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The first purpose of this note is to argue that the usual notions 

of stability for dynamic economic processes as found in e.g.r21, r67, 

r12l, r13l, r11l, suffer from serious drawbacks, On two counts: they 

offer no ~uarantee that the behaviour of the process, disturbed by a 

whole sequence of' small disturbances at times t, < t < 
2 

... , is even 

approximR.te ly the same as the behaviour of the original system, and 

they offer no guarantee that a process governed by almost the same 

function has annroxima.tely the same behaviour. Thus it iJ possible 

to have a process with, in the terminology of r2l, [61, r12l, r13l, r17l, 

a globally stable equilibrium point (the strongest notion of stability 

in r2l, r61, r12l, f13l, r17J) such that the process has no chance 

at all of remaining near equilibrium for any appreciable amount of 

time when disturbed by a sequence of (random) disturbances at a 

~equence of (random) moments t 1 < t 2 < ••• in time. And it 1s possible 

to have e process with a globally stable equilibrium point such that 
L!<JL, . __ , l,. ,\ ..... _.< 

-- Ai'J-'icJ-\L.•,-..",.1' :-_.~T~JT'R,!Jt,1 



there are processes arbitrarily near to it with no equilibrium 

noints at all, or only one nonstable equilibrium noint. 
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These are (in my oninion) rather serious drawbacks, if one reflects 

that all Processes in reality are sub.iect to disturbances all the time, 

and that the Precise functions governing the evolution of the system 

are rarely, if ever, precisely known. 

In nr.2 we give and discuss various notions of stability; nr 3 

contains some exa.mPles and nr. 4 a discussion of these examples. 

The remainder of this paper (nr.5 - nr.9) is devoted to properties 

of dynamical systems which are stable with respect to suitable 

perturbations, In nr. 5 we examine the number of equilibrium points 

of a given system, show that "most'' systems have only finitely many 

equilibria and that a suitable refinement of this notion (having a finite 

set of equilibria) is stable under small enough perturbations. In nr. 6 

we discuss (modified) Liapunov functions and their relation to stability. 

It turns out that e.g. in f171 more is proved than is actually stated 

in the theorems; i.e. the processes examined are much more stable than 

is indicated by the theorems. This is the subject matter of rir.7, which 

also gives some complements for these processes. In nr. 8 we ·analyse 

stability under sequences of disturbances; nr. Q, finally, gives an 

existence theorem for positive equilibrium points. 

2. VARIOUS CONCEPI'S OF STABILITY. 

We stu~v dynamic economic processes. In particular we study the 

problem whether certain quantities, prices or values,which evolve subject 

to certain economic laws approach equilibrium values. Generally speaking 

the -process.es a.ccordinp; to which these quantities evolve are sub.ject 
\ 

to sudden (small) disturbances~ moreQver the laws governing changes in 

these quantities are often not exactly known. This makes the study of 

the stability of the processes involved important. Tynically, we shall 

have in mind a tatonnement price ad,iustment proces. 

( T) p. = f.(p1, ••• , p) 
i i n 

i=1, ... ,n 

where ni is the Price of commodity i, and fi (-p 1 , ... , nn) is a function 

of the nrices P , •.• , p , which has the same sii:m as h.(n 1, ••.• n ), 1 n · 1 · n 



the excess demand for commodity i, if the prices of commodity 1, •••• n 

are n 1 , ••• , pn. Thus ( 1) reflects: ''prices rise if excess demand is 

nositive'', and nothing more. In this process no exchange of commodities 

is allowed at none~uilibrium prices. (n is an equilibrium. price 

vector if f. (p) = 0, i = 1 •••• , n). Cf. [121, f14l and f17] for a 
l 

discussion of this proces). More generally we also consider non 

tatonnernent nrocesses (cf r12l): 

(NT) n- = f.(n;s) 
l 1. . 

s .. = fr. •• (p;s) 
l.1 l.1 

where p 1. is the Price of commodity i, ands •. 1s the amount of the 
l,1 

.i-th co?Tlillodi ty held by the i-th individual. Both the p. and the s .. 
l l,l 

in (T) and (NT) are usually supnosed to be nonnegative and sometimes 

supposed to be positive. 

One asks oneself whether prices according to (T) and (NT) approach 

equilibrium values, and whether these equilibrium values are stable. 

More generally one could also ask whether a given movement of prices is 

stable~ this is, however, essentially the same problem, cf. 2,7, 

Both (T) and. (NT) are particu].ar cases of a system of autonomous 

differential equations on a set \tlin (usually Mis a differentiable 

ma.nifold and the inclusion is a differentiable embedding 1)) 

(DS) x = f(x) 

x Ev, fa continuous n-vector valued function on M, 

We shall always assume that there exist unique solutions to the 

dvnamical system (DS); i.e. we shall assume 

1) For a definition of a differentiable manifold cf [11]. If MC !Rn is 
a ~-dimensional differentiable manifold embedded in Rn, then for each 
x c M there exist n differentiable functions g 1, •.. , gn defined in 

an onen neip,h~ourhood of x in Rn, auch that g(x) = 0, ~(x) is 

nonsingular, and Mis defined by ~-'k+ 1(y) = ••. = gn(y) = 0 in a 
. 5n-1 { n I 2 2 } . nei~hbourhood of x. Thus = x ER x 1 + ••• + xn = 1 is 

an (n-1)-dimensional differentiable manifold, differentiably embedded 
in Rn. 
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For every x0 E ~, there exists a unique solution x(t;x0 ), 

of (DS), x(t;x0 )E M for all t > 0, such that x(O;x0 ) = x0 

0 
For a fixed t > 0, x(t;x) is a continuous function of x. 

- 0 

A solution x(t,x0 ) is sometimes called a motion of the dynamical 

system (DS). Condition Bis e.g. satisfied if M = ~n and f satisfies 

a global Lipschitz condition 2 ). 

A set {x(t;x0 ) It_::. o} is called a (positive semi1trajectory of (DS). 

Sometimes we shall also assume the somewhat stronger existence 

condition 

(BI) For eve-ry x0 EM, there exists a unique solution x(t;x0 ) 

of (DS) defined for all t ER, passing through x0 at 

t = O; i.e. such that x(O;x0 ) = x0 • For a fixed t ~ O, 

x(t;x) is a continuous function of 
0 

0 
X • 

One then calls a set {x(t;x0 ) I t ER} a trajectory of (DS) 

2.1. Definition of Equilibrium 

A point e EM is said to be an equilibrium of (DS) if f(e) = O. 

The motion of (DS) starting in e is then x(t;e) = e for all t> O. 

2.2. The Reason for Stability Analysis. (cf. r12] section 2.2) 
\.~~~ 

Processes like (T) and ("!VT) have the propertyYprices· rise for 

those commodities whose demand exceeds supply, and fall for those 

commodities where the reverse holds.Negishi [121, 2.2 argues: 

''We know from experience that under this process prtces usually 

do not explode towards infinity or con tract to zero, but 

2) The function f: Rn~ Rn satisfies a global Lipschitz condition, if 
there exists a constant K > 0 such that 

!lf(x) - f(y)I! ::_ Kl!x - Y!I 

for all x, y E ~n. 



and 
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converge to an equilibrium such that the supply of and demand 

for commodities are equal. Hence, the process which we choose 

to re-present reality must display the same stability". 

"The equilibrium once established in this way 1s continuously 

sub,iect to changes and disturbances, such as of taste, technology 

resources and weather. Suppose the system, which has been in 

equilibrium is thrown out of it by some of those changes or 

disturbances. It is known empirically that the economy is in 

fact fairly shock--proof. Dynamic market forces are generated 

which bring the economy back to equilibrium when it is perturbed, 

i.e. there exists a stable adjustment process when the economy 

is out of equilibrium. Realistic economic models should contain 

such a dynamic equilibrating process". 

This suggests the following 

2.3. Provisional Definitions. 

(i) If for any x0 EM, lim x(t;x0 ) = e for some equilibrium point 
t-+eo 

e € M, then we say that the system (DS) is stable. 

(ii) A particular equilibrium position e is said to be globally stable 

if for every x0 , lim x(t;x0 ) = e, and 
t-+eo 

(iii)A narticular equilibrium position e is said to be locally stable 

if lim x(t,x0 ) = e for all x0 in a sufficiently small neighbourhood of 
t....,,, 

These seem to be quite generally accepted notions of stability 1n economic 

Cf. f131 n. 162, f2], [61, [127, f147, [177. 

Thus examples (2.1) and,(2.2) below have one globally stable equilibrium 

nosition e, according to this terminology. Suppose, however, that in (2.2) 

the system is disturbed slightly out of equilibrium along the trajectory 

rf\~ then it might very well take a very long time before the system is 

ap;ain in the neii:i;hbourhood of the eo.uilibrium position. This is presumably 

not the kind of behaviour expected of a "fairly shock proof" economy. 

