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In U lwe wrote down some explicit power series over Q ~ •• , T . , ••• ] 
1 p 

which turned out to be the logarithms of a p-typically universal 

formal group and a formal group universal over Z(p)-algebras. Both 

formal groups are defined over Z [, •• , T • , ••• ]. In this .note we show 
1 p 

how to fit together these formal groups for different p to get a universal 

formal group ( over Z tr2 , T 3 , ••• ]) • If f(X) is the logarithm of this 
• CD i 

universal group f(X) = ra.X1 , then its p-typical part,X + E a .xP is 
1 ~, I 

precisely the lo~arithm of the p-typically universal formal group 

constructed in [1 ]. 

It turns out that there many ways of fitting together the p-typical 

formal groups, Most of them do not give nice formulas for the T. in 
1 

terms of the a .• One special choice gives inverse formulas comparable 
l 

to formulas ( 8) of [1 ]. In (1 ] ve used these formulas to get generators 

in dimensions 2(pn-1) of Q~v (pt), the complex cobordism ring modulo 

torsion. Using the universal formal group constructed in section 4 
of this note we get a complete set of free generators of Oev(pt) over z. 
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Section 2 contains some preliminaries; section three gives the 

general construction of a universal formal group. In section 4 we 

discuss a special case with nice properties of the construction of 

section 3. Section 5 contains the application to complex cobordism 

theory alluded to above. In section 6 we discuss the mor~ dimensional 

case which is completely analog~cut, In section 7 we discuss isomorphisms. 

Section 8, finally, is independant of [1] and the rest of this 

paper. It is elementary (given the existence of universal formal 

groups and some more results of Lazard) and it would surprise me if 

it were not already known. 

2. PRELIMINARIES. 

Let F(X,Y) be a power series ove't Z[T2 , T3 , ••• ] or Z{ )[T2 , T 3 , • .. J 
k p 

1n X,Y. We denote (cf. also [1]) with F(p )(X,Y) the power series 

obtained from F(X,Y} by replacing the parameters T2 , T3 , ••• with 
k k p p 

T2 , T3 , • •• 

2. 1. Lemma. Let F(X,Y) € Z(p)[T2 , ••• ][[X,Y]J. Then we have 

k k k k 
l(F(X,Y)p )0 11 ¾(F(p \xP ,YP ))n mod p 
n 

The proof is completely elementary. For n = 1. 
it is contained p 

the proof of theorem (1.2) of (1]. 

Let fT( X) be a power series in X over Q[T2 , T 3, •.• ] • The power 

k 
series f(p )(X) 1s obtained by raising the parameters Ti to the 

k p -th power. 

in 

2.2. Theorem. Let fT(X) be a power series 1n X over Q[T2 , T3 , ••• ] 

such that 

(2.2.1) 

Let FT(X,Y) 

in Z[T]. 



Proof. Fix a prime p for the moment. Then we have 

T • • • 
l ( l) l 

fT(X) = gp(X) + :r -;-rTP (xP) 

3 

for some power series ~(X) € Z(p)[T][[X]]. Now repeat the proof 

of theorem (1.2) of [1] , using lemma (2.1) instead of formula (11) 

of [ 1], to shov that 

This must hold for all p, which concludes the proof. ; t ,t 

2.3. Remark. Let f(X) be a power series over Q[T) such that 

T . . . 
1 ( l) 1 

f(X) - :r ~ p (xP ) E z(p)[TJ[[X]] 

2 and let u(X) = X + u2X + ••. E Z(p)[T][[X]]; let g(X) = f(u(X)). 

Then g(X) also satisfies 

(2.3.2) 

This follows ixnmediately from lemma (3.1) of [1]. Nov let G(X,Y) 

be a. universal formal group law over Z[T] and let g(X) be its 

logarithm. Consider G and g over Z(p)[T]. Over Z(p)[T], G(X,Y) must 

be isomorphic to the universal formal group lav constructed in ( 1. 3) 

of [1]. Combining this with (2.3.2) we see that a universal formal 

gro~p must have a logarithm which aatisfies (2.2.1) for all p. 

In view of (2.2) it therefore only remains to construct 

reasonaQle power series fT which satisfy (2.2.1) for all p. This 

is the subject matter of the next section. 

