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1. Introduction

This is the first of a series of papers in which we first give fairly explicit formulas
for universal commutative formal groups and then proceed to give various
'applications of these constructions to e.g. complex cobordism and Brown-Peterson
cohomology (part III), norm maps (part VII), classification theory via
Cartier-Dieudonné modules (part VI) and formal moduli (part V). The following
special case may serve to give the flavor of the constructions. If g(X) is a power
series over Z[ V] =Z[V,, V,,...] then g*(X) denotes the power series obtained
from g(X) by replacing each V; with V? i=1,2,.... Choose a prime number p

d let fuv.(X) be the power series defined by the functional equation

(1D £ (0=X+ 32X

and let Fyv (X, Y) = fJ'(fv (X)+ fv(Y)). Then Fu(X, Y) is a p-typically universal,
one dimensional, commutative formal group over Z[ V]. It turns out that “‘satisfying
a function equation like (1.1)” is the essential (and sufficient) condition for
integrality of Fv (X, Y). Moreover two logarithms which satisfy functional equa-
tions (1.1) “with the same V;” yield isomorphic formal groups. For a more precise
statement, cf. the functional equation Lemma 7.1 below.

Given such a fairly explicit candidate for a universal formal group it becomes
possible to use a method of Buhitaber and Novikov [1] to give a direct proof of
universality. They used this method for the formal group of complex cobordism.

* Most of the research for this paper was done in 1969/1970 while the author stayed at the Steklov
Inst. of Mathematics in Moscow and was supported by ZWO (The Netherlands Organization for the

Aldvancement of Pure Research).
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132 M. Hazewinkel | Constructing formal groups I

Thus one obtains noticeably shorter proofs of the main theorems concerning
universal formal groups and one avoids part of Lazard's difficult comparison
lemma. Cf. also Section 5 below.

Now let A be a Z,-algebra. One dimensional formal groups over A are
classified by left modules of the form M = E, /(f - 2, V'[v.]) over E., where E, is
a certain ring which contains f ( = Frobenius), V (= Verschiebung) and elements
[a]. a€ A. Cf. [2]. Let F.(X.Y) be the formal group over A obtained from
Fy (X, Y') by substituting v, for V, i =1,2,.... Then M is the module of p-typical
curves of F,(X, Y). This is possibly the best way to look at these constructions.

In this first part we construct a one dimensional formal group which is univers;
for one dimensional commutative formal groups over Z, -algebras, a p-typicalw
universal one dimensional commutative formal group, and a universal strict
isomorphism between p-typical formal groups. Most of the results in this paper
have appeared in preprint form in [5]: some of these results have been announced
in [6].

For the basic definitions concerning formal groups cf. e.g. [4]. We take the power
series point of view. All formal groups in this paper will be commutative one
dimensional. All rings will be commutative with unit element. If F(X, Y)is a formal
group over a ring A and ¢ : A — B a homomorphism of rings then F*(X,Y)
denotes the formal group over B obtained from F(X, Y) by applying ¢ to the
coefficients of F(X, Y). Z stands for the integers, Z,,, for the integers localized at p
and Q for the rational numbers; N denotes the natural numbers; that is N=
{1.2,3,...}

2. Constructions, definitions and statement of main results

2.1. Notation. Let A be a ring and let g, (X) be a power series ove’
i

AlU. U, ...], ie. the coefficients of gu(X) are polynomials
U, U.....over A. Then g{’(X) denotes the polynomial obtained by replacing each
U, with Uj, j=1,2,...; i.e. g¢(X) is obtained from gy (X) by applying the

A-endomorphism U, » U} of A[U,, U.,...] to the coefficeints of g, (X).

2.2. Constructions. Choose a prime number p. The three power series fv (X),
for(X), fs(X) over respectively Q[Vi, V.,...], Q[V, Vs ...; Ty, T...],
Q[S:. S.....] are defined by

22D A(X)=X+2D -Ef‘e"(xp'),
t=1
222 fr(X)=X+ 3 TX" + 2 % eXP),
TR i=1

223 AX) =3 SX -3 S.xr+ S ‘—;&' FEUXP), Sy =1.
i=] t=1 i=1



M. Hazewinkel | Construciing formal groups I 133

These “functional equations™ define the power series fu (X), fi (X)) and £ (X)
recursively. For explicit formulae cf. Section 4 below. Now define

(224 FO(X YY) = (XD)+ A (YD in Q[ V][IX. Y]]
(225 R (X Y)=f50 (XD +f (YY) inQIV:iT][[X. Y]]
(22.:6)  F(X.Y)=fI(f(X)+f(Y) in Q[S][[X. Y]]

where, if g(X)=a, X+ a.X"+... is a power series over A with zero constant
term and a, a unit, g '(X) denotes the inverse power series ie. g '(g(X)) =

‘(g"’(x ) =X

2.3. Integrality theorem. The formal power series F.(X,Y), F.,(X.Y) and
Fo (X.Y) all have integral coefficients.

Le. their coeflicients are respectively in Z[ V], Z[ V, T'] and Z[S]. This is the usual
Witt-vector-type miracle.

