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1. INTRODUCTION

The first purpose of this note is to argue that the usual notions
of stability for dynamic economic processes as found in e.g.[27, 67,
27, T137, 177, suffer from serious drawbacks. On two counts: they
offer no guarantee that the behaviour of the process, disturbed by a
whole sequence of small disturbances at fimes ‘t1 < t2 < ..., is even
approximately the same as the behaviour of the original system, and
they offer no guarantee that a process governed by almost the same
function has anproximately the same behaviour. Thus it is possible
to have a process with, in the terminology of 21, [61, M121, F137, 177,
a globally stable equilibrium point (the strongest notion of stability
in 27, TAT, 127, T137, T17]) such that the process has no chance

at all of remaining near equilibrium for any appreciable amount of

time when disturbed by a sequence of (random) disturbances at a

sequence of (random) moments t1 < t2 < ... in time. And it is possible
to have e process with a globally stable equilibrium point such that
Linbig, ooy -
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there are processes arbitrarily near to it with no equilibrium
voints at all, or only one nonstable equilibrium point.

These are (in my ovinion) rather serious drawbacks, if one reflects
that all processes in reality are subject to disturbances all the time,
and that the precise functions governing the evolution of the system
are rarely, if ever, precisely known.

In nr.2 we give and discuss various notions of stability; nr 3
contains some examples and nr. L4 a discussion of these examples.

The remainder of this paper (nr.5 - nr.9) is devoted to properties

of dynamical systems which are stable with respect to suitable
perturbations, In nr. 5 we examine the number of equilibrium points .
of a given system, show that '"most' systems have only finitely many
equilibria and that a suitable refinement of this notion (having a finite
set of equilibria) is stable under small enough perturbations. In nr. 6
we discuss (modified) Liapunov functions and their relation to stability.
Tt turns out that e.g. in 171 more is proved than is actually stated

in the theorems; i.e. the processes examined are much more stable than
is indicated by the theorems. This is the subject matter of nr.7, which
also gives some complements for these processes. In nr. 8 we ‘analyse
stability under sequences of disturbances; nr. 9, finally, gives an

existence theorem for positive equilibrium points.

2. VARIOUS CONCEPTS OF STABILITY.

We study dynamic economic processes. In particular we study the
problem whether certain quantities, prices or values,which evolve subject
to certain economic laws approach equilibrium values. Generally speaking
the processes according to which these quantities evolv? are subject
to sudden (small) disturbances; moregver the laws governing changes in
these quantities are often not exactly known. This makes the study of
the stability of the processes involved important. Typically, we shall

have in mind a tatonnement price adjustment proces.

(T) 61 = fi(p1, v pn) i=1, ..., n

where n. is the price of commodity i, and fi(n1, cees nn) is a function

of the prices Pos sees P which has the same sign as hi(n1,.... nn),



the excess demand for commodity i, if the prices of commodity 1, .... n

are ., ..., D - Thus (1) reflects: "prices rise if excess demand is

nositive’, and nothing more. In this process no exchange of commodities
is allowed at nonequilibrium prices. (v is an equilibrium price
vector if fi(n) =0, i=1, ...,n). cf. [127, [147 and [17] for a
discussion of this proces). More generally we also consider non

tatonnement vrocesses (cf [127):

(NT) 6i = fi(n;s)

s

15 = Pyz(pis)

where o, is the price of commodity i, and Sii is the amount of the

t

j~th cormmodity held by the ith individual. Both the P; and the S ;
in (T) and (NT) are usually supposed to be nonnegative and sometimes
supnrosed to be positive.

One asks oneself whether prices according to (T) and (NT) approach
equilibrium values, and whether these equilibrium values are stable.
More generally one could also ask whether a given movement of prices is
stable: this is, however, essentially the same problem, cf. 2.T.

Both (T) and (NT) are particular cases of a system of autonomous
differential equations on a set VeR™ (usually M is a differentiable

manifold and the inclusion is a differentiable embedding 1))
(DpSs) x = f(x)

X € M, f a continuous n-vector valued function on M,
Ve shall always assume that there exist unique solutions to the

dvnamical system (DS); i.e. we shall assume \

1) For a definition of a differentiable manifold cf [11]. If M c R" is
a k-dimensional differentiable manifold embedded in R®, then for each
X € M there exist n differentiable functions Bys wovn B defined in

: ) dg, . .
an oven neighbourhood of x in R™, much that g(x) = 0, Eg(x) is

nonsingular, and M is defined by gk+1(y) = ...=g(y) =0ina
. n-1 2 4 .
neighbourhood of x. Thus 8" ' = {x € R"| S xi = 1} is

an (g-1)-dimensional differentiable manifold, differentiably embedded
in R".



. . o)
(B) For every xo € M, there exists a unique solution x(t:x),
o

of (DS), x(t3:x°)€ M for all t > O, such that x(0:x°) = x

. . . . £ (o]
For a fixed t > 0, x(t:xo) is a continuous function of x .

A solution x(t,xo) is sometimes called a motion of the dynamical
system (DS). Condition B is e.g. satisfied if M = R" and f satisfies
. vy 2
a global Lipschitz condition “).

A set {x(t;x°) | t > 0} 1is called a (positive semi-)trajectory of (DS).

Sometimes we shall also assume the somewhat stronger existence

condition

(B") For every x° € M, there exists a unique solution x(t:x°)
of (DS) defined for all t € R, passing through x° at
t = 0; i.e. such that x(0:x°) = x°. For a fixed t >0,

. o
x(t;xo) is a continuous function of x .
One then calls a set {x(t:x°) | t € R} a trajectory of (DS)

2.1. Definition of Equilibrium

A point e € M is said to be an equilibrium of (DS) if f(e) = 0.
The motion of (DS) starting in e is then x(tje) = e for all t> 0.

2.2. The Reason for Stability Analysis. (ef. [12] section 2.2)

Lhat
Processes like (T) and (NT) have the propert;Virices-rise for

those commodities whose demand exceeds supply, and fall for those

commodities where the reverse holds, Negishi [127, 2.2 argues:
"We know from experience that under this process prices usually

do not explode towards infinity or con tract to zero, but

=

2) The function f : R® + R” satisfies a global Lipschitz condition, if
there exists a constant X > 0 such that

£x) - £ < X]|x - v]]

for all x, vy ¢ Rn.



converge to an equilibrium such that the supply of and demand
for commodities are equal. Hence, the process which we choose
to represent reality must display the same stability".

and
"The equilibrium once established in this way is continuously
subject to changes and disturbances, such as of taste, technology
resources and weather. Suppose the system, which has been in
equilibrium is thrown out of it by some of those changes or
disturbances. It is known empirically that the economy is in
fact fairly shock-proof. Dynamic market forces are generated
which bring the economy back to equilibrium when it is perturbed,
i.e. there exists a stable adjustment process when the economy
is out of equilibrium. Realistic economic models should contain
such a dynamic equilibrating process'.

This suggests the following

2.3. Provisional Definitions.

(i) If for any x° € M, lim x(t;x°) = e for some equilibrium point
£+00

e € M, then we say that the system (DS) is stable.

(ii) A particular equilibrium position e is said to be globally stable

if for every x°, lim x(t3;x°) = e, and
400

(1iii)A varticular equilibrium position e is said to be locally stsble

if 1im x(t,xo) = e for all x° in a sufficiently small neighbourhood of
>

These seem to be quite generally accepted notions of stability in economic
cf. 1131 ». 162, 127, T67, [127, M7, [171. {
Thus examples (2.1) and:(2.2) below have one globally stable equilibrium
vosition e, according to this terminology. Suppose, however, that in (2.2)
the system is disturbed slightly out of equilibrium along the trajectory
m; then it might very well take a very long time before the system is
again in the neighbourhood of the equilibrium position. This is presumably
not the kind of behaviour expected of a "fairly shock proof" economy.
Also, as a matter of fact, definitions 1.3 are not the ones usuallv
encountered in dynamical system theory. (Cf.[ 7, [18]). We shall not
adopt the terminology of 1.3. Instead we use (cf. [7], [181),



2.k,

(1)

(11)

(iii)

(iv)

Definitions. (Attractors)

An equilibrium point e € M is called globally attracting if

1im x(t;x°) = e for all L €n
o0

An equilibrium point e € M is called (locally) attracting if

1im x(t:x°) = e for all x° in a sufficiently small neighbourhood
4o

o} e.