Also, as a matter of fact, definitions 1 ,3 are not the ones usuallv 

encountered in dynamical system theory. (Cf. [ 11 , ( i 8]). We shall not 

adopt the terminology of 1.3. Instead we use (cf. [7], [18]), 
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2.4. Definitions. (Attractors) 

(i) An equilibrium noint e EM is called globally attracting if 

lim x(t;x0 ) = e for all x0 EM 
t~ 

(ii) An equilibrium point e EM is called (locally) attracting if 

lim x(t;x0 ) = e for all x0 in a sufficiently small neighbourhood 
t~ 
o1 e. 

(iii) A closed set F c M is called globall;y attracting if 

lim p(x(t;x0 ),F) = 0 "for all XO€ M 
t~ 

(Here p(y,F) = in-rl!x - yf I, is the distance of y to the closed 
x€F 

set F c M; II U denotes the usual norm in ~n) • 

(iv) A closed set F c Mis called at~racting if lim p(x(t;x0 ),F) 
t-+oo 

"for all x0 in a sufficiently small neighbourhood of F. 

Let Ebe the set of eq_uilibrium points of (DS). The set Eis closed 

because f is continuous. 

(v) (DS) is said to have a pointwise attracting equilibrium set , if 
for every x0 € M there is an e € E such that lim x(t;x0 ) = e 

t-Mb 

This is what was called stability in 2.3. In [17] one also finds 

a somewhat weaker notion than 2.4(v), called quasi-stability in 

[17] and (12]M A dynamical system has ~hLSpronerty if all its 

tra.iectories {x(t;x0 ) I t ~ O} are bounded and if E, the set of 

equilibria, is attracting. 

If either E or Mis bounded, the condition on the boundedness of 

the trajectories can be omitted. If Eis finite or counta~le, then a 

dynamical system with bounded trajectories and attracting equilibrium 

set also has a pointwise attracting equilibri-um set [ 17]. 

A fairly shock proof equilibrium e one should have the property 

that a (small) disturbance from e (or from a position in a sufficientiy 

small nei~hbourhood of' e) should not have much eff'ect (also in the 

future). This leads to 
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2.5. Definition.(Stability) 

An equilibrium e is called stable if for every£> 0 there exists 

a 6 > 0 such that I lx0 - el I < o implies I !x(t;x0 ) - ell<£ for all 

t > 0. 

An equilibrium such that both the "facts" cited in 2.2 are 

renresented in our model should be both stable and (globally) attracting. 

2.6. Definitions ( Asymptotic stability} 

An equilibrium -point e EM is called globally asymptotically 

stable if it is both globally attracting and stable; it is called 

(locally) asymptotically stable if it is attracting and stable. 

One can of course extend the notion of stability of 2.5 to 

cover stability of closed sets, etc ..•• 

The economic exanrples of Scarf [ 14] section 3, cf. 2.8 below, 

show that even one stable equilibrium point in a tatonnement process 

might be too much to hope for. However the situation as a whole is 

not too bad (from the stability point of view) both the motion m 

and the tra.iector:v m look. stable (intuitively). The precise 

definition is 

2,7, Definition.( Stability of\f.otion) 

A motion x(t;x0 ) of (DS) is called stable, if for every£> O 

there exists a 6 > 0 such that I !x1 - x0 1 I < o implies 

I ! x( t ;x0 ) - x( t ,x 1) l I < £ for all t ~ 0. 

Let x(t;x0 ) be a motion of (DS) : x = f(x). Let z = x - x(t;x0 ). 

Then z ( t ;O) = 0 for all t is a solution of the system \ 

0 O 0) .. 0 z = x - x(t,x) = f(x) - f(x(t;x )) = f(z + x(t;x) - f(x(t;x )) = g(z,t), 

and the stability of the motion x(t;x0 ) is equivalent•to the stability 

of the equilibrium point O of the nonautonomous system i = g(z,t). 

2.8. ~easons for ~uiring Structural stability and ~otal Stability. 

All of the definitions given up to now, relate to one fixed 

dynamical system 
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(DS) x = :r(x~ 

and to one possible disturbance at time t = o.(One takes different 

starting points). However, even in physics it is rarely the case that 

the function f is exactly known. And this is even more so in economics, 

biology and sociology and the like. Also for a given economic, 

biological or physical system one will usually have disturbances, 

not only of the initial position (i.e. at t = 0), but also at 

many other moments in time. Thus it is intuitively clear (cf. also 

3.2) that the systems (2.1) and 2.2 have no chance at all of remai.ning 

near equilibrium. a:rter a sufficiently long time period has elapsed 

if there occur small random disturbances not only at time t = O, 

but also other moments in time t 1 , t 2 , ••• , lim t. = 00 .: Cf. 5. 
i-+oo l. 

And, in view of our usually imperfect knowledge of the 

function f of (DS) it becomes important to examine whether a slight 

perturbation of (OS): 

( DSpert) :t = g(r) 

where the function g is close to fin some suitable sense, behaves 

more or less in the same way as (DS). (For instance with respect to 

~ts equilibrium set). This leads to various concepts like structural 

stability, total stability, n-stability, toleranustability. 

er. [7], [15], [18], [19]. 

In fact Thom [16] suggests that every (DS) used in applied science 

to describe a given set of phenomena should be structurally stable. 

(The actual situation is a (possibly varying) (small) perturbation 

of the theoretical model). Cf.also [19]. t 
For structural stability one requires that (DS) and •·cos t) per 

a.re "essentiaJ,.ly'' the same (Cf'. 2.11 and 2.12)jfortotal.stability 

one only requires that solutions to (DS) and (DSpert) are close to 

each other. The precise definition of' the latter follows. 

, 
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2.9. Definition(Total Stability) 

An equilibrium noint e of ( S) is called totallv stable if for 

every £ > 0 there exist two positive numbers c5 1 > 0, o 2 > 0 such 

that l l Y( t ;r0 ) - el I < £ provided only that 11 r 0 -el I < o 1 and that 

11 g(x) - f(r)! I < c5 2 for all r. E M such that l ! x - el I < o 1• 

( Here .11( t ;r0 ) denotes the solution to (OS t) starting in r 0 
per 

at time t = O). Note that total stability of e, implies stability of e. 

It is easily seen that the requirement that f(r.) and g(r) 

are close to each other for all r. EM offers hardly any guarantee 

that the systems (DS) and (DS t) are ''the same''(especially in · per 
the neighbourhood of equilibrium points). A good notiori of 

nearness in this respect is 

2. 10. Definition (E -C 1-Perturbations) 

A • • • [Rn • C 1 • differentiable function g : M-+ is an E: - -perturbation 

of the differentiable function f : M-+ !Rn if for all r E M 

I! r(x) - f(r.)l I < E: and l l.t>f(x) - t>g(x)l ! < E. 

Here Or(r.) denotes the derivative off at r.. Thus the second condition 

requires that all the first partial derivatives off and g are close 

to each other. For a tatonnement process (T) this is practically the 

same as requiring that the price elasticities be close to each other. 

We still have to define what it means that two dynamical systems 

are ''the same". For this we assume that we are dealing with systems 

for which condition (B') holds. 

2.11. Definition (Equivalent Dyna.mic~l Systems) 

' Two dynamical systems (DS) and (PS t) on~ are eguivalent 
3 ) per 

if there exists a homeomorphism M-+ M (i.e. a one to one, 

Onto map which is continuous in both directions) which maps 

the trajectories of (PS) into those of {ps rt) and vice versa. pe 

3) A homomornhism is a 1-1 onto map which is continuous in both 

directions. It need not be differentiable. 
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We can now define 

2,12. Definition (structural stability) 

A ~vnamical system (OS), with differentiable f, is structurally 

stable if there exists an o > 0 such that every o -C 1-perturbation 

g off gives an equivalent system. 

Remark. One can refine this notion by requiring that for every e: >O 

there be a o > 0 such that for every o-c1-perturbation g off there 

exists an e:-homeomorohism ~, establishing the equivalence of the 

nerturbed system and the original one, {A homeomorphism f : \1·-+ M 

is an €-homeomorphism if JI f(r) - rl l < e: for all r E . .M}. 

3, EXAMPLES 

In most of the examples below we have drawn a socalled phase 

portrait; that is for every r EM, the trajectory of the motion 

starting inr is depicted. One cannot see from these pictures how 

fast a given motion is. 

3. 1 • Example 

2 M = S , the 2-sphere; 
2 ( 31 2 2 2 S = { r 1 ,r2 ,r3)€R r 1+r2+r3 = 1}. There 

is one equilibrium point e, which is 

globally attracting, but not stable. 



3.2. Fxa.rnnle 

3.'3. Examnle 

___.,,._ . 
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M = P2 . There is one equilibrium point 
2 e. Because R 

fr€ irl!r 1 > 

is diffeomorphic to 

O,r2 > O} one can modi~, 

this example to get one on 

{.r E ~ 2lr1 > O, r 2 > o} with the same 

nroperties and with the equilibrium noin.t 

at (1,1), say. The transformation u1 = e 1 

2 
.I/ 2 = e e. ft.. trans forms the given example 

into the same one ( a c'!i f'f~Ol"'Ol""l'hi f" cr,,I!'} 

on {r E ~2 lr1 > O, r 2 > O}. ThP 

equilibrium point e is attracting (globally) 

but not stable. 