2.4. Remark. If fT,S(X) is a power series over Q[T,S], where the S 

are additional variables, such that (2.2.1) holds for 

all Ps then also 

FT s<x,Y) E Z[T,S][[X,YJJ , 



3, CONSTRUCTION OF A UNIVERSAL FORMAL GROUP. 

3. 1. The Induction Step. 

4 

Suppose we have constructed a power series fT up to and 

including degreo s-1 such that (2.2.1) holds tor all.primes p 

!!lOd degree s • 

Let p be a prime di vi ding s , and let q be a power of p which 

divides s. Then according to (2.2.1) there must be a term 

T 
(3.1.1) _g_ a (q) 

p d 
-1 

d • q s, ad de coefficient 

a -1 
in the coefficient o:f X . The coefficient ad looks like d c d, 

cd € Z{T], which can be written as a sum 

Cd I 
'q, 

( 3. 1.2) a • 
d 

I: 
I q ' q' d 

, q' a power of a prime • 

Substituting this in (3,1.1) we find a contribution 

to a • We get such a contribution for every prime power q dividing 
s 

s. We find therefore that a must 
n 

contain 

(3.1.4) 

c(q} 
d,q' 
q' 

, -1 
d = q n, q, q' prime powers. 

If ve use ( 3. 1. 4) to define a . ( 2. 2 • 1) 
S' 

This can be repaired by adding to each 

a term of the fOl'.ffl m{q,q') p- 1(q')-1 T 
q 

is such that 

(3, 1.5) 

(3,1.6) 

f 1 mod p 
1 + m( q ,q' ) 2 

0 mod q' 

1 + m( q ,q') :: 1 mod pq' 

Let n(q,q') • 1 + m(q,q'), and define 

is in general not satisfied. 

summand p - 1 ( q' )-1 , T • cd( q) , 
q ,q 

c~;~" where m(q ,q') € Z 

if ( q ,q') • 1 

if (q,q') = PS 



a • 
s 

n(q,q') + a T 
s s 

5 

vhere a • 1 ifs is not a power of a prime and a • O othe?Yise. s s 

We maintain that :fT(X) = X + a2r + ••• + a8 X8 the.n satisfies 

(2.2.1) for all p mod. degrees+ 1. 

Indeed, fixe a prime p 0 , then we must show that 

(3.1.8) 

The sum (3.1,8) is equal to 

I: I: n!g 1g'}-1 T c(q) + I: n(g 19 I }-1 T c(q) 

P0 14 P0 l4 1 
p q' q d,q' 

P0 lq,pJq' 
p q' q d,q' 

0 0 

(3. 1.9) 

♦ I: n~g1g') T c{q) + I: n!g 19'} T c(q) +aT 
pq' d,q' pq' d,q' 

pJq,polq, 
q 

P0 ,f'4,P0 {4' 
q 

( -1 . . ) where d • q s; q a power of' p in the third and fourth terms • 

The first term of' (3. 1.9) is in Z( )[Tl because of (3. 1.6); the 
Po 

second term or (3.1.9) is in Z( )[Tl because (q•)-1 € Z 
Po (po) 

and 

( ) . _, € 
3,1,5 ; the third term because p Z and (3,1.5) and the 

(po) 
-1 ( )-1 . [ ] fourth tera,. because p , q' € Z ; finally: a T € Z T • 

(po) n n 

Note that we can choose f'or the n ( q ,q' ) any numbers in Z which 

have properties (3.).5), (3.1.6); in particular we can, if ve wish, 

let n ( q ,q') depend not only on q ,q' but also on s and on the way 

in which the term cd , arose. ,q 

3,2. Ordered Factorizations. 

An ordered factori-zation of' s € H is a sequence of numbers 

(q1 , q2 , ••• , 4t,d) where the qi are powers of primes and d € N is 

n n 
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not a power of a prime (but d = 1 is possible). Example: the 

different ordered factorizations of s = 12 a.re 

(2, 2, 3, 1), (4, 3, 1), (2, 3, 2, 1), (3~ 2, 2, 1), (3, 4, 1), 

(2, 6), (12). 

3.3. Lemma. If we use the procedure of (3.1) to construct fT 9 then 

the monomials in T occurring in a are of the form 
s 

where T 1 = 1 and (q 1 , q2 , ••• , 4t, d) is an ordered factorization 

of s. 

