7.3). As to the second part, suppose

we have already found s such that

2, sooe gy Sn_1

h(X) = n s(X) mod degree n
9

t
The formal groups H(X,Y) and Hy 8(X,Y) are isomorphic and congruent
b ]

mod degree n., It follows that there exists an sn such that

h(X) = h, _(X) mod degree n + 1
'Y:]

T.5. Remarks.

1. Corollary (7.l4) can of course be used as a criterium for testing
whether two formal groups over a characteristic zero ring are
isomorphic.

2. Similar results can be obtained for more dimensional formal

groups.
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8. A LOCAL GLOBAL RESULT.

K
Let\ée an algebraic number field, A denotes its ring of integers.

If p is a prime ideal, A is the localization of A at p, and Aﬁ is

()
the completion of A(TJ). We shall view A(T’) as a subring of K; Ve

is the valuation on AT’ and K belonging to the prime ideal .

8.1. Lerma.

e e
Let the prime p decompose as p = Lﬁ‘ . ‘pnn in A. For every

piime P dividing p let. there be given a number axFE A?,. Then there
exists an a €A such that a - a.PG PAF’ for all the primes P dividing p.

Proof. First we show that for every ‘)bi there is a b, € A such that

n 7!’i Pi
+p € N A . We can in any case asssume that a, € A
TR L ) P (ry)

for i =1, ..., n. Let n.', ...,l;!be elements of A such that

VT’.(":]) = Gij’i’ j=1, ..., n. Then we can write
1

c

P. n
1
a = 9 ; € B = n A
| e 1 3=1  (Py)
My ooy Mt o1
t . +e t. .+e. t. _+e. t e =1
1 71 1=1 "1=1 141 "i+1 n n
Let bpi be of the fcmhpiﬂ (n1 e L oo ) ari,
d, ¢€B.
Py

The problem is then to choose d? such that

1

ei t.4e.
c. + m sOmod M w9
Z T j#id

which can be done because the “i are prime to each other. We can therefore

assume that the ay are all in B. Now for each i let e, be of the form

e Py e
e = INn Jf . Thena,  + pe, is of the forma_ + w. ¢
T’i J#i J Pi \Pi T’i T3 1 T”i

with £ (€8

And the next problem is therefore to find an a' € B such that a' = a_f’
i
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e'
mod wil which can be done by the Chinese remainder theorem.

We have now found an a' ¢ B which satisfies the requirements of the
lemma. It now suffices to show that there is an b € B such that

a=a'+ pbis in A. Let Olys +=esfp be the prime ideals of A such

[} .
that vq(‘(a ) ¢ 0. Choose elements P of A such that v»‘L-(p.j) = Gij’

J dJ
A (p.) = 0. Then we can write
i
a' = c’
r, r
Pz ’ 'Pmm
with ¢ e A
-r -r
let b' be of the form b' = Py ... Pm "d4', d'€ A. The problem is then
r r
to find a 4'€ A such that c¢' + pd' = 0 mod p!".., pmm vhich can
r,
be done because p and I pil are prime to each other.

i
8.2. Proposition.

Let F and G be two formal groups over A. Then F and G are
isomorphic over A if and only if they are isomorphic over all A?.
Proof. The isomorphism between F and G, if it exists, is equal to

g"(r(x)), wvhere f,g are the logarithms of F and G. The

coefficients of 5-1(1’(]()) are in A i{fthey are in A‘f’ for all ‘¢

8.3. Proposition.

Suppose we have a formal group FT’ over A?‘ for all prime divisors
+ of A. Then there exists a formal group F over A such that F is

isomorphic to FT‘ for allp ounr A‘T’

Proof. Suppose we have already constructed F up to and including
degree n . If n + 1 is not a prime power F and FT’ are also
isomorphic mod degree n + 2, for allp , and we can extend F to

degree n + 1 arbitrarily. Now suppose that n + 1 is a power of the

prime p. For each prime p dividing p, let ¢7’ be a power series

over AT’ establishing the isomorphism between F and F_ mod degree n + 1

r



21

-1
and let FTZ,(X,Y) = ¢, E(OP(X), °’P(Y)) and let f;_(x) be the logarithm

of F;. Let fﬁ(x) be the power series over Z[T] given by (3.4.2)

and t = (t2, cens tn), be such that ft(x) s f£(X) mod degree n + 1

where f is the logarithm of F. For each p dividing p let t(p) = (t2(P),..)~

be such that fi(?)(x) = I;(X) then tifr) = t, for i=2, ..., n

Now choose tn+1 € A such that

t e - tnﬂ(‘r) € pA.,F for allp .

Every formal group FB(X,Y) with s, = ti forig<n-+ 1, s; arbitrary ﬁl

i>n+ 1is then isomorphic to EP(X,Y) modulo degree n + 2, for all
prime; p dividing p. As to the primes; not dividing p, FS(X,Y) and
Em(x’Y) are isomorphic mod degree n + 2 if they are isomorphic mod

degree n + 1 because ¢| is prime to n + 1.
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