-~~.-• ·-+--• ----·---• --"r 

M = ~- There are non stable equilibrium points at all integers in ffi. 

An equation ·which has this ·phase portrait is e.g. 

:i = 1 - cos2TT.r 

The system defined by this equation is not structurally stable and 

none of the equilibrium points is totally stable. 

3. 4. Example 

1,5, 'Rxamnle 

There are two equilibrium points. Neither 

is attracting, neither is stable. The 
I 

system is not structurally stable and 

not totally stable, 

M = R2 , there is one equilibrium noints, 

which is neither stable nor attractin~. An 

equation with this~hase portrait is 
. 
X=X 

• µ = y 



"3. 6 • F:xamnle 

3. 7 . Example 

@) 
"3. 8. Example 
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M = ~ 2 ; there is one stable and globally 

attracting equilibrium point, which is 

therefore globally symptotically stable. 

An equation with this phase portrait is 

x=-x 

!I = - _I.I 

The svstem defined by these equations is 

structurally stable. 

~ = '12 • There is one equilibrium point 

which is stable, but not attracting. 

Scarf in [141, §2, gives an example 4f 
a tatonnement nrocess for prices which 

has this phasepicture. The system is not 

structurally stable and not totally stable. 

~, = R2 • There is one closed trajectory. 

There is one equilibrium point which is 

neither stable nor attracting. 'J'he more 

complicated examnles of Scarf f141, §3 

are of this type. They are (arbitrarily 

small) nerturbations of 3.7. These 

systems are structurally stable. 

4. DISCUSSION OF THE EXAMPLES. 

Remark. Most of the examples given in nr.3 are not derived from 

an economic dynamic nrocess; it is not clear whether such ''pathological'' 

systems occur in economics. In fact an assumption like 

suhstitutability in a tatonnement process rules out examples like (3.1), 

( 1. 2) and O. 4) 
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4.1. Sequences of Disturbances. 

Supnose we have a ~vnamical process (os). and that there occur 

d · t b f · t d 1 2 t var1.· ous t · t t 1.s ur ances o magni u es u,u , ... a 1.mes 1 , 2 ,, •• 

If one starts in x 0 at time t = O, then gets a disturbed trajectory 

0 < t < t1 x t(t;x0 ) = x(t,x0 ) - ner 

xpert(t, ;xo)=. X1 where l!r 
1 

- x( t 1 ;x0 ) I I t = t1 = • 

t, < t < t2 rnert ( t ;r0 ) = x( t-t 1 ,r 1 ) 

t = t r t(t2;ro)= 
2 where llr2 - r(t2 ;r 1) II = r , 2 ner 

t2 < t < t1 r t(t;r0 ) = x(t-t2 ~r2 ) ner 

(We suppose of course that the disturbances are such that the motion 

remains in M). 

for a natural nrocess it seems reasonable that the u 1 , u2 , 

should he bounded, and that during a small time interval there can 

only be a finite given total amount of disturbance. We shall there~ore 

consider sequences of disturbances (t 1 , t 2 , ••• ; u 1 , u2 , ..• ) such 

that there exists a (time interval) T > O, and a number K such that 

for all t E 1R • 

1.: !lu.11 <K 
t<t.<t+T 1 -

- 1.-

sT,K denotes the set of all such sequences of disturbances. 

One could also consider sequences of disturbances of finite total 

disturbance, i.e. such that 
00 

,. llu.ll < 00 

i= 1 1. 

~ 
SK denotes the set of all seouences of disturbances such that 

00 

r. II u. l l < K. 
• l. -
1=1 

4. 2. Stability under Sequences of D.isturbances. 

It is clear that for systems like 3.1 and 3.2 

r t(t;r ) per o 

u, 

u? 
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does not tend to any limit for "almost all" sequences of disturbances 

(t 1,t2 , ... ; u 1, u2 , .•• ) E ST,K' This holds for all T > O, K > O. Even 

for disturbances (t 1 • t 2 , ••• ; u 1 ,u2 , ••• ) E SK the limit fort+~ of 

x t(t;x) will not exist for many disturbances. -per o 

On the other hand for a system like 3,6, the limit 

lim r t ( t ;r ) 
t-+eo per o 

does exist (and is equal to the equilibrium -point) for all disturbances 

(t 1 ,t2 , ••• ; u 1 ,u2 , ••• ) E SK; and for disturbances from sT,K one has 

~ a statement of the ~orm.. Cf. also §7, 

~or every- T > 0 and e: > 0 there exists a K such that 
0 

~) !Ir rt(t;r) - ell < e: for all t sufficiently large 
pe o 

(depending on xJ and for all disturbances in ST K' K ~ Ko . 
' 

For systems like (3.1) and (3.2) such a statement does not hold. 

intuitive content of(*) is that r t(t;r) will be close to per · o 

The 

equilibrium and remain close to equilibrium -Provided the disturbances 

affecting the system are not too large. 

4.3. Liapunov Functions (cf. [7], and also [17]. 

A continuous function ~(r) on Mis called a modified Liapunov 

function if for every r 0 EM, the function 

µ(t) = ~(r(t;.r0 )) 

is a strictly decreasing function oft for all t except when r(t;.r0 ) is 

an equilibrium point. 

Systems Jike 3.3 and 3.6 admit modified Liapunov fun~ions. 

The syste~s 3.1, 3.3, 3.4 e.g. do not admit such a function. 

If e is an eouilibrium point of (DS), and there is a function 

~ defined on 'N, a neighbourhood of e, such that 

~(r) > O, .r E N---.{.e}, ~( e) = O 

~(r(t;r0 )) is strictly decreasing at t = 0 for all 

.r0 E N, x 0 'I: e then ~ is called a Liapunov function for e. 

If ~ is defined on all of M, we say that <e, is a global Liapunov 

function (e is then the only equilibrium point of (DS)). 
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4.4. Total Stability and Structural Stability. 

The Perturbation ( e: > O) : r = 1 + e: - cos2nr , which has no 

equilibrium points at all, or example 3. 3 shows that 3. 3 is neither 

totally stable and nor structurally stable. A very small ~erturbation 

of 3,3 yields a system with widely different trajectories. However, 

example 3.3 has a nointwise attracting equilibrium set (i.e. is 

globally stable in the sense or [13J, [17) and [61), and does admit 

a modified Liapunov runction. It follows that these notions are not 

particularly relevant whenever the dynamical systems involved are not 

exactly known (as is usually the case in physics, economics, biology, 

etc •. ) • 

One can prove that the systems described by the equations of 3.5 

and 3,6 are structurally stable and the equilibrium ~oint' of 3.6 is 

also totally stable. Quite generally one can prove that an asymptotically 

stable equilibrium point e of a system (DS) is totally stable, and 

that a system (OS) is structurally stable in a neighbourhood of such 

a point provided that r(t,r) for r close toe moves fast enough 
0 0 

towards e • Th us 

r = -r 

_II = -.v 

is structurally stable. But (cf. 5,6) 

r = -r3 

3 
!I = -!! 

(which has the same phase portrait)is not structurally stable. At 

least in our sense (cf. 1.11). ' 

5, MOST PRICE ADJUSTMENT PROCESSES HAVE A FINITE SET O:F EQUILIBRI!, 

In this section we show as an application of transversality theory 

that most Price ad.iustment -orocesses have a finite set of equilibria. 

We first deal with tatonnement processes (5.7 and 5,6) and then go on 

to non tatonnement -orocesses. We need some standard results of 

differential topology recalled in 5,3 and 5.4jtransversality,partitions 

of unity). First we recall some conditions commonly found in discussions 



on price adjustment processes. 

5.1. Walras-Law, Homogeneity, etc. 

(W) 

We are dealing with processes (T) or (NT). Cf. 1.1. 

First the Walras-law: 
n 

Prices and excess demand are related by E p.h. = 0 
i=1 l. 1 
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Homogeneity of the demand functions reflects that if all prices 

~o up by the same factor, excess demand should be the same. This is 

the condition: 

( H) h. (h,) = h. (p) 
l. l. . 

for all A > 0 

We do not go deep~y into the question of existence of equilibria 

(cf. however, §8) and shall therefore have occasion to assume 

(E) There exists a positive equilibrium price vector 

* * * * P = ( 'P 1 • • • • ' pn) ' pi > O 

The following two conditions for the s .. in (N~) follow from the 
1,1 

asumption that the total amount available of each commodity should 

remain constant. 

(C) 

rs .. (t) = c. 
i lJ J 

I: g .. (p >s) = O 
i lJ 

For background material on all these conditions, cf [ 12]. In 

this section we shall for simplicity assume that we are dealing vith 

a process given by 

p. = h.(p) = f.(p) 
l. l. l. ' 

instee.d of 

(T) p. = f.(p) 
l. l. . 