A closed set F € M is called globally attracting if
1im o(x(t;x°),F) = 0 for all x° € M

t-+o0

(Here p(y,F) = inf||x - y||, is the distance of y to the closed
x€EF :

set FcM; | | denotes the usual norm in R%).

A closed set F « M is called attracting if 1lim o(x(t;x°),F)
100

for all x° in a sufficiently small neighbourhood of F.

Let E be the set of equilibrium points of (DS). The set E is closed

because f is continuous.

(v)

(DS) is said to have a pointwise attracting equilibrium set , if

for every x° € M there is an e € E such that lim x(t;xo) = e
%

This is what was called stability in 2.3. In [17] one also finds
a somewhat weaker notion than 2.4(v), called quasi-stability in
[17] and [12]. A dynamical system has this property if all its
trajectories {x(t;xo)| t > 0} are bounded and if E, the set of
equilibria, is attracting.

If either E or M is bounded, the condition on the boundedness of

the trajectories can be omitted. If E is finite or countaﬁle, then a

dynamical system with bounded trajectories and attractinglequilibrium

set also has a pointwise attracting equilibrium set [17].

A fairly shock proof equilibrium e one should have the property

that a (small) disturbance from e (or from a position in a sufficiently

small

neighbourhood of e) should not have much effect (also in the

future). This leads to



2.5. Definition.(Stability)

An equilibrium e is called stable if for every € > O there exists
a § > 0 such that ||x° - e|] < & implies ||x(t;x°) - e|] < € for al1
t > 0.

An equilibrium such that both the "facts'" cited in 2.2 are
revresented in our model should be both stable and (globally) attracting.

2.6. Definitions ( Asymptotic Stability)

An equilibrium point e € M is called globally asymptotically
stable if it is both globally attracting and stable; it is called

(locally) asymptotically stable if it is attracting and stable.

One can of course extend the notion of stability of 2.5 to

cover stability of closed sets, etc....

The economic examples of Scarf [ 14] section 3, cf. 2.8 below,
show that even one stable equilibrium point in a t&tonnement process
might be too much to hope for. However the situation as a whole is
not too bad (from the stability point of view) both the motion m
and the trajectory m look stable (intuitively). The precise

definition is

2.T7. Definition.( Stability of Motion)

A motion x(t:x°) of (DS) is called stable, if for every € > 0
there exists a § > 0 such that l!x1 - x°|] < & implies
[1x(t:x°) - x(t,x")]| < € for all t > 0.

Let x(t;x°) be a motion of (DS) : x = f(x). Let z = x - x(t:x°).
Then z(t3;0) = 0 for all t is a solution of the system {

2= % - %(t,x°) = £(x) - £(x(t3x°)) = £(z + x(£:x°)) - £(x(£:x°)) = g(z,t),

and the stability of the motion x(t;x°) is equivalent®to the stability

of the equilibrium point O of the nonautonomous system % = g(z,t).

2.8. Reasons for Pequiring Structural Stability and Total Stability.

All of the definitions given up to now, relate to one fixed

dynamical system



(DS) Y= f(x)

and to one possible disturbance at time t = 0.(One takes different
starting points). However, even in physics it is rarely the case that
the function f is exactly known. And this is even more so in economics,
biology and sociology and the like. Also for a given economic,
biological or physical system one will usually have disturbances,

not only of the initial position (i.e. at t = 0), but slso at

many other moments in time. Thus it is intuitively clear (cf. also

3.2) that the systems (2.1) and 2.2 have no chance at all of remaining
near equilibrium after a sufficiently long time period has elapsed

if there occur small random disturbances not only at time t = 0,

but also other moments in time ti, ty, ..oy lim b, = o, Cf. 5.
it *
And, in view of our usually imperfect knowledge of the

function f of (PS) it becomes important to examine whether a slight
perturbation of (DS):

(Dspert) * = g(x)

where the function g is close to f in some suitable sense, behaves
more or less in the same way as (DS). (For instance with respect to
lts equilibrium set). This leads to various concepts like structural
stability, total stability, Q-stability, tolerance stability.
cr. [71, 151, (181, [19].
In fact Thom [16] suggests that every (DS) used in applied science
to describe a given set of phenomena should be structurally stable.
(The actual situation is a (possibly varying) (small) perturbation
of the theoretical model). Cf.also [19]. {

For structural stability one requires that (bS) andh(DSpert)
are "essentially"” the same (Cf. 2.11 and 2.12); for total. stability
one only requires that solutions to (DS) and (Dspert) are close to

each other. The precise definition of the latter follows.



2.9. Definition(Total Stability)

An equilibrium point e of ( S) is called totally stable if for

every € >0 there exist two positive numbers 51 > 0, 52 > 0 such

that lly(t:xo) - el[ < € provided only that l]zp—e]| < 61 and that
I e(x) - £(x)]] < §, for 81l X € M such that [lx -] <85,.
. N (o]
ert) starting in x
0). Note that total stability of e, implies stability of e.

(Here Y(t:X°) denotes the solution to (DSp

[}

at time t

It is easily seen that the requirement that f(x) and g(x)
are close to each other for all X € M offers hardly any guarantee
that the systems (DPS) and (Dspert) are 'the seme''(especially in
the neighbourhood of equilibrium points). A good notion of

nearness in this respect is

2.10. Definition (€ —c'_perturbations)

A differentiable function g : M- R is anE:—C1—perturbation

of the differentiable function £ : M+ R"” if for all X € M
le(x) - )l < e anallRe(x) - Dg(x)] < €.
Here Pf(x) denotes the derivative of f at Xx. Thus the second condition
requires that all the first partial derivatives of f and g are close
to each other. For a tatonnement process (T) this is practically the
same as requiring that the price elasticities be close to each other.

We still have to define what it means that two dynamical systems
are "'the same''. For this we assume that we are dealing with systems

for which condition (B') holds.

2.11. Definition (Equivalent Dynamical Systems)

Two dynamical systems (DS) and (Dspert) on M are equivalent
if there exists a homeomorphism3 M+ M (i.e. a one to one,
onto map which is continuous in both directions) which maps

the trajectories of (PS) into those of (Dspert) and vice versa.

3) A homomorvhism is a 1-1 onto map which is continuous in both

directions. Tt need not be differentiable.
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We can now define

2.12. Definition (Structural Stability)

A dvnamical system (PS), with differentiable f, is structurally
stable if there exists an § > 0 such that every § —C1-perturbation
g of f gives an equivalent system. ‘
Remark. One can refine this notion by requiring that for every € >0
there be a 8§ > 0 such that for every 6—01—perturbation g of f there
exists an €-homeomorphism M, establishing the equivalence of the
pverturbed system and the original one. (A homecmorphism g : M- M

is an e-homeomorphism if ||9(r) - x|] < € for all x € M).

3. EXAMPLES

In most of the examples below we have drawn a socalled phase
portrait; that is for every x €M, the trajectory of the motion
starting inx 1s depicted. One cannot see from these pictures how

fast a given motion is.

3.1. Example

M= 82, the 2-sphere;

2 _ 31.2,..2, .2 _
8 = {(.r1,12,r3)€R |x1+3:2+x

3= 1} . There
is one equilibrium point e, which is

globally attracting, but not stable.




3.2. Fxample

3.3. Example

11

M::R2

e. Because R2 is diffeomorphic to
{x € !RQ|J:1 >0, x

. There is one equilibrium point

5> 0} one can modify s

this example to get one on

2 .
{xeRr lx1 >0, 12 > 0} with the same

properties and with the equilibrium noiq%
at (15}), say. The transformation u, =e 1

U2 = e 2 e.g. transforms the given example
into the same one (a diffeomormhis ons)

on {x ERZIJC1 >0, x, > 0}. The

equilibrium point e is attracting (globally)

but not stable.