Proof. By induction; elementary. 

3.4. A Formula for a - ----s 
k1 

For every ordered factorization (p 1 , ••• , 

k.1 kt 
n(p 1 , ••• , pt , d) be a number c Z such that 

(t ~ 2) 

(3.4.1} 

We define a by the formula 
s 

. (t > 2) 
if P1f?2•• 0 .=pr+1fpr+2-

i f p ,·Pl" ... =piJ\.+ 1 
( t > 1) 

(3.4.2) 
n(q1 , ••• ,qt,d) n(q2 , ••• ,qt,d) 

a = 
s P1 P2 

..... 

k.. k.1 
where qi= pii' and (p 1 , ••• , 

kt 
pt , d) runs through all ordered 

factorizations of s.:as above we set T1 • 1. i, 

3,5. Theorem. 
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00 

a x8 
s 

vhere as 1s given by formula. (3.4.2). Then fT(X) satisfies (2.2.1) 

for all p. Let FT(X,Y) = f; 1<rT(X) + fT{Y)), then FT(X,Y) is a 

universal formal gro'Ul). 

Proof. The product 

n(q1, ..• ,qt'd) 

P1 

where q. is a paver of p. is of the form 
l 1 

...JL 
r 

P1 

with c € Z, if p 1 • p2• ••• • pr 'tJ Pr+i • This follows immediately from 

(3.4.1) by induction. It follows from this and (3.3) that the a are 
s 

related to each other in the manner discussed in (3.1). The power series 

fT(X) therefore satisfies (2.2.1). Theorem (2.2) then shows that all 

coefficients of FT(X,Y) are in Z[TJ. Finally writing FT(s) for 

F we have (T 1 ,T2 , ••• ,Ts ,O ,O, ••• ) 

mod degrees+ 2 

where S(s + 1) = 1 ifs+ 1 is not a power of a prime and S(s + 1) = ..l if p 

s + 1 is a power of p. This follows immediately from (3.4.1). The 

relation (3.5.2) implies that FT is a universal formal group, [2). 

3. 6 . Examples • 

The different ordered factorizations of 12 are 

(2,2,3,1), (4,3,1), (3,2,2,1), (2,3,2,1), (3,4,1), (2,6), (12) 

Let n(2, q1, q2 , ••• , qt,d) = n{q 1, ••• , 4t), t ~ 2, n(q,d) • 1 

n(2,2,3) • 1, n(2,3) = 3, n(4,3) • 3, n(3,2,2) • 4, n(2,2) = 1, 

n(2,3,2) = 3, n(3,2) • 4,n(3,4) • 4. Then we find for a 12 
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The ordered factorizations of 6 are 

Using the same n's we find for a6 

4. INVERSE FORMULAE. 

The formula ( 3. 4. 2) permits us of course to write T in terms of 

the ai't.), dis and the T!J'' s'ls, s' < s. In anology withs formula (8) 

of O l however, we would like to find a formula for T in terms of the 
s 

ad and the Ts,, where d and s' divide s. 

Note that this is not possible with the choices for the 

n(q1 , q2 , ••• , 4t ,d) which we used in (3.6). (A redefinition of 

n(3,2,2) as n(3,2,2) • 16 remedies this), 

4.1. Some Special n(q 1, q2 , ••• , 4t 0 d) 

We define inductively 

(4.1.1) 

where } i f.' . 

b(p.) = 1, b(d) • 1 
l. 

rd ,tv,J 

c( PsP 1 ) • 1 if p • 'P' 

( 4. 1. 2) c(PsP 1 ) - 1 mod p if p ~ p. 

c(p,p') - 0 mod p' ifp~p• 
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(One can e.g. take c(p,p') = (p'fP- 1, if' p' ; p). 

Note that the factor c(p,pt) occurs precisely once in IT c(p,pt) if p E J. 
pE:J 

Now define n(q 1, ••• , ~,d) by the formula 

b(q1 , ••• , qt,d) 
(4.1.3) n(q 1, ••• ,Cli,d)=b(q2 , ••• ,~,d), 

4.2, Lemma. 

n( d) • 1 

The n(q 1, ••• , qt,d) as defined by (4.1.3) satisfy the conditions 

(3,4.1). 