Because we assume sign(f.(p)} = sign(h.(p)), this makes no difference 
l. . l. 

as far as the equilibria are concerned. However, in order to apply 

arguments of this section to (T) instead of (T'),small (i.e.e:: - c1) 



changes in the h. should correspond to small changes in the f .. 
1 1 aF. 

If e.g. fi = ~i(h 1 , ..• , hn) and laet (~)! ~ o for some fixed 
1 

8 > O this is assured. One could for instance take 

P· = r.h.(n) 
l. J. l. . 
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where the r. are positive rates of adjustment. For these processes (Tr) 
l. 

the arguments of this section go through unchanged. 

Let g : U -i- 11n be a C 1-ma-p ( = c·ontinuously differentiable map), where 

U is n let A. C u be compact subset of U. an open subset of IR , 

An 1 • of u -i- lRn ( res-p. the system p g( p) s-C -A-perturbation g = 

on U) l.S a C 1 -function g' U -i- Rn (resp. a system i, = p;'(-p) on U such 

ag. og! 
that llg(x) - g'(x)ll < s for allxEA and 1ar1 (x) -ax1 (x)! < £ 

k k 

for all i, k = 1, ... , n, XE A. 

5.2. Definition (Transversality in~ Point) 

Let x EA, !IE IRn a fixed point. The ma-pg is said to b-e transversal 

to~ in x if either 

(i) 1/ ~ g(x), or 

(ii) u = g(x) and Dg(x) has rank n. 

The map g is tranversal in A to v, if it is transversal to 1 
for all x E A. 

Cf. e.g. (11, where a far more general notion of transversality 1s 

discussed. 

Of transversality theory (cf. f1l, [101) we need the ~airiy weak) 

results: 

5.3. Pronosition. ( ~O l Weak Transversality Theorem n. 27, Lemma 1 p.45) 

( i) Let g : U -+- IRn be a C 1 -ma-p, .!/ ERn, A C U, A compact and let g 

be transversal to IJ in A. Then there exists an E > 0 such that 

every E -C 1-A perturbation g' of g is also transversal to .v in A. 

( ii) n 1 Let g : U -i- R be any C -man; .u and A as before. Then for every 
1 

€: > 0 there exists an 1:;-C -A perturbation of g which is transversal 

to u in A. 



( 1.. 1.· 1.· ) TT Rn b C 1 • • t 1 t f( ) Let fl. : -+ . e a -map which 1.s ransversa o !! = r 

Then for every neifl,hhourhood V of r in U, there exists an 

E: > 0 such that for every- e: - C 1 --perturbation g' : U + Rn 
I 

there is an r EV, with g'(r') = y and g' transversal to 

(J in r' • Moreover, i :f we take V and E: small enough, there is 

precisely oner'€ V such that p;'(r') = y. 

Proof. For (i), (ii) and the :first part of (iii) we refer to [10]. 
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in r. 

The second part of (iii) is then proved by a standard argument. 

Because o:f transversality of g toy in r, and because {h E Rn! !!hi I = 1} 

is com-pact there is a positive number ,n such that 

(*) II ~ (r)!l > m 

for all h, !!hi! = 1. Take V small enough so that 

ag. c)g. 

l_i (r) - _1. (r' )I < e: ah ah 

for all r' € V, h € Rn, I !hi! = 1, i = 1, •.• , n. This can be done, 

a.gain, becauee the set of these, h is com!)act. Now let g' be an 

E:-C 1--oerturbation of g. And suppose that there are two different 

solutions z, z' € V o:f g' (r) = y • Then for each i = 1 , ••• , n, 

there is a J., O < 1'. < 1, such that 
J. 1 

where h = z' - z. We then have for this particular h 

a~ 
+ ., i h) -~ z + ~ i h) I + 

+ t\h) I 

< e: + E: + 0 = 2£ 

Thus I I~ (r) l ! ~ 2./n.e: for this particular h, which co111t'la.J1c.l:s 

(*) if e: is small enough. q.e.d. 
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The c1 compact open topology on c1(U,Rn), the set of 
1 · IRn . d f" ak" t th t C -functions U + , is e ined by t ing as open se s, e se s 

VA (f) = {g E c1(u,Rn)I g is an e:-c 1-A perturbation of r}for all ,e: 

e: > 0, AC U,A compact. With this topology on c1(u,~n), (i) and (ii) 

of the proposition above say that the maps transversal toy in A 

are open and dense in c1(U,Rn). 

Suppose that .r EU, g(.r) = Y, and g transversal toy in r. Then 

because dim U = n = dim Rn, we have by the inverse function theorem 

that there exist an open neighbourhood V of rand W of Y such that 

g induces an homeomorphism g : V + W. 

It follows that there are finitely many solutions (or none) 

of p;(r) = .tJ if g is transversal to y in A. (Because A. is compact). 

In the :followinp; we shall often deal with functions f i U + Bn 

defined on a subset U c: Sn-i, such that p 1:r1(p)+ ••• + pnfn(p) = 0 

for all PE U. By "abus de language" we shall call such a function 

"transvers.al" in A to O E IRn if for every a€ A there is an i 

for which a.. ~ 0 and for which the :function 
i 

is transversal to OE Rn-i in aE U. 

A second tool we need is the existence of certain :functions (Partitions 

of unity). The proposition below is rather snecial and covers precisely 
n-1 r nl 2 2 the case we need. Let S = , . .r € R r 1 + ••• + .rn = 1}. If F 1 and F 2 

n-1 . are two dis,ioint closed subsets of S , then their distance 

P (F' ;F ) -= inf ! !.r - YI I is positive (because F 1 and F 2 are 
1 2 x€F p€F 

1 2 ' 
comnact). 

5.4. Proposition. 

Let o > 0, then there exists a constant K depending only on o , 
h n-1 . ( ) sue that for every two closed subsets F 1 , F 2 c S with o F 1 , F 2 2:_ o , 

th . 1 . ,,_ sn-1 . • ere exists a C -function "' : + IR with the pronerties. 

a.• ¢ ( .13 E IP , 1) for all r E S n- i 

b. ¢ ( _l3 = 1 if r € F 1 

c. ¢ ( r) = o if r E F 2 



----- ------------------------------------

d. r)cji(.r) = 0 if .r E F1 lJ F2 for all directions _v E 
;:)y 

to sn- i ;n. :x.. 
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n 
R tangent 

e. !~1(.r)/ < K for all .r E Sn-land all directions u E Rn, !Jvl! = 1 
r, I/ 
· n-1 

tangent to S in x. 

5.5. Boundary Conditions. 

We now return to the tatonnement process (T). Prices will in any 

case be assumed to be non negative. Assume that the Walras law (W) holds. 
n 2 

Then the prices move along the spheres r p. = constant. Indeed, 
i=1 · i 

n n 
= 2 r p.i,. = 

i=1 l. 1 
2 L p.h.(p) = 0 by (W). We can therefore 

i=1 1 1 

assume that we have 

we shall do so. 

n 2 
L p. = 

i=1 1. 

1, and from now on in this section, 

We examine two tynes of boundary behaviour of the function f 

when one or more of the Prices tend to zero. 

(P) There exist (small) constants c > O, d > 0 such that 

f.(p) > d if O < p. < c, i = 1, i i ••• , n 

This is a condition rather similar to the one used by Debreu 

in [51, and it reflects that for each i there is someone who desires 

the i-th commodity. Cf. also [81 for further details. This condition 

implies that a solution to (T) starting in p0 > O, has p(t;p0 ) > 0 

for all t > 0. 

Another possibility is that nothing special happens to the f. 
i 

if one or more of the prices tend to zero; especially: f. does not 
p 

become infinite asp. goes to zero. For such a system it seems not 
l. 

unreasonable to assume that f is continuously differentiable on the 

compact subset A= {p E 
sn-1 = {n E RnlP; + ••• 

n-11 . } S pi.:::_ 0, 1. = 1, •.• , n of the sphere 

+ p2 = 1}. Here, as in [111, we interp_ ret n -
n-1 differentiability to mean that there exist an open subset Uc S , 

containing A, such that there exists a c 1-function f' on U which agrees 

with f on A. Thus we get the condition: 

( D) f . . . A { E n-·1 I is differentiable on = p S ~i .:::_ O, i = 1, .•• , n} 
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Let (T' ): p = f(p) be a tatonnement process on 

TJ = {p E n-1 l n} (TI) satisfies ( p) , 8 n. > 0, 1 = 1 , . If 
1 . . . ' 

there are C' d > 0 such that f.(p) > d if 0 < p. < c. We then 
1 - 1 

denote by Af c U the subset of U, Af = {p E U!P. 
1 

> C, 1 = 1 ' ... , 
There are of course many subsets Af which can be obtained in this 

way, but it generally does not matter which one we pick. 

5,6. Theorem. 

(i) Let (T) : p = f(n) be a tatonnement process on U satisfying 

n}. 

( ) ( ) 1 . ✓ P and W. Then for every£> 0 there exists a £-C -perturbation 

p = g(p) of (T'), satisfying ( P) and (W), such that g is transversal 

to OE Rn in Af. In particular, the perturbed process has only 

finitely many equilibria. 