2.4. Definitions. Let A be a ring and F(X, Y') a (one dimensional commutative)
formal group over a ring L. The formal group F(X, Y') will be said to be universal
for formal groups over A -algebras if for every formal group G(X.Y) over an
A-algebra B there exists a unique homomorphism ¢ : L — B such that F*(X Y) =
G(X.Y). Note that if F(X, Y)and F'(X, Y) are two formal groups defined over L
and L’ respectively which are both universal for formal groups over A -algebras
then we need not have L = L'. Except when A = Z. But in the case that A is a
localisation of Z, eg. A =2, we do have that L&®Z,, and L'®Z,, are
isomorphic.

..5. Theorem. F.(X.Y') is universal for formal groups over Z,algebras.

2.6. Curves. Let F(X.Y) be a formal group over a ring A. A curve over A is a
formal power series vy (X)) over A with constant term equal to zero. Two curves can
be added by means of F(X. Y) as follows:

(Yi+ ey (X)) = F(y, Xy X) = yi(X) + 5y X))

This turns the set of curves into an abelian group, which is denoted C. For every
n € N we define an operation f, on Cr as follows. Choose variables Z,.. .., Z, and
let y(X) be a curve. Write down

Q6.1 Y(ZXT) Y (ZX ) e 2V (Z XY = B(Z0 . Z0s X,

This is a power series in X" with coefficients in A[Z,, ..., Z.] and because F is
commutative and associative the coefficient of X'™ in (2.6.1) is a homogeneous
symmetric polynomial in the Z,, ..., Z, of degree i. So we can write

(262)  B(Zin....Z:X)=B(0wn....00: X)
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where o, ..., 0, are the elementary symmetric polynomials in the Z,, ..., Z.. Now
substitute 0 for o, ..., 0, and (— 1)" "' for o, in B'(o, .. ., 0,; X). This resultsin a
power series in X which is denoted £,y (X).

If the ring A is such that it makes sense to talk about the n (different) roots of
unity over A then one has

f"'y(X)z ,y(é‘nxlln)_i_F. . .+F'Y(§:X”n)

where {, is a primitive n-th root of unity.

2.7. Definitions. Choose a prime number p. The formal group F(X, Y) is calleh
p-typical if f,70(X) = 0 for all prime numbers ¢q different from p, where yo(X) is the . #
curve yo(X)= X.

A p-typical formal group F(X, Y) over a ring L is called universal for p-typical
formal groups over Z,-algebras or characteristic zero rings if for every p-typical
formal group G(X, Y) over A, where A is a Z,yalgebra or a characteristic zero
ring, there is a unique homomorphism ¢ : L — A such that F*(X, Y)= G(X, Y).
(A ring A is said to be of characteristic zero if A — A ®2Q is injective.)

2.8. Theorem. The formal group Fy (X, Y) is p-typical and universal for p-typical
formal groups over Zy-algebras or characteristic zero rings.

2.9. Definition. Two formal groups F(X, Y)and G(X, Y) over the same ring A are
said to be strictly isomorphic if there is a power series «(X) of the form

a(X)=X+a:X*+..., aEA
such that
a(F(X,Y))= G(a(X),a(Y)). ',,}

Let «:Z[V]—Z[V,T] be the canonical embedding, let « :Z[V]— Z[S] be the
injection defined by V; = S, and let A denote any of the localization homomor-
phisms Z[V]— Z,[ V], Z[V, T]1—> Z, [V, T], Z[S] > Z,\[S].

2.10. Theorem. The formal groups F (X, Y), Fs (X, Y) are strictly isomorphic and
the formal groups F\(X,Y) and Fyv.r (X, Y) are strictly isomorphic.