———— ¢ =

L
-

Y
\V

M = R. There are non stable equilibrium points at all integers in R.

An equation which has this -phase portrait is e.g.

x = 1 - cos2nx

The system defined by this equation is not structurally stable and

none of the equilibrium points is totally stable.

3.4. Example

@,

3.5. Fxampnle

AN

S

S 2 2 _
M=s'={(x,x,) € R|x5ms = 1)

There are two equilibrium points. Neither
is attracting, neither is stable. The
system is not structurally ;table and

not totally stable.

2

M = R, there is one equilibrium points,

which is neither stable nor attracting. An

equation with thisohase portrait is
i =X

°
u

Yy
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3.6. Fxamnle

M = Rz; there is one stable and globally
attracting equilibrium point, which is

4 therefore globally symptotically stable.

An equation with this phase portrait is

X =-X

>

v=-y

The svstem defined by these equations is

structurally stable. ’
3.7. Example

M = Rz. There is one equilibrium point

which is stable, but not attracting.

Scarf in [1L1, §2, gives an example &f

a tatonnement process for prices which

has this phasepicture. The system is not

structurally stable and not totally stable.

3.8. Example

M o= R2. There is one closed trajectory.

There is one equilibrium point which is
0 neither stable nor attracting. The more
complicated examples of Scarf [14], §3
are of this type. They are (arbitrarily
small) perturbations of 3.7. These

systems are structurally stable.

L. DISCUSSION OF THE EXAMPLES.

Remark. Most of the examples given in nr.3 are not derived from
an economic dynamic process; it is not clear whether such "pathological”
systems occur in economics. In fact an assumption like

substitutability in a t&tonnement process rules out examples like (3.1),
(3.2) and (3.k4)
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L.1. Sequences of Disturbances.

Suppose we have a dynamical process (DS), and that there occur

. . 12 . .
disturbances of magnitudes u,u , ... at various times t1, t2,...

If one starts in x° at time t = 0, then gets a disturbed trajectory

0<t<t, xnert(t;xo) = x(t,x°)

t=t, x%ert(t1;xo)=' x! , where |!x1 - x(t1:Io)|' =u,
t,<t<t, x . (t:x°) = x(t—t1,x1)

t = t, xbert(tz;xo)= x° ,  where !lxe - x(tg;x1)l! = u,
t, <t <t xnert(t;xo) = x(t—t2:x2) ’

s 3 8 & @

(We suppose of course that the disturbances are such that the motion
remains in M).

For a natural orocess it seems reasonable that the u1, u2, e

should be bounded, and that during a small time interval there can
only be a finite given total amount of disturbance. We shall therefore

consider sequences of disturbances (t1, t ) such

5y wees Ugs Ugsees

that there exists a (time interval) T > 0, and a number K such that
for all t € R.

= Jlull <x
t<t, <E4T

ST X denotes the set of all such sequences of disturbances.

One could also consider sequences of disturbances of finite total

disturbance, i.e. such that

[e o]
= lu ] <
. 1
1=1
!
S, denotes the set of all seaquences of disturbances such that

™ 8 =

7 11ul] < k.
1

1

k.2, Stability under Sequences of Disturbances.

Tt is clear that for systems like 3.1 and 3.2

Iﬁert(t;ro)
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does not tend to any limit for "almost all" sequences of disturbances

(t1,t iUy, u?,...) € s This holds for all T > 0, K> 0. Even

2’ T,K’
for disturbances (t1, toseens u1,u2,...) € SK the limit for t + « of
x (t;x ) will not exist for many disturbances.
pert o

On the other hand for a system like 3.6, the limit

1im x (tix )
40 pert o

does exist (and is equal to the equilibrium point) for all disturbances

(t1,t2,...; u,su yeoo) € SK; and for disturbances from ST one has

K
2!4Lwﬁa) ’
a statement of thevform. Cf. also §7.

For everv T > 0 and € > 0 there exists a Ko such that

. _ < . .
*) "xﬁert(t’xo) el]l < € for all t sufficiently large

(depending on.xJ and for all disturbances in ST K K<k, .
]

For systems like (3.1) and (3.2) such a statement does not hold. The
intuitive content of (*) is that xbert(t;xb) will be close to
equilibrium and remain close to equilibrium provided the disturbances

affecting the system are not too large.

4.3. Liapunov Functions (cf. [7), and also [17].

A continuous function @(x) on M is called a modified Liapunov

function if for every x° € M, the function
u(t) = @(x(t;x°))

is a strictly decreasing function of t for all t except when x(t;xo) is
an equilibrium point.

Systems like 3.3 and 3.6 admit modified Liapunov fundtions.
The systems 3.1, 3.3, 3.4 e.g. do not admit such a function.

If e is an equilibrium point of (DS), and there is a function

® defined on W, a neighbourhood of e, such that
o(x) > 0, x € WN{e}, ®le) =0

o(x(t:x°)) is strictly decreasing at t = 0 for all

o . . .
x €N, xo # e then ® is called a Liapunov function for e.

If ® is defined on all of M, we say that @ is a global Liapunov

function (e is then the only equilibrium point of (DS)).
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L.4. Total Stability and Structural Stability.

The perturbation (€ > 0) : x = 1 + € - cos2nx , which has no

equilibrium points at all, of example 3.3 shows that 3.3 is neither
totally stable and nor structurally stable. A very small perturbation
of 3.3 vields a system with widely different trajectories. However,
example 3.3 has a pointwise attracting equilibrium set (i.e. is
globally stable in the sense of [13], [17) and [61), and does admit
a modified Liapunov function. It follows that these notions are not
particularly relevant whenever the dynamical systems involved are not
exactly known (as is usually the case in physics, economics, biology,
etc..).

One can prove that the systems described by the equations of 3.5
and 3.6 are structurally stable and the equilibrium point of 3.6 is
also totally stable. Quite generally one can prove that an asymptotically
stable equilibrium point e of a system (DS) is totally stable, and
that a system (DS) is structurally stable in a neighbourhood of such
a point provided that x(t,xb) for x close to e moves fast enough

towards e. Thus

is structurally stable. But (cf. 5.6)

r= -

v=-v

(which has the same phase portrait)is not structurally stable. At

least in our sense (ef. 1.11). {

5. MOST PRICE ADJUSTMENT PROCESSES HAVE A FINITE SET OF EQUILIBRIA.

In this section we show as an application of transversality theory
that most price adjustment vrocesses have a finite set of equilibria.
We first deal with t&tonnement processes (5.7 and 5.6) and then go on
to non tatonnement processes. We need some standard results of
differential topology recalled in 5.3 and 5.h‘transversality,partitions

of unity). First we recall some conditions commonly found in discussions
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on price adjustment processes.

5.1. Walras-Law, Homogeneity, etc.

We are dealing with processes (T) or (NT). Cf. 1.1.

First the Walras-law:
n
(W) Prices and excess demand are related by ¥ Dihi =0
i=1

Homogeneity of the demand functions reflects that if all prices
go up by the same factor, excess demand should be the same. This is

the condition:

(H) hi(xn) = hi(p) for all A > 0

We do not go deeply into the question of existence of equilibria

(cf. nowever, §8) and shall therefore have occasion to assume

(E) There exists a positive equilibrium price vector
*

* * *
D = (pys «+es Pp)s P> O

The following two conditions for the sii in (NT) follow from the

€.

asumption that the total amount available of each commodity should

remain constant.
s..(t) =c.
1] J

(c) gij(Pas) =0

HeM  He M

For background materisl on all these conditions, cf [12]. In
this section we shall for simplicity assume that we are dealing with
a process given by

(Tr) h, (p) = fi(p) ‘

g
1]

insteesd of

(1) P- fi(n)

Because we assume sign(fi(p)) = sign(hi(n)), this makes no difference

as far as the equilibria are concerned. However, in order to apply

arguments of this section to (T) instead of (T'),small (i.e.g - ch
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changes in the hi should correspond to small changes in the fi'
oF.
If e.g. . = F.(h,, ..., h_) and |det (——Qﬁl > § for some fixed
1 it n Bhi -
8§ > 0 this is assured. One could for instance take
where the r, are positive rates of adjustment. For these processes (Tr)
the arguments of this section go through unchanged.
Let g : U +R"” be a C1—map (= continuously differentisble map), where
UJ is an open subset of Rn, let A ( U be compact subset of U.
An E-C1—A—perturbation of g : U+ R" (resp. the system p = g(v)
on U) is a C1—function g' : U~ r" (resp. a system p = g'(p) on U such

o, dg!

that |lg(x) - g'"(x)|] < € for 811 x €A and |53~ (x) - 3;1— (x)] < ¢
k k

for 811 i, k=1, ..., n, X € A,

5.2. Definition (Transversality in a Point)

let X € A, v € R" a fixed point. The map g is said to be transversal

to ¥y in x if either

(1) v # g(x), or
(ii) v = g(x) and Dg(x) has rank n.