= c(p 1 ,p2 ); further n(q 1 , •• q 4t ,d) = n(p 1 , ••• , pt) if qi 

is a. power of p .• By induction we get from. ( 4. 1. 1) that 
1 

(4.2.1) b(p1, • 0 • , pt) = rr c(p,pt) ... Il c(p,p2), J. = { p, ' ••• ' p.} 
l. l. 

Let 1t = {p2, ... , 

rr 
I€J. 

l. 

l\l , I. 

C ( P ,p · ) 
1 

l 

I€Jt y:€J2 

= {p2' ... , p.} , i "" 2, 0 0 111 , t e The 111<rn~Jets 
l. 

and Il c(p,p.) 
I€!. 1 

1 

are either equal or differ by a factor c(p 1,pi) depending on whether 

p 1 is in Ii or not. It follows that 

(4.2.2) 

The first congruence of (3,4.1) follows immediately from this. 

Moreover if p 1 = p2 then p 1 € Ii for all i = 2, ••• , t so that 

(4.2.3) 

Finally, suppose that p 1 f. p 2 = p 3 = ••• = pr+,· Then for 

i = 2, .• , r+1 we have pi= p2 and Ii= {p2} , p 1 ¢ Ii, so that 

n(p 1,p2 , ••• , pt) contains r factors c(p 1 ,p2 ) which proves the 

second congruence of (3.4.1). 
q .e. d, 
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Remark. The formula ( 4. 2. 2) can be rephrased as 

n(p 1 ,P2 , ••• ,pt)• n(p1 , ••• , P,) if pi; p 1 , i • 2, ••• , r, 

Let a' be the element of Q[T] obtai~'ea. <by 
s 

pr+1 • P1 

setting Td • O for all 

d # 1 which are not a power of a prime. Let NP • { n € NI n ; 1, 

n not a power of a prime } • We have 

(4.2.5) a' • 
s 

4.3. Proposition. 

n(qt,1) . . . . . 
pt 

q1 • • ·<tt-1 
T 
4t 

Let the n(q 1, ••• , 4t,d) be defined by(~ .1.3). Then we have 

(4.3.1) 

where m(s,d) = 1 if d€ NP, m(s,pt) • II c(p',p), where J is the set 
p '€J 

of primes occurring in s; and µd) • 1 if d € NiP, µ(p'} = p. 

Further we have 

(4.3.2) a' :r a -s s 

Proof. Both these formulas are proved by looking at the formula (3.4.2) 

for a. Take a fixed d, and consider all ordered factorizations 
s 

k1 kt 
(p 1, ••• , pt td} of s. First suppose that dis not a power of a prime, 

d # 1. The part of a8 consisting of terms involving Td is then 



n(ql ,42, • • • ,4t ,d) 

Pi 

11 

where the sum is over all ordered factorizations of s/d ending in 1. 

Combining this with (4.1.3) and (4.1.1) proves formula (4.3.2). 

Cf. (4.2,5). Now let d = q be a power of a prime~ and consider the 

coefficient of T:/q in as• This is equal to 

(4.3.4) 2 n(q 1,.,.,4t,4,1) 

{q,, ••• ,qt,q,l) Pi 
. . . . . n(4i,q,1) n(g,t} 

Pt • p • 

where the sum is over all factorizations ending in ( ••• ,q,1), and 

these correspond bijectively to all factorizations ending in 1 of 
-i 

q s. 

According to (4.1.3) and the first tvo formulas of (4.1.1) 

we have 

and using the third formula of (4.1.1) and again (4.1.3) and the 

first two formulas of (4.1.1) we see that 

I 

This in combination with (4.3.4) and the argument used to establish 

(4.3.2) ~roves (4.3.1). 

4.4. Remark. The formulae (4.3, 1) and {4,3.2) permit one to write 

T8 as an expression in the Td, d < s, dis and the ad, 

d/s. This is the reason why this section is headed 

"inverse formulae". 
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5. GENERATORS FOR THE COMPLEX COBORDISM RING. 

ev ) • • • Let n \pt denote the complex cobord1sm ring modulo torsion. 