2.11. Corollary. Every formal group over a Z,algebra A is strictly isomorphic to a
p-typical formal group over A.

2.12. Theorem. The triple (FV(X,Y), av.r (X), Fv.7 (X, Y)), where av,r(X) is the
unique strict isomorphism from F\(X,Y) to Fv.r(X,Y), is universal for triples
(F(X, Y), a(X), G(X, Y)) consisting of two formal groups and a strict isomorphism
between them over a ring A which is a Z,-algebra or a ring of characteristic zero.
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3. The integrality theorems

In this section we prove Theorem 2.3.

3.1. Let f(X) be a power series in one variable of the form f(X)= X + b,X*+ ...

with coefficients in Q[Vi, V,,...; W), W,,...]. Suppose that f(X) satisfies a
functional equation of the form

GL)  f(X)=g(X)+ 3 2 (X"

Qvith EX)EZp| Vi, Vs ..o Wi, Wa, ] he f(X)— 252 p ' VIF®(X™') is integral
with respect to p.

3.2. Lemma. Let f(X)= X+ b, X"+ ... be as in 3.1. Then p*™'b, € Z,\[V, W],
where v,(n) is the highest integer r such that p" | n.

Proof. Obvious from formula (3.1.1).

3.3. Lemma. Let f(X) be as in 3.1 and let F(X, Y)=f"'(f(X)+ f(Y)). Then
F(X, Y)E Z(p)[ v, W][[X Y]]
Proof. We shall work in Q[V, W][[X, Y]]. The expression

G = H mod(p’, degree n)

means that G — H € p"Z,[V, W][[X, Y]] modulo terms of total degree = n (in
X, Y).
Let

F(X,Y)=F +F>+...
where F, is homogeneous of degree i (in X, Y). Then
Fi=X+Y€Z,[V, W][[X, Y]]
Suppose we have already proved that
(3.3.1)  F,F.,...,FE.€Z,[V, W][[X Y]]
It is clear that if s =2
(3.3.2) (F(X,Y)y =(F/+...+ F,)’ mod (degree n + 2).
Now if H(X, Y) is in Z,)[V, W][[X, Y]] one has that
(3.3.3) H(X, Y = H*"(X"", Y**) mod(p)
and hence

(3.3.4)  H(X, Y= (H®" (X", Y*))" mod(p*"*").
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Combining this with (3.3.1) and (3.3.2) we see that

(33.5)  F(X, Yy =(F®(X", Y**))" mod(p*""", degree n +2).
Now by definition we have

(33.6)  fF(X Y)=Ff(X)+f(Y)

and therefore according to (3.1.1)
S Vi i
gUF(X YY) + 2 fOF(X Y)) =

(3.3.7) - v | SV
=g(X)+ 2 X H g (V) Z Y.

By (3.3.5) and Lemma 3.2 we see that

(3.3.8)  fPUAF(X, Y)')=f*(F*(X", Y*')) mod(p, degree n +2).

It follows from (3.3.6) that

(339)  fUAFTXY) = fOUX) + fOY).

Using (3.3.8) and (3.3.9) in (3.3.7) we conclude that

(3.3.10) g(F(X, Y))=g(X)+ g(Y)mod(l, degree n +2).

And it follows that F,.,, is also in Z,[V, W][[X, Y]] because g(X) is of the form
gX)y=X+.... d

3.4. Proof of the integrality Theorem 2.3. It is now easy to prove 2.3. Indeed, it is
obvious from the defining equations (2.2.1), (2.2.2), (2.2.3) that the only de-
nominators which occur in fv (X), fv.r(X) and fs (X) are powers of p. Hence thg™-
only denominators which occur in f7'(X), fvr(X), fs'(X) and Fv (X, Y)5-~
Fv.:(X,Y), Fs (X, Y) are powers of p. It now suffices to apply Lemma 3.3.

4. Some formulae

For various reasons it is useful to have some explicit formulae and congruences
available.

4.1. Formulae for fv, fv.+ and fs. The “functional equations” (2.2.1), (2.2.2) and
(2.2.3) define the power series fv, fv.r and fs recursively. Writing

A= T aMX?,  fur(X) = 3 a(V.TIX?,

(4.1.1) )
fs(X) = 2 b(S)X'
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it is not difficult to prove that the following formulae hold:

V, VR e
2__ B pr * 5 a()(v)=l

where the sum is over all sequences (iy,..., i), ; EN={1,2,3,...}, r =1, such that
i|+...+i,=n;

“412)  g.(V)=

‘/l ) pirt . +i
a(V.T)= 2 = p'V
3) pi1 piitetipa
o g
i1+ Fi=n P
a()( V, T) =1

SaSal. .. Sy
> -

[CTTRTeN qnd) p

4.1.4)  b(S)= Sk, Si=1, b(S)=1

where the sum is over all sequences (q,..., g, d) such that ¢ is a power of p,

qi=p" rnEN; r=0; d €N and not a power of p and q,...q.d = n. Note that
d =1 is allowed and also r = 0.