The map g is tranversal in A to v, if it is transversal to %
for all x € A. |
Cf. e.g. [1], where a far more general notion of transversality is

discussed.

Of transversality theory (cf. [11, [10]1) we need the ﬁairiy weak)
results:

5.3. Proposition. ( i0 1 Weak Transversality Theorem p. 27, Lemma 1 p.L5)

(i) Let g : U +R™ be a C‘-map, v €r%, A CuU, A compact and let g
be transversal to v in A. Then there exists an€ > 0 such that
every E-C1-A perturbation g' of g is also transversal tov in A.

(i1) Let g : U > R be any C1—man;!/ and A as before. Then for every

. 1 . . .
€> 0 there exists an e€-C -A perturbation of g which is transversal
to ¢ in A.
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(iii) Let g : I > R" be a C1-map which is transversal to v = f(x) in x.
Then for every neighbourhood V of x in U, there exists an
€ > 0 such that for every e- C1—perturbation g' U~ R?
there is an x' €V, with g'(x') = vy and g' transversal to
v in x'. Moreover, if we take V and € small enough, there is

precisely one x' € V such that g'(x') =

Proof. For (i), (ii) and the first part of (iii) we refer to [10].
The second part of (iii) is then proved by a standard argument.
Because of transversality of g to y in x, and because {h € Rn] [In]] = 1}

is compact there is a positive number m such that
(*) |l = ()| >m

for all h, ||h|| = 1. Teke V small enough so that

Bgi
| (I) Ty (x")] < ¢

for all x' € ¥, h € RT, [In]] = 1,i =1, ..., n. This can be done,
again, because the set of thesth is compact. Now let g' be an
E—C14berturbation of g. And suppose that there are two different
solutions z, z' € V of g'(x) = y. Then for each i =1, ..., n,
there is a &i, 0 < a?i < 1, such that

Bg

———{z +.} h) =
where h = 2z' - 2. We then have for this particular h
ag; Y e, Bdg
5;1— (x)| < l-—— (x) - —-—(z + ¥+ I35z + #.0) 5~z + d.0)| +

39
l (z + . h)‘
<e+ € +0 = 2¢

Thus ]|%§~(x)]| < 2./n.c for this particular h, which conbradicks

(*) if ¢ is small enough, g.e.d.
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The C compact open topology on C1(U,Rn), the set of
C1-functions U -+ R? is defined by taking as open sets, the sets

VA e(f) = {g € C‘(U,Rn)' g is an e-C1—A perturbation of f}for all

€ >0, ACU,A compact. With this topology on C (U,R"), (i) and (ii)
of the proposition above say that the maps transversal to ¢ in A
are open and dense in C1(U,Rn).
Suppose that x € U, g(x) = ¥, and g transversal to ¥ in X. Then
because dim U = n = dim R", we have by the inverse fﬁnction theorem
that there exist an open neighbourhood V of X and W of ¢ such that
g induces an homeomorphism g : V + W.

It follows that there are finitely many solutions (or none)
of g(x) = v if g is transversal to ¥ in A. (Because A is compact).
In the following we shall often deal with functions f : U+ Rr"
defined on a subset U 8o , such that p1f1(p)+ oo t pnfn(p) =0

for all pe U. By "abus de language" we shall call such a function
"transversal” in A to 0 € R" if for every a € A there is an i

for which a, # 0 and for which the function

:
(f,0F, vuuy T

1’ 2’ f

n—
RN
sq0 Tigqs coes T)) T UPR

1

is transversal to 0 € R™ ' in a € U.

A second tool we need is the existence of certain functions (Partitions

of unity). The proposition below is rather special and covers precisely
n-1 2

={x€RYxZ+ ... 4x° = 1. IfF and F
1 n 1

the case we need. Let S >

n-1

are two disjoint closed subsets of S , then their distance

°(F1,‘F2)-= inf Ix -v|| is positive (because F‘1 and F_ are

2

5.4. Proposition.

Let §> 0, then there exists a constant K depending only oné§ ,

such that for every two closed subsets Fos Fyc Sn-1 with g (F‘1 , F )_>_ s

there exists a C'-function ¢ : Snm1 + R with the proverties.
a.o( 0 € pP,1] for all,z:éjsﬂ-1

b.d(0 =1if xeF,

c.o(x) =0 if xeF

2
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a. %%—(x) =0 if x € F, UF, for all directions v € R” tangent
to Sn_1 l.h‘X.
e. |%%(1)'< K for all x € Sn—1 and all directions v € R", llul! =1

tangent to Sn"1 in x.

5.5. Boundary Conditions.

We now return to the t&tonnement process (T). Prices will in any
case be assumed to be non negative. Assume that the Walras law (W) holds.

n
Then the prices move along the spheres T pi = constant. Indeed,
i=1

: n n
—( = nf) =2 7% p.p. =2L pihi(p) = 0 by (W). We can therefore
1 =1 i=1

n
assume that we have I p? = 1, and from now on in this section,

1
we shall do so.
We examine two types of boundary behaviour of the function f

when one or more of the opricdes tend to zero.

(P) There exist (small) constants ¢ > 0, 4 > 0 such that

fi(p) >4 if 0 < p; < ¢, i=1, ..., n

This is a condition rather similar to the one used by Debreu
in [51, and it reflects that for each i there is someone who desires
the i-th commodity. Cf. also [8] for further details. This condition
implies that a solution to (T) starting in p° > 0, has o(t:p°) > 0
for all t > 0. |

Another possibility is that nothing special happens to the fi
if one or more of the prices tend to zero; especially: fi does not
become infinite as p; goes to zero. For such a system it seems not
unreasonable to assume that f is continuously differentiable on the
compact subset A = {p € Sn_1|pi >0,1i=1, ..., n} of the sphere
Snn1 = {v € Rn|p3 + .0+ pi = 1}, Here, as in [11], we interpret

n-1

differentiability to mean that there exist an open subset U< S ,

containing A, such that there exists a C1—function f' on U which agrees

with f on A. Thus we get the condition:

(D) f is differentiable on A = {p ESnﬁqlpi >0,1i=1, ..., n}

‘-
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Let (T'):d = f(p) be a tAtonnement process on
-1 . . .
u={pes? ‘Di >0,i=1, ..., nt . If (T') satisfies (p),

there are ¢, 4 > 0 such that fi(p) >4 if 0 < D; < c. We then

denote by A, © U the subset of U, A, = {p € Ulo, > c, i =1, ..., n}.

f
There are of course many subsets Af vhich can be obtained in this

way, but it generally does not matter which one we pick.

5.6. Theorem.

(1) Let (T) : p = f(p) be a tAtonnement process on U satisfying
(P) and (W). Then for every € > O there exists a e—C1—pertufbatfbn
p = g(p) of (T'), satisfying (P) and (W), such that g is transversal
to 0 € R" in Af. In particular, the perturbed process has only
finitely many equilibria.