It is freely generated by countably many generators over z. There 1s 

also a canonically defined formal group over it. Cf. [ 3]. The. logarithm 

of this formal group law is equal to 

CD 

( 5. 1) .t ( X) • t 

where.P € n-2n(pt) is the cobordism class of CPn. Cf [3]. Quillen [3] 
n 

has shown that this formal group law is universal. It is therefore 

isomorphic to the formal group law constructed above, in particular 

to the one which uses the n(q 1 , ••• , 4t,d) defined and used in section 4. 
We can therefore use proposition (4.3) to find a set of generators for 

the complex cobordism ring 

5. 2. Theorem. 

The following inductively defined elements, s • 2, 3, ... , 

constitute a set of free generators over Z of the complex cobordism ring 

ev 
Q (pt). 

t 
s 

• 1J (s) 

+ µ( s) 

t 

( We take PO = 1 ) 

+ ••• 
dd2d 1 s ,.dl.NP 

d,'41,s 

ddi ••• d2d1•s 

di, ••• ,d2€NP,d1~1,s 

Proof. This follows immediately from proposition (4.3), Use formula (4.3,1) 

and then eleminate the a~/d inductively by means of (4. 3,2). 



(If' dis a prime paver ad• ad}. Note that µ(s)µ(d 1)-1m(s,d1) is 

always an integer. 

5.3. ~ Examples. 

We take c(3,2) • 4, c(2,3) • 3. Using (5.2) one then easily 

calculates 

6. MORE DIMENSIOlfAL UNIVERSAL FORMAL GROUPS. 

13 

In this section -we study higher dimensional. :f"ormal groups. All formal 

groups considered will be commutative. To get a universal n-dimensional 

format group, ve vork over the ring Q[ ... ,T4(i,j), ••• ; ••• , Sd(i), ••• ] 

where the T4 (i,j) and Sd(i) are indeterminates, one for each prime power 

q and 1 < i, j < n; and one for each l < i < n and multiindex - - . - -
d • (d1 , ••• , d ), d. > o, d ~ (o,o, ... , O) which is not of' the form 

n 1 -

pre. vhere e. = (O, ••·• O, 1, o, •.• ,o), the 1 in the j-th place, 
J J 

j ~ 1, ••• , n; p prime; r • O, 1, 2, •••• Let T4 denote then x n matrix 

( T ( i ,j )) 
q 

) d d d1 
If dis a multiindex d • (d1 , ••. , dn then X denotes X = x1 

Our :rirst result is completely analogeous to theorem (2.2). 

d 
X n. 

n 
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6. 1. Theorem. 

Let f(X) be an n-dimensional column vector of power series in the 

n-variables x1 , ••• , Xn over Q[ ••• , Tq(i,j), ••• ;, •• ., Sd(i), ••• ] 

such that 

(6.1.1) f{X) - X -

T • • • 
ao 1 ( l) l 
r ....lL.P t P (xP ) e: z. 1[T ,sJ 

i=1 <P 

for all primes p. (Here Xis the column vector of the x1 , ••• 11 X and n 
.l. i i i 

xP is short for the column vector of the x; , ... , xnP ; f~P) 

denotes (as usual) the power series obtained from f by raising all the 

parameters T4(i,j), Sd(i) to the power pi). Let F(X,Y) = r- 1(r(X) + f(Y)), 

then all the coefficients of F{X,Y) are in Z[ ... , T4(i,j), ••• ; ••. , Sd(i), ••• ]J 

Proof. Same proof as of theorem (2.2). 

As in the one dimensional case it remains to construct power series such 

that (6.1.1) holds for all primes p. We also know that there .exist 

such power series.. This is exactly the same problem as we encountered 

in sections 3,4. We recall and introduce some notation. 

6.2. Ordered Factorizations,~. 

Let s be a multiindex s • ( s 1 , ••• , sn). We vri te RPM for the set of 

all multiindices which are not of the form pre., j • 1, ••• , n; p prime; 
J 

r = 1, 2, ••• , (Note that we start with r • 1 here). 