4.2. Examples. The first few a.(V), a.(V, T), b.(S) look as follows:

4 A%TZ
(42.1)  al(V)=1, “‘(V)z?" a:(v)=———;2 : o
pyp? P p2
a(vy=2YVE Ve VBV Vs
p p
‘ a(V, T)=1, a(V, T)-%.;. T, a(V,T)= VVI \/‘T1 p +’[‘7
F"/P2 pp? p
(422)  a(V,T)= v.\;; S \;;T, N V;Y_
p? p2 o2
+ VL. TH + V2‘2/1 + VL, T4 n _!3 + T
p p p p

Taking p =3, the first few b,(S) are equal to

bi(S)=1, bS)=S,, b3(S)=§3-‘3, bi(S)=S8i, bs(S)=S;,

ww

S,83

(42.3)  b(S) = 2+56, by(S) = SS

5,838 S.S8% . S.S:
5 + 3 + 3 + Sis.

bis(S) =

4.3. Relations between the a.(V), a.(V,T) and b,(S). The following formulae
between the a,(V), a.(V, T) and b, (S) follow directly from the formulae in 4.1:
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pn—l

14
@31 a(V)=a(V) V[') - a,(V)-‘%’;—“—’ Z

]

p
(4.32)  a(V.T)=a (V)+a (VT ' +...+a(V)T5..+ T.

Let us write a,(S) for the polynomial obtained from a, (V') by substituting S, for
V,i=12,.... Then if n=p'm, (m,p)=1 we have
ba(S)= a.(S)Sh+ a,.((S)Sh ' + ...+ a1Ss-1+ S, if m>1

433 b ($)= a(S).

f’x

4.4. Congruence formulae. For each n =2 let B.(X, Y) be the polynomial
(4.4.1) B.(X,Y)=(X+Y)-X"-Y"

Let V(n). n =0 be short for V(n)=(V,, V,,..., V,,0,0,0,...)and S(n), n =1 for
S(n)=(Ss...,5,0,0,...). Then one has directly from 4.1:

Fs(X,Y)=Fsu-1n(X, Y)—S.B.(X, Y) mod(degree n + 1)

if n not a power of p,
(4.4.2)

Fs (X, Y)=Fsu-(X, Y)—S.(p7'B.(X, Y)) mod(degree n + 1)
if n is a power of p;

(4.4.3) Fo(X,Y)=Fyun(X, Y)= V.(p™'B,«X, Y)) mod(degree p" + 1).
Writing Fs (X, Y)=Fs(1)+Fs2)+..., Fv(X,Y)=F,(1)+ F, (2)+... where
Fs (i) and Fy (i) are homogeneous of degree i (in X, Y) we have in particular for
n=2:

Fs(n)= - S,B,.(X, Y) mod(S,, ..., S.-1) if n is not a power ot";,;
(4.4.4)

Fs(n)= =S, (p7'B.(X,Y)) mod(S,, ..., S.-1) if n is a power of p;

and if r is the smallest integer such that p"=n

Fv(n)=0 mod(V,,..., V,..) if n is not a power ot p,
(4.4.5)
Fy(n)=~-V,(p 'B.(X,Y))mod(V,,...,V,._)) if n=p"

5. A bit of binomial coefficient arithmetic

To prove the universality of various formal groups we shall have occasion to use
the following bit of binomial coefficient arithmetic several times in this series of
papers. There is nothing new about it. It is simply a restatement of Lazard’s
fundamental lemma for R = Z. Cf. Fréhlich [4] p. 60. The proof is practically
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identical with the proof given by Frohlich loc. cit. on pages 64, 65 for the cases
R =Q, R afield of characteristic p > 0.

Let nEN, n=2. We define v(n)=p if n=p", r €N, p a prime number and
v(n)=1if n is not a prime power. Consider the binomial coefficients (7), ..., (.%,).
Their greatest common divisor is v(n). Hence there exist A, €Z such that
MO+ G = v(n).