(ii) Let (T'): D = f(p) be a tAtonnement process on U satisfying
(P) and (W), such that f is transversal to 0 € R" in L
Then there exists an € > 0 such that any E—C1—perturbation,
p = g(p), satisfying (W) also satisfies (P.), and such that
g is transversal to 0 € R™ in Af. In particular all e—C’—
perturbations of (T') which satisfy (W), also have only

finitely many equilibria.

(iii) Let (T) ve as above in (ii). Then there exists an € > 0,
such that every E—C1—perturbation of (T') which satisfies (T')

has the same number of equilibrium points as (T').

We topologize c;w(u,R“) = {re cl(u,R)|(P) and (W) are
satisfied} by means of the open sets Ve(f) = {g € C;w(U,Rn}] g is
an E—C1-nerturbation of f}. Then 4.6 (i), (ii) say that there is

an oven and dense set in C;N(U,Rn) of processes with on&y finitely
many equilibrium points.

Proof. (i). Tet U

—_— f

be such that fi(n) >d if 0 < o, < c. Consider

={pe¢ U]pi >3c,i=1, ..., n} and let 4 > O

-1, 2 2
n ID1+ cee + P < 1wy > 0}

v={(p,, ....m ) €R :

There is a 1-1 correspondence between V and U (which is a

homeomorphism) given by
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(915 LI Dn_1)<—> (p1, co oy Dn)

where Dn is the unique positive number such that p?+ e + pi = 1,

Now let

he defined by

f'(p1, cees Dn_1) = (f1(n1, cees nn), e fn(p1, cees pn))

where o is determined as above. Take in any case ¢ < d. Now apply

v

5.3(ii) to find an Q-C1-B-nerturbation h' of f' which is transversal

to B = {(D1, R nn~1)’(p1, cees Dn)E L%J, where p_ is determined

as before.
Define,
h > RT
by, h1(p) = h;(n1, ces Dn-1)’ cee s hn_1(D) = hg_1(n1, cees pn_1),
1 n-1
hn(b) = - ;ﬁ f;1pihi(p).

Then for sufficiently smalle ', the function h 1is ang;-C1-ﬁf—

perturbation of f (because p,> 3c and Pys +ees Pp_4< 1om ﬁf),

end h is transversal to O € R" in Uf and hence certainly in Af.

- = n-1 . 1
Now let F1 = A, and F2 {ve s 'Hl such that P < zc }

Then ¥, N F

: 5 = 6 and both are closed. We can therefore apply 5.k

to find a function ¢: S*7! > R with the properties listed

Now dafime g : U +R" $ Li&jﬁ:’///
by the formula
g(n) = dn)n(p) + (1 - &p))flp)

We then have

Ha(o) - £(0) || = [léelp)hp— &(p)f(p) [| = &(p) [ nlp) | |£(0) || < €

for all n €. Indeed if p€ U we have ||n(p) - f(»)]|| < € ana

f
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0< ¢(p) <1and ifp €EUNT < F,, d(p) =

f
And for a tangent direction y;to p € U, Ilu]] = 1, we have
de. 3h. (v) CRY
() = 3H0) 0y (6) + 0(0)—o— - B ¢<p>——<p> )

and hence

og Af. ah. of. 3
l;,,, r(0) = 50N < e()zrHe) - 2]+ 2] ni(p) - g5 (0)] <
{ eK +e.
Indeed if p € ﬁf, ‘hi(b) - fi(p)[ < g, and 1%%{p), < X and
af. 3
[ (n) o)] < e, and if p € U\U ﬁ(p)=0and¢(p)=0.

Moreover X does not depend on e. (cf. 5.4)., Thus if we had started with

KL-H_ instead of €, we would have found the desired €-perturbation. Note
that g satisfies (W) and (P), and that g is transversal to 0 in A

because g(p) = h(p) and %f(p) = gh(p) for p € A,

f,

(ii) This follows immediately from 5.3 (i)

(iii) To orove (iii), let e1, eers € be the equilibrium points of (T).

For each 1 = 1, ..., m take € and V. small enough so that 5.3

(iii) avolies (with respect to the functlon fr:U > Rn_1).

Let a = min|| f(0)]], pE Ag N UV.. Takee = mln{%d,€1, ce € m’&}'
i

(Note that a > N because Af ~ I{Vi is compact). a.e.d.

{

Remarks.1. If we take (Tr) instead of (T') prices move along

. . -1 . . . .
ellipsoids ¥ r, p? = constant, if (W) is satisfied. The
1=1

same proof works in this case.
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Remarks.2. If we take instead of (W) the weaker condition (W'):
- N2
% p.h. < 0 then p(t:p°) remains in I r. p; <r, a
i=1 Y17 i=1

=

solid ellipsoid, if p° is in this solid ellipsoid.

(We are dealing with (T.), for (T') take r, =1, i =1, ..., n).

n
n . -12
3 = . < .
Let U, {p €R |pi >0,1i=1, ..., n; iX1ri p; < r}

Assume that (P) is satisfied on U, for some r > 0. Then

the analogue of theorem 5.6 holds with U replaced by Ur' ,
The proof is similar.

Now suppose that the second type of boundary behaviour occurs; i.e.

that condition (D) is satisfied. Let A = {p €Sn_1|ni >0i=1, ..., n}

and U some open neighbourhood of A in Sn—1, on which f is defined

(and differentiable).

5.7. Theorem.

(i) For every process (T') : p = f(p) such that (W) and (D) are
satisfied and every ¢ > O there exists an E—C1-Derturbation
p = g(p) satisfying (W) and (D), such that g is transversal
to 0 in A. In particular the perturbed system has only finitely

many equilibria.

(ii) Let (T') ®» = f(p) satisfy (W) and (D) and suppose that f is
transversal to O in A. Then there exists an € > 0 such that
every g—C1—perturbation p = g(p) of (T'), satisfying (W) and
(D), has g transversal to O in A. Hence all e-C1—perturbations
of f also have only finitely many equilibrium points.
Note that there does not exist a precise analogue of 5.6 (iii), because
a boundary equilibrium point (i.e. an equilibrium point with at least
one price zero) can disappear into the region where at least one
price is negative under a small perturbation. If all the equilibrium
voints in A of a given vprocess P = f(p) are in the interior of

A c-Sn—1 and f is transversal to O in A then one prov@$ , as in 5.6 (iii),

ii
that a small verturbation of » = f(p) has the same number of equilibrium

points.
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Proof. Let U, = {p € nlni > 0}. Note that U U, is an open set
i
in S which contains A. Thus by restricting U a bit if

. -1
necessary we can assume that U Ui = U, Let (i) : u; > r"

i
be the map f(i)(v) = (f1(p), cee fi_1(n), fi+1(p), cens fn(P))'
B looking at each of the f(i) in turn one now easily proves
(ii) as a consequence of 5.3 (i).

As to (i) : Let Gy = {p € A}pi = 0}.

Because the Gi are compact, there is a § > 0 such that

Vv=1{p€ s“”!pi > - 8for all i}
is contained in U. By taking § a bit smaller if necessary we can
also see to it that ¥ C U. Further let &' < 5;, and let
= '
A {zEA!pi?_G}

then U A
1=1

Finally let Vi = {p € V]pi> 361},

q = A and the Ai are compact.

Choose € > 0. We now use the same arguments
as in the proof of Theorem 5.5 to construct

a §-~ C1-perturbation of f which is

transversal to O € R in A1. In the

construction, U is replaced by U, Uf is

replaced by V1, Af is replaced by A1. Let
The thin outer line is s

1 .
> -C -
the boundary of U; the , > 0 be such that any 62 C -perturbation

. s . .
dotted line is the of g' 1s sti1ll transversal O in A1. Such

boundary of V. The 1ines a §, exists by 5.6 (ii), which @as already

been proved. {
p1=0,p2=0,p3=0 P !

form the boundary of A,
and the ///// part of A
. 0

1s A1. The holdly¥%1ne
marks the boundary of
V1 in V.