(ii) Let (T'): n = f(p) be a tatonnement process on U satisfying 

(PJ and ('vi), such that f is transversal to OE ~n in Af. 

Then there exists an£> 0 such that any £-C 1-nerturbation, 

-o = g(n), satisfying (W) also satisfies (P), and such that 

g is transversal to OE Rn in Af. In particular all £-C 1-

nerturbations of (T') which satisfy (W), also have only 

finitely many equilibria. 

(Hi) Let ( T) be as above in (ii). The.n there exists an £ > 0, 

such that every £-C 1-perturbation of (T') which satisfies (T') 

has the same number of equilibrium points as (T 1 ). 

We to-oolop:ize C~(U,Rn) = {f E c1(U,Bn)!(P) and (W) are 

satisfied} by means of the open sets V£(f) = {g E c;W(U,Rn}! g is 

an E-C 1-nerturbation off}. Then 4.6 (i), (ii) say that there is 

an onen and dense set in c 1 (U,Rn) of processes with on\y finitely 
PW . 

many equilihriu:m points. 

Proof. (i). Let Uf = {p E Uh\> k, i = 1, •.. , n} and let d > O 

he such that f.(n) > d if O < n. < c. Consider 
i i 

V = • • • + 2 
P < 1; n. > o} n-1 1 

There is a 1-1 correspondence between V and lT (which is a 

horneomornhism) given hy 



,.....---- ·--
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(p' .•• , p ,) +-+ . 1 . n-

where pn is the unique nositive number such that p~+ 

Now let 

••. + 

be defined by 

where n 1s detennined as above. Take in any case€< d. Now anply n 

5,3(ii) to find an ~-C 1-B-nerturbation h' off' which is transversal 

to B = { {p 1 , ••• , nn_, )/ (-p 1 , ••• , pn) E Url, where pn is detennined 

as before. 

Define, 

h U-+ !Rn 

= h' 1(n 1 , ••• , p 1 ), 
n- n-

n-1 , 
h (n) = - - E p,h,(p). 

n pn. 1 1 1 1= 

1 -Then for sufficiently small€ ' , the function h is an€ -C -Uf-

perturba.tion of f (because Pn?_ ;c and P 1 , ••• , 'Pn_, .::_ 1 on Uf), 

n . -
and h is transversal to O E ~ 1n Uf and hence certainly in Af. 

( n-1! , } Now let F 1 =Arand F2 = _ u E S :!1 such that -oi.s_ ~c 

Then w 1 n 'F" 2 = <band both are closed. We can therefore apply 5 .4 

to find a function d,: Sn-,-+ R with the nropert~es_l~sted / 

~ : U -+ 'Rn ~ l_~ 
by the formula 

g(n) = d{n)h(n) + (1 - qi(p))f(p) 

We then have 

I lp:(n) - f(n) 11 = I ldl(p)'+t-<f,(p)f(n) l I = q,(p) I !h(p) 1 IJ'(n) I I < £ 

for all n ETJ. Indeed if p E uf we have l lh(p) - f(p) 11 < € and 
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O < <ll ( n) < 1 and if p E U , U f c: F 2 , ¢ ( n) = 0 · 

And for a tangent direction Y:to p EU, I !YI I = 1, we have 

and hence 

ag. ::if. ah. af. a 
la.,/(n) - ~(-o)l :5.. q,(n)l;)u i(-p) - cly i(-p)! + !~(p)! hi(-p) - fi(p)! <, 

t CK t £. 

ar~ 
'ay i ( p) l < e: , and if p E U , U f, ~( p) = 0 and -4- (" ) = 0 • cly . 'P 1-' 

Moreover K does not depend one:. (cf. 5,4). Thus if we had started with 

K~l instead of€, we would have found the desired e:-perturbation. Note 

that g satisfies (W) and (P), and that g is transversal to O in Af, 

because g(n) =h(p) and ~(p) = ~;(p) forpE Af. 

(ii) This follows immediately from 5,3 (i) 

(iii) To nrove (iii), let e 1 , •.. , em be the equilibrium points of (T). 

For each i = 1 , ••• , m take e: . and V. small enough so that 5. 3 
i i 

(iii) a.rmlies (with respect to the function f' : U -+ Rn- 1 ). 

Let a= minl!f(n)!I, PE Af, uv .. 'l'akee: = min{;d,E, ... ,e: ,a}. 
. i 1 m 
i 

(Nnt,,=, t.n,:it. a > (l because *r , q Vi is compact). 

Remarks.1. If we take (T ) instead of (T') nrices move along 
r 

n 

a.e.d. 

11 . ·d ~ _, 2 t ·f (w) • • · e 1pso1 s ,, r. p. = cons ant, i is satisfied. The 
i=1 i i 

same proof works in this case. 



Remarks.2. If we take instead of (W) the weaker 
n 
I, 

i=1 
remains in 

condition (W'): 

n -1 2 
E r. p. < r, a 

l l .: i=1 

solid ellinsoid, if po is in this solid ellipsoid. 
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(We are deali~g with (T ) , for (T') take r. = 1, 1 = 1, ••. , n). 
r l 

1, ... , n; 
n -1 2 
t: r. o. < rL 

i=1 l . l -

Assume that (P) is satisfied on Ur for some r > O. Then 

the analogue of theorem 5. 6 holds with U replaced by U . r 
The proof is similar. 

Now sun-nose that the second tY1)e of boundary behaviour occurs; 1 .e. 

that condition ( D) is satisfied. Let A = {p E Sn-ll n. > 0 1 = 1, ... , n } 
l-

and TJ some onen neighbourhood of A in Sn-l, on which f is defined 

(and differentiable). 

5.7. Theorem. 

(i) ~or every process (T') : n = f(p) such that (W) and (D) are 

satisfied and every s > 0 there exists an s-C 1--oerturbation 

n = g(p) satisfying (W) and (O), such that g is transversal 

to O in A. In particular the perturbed system has only finitely 

many equilibria.. 

(ii) Let (T') n = f(p) satisfy (W) and (D) and suppose that f is 

transversal to O in A. 'T'h.en there exists an£> 0 such that 

every s-C 1-perturbation p = g(p) of (T'), satisfying (W) and 

(D), ha.s g transversal to O in A. Hence a.11 £-C 1-perturbations 

off also have only finitely many equilibrium points, 

. . 6 \("'') Note that there does not exist a nrec1se analogue of 5. 111 , because 

a boundary equilibrium point (i.e. a.n equilibrium point with at least 

one price zero) can disappear into the region where at least one 

nrice is negative under a small perturbation. If all the equilibrium 

noints in A of a ~iven Process p = f(p) are in the interior of 
n-1 6 ( Ac:: S and f is transversal to O in A then one nroves , as 1n 5. iii), 

that a small Perturbation of P = f(p) has the same number of equilibrium 

noints. 
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Proof. Let u. = {p E n!n. > o}. Note that 
i . i 

U U. is an open set 
i i 

. n-1 . . 
in S which contains A. Thus by restricting U a bit if 

necessary we can assume that U U. = U. Let f(i) : u. + Rn-, 
l i i 

be the map f( i) ( n) = ( f 1 ( p) , ... , f. ,(p), f. ,(p), ••• , f (p)). 
i- 1+ · n 

B looking at each of the f(i) in turn one now easily ~roves 

(ii) as a consequence of 5.3 (i). 

As to (i) : Let Gi = {p E Alpi = o}. 

Because the G. are compact, there is a o > 0 such that 
l 

{ n-11 } V = p ES p. > - ofor all i . i 

is contained in U. By taking o a bit smaller if necessary we can 
1 also see to it that V CU. Further let o' < 7n, and let 

/ 

. ----____. ... -· 

The thin outer line is 
the boundary of U; the 

dotted line is the 

boundary of V, The tines 

P 1 = O, p 2 = 0, P 3 = 0 

form the boundary of A, 

and the / / // / part of A 

is A1 • The holdl~ne 

marks the boundary of 

V 1 in V. 

Ai= {p E A!Pi ~ 0 1 } 

n 
then U A.= A and the A. are compact. 

i=1 i l 

Finally let V. = {p E vlp.> ~0 1 }. 
i 1 

Choose e: > 0. We now use the same arguments 

as in the proof of Theorem 5.5 to construct 
e: c, . . . a 2 - -perturbation off which is 

transversal to OE R in A1• In the 

construction, U is replaced by U, Uf is 

replaced by V 1 , Af is replaced by A1• Let 

o2 > 0 be such that any o2-c 1-perturbation 

of g' is still transversal O in A. Such 
1 

a o2 exists by 5,6 (ii), which has already 

been proved. 

Let~= min(~, o2 ) and using (g',u,,12 ,-½-) instead of (r,u,v1,A1) 

construct a e:2-c 1-perturbation g" of g' -which is transversal to O in A2 • 



Because e:: 2 .:::_ o2 , we then have that g" is transversal to O in A1 U A2 . 