5.1. Lemma. Let X,,..., X,_, be indeterminates, X; = X,_, i=1,...,.n—1. Let
At ..oy Aoy be integers such that Xi(T)+ ...+ Au_1(u21) = v(n). Then every X can be
: “ritten as an integral linear combination of the expressions

(51.1) A1X1+...+/\n-l n-1s
(512) (l:_j) Xi+j - <k1+]> Xk+i’ i,j,k =1, i+j+k = n.

Proof. To prove this it suffices to show: (i) every X, can be written as a rational
linear combination of the expressions (5.1.1) and (5.1.2) and (ii) for every prime

number p, X; can be written modulo p as a linear combination of the expressions
(5.1.1) and (5.1.2).

5.2. The rational case. Takei=1;j=1,...,.n -2 k=n-2,...,2,1in (5.1.2) to
obtain the following matrix of coefficients (using X; = X._;):

One finds
det(A) = 2 (_n_;_ll (:‘) o= (—"—;—M v(n),

which takes care of the rational case.

5.3. The mod p case with n =p or (n,p)= 1. If n = p or (n,p) =1, then for every
i=1,...,n—1 we have (i,p)=1or (n—ip)=1. Foreach i=1,...,n—-1 let
a(i)€{i,n — i} be such that (a(i),p)=1. Using X; = X,., we can assume that
A =0 if i# a(i). We take a(l) = 1. Now consider the matrix of coefficients
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Ay Aac2) Aoy T P
Lt () e
vl lmn) o (V)
‘ 0
“(a(';;)il) 0 0 (a(1m)> o
where m =3n if (n,2)=2 and m =3i(n—1) if (n,2)=1. We have
det A’ = 2 5@———(—) (a(,)) ai

Ias L) < 5 L\ v(n
5 (a0) 5 (o) e = (o) 52
because A, =0 if i&{a(l),...,a(m)}

We see that det(A’)# 0 mod p because (a(i),p)=1 and either v(n)=n or
(n,p)=1. This takes care of this case.

Note that for this proof to work we only need to know that 2, ()=1modp in
case (n,p)=1 and ZA,(7)=p mod p* if n = p.

5.4. The mod p case with n =pm and m >1. Let n =pm and m >1.
Taking j =1 in (5.1.2) and using Xi.; = X; we find the expressions

(5.4.1) ~(pm =X +( + 1) X1

Taking i = pl and i + | = pl we see that mod p we can write the X, and X+
integral linear combinations of the expressions (5.1.2). And then taking i =
pi+l,...,pi+tp—2andi=pi—1,...,pi—p+2in (5.4.1) we see that modulo p
all X, with (i, p) = 1 can be written as linear combinations of the expressions (5.1.2).

To obtain the X,;, i = 1,...,m we use induction. The induction hypothesis is: if
Aiyoon, A, are such that 2A,(7)=v(n)mod p if v(n)# p and ZA.()=p mod p* if
v(n)=p then each X, can be written modulo p as a linear combination of the
expressions (5.1.1) and (5.1.2). The induction starts because of 5.3.

Let Y, Z be indeterminates. We have

(Yr+2Z°)y"=(Y+Z)" modp, (Y’ +Z°Y =(Y+Z) 'modp?.

It follows that

n _ pm\ _ /pv+x>=<p,) s ]
<pi) (pi>~<l>modp, s )= mod p ifr=1,

r+1
(’:) - (plf") = 0mod p if (i, p) = 1, (Pi >EOmodp2 ifr=1and (pi) =1.
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Hence
n—1 n m-—1 m
v(n) = 2 A (1) = Z A“’(i ) mod p if n is not a power of p,

n—1 m-—1
p= 2 /\,-(’.1> => /\,'1,,(’?>modp2 ifn=p ™ r=1.

By induction it follows that we can write the X,; modulo p as linear combina-
tions of the expressions (5.1.2) with p | i p|j, p| k and the expression
v(m)v(n)'(AX, .. F ApXnp) (Tesp. (X, + ...+ Ay X)) if v(n) # p (resp.
n)=p). This concludes the proof because v(n)#0modp if v(n)#p and
ecause we have already shown that the X, with (i, p) = 1 can modulo p be written
as linear combinations of the (5.1.2).

6. The universality theorems

We are now in a position to prove some universality theorems. The proof of
Theorem 2.5 follows the proof given in [1] by Buhstaber and Novikov slightly
adapted from the topological case to our algebraic setting. In both cases one has a
good candidate for being a universal formal group and in both cases one knows
enough about this formal group to be able to dispense with practially all of Lazard’s
difficult comparison lemma (wich now appears as a corollary) except for the bit of
binomial coefficient arithmetic which was discussed in Section 5. We first need a
lemma.