Let ¢, = min(ﬁ', §,) and using (g',U,Y,,A,) instead of (f,U,V,,A,)

construct a € —C1—perturbation g'" of g' which is transversal to 0 in A

2 2°
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Because €, 5_62, we then have that g" is transversal to 0 in Al u A

Let 63 > 0 be such that any 63-01—perturbation of g" is still treansversal
to 0 € R in A1 u A2, etc. etc. The construction of 5.5 yields

functions which satisfy the Walras law. Therefore we finally

(after n steps) wind up with an €-perturbation g of f which is

A, = A and which satisfies (W) and (D)
1

transversal to O in

1

ncs

(by construction) q.e.d.

5.8. Non Tétonnement Processes.

For the process (NT) with conditions (W), (C) and either ‘

(P) or (D) one can derive theorems similar to (5.6) and (5.7). (The

conditions (C) are easy to handle; far easier than (W)).

5.9. Remark.

It may happen that for some prices boundary condition (D) applies,
while for other we have (F. This case can be dealt with in more or

less the same way.

6. LIAPUNOV FUNCTIONS

First we recall the definitions. As in nr.2 we consider a system
(DS) : x = f(x) defined on a set M < R™ such that (B) is satisfied.

Let e be an equilibrium of (PS).

6.1. Definitions.

(i) A function & defined in a neighbourhood N of e such thatd (e) = O,
®(x) >0 for all x € N ~{e} and such that &(x(t;x°))< & (£°)
for all x°€ N, x° # e and t > 0 such that x(t;xo) é N,is called
a local Liapunov function for (DS)  near e. l

(ii) If & is defined on all of M, it is called a global Liapunov
function. .

(iii) A function ¢ on M such that ¢(x(t;zp))§_ 8(x°) for all t >0
unless x° is an equilibrium point is called a modified Liapunov
function (cf. [17]) for (DS).

The main theorem concerning Lispunov function is:
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6.2. Theorem.

Let the dynamical system (DS) satisfy (B): let e be an equilibrium
point of (DS). Then e is (locally) asymptotically stable if and
only if (DS) admits a Liapunov function near e. The point e is
globally asymptotically stable if and only if (DS) admits a
global Liapunov function.

(cf. [4] Ch. V §2).

Concerning modified Liapunov functions Uzawa proved (cf. [171):

6.3. Proposition.
,={téﬂn’ o e ,[:1,--.:\}

Let (DS) satisfy (B). And suppose that
(i) Every motion I(t;xo) is contained in some compact subset of Q
(ii) (DS) admits a modified Liapunov function )

(iii) The set E of equilibria of (DS) is countable.

Then (DS) has a pointwise attracting equilibrium set E.

Now suppose that the set E of equilibria of (DS) is finite,
and let conditions (i) and (ii) of 6.3 also be satisfied. Let
E = {e‘, ..., e"}. Consider @(e1), eev, 3(e™), where & is a modified
Liapunov fgnction. Renumbering the e:.L if necessary we can assume

that in e = e1, ¢(e).i Q(el) i=1, ..., n. Now let x¥2 € M be a

nonequilibrium point. There is an index i such that 1im.r(t;I°) = et

tooo
and we have &(x(t;x°)) < 3(x°).
Therefore &(x°) > ¢(e>) > #(e). It follows that the function

¥(x) = 3(x) - o(e)

is a Liapunov function for (DS) near e. We have proved (using 6.3 and

6.2)

6.4. Proposition.

Let (DS) satisfy (B). And suppose that:
(i) Every motion x(t:x°®) is contained in some compact subset of M.
(ii) (pS) admits a modified Liapunov function
(iii) The set E of equilibria is finite.
Then there is an asymptotically stable equilibrium point of (DS).
The pronerty;(DS) has an asymptotically stable equilibrium vpoint’

is a good notion with respect to perturbations of (DS). In fact
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6.5. Proposition (cf.[7] Ch. VII section 56)

An asymptotically stable equilibrium vpoint of (PS) is totally
stable.

Systems (PS) satisfying conditioms (i), (ii), (iii) of 6.L
also behave nicely under repeated disturbances. One can show that
for every € > 0 there are a K > N, T > 0 such that for almost

all seqguences of disturbances in S (t,xp) - elll <€

T,K 'leert

for some asymptotically stable equilibrium point e provided t

is large enough; and 1im xﬁer+(t;xp) = el for almost all sequences
£ ’

of disturbances in S_. Cf. 9],

-
6.6. Asymptotic stability and structural stability.

Asymptotically stable equilibrium points do not behave as nicely

with respect to structural. Consider for example the system

(*) - =-x3
U = - 93

on R2. For every € > 0, here is an €—C1—perturbation of (*) which

has a phase portrait like

)
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In fact, let W(r) be a differentisble function ¢ : [0,») » [0,2]
such that U(X) =0 , %) €,

(o) =2, Y(t) € (1,2) if 0 <t < e, v(e) =0, w(t) € (0,1) if
dv 2 . . .
€ <t < 2, and !524 <z - (Such a function exists). Define

¢(x,u) w(Ji2+02). The system

x 31 - o(x,w)) - o(x,u)v>

u

~0301 = 6(x,0)) - dlx,u)x>

is then a (6 + 2/&) C1—nerturbation of x = -I3 v = -y3; and

-

this perturbed system has the phase vortrait sketched above.

However, let
x = f(x)

be a (DS) defined on an oven subset U « R”, which contains the origin 0.

Let O be an equilibrium point of ( S). Consider the matrix

afi
A= (53;{0))
J
If all the eigenvalues of A have a nonzero real part, then 0 is a

structurally stable equilibrium voint. Cf [15] 11.2

One can further prove that if M is a smooth differentiable
manifold and (PS) a smooth dynamical system on M, with a globally
asymptotically stable equilibrium point e such that the matrix
%2 (e) has no eigenvalues with zero real part, wWhere X = (x1, cees xh)
is a smooth coordinate system for a neighbourhood of e in M, then

(DS) is structurally steble Cf. [151.

——t

T. GROSS SUBSTITUTABILITY AND REVEALED PREFERENCES.

We again consider a t&tonnement process (T) defined on

Q= {(p1, e pn)[pi > 0}. Almost the same arguments as in 5.k
give
T.1. Proposition.

Let (T) satisfy (B), and suppose that

(i) (T) admits a modified Liapunov function

(ii) (T) has a globally attracting equilibrium voint.




Then this equilibrium point is globally asymptotically stable.

Now suppose that (T) satisfies (H). The ovrice vector p is

an equilibrium i Ap is an equilibrium, and f(Ap) = f(p). Therefore
we can and shall view the process as taking place on U,

2 2
U= {(n1, cens pn)lni >0, pi* .. +p_ = 1}.

(If we are only interested in equilibrium points and their stability
this does not matter; if one is also interested :in the time it takes
to get into the neighbourhood of an equilibrium point, this does
matter, however).

The commodities involved in the process (T) are said to be

strongly gross substitutes if:

bhe oxcess oemand Junckion  hip) = (hilp)--- halp))
o diffeten biahle

(s) at all points p € Q and

oh.

=% >0 for all i # j
apj

T.2. Theorem.
Let the process (T) satisfy (B), (H), (E) and (S). Then (T) has
a globally asymptotically stable equilibrium point.

Proof. Arrow, Block, Hurwicz [3) show that under this condition there

is precisely one (up to scalar multiples) equilibrium price vector
* * *
(B]5 +vvs B2)s o; > 0.

. B
Uzawa [7], then proves that the function Ap) = max 5%
j=1,..05n 73

is a modified Liapunov function for (T). It follows that{
. o .

A (p) = mar ;3*_ 1 is a global Liapunov function, which proves 7.2, jtnl
3N h

We now examine, as in [If] a process

() 5, = {o if p; =0, £,(p) <0
fi(p) otherwise
£.(p) = r.n, (p)

where the r, are positive numbers (speeds of adjustment). The weak
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axiom of revealed preference says

n
(RP) n*h(n) = X p§hi(p) >0

Jj=o =

*
for all equilibria p and nonequilibria p

T.3. Theoren.

(i) If the process (T*) satisfies (H), (E), (W), (B), (PR) then

(T*) has a pointwise sttracting equilibrium set E.