Let o 3 > 0 be such that any o 3-c 1-perturbation of g" is still tre.nsversal 

to OE Rn in A 1 U A2 , etc. etc. The construction of 5,5 yields 

functions which satisfy the Walras 1aw. Therefore we finally 

(after n steps) wind up with an £-perturbation g off which is 
n 

transversal to O in U A. = A and which satisfies (W) and (0) 
i= 1 1 

(by construction) q.e.d. 

5.8. Non Tatonnement Processes. 

For the process (NT) with conditions (W), (C) and either 

(P) or (D) one can derive theorems similar to (5.6) and (5.7). (The 

conditions ( C) are easy to handle; far easier than (W) }. 

5,9. Remark. 

It may happen that for some prices boundary conditi~n (O) applies, 

while for other we have(~. This case can be dealt with in more or 

less the same way. 

6. LIAPUNOV FUNCTIONS 

First we recall the definitions. As in nr.2 we consider a system 

(DS) r = f(r) defined on a set Mc Rn such that (B) is satisfied. 

Let e be an equilibrium of (PS). 

6.1. Definitions. 

( i) A function t defined in a neighbou~hood N of e such that~ (e) = 

~(r) > 0 for all r EN '-{e} and such that ~(r(t;r0 ))< ~ (r0 ) 

for all r 0 E N, r 0 ;, e and t > 0 such that r(t;r0 ) ~ N,is called 
' 

a local Liapunov function for (DS) near e. 

(ii) If~ is defined on all of M, it is called a global Liapunov 

function. 

(iii) A function ~ on M such that ~(r(t ;r0 ) )< ~(r0 ) for all t > o 

unless r 0 is an equilibrium point is called a modified Liapunov 

function (cf. [17]) for (Os). 
The main theorem concerning Liapunov function is: 

O, 
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6.2. Theorem. 

Let the dynamical system (OS) satisfy (B): let e be an equilibrium 

point of IDS). Then e is (locally) asymptotically stable if and 

only if (DS) admits a Lianunov function near e. The point e is 

globally asymptotically stable if and only if (OS) admits a 

global Liapunov function. 

(cf. [4) Ch. V §2). 

Concerning modified Liapunov functions Uzawa proved (cf. [17]): 

6.3. Proposition. 

Let (OS) satisfy (B). And suppose that 

(i) Every motion r(t;r0 ) is contained in some compact subset of n 
(ii) (OS) admits a modified Liapunov function 

(iii) The set E of equilibria of (OS) ie countable. 

Then (PS) has a pointwise attracting equilibrium set E. 

Now suppose that the set E of equilibria of (OS) is finite, 

and let conditions (i) and (ii) of 6.3 also be satisfied. Let 

E = {e 1 , ••• , em}. Consider <f>(e 1), •.• , t(em), where ~ is a modified 

Liapunov function. Renumbering the e1 if necessary we can assume 

that in e ~ e 1, ~ ( e) < t ( ei) i = 1 , •.• , n. Now let rQ E M be a - ' 

nonequilibrium point. There is an index i such that limr(t;r0 ) • ei 
t-+<n 

and we have g,(x(t;r0 )) < g,(r0 ). 

Therefore g,(r0 ) > cf>(ei) > g,(e). It follows that the function 

'F (r ) -= 4> (r ) - ~ ( e ) 

1s a Liapunov function for (OS) near e. We have proved (using 6.3 and 

6.2) 

6.4. Proposition. 

Let (DS) satisfy (B). And sunpose that: 

(i) Every motion r(t;r0 ) is contained in some compact subset of M. 

(ii) ('os) admits a modified Liapunov function 

(iii) The set E of equilibria is finite. 

Then there is an asymptotically stable equilibrium point of (DS). 

The pronerty/(OS) has an asymptotically stable equilibrium noint" 

is a good notion with respect to perturbations of (OS). In fact 
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6.5. Pronosition (cf.rr] Ch. VII section 56) 

An asymptotically stable equilibrium point of (OS) is totally 

stable. 

Systems (PS) satisfying conditions (i), (ii), (iii) of 6.4 
also behave nicely under repeated disturbances. One can show that 

for every E > 0 there are a K > 0, T > 0 such that for almost 

all seauences of disturbances in sT,K llrnert(t,r0 ) - eill < E 

for some asymntoticallv stable equilibrium point e 1 provided t 
0 • i 

enoup,h;and lim .r. rt(t;r) = e for almost all ~equences 
t-+oo pe , 

1.s large 

of disturnances in ~K. Cf. (91. 

6.6. Asymptotic stability and structural stability. 

Asymptotically stable equilibrium points do not behave as nicely 

with res~ect to structural. Consider for example the system 

(*) X = - x3 

u = - .t./3 

on R2 • For every E > O, here is an E-C 1-perturbation of(*) which 

has a Phase portrait like 



In fact, let 1b{r) be a differentiable function ip 

such that w(X.) = 0 , ft 4 u: , 
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1µ( 0) = 2, i.t,(t) F (1,2) if 0 < t < £, w(E) = O, i.t,(t) E (0,1) if 

E: < t < 2E, and ldt/JI < £ 
dt - E: ' 

(Such a function exists). Define 

¢(x ,tJ) = ./; 2 2 w( X +y ) , The system 

dl(x ,~,)) 

1 ' 3 
C -nerturbation of r = -r ~ u = -/~. and 

this nerturbed system has the nhase nortrait sketched above, 

However, let 

X = f(X) 

be a (DS) defined on an onen subset Uc Rn, which contains the origin 0. 

Let 0 be an equilibrium point of ( S). Consider the matrix 

af. 
A = (ax~( o)) 

.1 

If all the eigenvalues of A have a nonzero real part, then 0 is a 

structurally stable equilibrium noint. Cf [15] 11.2 

One can further -prove that if M is a smooth di'fferentiable 

manifold and (DS) a smooth dynamical system on M, with a globally 

asym-ptotically stable equilibrium. point e such that the matrix 

df ( ) · · 1 wt,, ( ) dx e has no eigenvalues with zero rea nart, ~uere r = x1 , ••• , xn 

is a smooth coordinate system for a neighbourhood of e in M, then 

(DS) is structura.lly stable Cf. [ 151. 

7, r.ROSS SUBSTITUTABILITY AND REVBALED PREFERENCES. 

We again consider a tatonnement nrocess (T) defined on 

D = {(r, 1 , ••• , p ) IP• > O}. Almost the same arp;urnents as in 5,4 n l. 

p:i ve 

7,1. Pronosition. 

Let (T) satisfy (B), and suppose that 

(i) (T) admits a modified Lia-punov function 

(ii) (T) has a ~lobally attracting e~uilibrium noint. 
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Then this equilibrium point is globally asymptotically stable. 

Now suppose that (T) satisfies (H). The Price vector pis 

an equilibrium iff AP is an equilibrium, and f(Ap) = f(p). "therefore 

we can and shall view the process as talcing place on U, 

U = {(n 1, ••. , pn)lpi > O, p~+ .•• + p! = 1}. 

(If we are only interested in equilibrium. points and their stability 

this does not matter~ if one is also interested :in the time it takes 

to get into the neighbourhood of an equilibrium point, this does 

matter, however). 

The commodities involved in.the process (T) are said to be 

strongly gross substitutes if: 

tlu. (l}(c.ess JeWla.l\d ju.~cl:io-.-. 
i.o J1He'lC..i<it1rd,fc. 

(S) at all points p En and 

7.2. Theorem. 

dh. 
--1 > 0 for all 1 ~ J 
clp j 

Let the process (T) satisfy (B), (H), (E) and {S). Then (T) has 

a globally asymptotically stable equilibrium point. 

Proof. Arrow, Block, Hurwicz (3] show that under this condition there 

is Precisely one (up to scalar multiples) equilibrium price vector 

* * * (p,, ... , 'O ), p. > o. · · n 1 

Uzawa nJ, then proves that the function t{ p) 
P· 

= max .:..J.. . p"! 
,J=1, ••• ,n J 

is a modified Liapunov function for (T). It follows that\, 

A (p) 
P. 

= flla.Y ::-'\. -• p. 
,J J 

is a global Liapunov function, which proves 7 .2. j-e.J. 

We now examine, as in [ff] a process 

_ [o if P· 
l. f. (p) 

l. 

f.(p) = r.h.(p) 
l. 1 1 

pi= o, fi(p) < 0 

otherwise 

where the r. are positive numbers (speeds of adjustment). The weak 
l. 



axiom of revealed preference says 

(RP) * P h(n) = 

* 

n 
r: 

j=o 

* p.h. (-p) > 0 
J l. . 

for all equilibria p and nonequilibria p 

7.3. Theorem. 
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( i) If the nrocess (T*) satisfies (H), (E), (W), ("B), (PR) then 

(T•) has a Pointwise attracting equilibrium set E. 

(ii) Every e EE is stable. 

(iii) If T* has only finite~y many equilibrium points I, then it 

has nrecisely one equilibrium point which is globally 

asymptotically stable. 