An ordered factorization of s = (s 1 , ••• , sn) is a sequence 

(q1' • • •, 4t ,d) 

where qi is a prime power and d • ( d1 • ••• , dn) is a multiindex which is 

in NPM such that q 1, ••• , 4tdi • si. 
l 

We also introduce the symbols S (i) as S (i) • o .• , where o .. 
. e. e. 1J 1J 

J J 

1s the Kronecker index; S is the column vector of the S (i). e. e. 
J J 

For every ordered factorization (q1, ••• , qt,d) of a multiindex s 

we define n{q1, ••• , ~,d) • n(i 1, ••• , 4t) • n(p1 , ••·•pt)• the number 

defined in section 4. Now let the column vector a8 , s a multiindex, 

be defined by 



(6.2.1) a = 
s 

15 

where (q 1 , ••• , 4t,d) runs through all ordered factorizations of s; 

T(n) is the matrix (Tn(i,j)) and Sd(n) is the column vector consisting 
q q 

or the s:(i). 

6. 3. Theorem. 

Let f(X) be then-dimensional vector of power series defined by 

f(X) 

wheres runs through all multiindices s = (s 1, ••• , sn), si > O, 

s ~ ( 0 , 0 , ••• , 0) • Let 

F(X,Y) • f-1(f(X) + f(Y)) 

Then we have 

(i) f(X) satisfies (6.1.1) for all primes p. 

(ii) The coefficients of F(X,Y) a.re in Z[ ••• , Tq(i,j), ••• ; Sd(i), •• ,] 

(iii) F(X,Y) is a universal commutative n-dimensional formal group, 

Proof. (i) follows directly from the definition of as and the 

properties of n(q 1 , ••• , 4t,d), cf, section 3. (ii) follows 

from ( i) in virtue of theorem 1. 1. As to (iii), this follows 

from (ii) because we have enough free parameters. More precisely 

one uses the result of Laza.rd cited as proposi.Hon (4.1) in [11. 
q·,e ,d. 

6.4. Remark. As in the one dimensional case one has formulae like 

those of proposition (4,3.) which can be used to write 

the T4(i,j) and Sd(i} inductively in terms of the a.8 • 

7, ISOMORPHISMS. 

In sections 3, 4 we construeted certain power series fT(X) 
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over Q [T2 , T3 , ••• ] such that 

T • . i 
l. ( l) p 

r.(x)-r-1L-rP ex}€ 
T p T 

for all primes p. In a certain sense the construction ..µ;ed there is the 

only one nossible. 

7.1. Lemma. Let fT,S(X}€ qT2 , T 3 , ••• ; S 2 , S3 , •• ,J[[X]] be a power 

series such that 

(7.1.1) 

for all p. Then if a denotes the coefficient of r1 we have n 

(7,1.2) a = n 

T Cd I ...9. ,q 

p q' 

where d = q- 1n , ad• r(q•)-1cd,q'' cd,q' € Z[T,S)[[X)], 

b E Z[T,SJ[[X]) and n(q,q') any numbers such that n{q,q') ■ 1 mod p, n 

n(q,q'} ■ 0 mod q' if (q,q') = 1 and n(q,q') ■ 1 mod pq' if 

(q,q')=ps. 

Proof. It follows immediately from (7,1.1) that a must be of the 
n 

form given by (7,1.2). Assume for the moment that there are 

no monomials in S,T which occur both in b (S,T) and in the 
n 

double sum part of a. It then ~mmediately follows from(T.1.1) that n 
b (S,T) € Z[T,S][[X]]. Necessary and sufficient for (7.1.1) to hold 

n 

is then that the expression (3.1.9) be in Z( )[S,T] for every p P0 o 

(with a T left out). First let (q,q') • p5 • The necessary and 
n n 

sufficient condition on n(q,q') is that 

(pq')-1{n(q,q')-1}cd,q' E Z(p)[S,T]. Any n(q,q') ■ 1 mod pq' works, 

It may of course happen that cd , contains a few factors p so that a ,q 

n( q ,q') • 1 modulo a smaller power of p than the exponent of pq' also 

works. The difference {n(q,q') - n(q,q')}(pq')- 1cd , is then in 
,q 

z(s,T1 and can be absorbed in b (S,T). Now let {q,q') = 1. The 
n 

necessary and sufficient conditions on n(q,q') are (cf. (3.1,9)). 
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(pq')- 1(n(q,q') - 1)cl:~, € z(p)[s,TJ 

(pq')- 1(n(q,q')cl~~• e: z(p')[s,T] 

Any n(q,q') such that n(q,q') • 1 mod p and n(q,q') • 0 mod q' works. 