(ii) Every e € E is stable.

(iii) If T* has only finitely many equilibrium points I, then it
has precisely one equilibrium point which is globally

asymptotically stable.

Proof. (i) is proved by Uzawa. He shows that the function

n
® L(p) = ¥

%
1 (p. - pi)g (p¥ & fixed equilibrium point) is a
i

. 1
1 rl

modified Liapunov function for all p*. This implies (ii). The condition

of (iii) makes of course no sense if we consider (T*) as a process

on Q. Because of (W) and (H), however, we can just as well examine
- n -
the behaviour of (T ) on A = {p € 8" 1]pi >0 (éﬁ“ﬁ = {p € gt 1lpi > 0})

The svace A is connected, i.e. it can not be written as the union of
two relatively open disjoint subsets of A. Let E be finite. For each

e € E, we define U_ = {p° € Al 1im p(t;p°) = e} . Then u, is open.

100 n

We proceed to prove this. The function d(p,p') =V & %—(Di - pi’)2
i=1"1

is a metric on U. It follows that if po € A, is such that

a(p°,e) < d(v°,e'),e' € E ~le} then lim p(t;p°) = e. Thus every
400 .

e € T has s small open neighbourhood V_ such that lim p(t;po) = e

- 00
if p° € Ve. (We have therefore shown that the poin%s e € E are all
asympntotically stable).

Now let p° € U,. There exists a t, such that p(to;po) €V,

. . . o) .
Because p(tozno) is & continuous function of p and Ve 1s open, there

exists a neighbourhood V of p° such that p(to,p1) € V_ for all p1 €V,

but then lim o(t;p1) = e, This proves that all the Ue are open. However,
£00

because of (i) we have U U = A, and of course U NU , = ¢
e€E e e e
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if e # e'. This contradicts the fact that A is connected, unlesg
FE = {e}. gq.e.d.

Remarks.1. Part (iii) of this theorem can also be formulated as:
if there are finitely many equilibrium rays of (T*)
then there is precisely one equilibrium ray, which is
globally asymptotically stable.

2. Without the requirement that E be finite one can show

that E must be connected.

8. STABILITY UNDER REPEATED DISTURBANCES.

Let (DS) be a dynamical system on M = R™. As in 4.2 we consider

disturbed motions xnert(t;xp) under a sequence of disturbances of

magnitudes Uys Uss oo occurring at times 0 < t, < t2 < e

1
L.et X be an asvmptotically stable equilibrium point of ( S). Let
u=1{x°e¢ M|1im x(t3x°) = X}. Then U is open in M. (If X is globally
asymntoticali;mstable U = M), There is a Liapunov function & defined
on U.

| A Liapunov function ¢ is a kind of generalized emergy function.
It is therefore not unreasonable (especially if ¢ arises in a natural
way) to measure the boundedness of the disturbances in terms of 8.

Given ¢ > 0, we define Sg o 8s the family of those disturbances
9

(t1, thaenes Uy, u2,...), such that
b2 u. <c¢
t<t.<T t T

The ui give the magnitude of the disturbance at time ti ?n terms of &,

Thus if xbert(t;xp) is the disturbed motion one has

0 <t <t, xnert(t;xo) = x(t3;x°)

t = t1 xbert(t1;xp)= 1; , Where @(11) - @(x(t1:xp)) = u,
tp<t<t, ox(t:320) = x(t-t sx)

t o=t xpert(t;xo) = 2, where 8(x°) - <D(x(t2—t1;x1)) = u,

1]

o 2
< . -t
by <t <ty xbert(t,x ) = x(t tyix )
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Let ¥V c U. We define e? as

e- = sup fdal x eM, &(x) - max ®(y) < @ = x € U}
Y vEY

Note that there always exist V in U, such that e? > 0.

To prove theorems we need a slightly better situation then just
a Liapunov function on U. We need a differentiable Liapunov function.
Fortunately these always exist under very mild conditions. For instance
when f satisfies a global Lipschitz condition on M, there is a
differentiable Liapunov function on U. Cf. [T7].

If £ is differentiable in a neighbourhood W of X, there is a ‘

U < W such that 0§ « W and f satisfies a Lipschitz condition on U.

8.1. Theorem.

Let (DS) a dynamical system on M, X an asymptotically stable
equilibrium noint of M and & a differentiable Liapunov function
defined on an open neighbourhood U of X such that {7 is compact.

Then for every compact ¥ such that e? > 0, every € > 0,and every

T > 0 there exist c',c" and t' > 0, t" > 0 such that

(i) o (£:x°)) <€ for t > t'
nert —
R . - < > ]
(ii) lenert(t,xo) Z|] <e  fort >t
for all x° € 7 and all disturbances of Sz o in case (i)
o)) b
and all disturbances of Sy . in case (1i).
k]

Proof. Part(ii) follows from part (i) by choosing a § >0 such

that ®(x__ (t:x°)) < 8§ = ||lx_ _ (t:x®°) - X|| < € and then
nert i) !

applying part (i) with § insteazrzf €. Tt remains to prove (i).
Let A_ = {x € Ml8(x) = €}. Tf ¢ is small enough A is cdntained
in W € 1 where @ = {x € M|3y € 7, &(x) §_®(U)}. For each 0 < €'< ¢ ,
let Be, = {x € Mlo(x) f_e'} and Ue' = {x € M|8(x) < €'}. Choose

e < e . Let n,=1{xe Mlay € %, 3(x) -0(y) < e} .

For each x° € We - ®(x(t;xo))(0) < 0. Let

4

g'’ dt
= a 0 O ¢ i

A= m;g 3t dx(tsx”))(0), x~ € LA

Then A < 0, because We ~ U, is comvact.

Recause e < ey We © U. During each interval [t, £ + T] the loss




3k

in ® due to the undisturbed motions occurring is at least -

AT if x (t3x°) remains in @ N U_,.
pe e €

rt

We take

c' < min {e - €', -AT, e} = ¢

Then X (t:x°) remains in any case in W , if x° € . And
pert e

Q(Iﬁert

(£:x°)) - é(xpert(f +T:x%)) > ¢ - ¢!

unless <D(Inert

.y° * * :
but then xﬁert(t“x ) € Up for all t € [t*, t* + T]. This proves

(+3x°)) passes through U., for some t* € [t, ¢t + 11,

the theorem.

8.2. Corollary (of the proof).

.0 1.0
Ir xnert(t’x ) € UE' for some t, then xpert(t 3 x°) € U_ for

all t' > t.
Remarks.

1. If €' in the proof goes to zero, A = 0 (monotonically). An
optimum c' is obtained by taking €' such that € - €' = AT,
2. If U = M, then the restriction ev > 0 in the theorem can

be removed.

If & is not a naturally arising function on M, it seems more
reasonable to put the boundedness conditions on the disturbances
in terms of the distances a point is moved bv a disturbance, as in L.1.
As before let U € M be a neighbourhood of X such that there is
a differentiable Liapunov function defined on U, and such that U

is compact. If 7 < U we define dv by

A
\

d_ = sun falx €M and W €W, |lx -vll <8 = x€u)

where as before W = {x € M|3 € 7, a(v) > 6(x)}. Note that there are
always V such that W < U and dv > 0.

8.3. Theoremn.

Let (DS) be a dynamical system on M, X an asymptotically stable
equilibrium voint of M and & a differentiable Liapunov function

defined on a neighbourhood U of € such that U is compact. Then

for every compact V such that W < U and dV > 0, everv € > 0
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and every T > 0 there exist a K > 0 and a to > 0 such that

llxbert(t;ro) - il’ < €

for all t > t,, all x° € 7 and all disturbances in Sp x
WK

Proof. Let A_ = {x € M| ||lx - x|]| = €}. The set A is compact, and
A< W if € is small enough. Let c, =min &(x), x € A_.