Proof. (i) is Proved by Uzawa. He shows that the function 
n 1 * 2 

= E - (p. - p.) (p1 a fixed equilibrium point) is a 
• 1 r. l. . l. 
1.= l. 

modified Liapunov function for all p*. This implies (ii). The condition 

of (iii) makes of course no sense if we consider (T*) as a process 

on n. Because of (W) and (H), however, we can just as well examine 

the behaviour of (T) on A= {p E sn- 11p. > 0 cWu = {p € sn-11p. > o}) 
l. - . l. 

The snace A is connected, i.e. it can not be written as the union of 

two relatively open disjoint subsets of A. Let Ebe finite. For each 

e EE, we define U = {-p0 E A.J lim p(t;p0 ) = e} • Then U is open. 
e t- e n 1 

We proceed to prove this. The function d(p,n') = ✓ r =-Cn. •· . 1r. l. 
1.= l. . 

is a metric on U. It follows that if 'PO € A, is such that 

d(p0 ,e) < d(p0 ,e 1 ),e' € E ,{e} then lim p(t;p0 ) = e. Thus every 
t- . 

\ 
e E E has a small onen neighbourhood Ve such that lim p(•t ;p O ) = e 

if p 0 € V • (We have therefore shown that the poinl~e E E are all . e . 
asymntotica.lly stable), 

Now let n ° f. Ue. There exists a t such that -p( t ;p0 ) E V o - o e 

Because p(t ;n°) is a continuous function of p0 a.nd V is open, there 
o 1 e 1 

exists a neighbourhood V of p0 such that p(t0 ,p) E Ve for all p EV, 

but then lim n(t;n 1 ) = e. 
t-+ao 

This nroves that all the U are open. However, 
e 

because of (i) we have U U = A, and of course U n U, = d> 
eEE e e e 



if e ~ e'. This contradicts the fact that A is connected, unle,c 

E = {e}. q.e.d. 

Remarks.1. Part (iii) of this theorem can also be formulated as: 

if there are finitely many equilibrium ra~s of (T*) 

then there is precisely one equilibrium rat, which is 

p:lobally asymptotically stable. 

2. Without the requirement that Ebe finite one can show 

that E must be connected. 

8. RTABILITY TJNDER REPEATED DISTURBANCES. 

Let (OS) be a dynamical system on Mc Rn. As in 4.2 we consider 

disturbed motions x rt(t;r0 ) under a sequence of disturb~nces of pe 

magnitudes u1 , u2 , ••• occurrin~ at times O < t 1 < t 2 < •••• 

Let i be an asymptotically stable equilibrium point of ( S). Let 

U = fx0 f MI lim r( t ;r0 ) = r}. '!'hen U is open in M. ( If i is p:lobally 

as:vnmtotica1r.rstable u = M). There is a Liapunov function ct- defined 

on U. 

A Liapunov function~ is a kind of p:eneralized eaergy function. 

It is therefore not unreasonable (especially if~ arises in a natural 

way) to measure the boundedness of the disturbances in terms of ct-. 

Given c > O, we define~ as the family of those disturbances -T ,c 

(t 1 , t 2 , •.. ; u1 , u2 , .•• ), such that 

r 
t<t.<T 

- 1-

u. < C 
1 

The ui give the magnitude of the disturbance at time ti ?n terms of¢. 

Thus if rnert(t;r0 ) is the disturbed motion one has 

0 < t < t , rpert(t;x0 ) = r(t;r0 ) 

t = t, rpert(t, ;xo)= ~ , where 4>( r 1 ) - ~( r( t 1 ;r0 )) = Lt 1 

~ert ( t ;xo) 
1 

t, < t < t = r(t-t 1 ;x ) 
2 

~ert (t ;xo) 
2 2 1 

t = t2 = x , where 4>(r ) - cti(r(t2-t 1 ;x )) = u.2 

t2 < t < t .i;,ert(t;ro) = r(t-t2 .x2 ) 
1 

, • ' 0 • 



Let V c: U. We define e- as 
y 

e- = sun. fdl r 1:M, 4l(x) - max 4>(v) < d ... x Eu} 
y . ~i 

Note that there always exist Vin U, such that e- > 0. 
V 

33 

To prove theorems we need a sli~htly better situation then just 

a Liapunov function on U. We need a differentiable Liapunov function. 

Fortunately these always exist under very mild conditions. For instance 

when f satisfies a glohal Lipschitz condition on~, there is a 

differentiahle Liapunov function on U. Cf. [7]. 

If f is differentiablP. in a neighbourhood W of i, there is a 

lJ c W such that fJ c: Wand f satisfies a Lipschitz condition on U. 

8.1. Theorem. 

Let (OS) a dynamical system on M, i an asymptotically stable 

equilibrium noint of Mand 4> a differentiable Liapunov function 

defined on an open nei~hbourhood U of r such that U is compact. 

Then for everv compact f such that e- > O, every E > o,and every y 

'J' > 0 there exist c' ,c" and t' > O, t'' > 0 such that 

( i) 

(ii) 

~ t. ( t ;r0 ) ) < e: ner 
for t > t' 

11.r. t(t;x°) - xi I < e: ner 
for t > t" 

for all r 0 €~and all disturbances of S~T , in case (i) .,., ,c 
and all disturbances of ST ,, in case (ii). ,c 

Proof. Part(ii) follows from part (i) by choosing a 6 >Osuch 

that <T>(r t(t;r0 )) < o • ! Ir t(t;r0 ) - ii I < e: and then ~r ~r ' 
applying part (i) with o inste~d of e:. It remains to prove (i). 

Let Ae: = {r E Ml4>(r) = e:}. Tf e: ~s small enough Ae: is c~ntained 

in W r TJ where t:T = {r E M!=iy E fl, 4>(r) ~ <f>(y)}. For each O < e:'< e:, 

let 

e < 

'F'or 

B £ I = {r E Mlt(r} < e:'} and 0 , = {r E Mlt(r) < 
- e: 

EI}. Choose 

e . Let VJ 
y e 

each r 0 
E w 

= 

e 

{r F M!=iv E i, t(z) -4>(y) < e} . 
- ue:'' :t t(r(t;~0 ))(o) < o. Let 

A= max ~t ~(r(t;r0 ))(0), r 0 Ewe...._ ue:,· 
XO 

Then X < O, because W , U, is comnact. 
e e: 

Because e < e , W c:: U. During each interval [t, t + T 1 the loss 
V e 

.... 



in~ due to the undisturhed motions occurring is at least -

-A':!' if X t ( t ;r0 ) remains in vi , U , • 
ner e E 

We take 

c' < min {e: - £', -AT, e} = c 

Then r t(t;r0 ) remains in any case in~, if x0 E ~. And per e 

~(r t(t;r0 )) - ~(r t(t + T;r0 )) > c - c' ner per 

unless <ll(rnert(t;x0 )) passes through Ue:, for some t* E [t, t +Tl, 

but then r t(t;r0 ) E Uc for all t E ft*, t* +Tl.This proves per c. 

the theorem. 

8.2. Corollary (of the proof). 

If r t(t;x0 ) EU , for some t, then r (t';x0 ) E Uc for ner . £ pert c:.. 

all t' > t. 

Remarks. 

1. If£' in the proof goes to zero, A~ 0 (monotonically). An 

optimum c' is obtained hy taking£' such that E - E' = -AT. 

2. If U = M, then the restriction e > 0 in the theorem can 
V 

be removed. 

If~ is not a naturally arising function on M, it seems more 

reasonable to nut the boundedness conditions on the disturbances 

in terms of the distances a point is moved bv a disturbance, as in 4,1. 

As hefore let n c M be a neii:,:hhourhood of r such that there is 

a differentiable Lianunov function defined on U, and such that U 

is comnact. If V ~ U we define dy hy 

d = sun f d Ir E ~1 and -::i._11 E W, l l r - u l I .::_ n ~ r E U} 
V 

where as before W = {x E Ml~ EV, 1(µ) > ~(r)}. Note that there are 

always V such that W c U and d > O. 
V 

8.3. Theorem. 

Let (OS) he a dynamical system on M, x an a.symntotically stable 

equilibrium noint of Mand~ a differentiable Liapunov function 

defined on a neighbourhood U of i such that fi is comnact. Then 

for every compact V such that W c U and dV > 0, every£> 0 
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and every T > 0 there exist a K > 0 and at >Osuch that 
0 

11 .r rt ( t ;.r0 ) - i I I < e: pe 

for all t ~ t 0 , all r 0 €Vandall disturbances in sT,K 

Proof'. Let AE = {r E Ml I Ir - ii I = £}. The set AE is compact, and 

A c: W if f is small enough. Let c1 = min 41(.r), r EA. e: e: 
Then c 1 > 0, Now for each o let c2(o) = max 41(.r), r E B0 , where 

B0 = {.r E Ml 11.r - ill ~ a}. Let u0= {.r E Ml !Ir - ill < o}. 

Choose d < dy, and let wd = {.r € MJ=!y E w, llr- YI I~ d}. 

For all .r E W d ' U0 , and all tanp:ent directions _u to M in x, 

a 
~(r) < o 

Let µ = max l~(.r) l, .r E wd, UIS, 11<1ll = , , Y tanp:ent to 111 in x. 