It may of course happen that cd(q), is divisible bys~ pap,b, which 
,4 

case ve must have n(q,q') • 1 mod p 1-a, n(q,q') • O mod p'-bq'. 

The difference (pq')- 1{n(q,q') - n(q,q')}cd(q) 1 is in Z[S,T] and can 
,q 

be absorbed into b (S,T). 
n 

7.2. Coroll&· 

Let fT(X} be the power series 

by (3.4.2). Substitute X + s2x2- + 

resulting series be g(X) • :rd Xs. 
s 

Then we have 

d • 
s 

+ :r 
(q,, ••. ,4i,1) 

n{q 1 , ••• ,qt, 1) 

P1 

fT( X) z I: a X5 , where a is gi. ven 
s s 

••• for X in fT(X) and let the 

n(qt,d) 4 1 4 1•••¾-1 
---T T ... T 

pt q, 42 4t • 

4 ,···~ ( 4 ,·•·<1.i> 
• (Td + bd (S,T)) 

n(qt,1) 
---T 

pt 4 1 

Proof. This follovs from (7.1) because g(X) satisfies (7.1.1) if 

frr(X) satiefies (7.1.1). Cf. [1] (3.1) and (3.2). 

7.3. Corollary. 

Let bd(S,T) be any polynomial in S,T; d • 2, 3, .••• Let 

~,S(X) • I: d8 X8 be the power series given by (7.2.1). The formal groups 

FT(X,Y) and GT 8(X,Y) are then isomorphic over Z[T,S]. , 

Proof. Suppose we have proved this already mod degree n for all series 

of polynomials bd(S,T). Let~ be the power series over Z[T,S] 
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establishing the isomorphism. m.od n. The power series f(4'(X)) and g(X) both 

have coefficients of the form (7.2.1) and they coincide mod degree n. 

It follows that their polynomials (b~(S,T) and bd(S,T) resp.} coincide 

ford< n. It follows that ve can find a u(S,T) € Z[S,T] such that 

f(~{X) + u(S,T)t1) and g(X) coincide mod degree n + 1. 

q.e.d. 

Now let hS,T(X) be the power series hS,T(X) s I b5 X8
9 b 8 given 

by (7.2.1) with bd(S,T) • Sd. Lett a {t2 , ••• , tn, .•• ), s = (s2 , s 3 , ••• ) 

be two sequences of elements from a characteristic zero ring A. Let 

ht,s(X) and ft(X} be the power series obtained from h.r,s(X) and 

fT(X) by substituting t 1. ands. for T. and S .• Let Ht (X,Y) and 
l. l l ,s 

Ft(X,Y) be the formal groups belonging to ht,s(X) and ft(X). 

7. 4. Corollary:. ,~ ~ A i:,, ll cL1ttd:.:l,·~tic .lti.; , 111~. 

·---- - .. ~-- -----·"• ·--

The formal groups Ht (X,Y) and Ft(X,Y) are isomorphic. Inversely ,s ) 

Ql'ld.H(X,Y) is isomorphic over A to Ft(X,Y) then there erist (s2 , s 3, •.• ) 

sueh that the logarithm of H(X,Y) is equal to ht (X). ,s 

Proof. The first part follows from (7.3). As to the second part, suppose 

we have alread.,v found s 2 , ••• , sn-l such that 

h(X) = ht (X) mod degree n ,s 

The formal groups H(X 9 Y) and Ht (X,Y) are isomorphic and congruent ,s 

mod degree n. It follows that there exists ans such that 
n 

7,5, Remarks. 

h(X) = ht (X) mod degree n + 1 ,s 

1. Corollary (7.4) can of course be used as & criterium for testing 

whether two formal groups over a characteristic zero ring are 

isomorphic. 

2. Similar results can be obtained for more dimensional fonnal 

groups. 
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8. A LOCAL GLOBAL RESULT. 

Le~ an algebraic number :rieldi, A denotes its ring of integers. 

I:f-,_, is a prime ideal, A(r) is the localization of A at 7', and A-,.. is 

the completion of A(r') • We shall view A('(i) as a subrins of K; v1' 

is the valuation on Al' and K belonging to the prime ideal 1' • 

8. 1. Lemma. 
e 1 e 

Let the prime p decompose as p • 1, ... 1'n n in A. For every 

pi.~me "f, di vi ding p let,. there be given a number a.,,€ A-,,. Then there 

exists an a e: A such that a - a,.€ pA1' :ror all the primes 1' di vi ding p. 