6.1. For each n &N choose A, ., EZ,i=1,..., n — 1 such that
Q n no\

5.1.1) /\l.,,<1>+...+/\,.,.,,.<n_1)— v(n).

Now let

6.12)  F(X.Y)=X+Y+ 2 XY, e,€Z[S]

Lj=1

and let
n-—l
(6.13) Yo =2 Ainlinn  n=23,....
i=1
Lemma. The y, are a set of polynomial generators for Z,S:, Ss....].

Le. every element of Z)[S:, Ss,...] can be written uniquely as a polynomial in
the y,, n =2 with coefficients in Z,,.

Proof. Immediate from (4.4.4).
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6.2. Proof of Theorem 2.5. (Universality of Fs(X.Y) for formal groups over
Z,, -algebras)) Let A be a Z,, -algebra and let

®21 G Y)=X+Y+ Y aX'Y

N2

be a formal group over A. Let A, and y, be as in 6.1. Now define

nl

622) ¢ Z,[S]— A by = Z Aunllon .
This is a well defined homomorphism because of Lemma 6.1. It is also certainly t
only possible homomorphism such that F*(X. Y)=G(X,Y), because such®,
homomorphism must take e, , into a.,. This takes care of uniqueness. So it remains
to prove that é(e, )= a., foralli,j =1. We have ¢(e,,)= a, because y,=e,,.So
with induction we can assume that ¢(e.;)=a,, for i+j<n

Commutativity and associativity of G and Fs mean that certain universal
relations must hold between the coefficients a.,. e.,. These are of the form

Ain o= dnoois Cont = €niin i=1,...,n—1

(6.2.3) ('?’)m.“—(’J]Tk)a,,k..=P.,k(am.,). Lik=1i+j+k=n

(’ j’) € (’ ? "') e)is= Pulens).  ijk=1i+j+k=n
where P, is a polynomial in the a,.; (resp. e..,) with m + [ < n. Now apply Lemma
5.1 to conclude that é(e,.,)=a,. . forall Ljk=1,i+j+k=n

We have now proved that F{(X, Y) over Z,[S] is universal for formal groups
over Z,, -algebra. It follows that Fs (X, Y) over Z[S] is also universal because there
is a one-one correspondence between homomorphisms Z, [S]— A arE
homomorphisms Z[|S]— A if A isaZ-algebra.

6.3. Corollary. Let F(X.Y) and G(X, Y) be two formal groups over a Z-algebra
Asuchthat F(X, Y)= G(X, Y)mod(degree n). Then there is an a € A such that

F(X.Y)=G(X. Y)+ a(r(n)'B.(X. Y)) mod(degree n + 1).

This is Lazard’s comparison lemma. (Cf. [10].) Of course it holds for all rings A, not
just for Z,, -algebras. To prove it for all rings A in the way we have done it for
Z,, -algebras requires first the construction of a (globally) universal formal group.
This will be done in part II of this series of papers [8].

6.4. p-typical formal groups. Let A be a characteristic zero ring. We define this as
aring A such that n€Z, a € A and na =0 implies n =0 or a = 0. The natural
homomorphism A — A ®,Q is then injective. Let F(X, Y) be a formal group over
A andlet f(X)= X + b, X"+ ... be a power series with coefficients in A ®,Q such
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that F(X, Y) = f'(f(X)+ f(Y)). Then F(X, Y) is p-typical iff f(X) is of the form
f(X)=X+b,X"+b,.X""+.... Indeed we have

f(fq'Y()(X)) = f(leuq ) + f(szl/q) +...+ f(ZqX”q)

from which the result readily follows.

6.5. To prove Theorem 2.8 (p-typical universality of Fy (X, Y)) we need a lemma.

Lemma. Let F(X,Y) be two p-typical formal groups over a ring A which is of
‘aracteristic zero or a Z,-algebra. Suppose that

(6.5.1) F(X, Y)=G(X, Y)mod(degree p" + 1), r=0

then

(6.5.2) F(X,Y)=G(X, Y)mod(degree p"*").

To prove this lemma for all rings A we need the comparison lemma for all rings A,
which we have not yet proved. So the proof of this lemma and also of Theorem 2.8
which depends on this lemma still has a gap. This gap will be filled in [8].