Thenµ> o. As o + o,c2(o) + O; choose some o such that c2(o) < c1. 

As in the proof of 8.1 let A= max ~t(4>(.r(t;r0 )), re E ~d, U0. Then 

also A <O. We have I 4>(.r) - 4>(.r') I ~ hd l!r- r' II, Choose 

K < min {d, µ- 1(c 1 - c2(o)), -µ- 1XT} = K' 

Then for every disturbance in ST K' .r t(t;r0 ) will remain in , ner 

Wd, if r° F V, The loss in¢ durin~ the undisturbed parts of motion 

durin~ interval [t, t + Tl is at least -AT if r t(t;r0 ) remains -per 

in Wd ' TJ0 • The ~ain due to disturbances is 

every interval ft, t +~],~will diminish 

- AT - µK ~ µ(K' - K) 

at most µK. Thus during 
' 
\ 0 

alon~ r t(t;r) by at least ner 

unless :r t(t~.r0 ) passes through Ur during ft, t +Tl, but if ner l) 

r t(t*,x0 ) E Ur, then .r t(t;.r0 ) E TJ for all t E [t*, t* + Tl. q.e.d. ner ,1 per E 

8.4. Corollary (of the proof). 

If .r t(t*,x°) € ul' then .r t(t,r0 ) E Ue: for all t > t' per t> ner 

-
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Remarks. 

1. As~+ o. c2(o)-+ O (monotonically) and A ➔ 0 (monotonically). 

An optim~l K' is found bv taking o such that c 1 - c (~)=AT. 2 

2. If TT = 1.1. the condition d > O can be removed. ,, 

9. F.XTR'I'ENCE OF POSITIVE EQUILIBRIUM VECTORS. 

In theorems on stability, those of nr. 7 e.g., the condition 

(E), that there be a positive equilibrium point repeatedly turns un. 

In this section we prove the existence of such an equilibrium 

Point provided (P) and (W) are satisfied. (In fact one only needs 

to have a disk-like compact invariant regitn inn ) • We need a 

slightly stronger continuity condition on the solutions p(t;p0 ) 

of the dynamical system .(OS): 

(B") Condition (B) is satisfied and the function 

p(t ,P0 ) : M x IR(> 0) + ~4 is continuous as a 

function of (t,-p0 ) 

This condition is e.g. satisfied if the function f of n = f(p) 

satisfies a global Lioschitz condition on 1'-f. 

We define then-dimensional ball Dn (n dimensional disk) 
n nl 2 2 as O = { r ER r 1 + + r n ~ 1} 

9.1. Proposition. 

Let (CS) be a dynamical svstem on M such that (B") is satisfied. 

Suppose that Mis homeomorphic to a disk. Then there is an 

equilibrium noint of (OS) in M. 

"Proof. For each n E N, let f : M -+ 1\-f be the function f (x) = n( l~x) 
n n n 

Because~ is homeomorphic to a disk, the Brouwer fixed noint 

theorem can be apnlied to the maps f . Let r be a fixed noint n n 

of f 0 • 'J'he tonological snace Mis comnact (being homeornornhic 

to a disk), therefore there exists a suhseouence {xk} of 
n 
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r which converges to a point i EM. We show that i is a fixed n 

point. Suppose not, then there exist at ~ O and open neighbourhoods 
0 

V of i and V' of p(t0 ; i) such that V n V' =~-The function p(-;-) 

M x ~( ~O) +Mis continuous, thus there exist a neighbourhood 

W c V of i and a o >Osuch that p(t;r) EV' if It - t l < o and 
0 

r E W. 

Because lim rk 
n+«> n 

that 

=r , and lim ~ = 
n-+oo n 

O, there exists a k 
n 

0 

= ~i such 

1° x. E W ; 
J n, 1 

2° there is a multiple t 1 = J of J such that Jt 1 - t 0 I < o. 

We then have on the one hand that p(t 1;rj) EV'. On the ·other hand 
n, 

p(-.-;:r..) = r. E W because r. is a fixed point of f .• A contradiction • 
• 1 ., J J J 

Now let n = {p E Rn!P. > O} and consider processes 
l 

(TI) i. = h.(p) = f 1.(p) 
l. l 

or more generally 

(T) 
r 

p. = r.h,(p) = f.(p), r. > 0 
l l l 1 l 

Suppose that (W) is satisfied. Then prices move along 

n 2 
I: p. 

i=1 l 

2 
2 n Pi 2 

= r ( res~. along ellipsoids I: - = r ). 
• 1 r. 
1• l 

2 

r uJ ~ + Now suppose that ( .) is satisfied on Ur = ,.p E r, 

q,ed. 

spheres 

2 
\ Pn 2 

··~+-=r}. r n 

Let c, d > O be numbers such that p Eu,, Pi< c • fi(p) ~ d. 

Let A = . fr, €Ur fpi ~ c, i • 1, • , • , n}. Then A is homeomorphic to 

a(n-1)-disk provided c is small enough, and every solution starting 

in A remains in A. We can therefore apply 9.1,We have proved 

....., 



(),2. Theorem. 

Let (Tr),defined on n = {p E Rn1Pi > 0~ i = 1, ••• , n},satisfy 

(W). ri:'hen for every r such that (P) is satisfied on 

U = {n F. 0.I r.r:-\~ = r 2} there exists an equilibrium noint on 
r l l 

U (which therefore has all prices positive). 
r 

If (Tr) satisfies (H) and (P) there is an equilibrium raJ in 0. 

9,3. Corollarv. 

Let (T) defined on 0 = {n E ~nln~ > O, i = 1, .•• , n} satisfy 
r l 

(W'). Then for every r such that (P) is satisfied on U = {nE r11E r:"\? "-r2) r l l. 

there exists an equilibriun, noint in U with all Prices positive. 
r 

Same Proof. 



LIST OF (CONDITIONS ON) DYNAMICAL SYSTEMS. 

p. 1s the nrice of commodity i (at a given moment in time); 
1. 

hi(p 1 , ••• , pn) = hi(p) is the excess demand for commodity 1 

at prices p 1 , ••• , p ; f.(p) is a function such that n 1 · 
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~ir,,n(f.(u)) = sign(h.(TI); s .. is the amount of commodity .J held 
1 " 1 ~ lJ 

by the i-th individual. The systems considered are 

(OS) x = f(x) , x E Mc Rn, f any continuous n-vectorvalued function 

(NT) 

(T) 

(T •} 

(T) 
r 

p. =f.(p;s) 
1 l 

s .. = g .. (p;s) 
l.J 1,1 

p. = f.{p) i = 1, ···~. n 
l. l. 

p.,,. h.(p) • f.(p), i,.. 1, •.• , n 
l. l. l. 

j,. = f. (p) "" r.h.(p), r. > o, i am 
l. l 1 1 l t if~- = 0 f. (p) = r.h.(p) 

= r.h.(p; 

l. 1 1 p. 
l f. ( p) otherwise = 

l 1 1 

1 , ... ,, 

< 0 

' 

The conditions on systems considered are 

n 

> 0, 1 ' r. l. = ... , 
1 

(B) For every x 0 EM, there exists a unique solution r(t;r0 ) of (PS) 

x(t;rP) EM for all t,:: a.such that r(O;r0 ) • x0 • For a fixed 
( 0) • fu . 0 t >Or t;r 1.s a continuous nction· of x. 

(B') For every r 0 E M, there exists a unique solution r(t;.r,') of (ps) 

defined for all t ER passing through x0 at time t = 0, For a 

fixed t ER, r(t;r0 ) is a continuous function of r 0 • 

\ 
(B") Condition (B) is satisfied and the function p(-;-); ' 

~-f x /R(~ O) + ~, (t;n°) + p(t;p0 ) is continuous as a function 

of (t ,po). 

(C) r. s .• ( t) = C 

i 1.J .i 
(this is a condition on (NT)) 

r. g .. (n;s) = 0 
i 1.) 

n 
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(0) The function f is differentiable on A= {p E Sn- 1lni .::_ oJ, 
i = 1, ... , n} (a condition on (T) or (T'); 

( F.) 

(H) 

(P) 

(RP) 

sn- 1 = {p E Rnlrr~ = 1} 
l 

There exists a positive equilibrium price vector 

p* = ( P~ , • • • , n~ ) , pi > 0 , i = 1 , . . • • n 

h.(Xn) = h-(p), for all X > 0, 
l - l 

There exist (small) constants c > 0, d > 0 such that 

f.(n) > d if O < p. < c. 
l - l 

n*.h(p) = E p~h.(p) > O for all equilibri~ _ p* and nonequilibfia 
• J l 

,1 

p. 

(S) The excess demand functions hi(p), i = 1, ••• , n are 

(W) 

(W') 

ah. 
differentiable at all points p En and --1 1(p) > 0 c3p. -

for all i ~ J, p E O. 

L p.h.(n) = 0 
• l 1 
l 

E n.h.(p) < 0 
• l 1 
l 
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