Then c, > 0. Now for each 6§ let c2(6) = max ®(x), x € BG’ where

By = {x € M| |]x - x|| <8}, Let Ug= {x € M| ||x - Z]] < &}.
Choose d < dv, and let W = {x € M[ay € W, ||x-¢]| < d}.

a

For all x € Wd ~ Us , and all tangent directions v to M in x,
H 5’” =1,

2a(x) < 0

sy
Let U = max ‘5§¢(x)!, x € Wd'\ Us » [ly]] = 1, v tengent to ™ in x.
Then 4 > 0. As § -+ 0,c2(5) + 03 choose some & such that c2(6) < c,-
As in the proof of 8.1 let A = max g;(@(x(t;xp)), x° € Wd ~ Ug. Then
also A <0. We have |8(x) - &(x')| < |ul |]x- x'|]. Choose

K < min {d, u" (e, - e,(8)), 4~ hr) = k!

1

Then for every disturbance in S (t;xo) will remain in

T,K’ I.nert

Wd’ if x° € V. The loss in during the undisturbed parts of motion

during interval [t, t + T] is at least -AT if x . (t3x°) remains

rt

in Wd N Ug. The gain due to disturbances is at most pK. Thus during

»

- - \
every interval [t, t + ™ ], & will diminish along xnert(t;xo) by at least

~ AT - uk > p(x' - )

unless x (t:x°) passes through Us during [t, £ + 71 , but if

rt

* ° . x° T t*¥, t* + T]. q.e.d.
x (t ,x)EUS,thenxDert(t,x)EJef.‘oralltE[ , t 1. 9.e.4

pert

8.4, Corollary (of the proof).

* °y € U_ for all t > t°
rx (¢ ,x7) € Ug then x i (t:x) €U for >
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Remarks.

1. As 8 + 0, ¢ (8) » 0 (monotonically) and A -~ 0 (monotonically).

2
An optimal X' is found by taking 6 such that c, - c2(5) = )\T.

2. If 11 = M, the condition dY > 0 can be removed.

9. FXTSTENCE OF POSITIVE EQUILIBRIUM VECTORS.

In theorems on stability, those of nr. 7 e.g., the condition
(E), that there be a positive equilibrium point repeatedly turns up.
In this section we prove the existence of such an equilibrium
voint provided (P) and (W) are satisfied. (In fact one only needs
to have a disk-like compact invariant regim in Q). We need a
slightly stronger continuity condition on the solutions p(t;p°)

of the dynamical system (DS):

(B") Condition (B) is satisfied and the function

p(t:p®) : M x R(> 0) » M is continuous as a
function of (t,p°)

i

This condition is e.g. satisfied if the function f of b = f(p)
satisfies a global Lipschitz condition on M.
We define the n-dimensional ball D® (n dimensional disk)

as D ={x ERn!x?+ +ri< 1}

9.1. Proposition.

Let (DS) be a dynamical system on M such that (B") is satisfied.
Suppose that M is homeomorphic to a disk. Then there is an

"

equilibrium voint of (DS) in M. \
Proof. For each n € N, let fn : M > MYe the function f‘n(I) = D(i‘;x)

Because M is homeamorphic to a disk, the Brouwer fixed point

theorem can be apnlied to the maps fn' Let In be a fixed noint

of f‘n. The tovological space M is compact (being homeomorphic

to a disk), therefore there exists a subsequence {xk } of
n
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x which converges to a point X € M. We show that X is a fixed
point. Suppose not, then there exist a to > 0 and open neighbourhoods
V of X and V' of p(to; X) such that VN V' = @, The function p(-3-) :

M x R( 20) + M is continuous, thus there exist a neighbourhood

WoVofxand ad >0 such that p(t;x) € V' if |t - tO! < § and
x € W.

. = .1 . » .
Because lim x, =x , and 1lim - = 0, there exists a k_ = ) such
k k n
n+o n n*® n [¢]

that
1° x.€ew
3 n

2° there is a multiple t, = —% of~% such that |t, - t_| < 6.

t

We then have on the one hand that p(t 1 ;xj) € V'. On the other hand
n

p(—i-l;xi) = Ij € W because Ij is a fixed point of fj. A contradiction.

q.ed.
fow 1let Q0 = {p € Rn'pi > 0} and consider processes
(T") p, =h,(p) = £.(p)
or more generally
(T.) b, = rih.(p) = £:(p), r; > 0
Suppose that (W) is satisfied. Then pric;s move along spheres
; p? = y? ( resp. along ellipsoids 5 -pi = r2).
i=1 % i=171 o,
Now suppose that ( .) is satisfied on u_ = fp € Ul %+ ‘: + i—: = r°}.

Let ¢, d > 0 be numbers such that p € U‘I.’ p; <c= fi(p) > d.
Let A= b €U |'pi> ¢, i=1, ..., n}. Then A is homeomorphic to
N r —

a(n-1)-disk provided c¢ is small enough, and every solution starting

in A remains in A. We can therefore apply 9.1.We have proved
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9.2. Theoren.

Let (T_),defined on © = {p € Rn]Di >0:i=1, ..., n},satisfy
(V). T™hen for every r such that (P) is satisfied on
u, = {n € 0l Xr{‘n? = r°} there exists an equilibrium point on

u. (which therefore has all prices positive).

If (Tr) satisfieB8 (H) and (P) there is an equilibrium rag in Q.

9.3. Corollary.

Let (T) defined on 0 = {p € R'lp, >0, 1 = 1,..., n} satisfy
. . as -1 2
(W'). Then for every r such that (P) is satisfied on U= {o€ Q|T r, niérrg]

there exists an equilibrium voint in Ur with all prices positive.

Same Proof.
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LIST OF (CONDITIONS ON) DYNAMICAL SYSTEMS.

P is the price of commodity i (at a given moment in time);
hi(p1, cees Dn) = hi(p) is the excess demand for commodity i

at prices Pys eees P fi(p) is a function such that
sivn(fi(p)) = sign(hi(p); S5 is the amount of commodity j held
by the i-th individual. The systems considered are

(pS) x=f(x) , xEVMc Rn, f any continuous n-vectorvalued function

(NT) 15. = fi(D;S)

i
8, ;= gij(p;s)
(T) p; = fi(p) , 1i=1, ...,
(T') pi = hi(p) = fi(P), i = 1,“0, n
(T,.) B, = £.(p) = r;h.(p), r.>0,i=1, ..., n
1 = = .h. <
" o 0if p, =0 fi(p) rlhl(p) 0 o
(7") p. = , . >0,1i=1, ..., n
i . i
rihi(p) = fi(p) otherwise

The conditions on systems considered are

(B) For every x° € M, there exists a unique solution x(t;x°) of (PS)
x(t3x”) € M for all t > 0 such that x(0;x°) = x°. For a fixed

t >0 x(t;xo) is a continuous functionm of x°.
(B') For every xo € M, there exists a unique solution x(t;x') of (pS)
defined for all t € R passing through x° at time t = 0. For a

fixed t € R, x(t:;x°) is a continuous function of xou

Y
(B") Condition (B) is satisfied and the function p(-3-); '

M x R(3 0) + M, (t:0°) » p(t:p°) is continuous as a function
of (t,p°).

(c) ? Sij(t) = 4::.J

(this is a condition on (NT))

Ei: gij(n;s) =0

i
1
i




Lo
. . . . -1
(D) The function f is differentiable on A = {p € §" lpi > o},
i=1, ..., n} (a condition on (T) or (T');
s o (pe R“lZp? = 1}
(%) There exists a positive equilibrium price vector
¥ = (p*, ..., ng), p; >0 ,1i=1, ...en
(H) hi(kp) = hi(P)’ for all A > 0,
(P) There exist (small) constants ¢ > O, @ > O such that
. > 1 < . < .
fl(n) >4 if 0 p, < c
(rP) p*.h(p) = % n?hi(p) > 0 for all equilibria . p* and nonequilibfia
'.i *
D.
(8s) The excess demand functions hi(p), i=1, ..., n are

oh.
differentiable at all points p € Q and sglw(p) >0

\‘]
for all 1 # j, p € Q.

(w) Z p.h.(p) =0
i 1 1

(#) T ogny(e) 0
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