Proof of the lemma. We use induction. Suppose we have already proved that
F(X,Y)= G(X, Y)mod(degree m), p"'>m =p’" + 1. Then by the comparison
lemma we have

(653)  F(X,Y)=G(X, Y)+a(v(m) 'B.(X, Y)) mod(degree m + 1)

for a certain a € A. Let g be a prime number different from p which divides m. It
follows directly from (6.5.3) that

'yU(ZlX”q)"f"F. .. +F'Y()(ZqX”q)
(6.5.4) = 'Y(;(ZlX”q ) +G ca +G ')’()(Zle/q)
+aw(m) (Z,X" + .+ ZXU)m = ZpX e = = ZmX )

where the congruence is mod(degree m +1). Now if 7, = Z7 + ...+ Z} and o, is
the i-th elementary symmetric function in the Z; we have

Tm :0171n~1_027m72+~~-+(_1)"“]0-47’"—‘, if m >q
(6.5.5)
Ty = 01Ty — T2y + ...+ (= 1) 'og.

It follows from (6.5.4) and (6.5.5) that
(6.5.6) £y0(X) = 1y(Y) + (v(m)7'q)aX ™" mod(degree m +1).

On the other hand because F(X,Y) and G(X, Y) are p-typical we know that
£5y0(X) = £ 70(X) = 0. Therefore

(6.5.7) (v(m)'q)a=0
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for all prime numbers q different from p dividing m. If m is a power of g then
(6.5.7) says that a =0 and if m is not a power of a prime different from p then
v(m) =1 and there is a prime number g, # p such that g,a = 0. It follows that a = 0
because A is a Z,-algebra or of characteristic zero. O

6.6. Proof of Theorem 2.8 (p-typical universality of Fy(X, Y)). First of all
Fy(X,Y) is a p-typical formal group, because of 6.4. Now let G(X,Y) be a
p-typical formal group over a ring A. Suppose we have already constructed
¢, :Z[V]— A, r =0 such that

(6.6.1)  F%X, Y)=G(X, Y)mod(degree p" + 1) ™
(the case r = 0 is trivial, take ¢o(V:)=0, i =1,2,...) and suppose we have proved
that such a ¢, is uniquely determined on the subring Z[V,..., V] of Z[V] by
(6.6.1). Because F¥(X, Y) and G(X, Y) are both p-typical formal groups it follows
from (6.6.1) and the comparison Lemma 6.3 that

(6.62)  FUX Y)=G(X. Y)+a(p™'By~(X, Y)) mod(degree p"*' +1)

for a certain a € A. Now define ¢,., as follows, ¢..(Vi)= ¢, (Vi) for i<,
¢ n(Vio)=—a, ¢..(Vi)=0if i >r+ 1. Then because of (4.4.3) we have

(6.63)  Fyn(X,Y)=G(X, Y)mod(degree p"™' +1)
and it is also clear that ¢, is uniquely determined on Z[ V..., V,.,] by (6.6.3). [

7. Isomorphisms

In this section we first want to prove Theorem 2.10. Now to prove that the formal
groups FV(X, Y) and F5(X, Y) and that the formal groups FY(X, Y) and F¥,r
strictly isomorphic can be done in the standard way by constructing the isomox=-
phism step by step using the comparison lemma to calculate the next coefficient at
each stage. Here A is the appropriate localization map A — A ®2Z,).

It then follows that FY(X, Y) and Fs(X, Y), and Fy (X, Y) and Fy - (X, Y), are
also isomorphic.

Another proof uses what I like to call the functional equation lemma (cf. 7.1
below). This proof gives directly that the pairs of formal groups F%5(X, Y) and
Fs(X,Y), and Fy(X, Y) and Fy,r (X, Y) are isomorphic. Later we shall also find
this lemma useful or at least suggestive in the construction of a global universal
formal group (cf. [8]).

7.1. Functional equation lemma. (i) Let f(X), i =1,2 be a power series over
Q[V; W] of the form f(X)= X +... such that

7.11) fi(X)=gX)+ 2 Zx pem( XY, i=1.2
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with g(X) € Z[V; W][[X]] and g2(X) € Z,,[ V; W][[X]]. Let hi(X) and h2(X) be
power se_ries of the form hi(X)= X +... over Z[V; W], respectively Z,[V; W],
and let fi(X) = f,(h/(X)). Then one has

712 fO=g(X)+ 32U, =12

with ,(X) € Z[V; W][[X]] and §:(X) € Zo,[V; W][[X]].