Proof'. First we show that :for every 'f3 i there 
n 

is a b'f>. € A"f>. such that 
l l 

a.,.. + P~. € • n A("ll.). We can in any 
1 1 1•1 •1 

case assume that a.,__ € A( ) 
f' l ri 

:for i • 1, ••• , n. Let "ti, .• ,. , 'Ii be elements of A such that 

v.., (n.) • 6 •• ,i, j • 1, ••• , n. Then we can write 
ri J lJ 

c.,.. 
l 

' e.,. i e: 

The problem is then to choose d.1., such that 
l 

e. t.+e. 
c'f.l. + n/d.1· ■ 0 mod Il ff.J J 

r 7> j,'i J 

B • 

which can be done because the ,r. are prime to each other. We can therefore 
l 

assume that the~ are all 
-e. 

e = IT n. J :f , Then a 
.,, i j,'i J 'f> i 'ti 

w~!:h f ,c:B . 

in B. Nov :for each i let ef· be of the 
le. 

+ pe'i:> is of the form a + 1t. 1 :r.,,, 
'l ?i 1 ri 

form 

And the next problem is therefore to :rind an a' € B such that a' • a 
1'· l 
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e. 
mod w. 1 which can be done by the Chinese remainder theorem. 

1 

We have now found an & 1 € B which satisfies the requirements of the 

lemma. It nov suffices to show that there is an b € B such that 

a • a' + pb is in A. Let oi1 , ••• , "1-m be the prime ideals of A such 

that v (a') < O. Choose elements PJ· of A such that v (p ) • 4 .• , 
q,. --~- j iJ J J 

vci. ( p) • O. Then we can write 
1 

c' 
a' • ------

-r -r 
let b ' be of the form b ' • p 1 1 • • • p md' , d 1 € A. 

ll r 
1 to find ad'€ A such that c' + pd' = 0 aod p 1 ••• 

The problem is then 

r. 

r 
m • h p wb1c can 

111 

be done because p and n p • 1 are prime to each other. 
i 1 

8.2. Proposition. 

Let F and G be two t'orJD&l groups over A. Then F and G are 

isomorphic over A i:f' and only if' they are isomorphic over all A,r 

Proof. The isomorphism between F and G, if it exists, is equal to 

g-1(f(X)), where f,g are the logarith1118 of F and G. The 

coefficients -of g- 1(:f'(X)) are in A iffthey are in A~ for all 1' 

8.3. Proposition. 

Suppose we have a foraal group F-,. over A'r for all prime di visors 

·-r, of A. Then there exists a :formal group F over A such that F is 

isomorphic to Fr :for a11 ·-p OV't'l Ar> 

Proof. Suppose we have already constructed F up to and including 

degree n. If n + 1 is not a prime power F and Fr are also 

isomorphic mod degree n + 2, for all "13 , and we can extend F to 

degree n + 1 arbitrarily. Nov suppose that n + 1 is a power of the 

prime p. For each prime 1' di vi ding p, let 4>;., be a paver series 

over A1 establishing the isomorphism between F and Fr mod degree n + 1 
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-1 
and let F;(x,Y) • ♦1 F( ♦t(X), ♦~(Y)) and let f;(x) be the logarithm. 

of F;. Let fT(X) be the power series over Z[T] given by (3.4.2) 

and t = (t2 , ••• , tn), be such that ft(X) • f(X) mod degree n + 1 

where f is the logarithm of F. For each~ dividing p let t(p) • (t2(f), •. ). 

be such that ft('f>)(X) • r;<x) then ti(') 1111 ti for i • 2, •• ., n 

Now choose tn+1 € A such that 

Every :formal group F (X,Y) withs. = t. for i < n + 1, s. arbitrary Joi 
S 1 1 1 

i > n + 1 is then isomorphic to F'P (X,Y) modulo degree n + 2, for all 

primes 1° di vi ding p. As to the prim.es <1J, not di vi ding p, F 8 ( X, Y) and 

F (X,Y) are isomorphic mod degree n + 2 if they are isomorphic mod 
"l, 

degree n + 1 because L1, is prime to n + 1 • 
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