(ii) Inversely, suppose we have power series f,(X), fi(X), i = 1,2 of the form

fi(X)=X+..., fi(X)=X+... such that (7.1.2) and (7.1.1) hold with g,(X),
‘(X) €Z[V; W][[X]] and g:(X), §(X) € Z,,,[V; W][[ X]] then there exist power

ries h,(X) (resp. h(X)) of the form h;(X)= X + ... with coefficients in Z[ V; W]
(resp. Zy)[V; W]) such that fi(X) = f(h(X)).

In other words, if a power series f(X) satisfies a functional equation of type
(7.1.1) then all power series obtained by a strict substitution satisfy the same kind of
functional equation, and inversely if two power series both satisfy a functional
equation of type (7.1.1) then they are strict substitutes of one another.

N.B. It is not true in general that g (X)= g (h(X)).

7.2. Proof of part (i) of the functional equation lemma. It is obvious that the only
denominators occurring in f,(X) and fi(X) are powers of p. Therefore the only
denominators occurring in

fn(X) - i %‘ f‘lp"’(X”")

n=1
are powers of p. It suffices therefore to prove (7.1.2) for the case i = 2.
Precisely as in the proof of Lemma 3.3 we have that
@ X =hXT) mod(p)
and

fEh(X)T) = fEV(RET(XPT)) mod(p).
It follows that we have mod 1 that

FiX) = filha(X) = galh:(X) + 3, % FERAX Y

x

= 3 L) = 3 P,

x
n=1 n=

7.3. Proof of part (ii) of the functional equation lemma. If there exits a h,(X) such
that f,(X)=fi(h(X)) then it is equal to f(‘(f[(X)). So because the only de-
nominators occurring in f,(X) and f(X) are powers of p, it suffices to prove the
case i = 2. Let ha(X) = f3'(f(X)). Write ho(X)= X + b.X"+ ... and suppose we
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have already proved that b € Z,,[V, W] for i < n. Exactly as in Lemma 3.3 one
now shows that

FE (X)) = FE(REV(XP")) mod(p, degree n + 2).

It follows that we have mod (1, degree n + 2)

g:(h(X)) = fa(hx(X)) = 2 %" fE7(hAXYT)

= fi(h(X) - S —g— FEREV(X™))

mmmmm

= \ n -
(00 =3 XY = 8:(X) =0
which shows that b, is integral because g,(X) is of the form g.(X)= X +.... [

7.4. Proof of Theorem 2.10. Apply part (ii) of the functional equation lemma to
fs (X) and fY(X), and fy +(X) and fv(X).

7.5. Corollary. Every formal group over Z.algebra A is strictly isomorphic to a
p-typical formal group over A.

This follows directly from the isomorphism between Fs (X, Y) and Fy (X, Y)and
the universality of Fs (X, Y) for formal groups over Z,,-algebras. This is a universal
way of making formal groups p-typical and it agrees with Cartier’s formula for
making formal groups p-typical (cf. [2]). This last fact is easily checked by
calculating what Cartier’s formula does to (the logarithm fs (X) of) Fs (X, Y).

7.6. To prove Theorem 2.12 we first need a lemma similar to Lemma 6.5. m
Lemma. Let F(X,Y) be a formal group over A, where A is a Zgyalgebra or a

charcteristic zero ring and let y(X), 8(X) be two p-typical curves for F over A .
Suppose that

(7.6.1) v(X)=68(X)mod(degree p" + 1)
then

(7.6.2) v(X) = 8(X)mod(degree p"*).
Remark. This lemma is not true for arbitrary rings A.

Proof of the lemma. We use induction. Suppose we have shown that y(X) =
5(X)mod(degree m) where p"*'>m =p" + 1. Let q be a prime number dividing
m different from p. We have y(X) = 6(X)+ aX™ mod(degree m +1) for a certain
a € A. 1t follows that (f,7)(X)= (£,8)(X)+ gaX™* mod(degree (m/q)+1). But
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y(X) and 8(X) are both p-typical, therefore ga =0 from which it follows that
a =0 because A is a Zg-algebra or a characteristic zero ring.

7.7. Proof of Theorem 2.12. (Universality of the triple (Fu(X,Y), avr(X),
Fv.r (X, Y)) for triples over Z,-algebras or characteristic zero rings.)

Let A be a Z,-algebra or a characteristic zero ring and let F(X, Y)and G(X, Y)
be two p-typical groups over A and «(X) a strict isomorphism from F(X,Y) to
G(X,Y). Because Fy (X, Y) is universal for p-typical formal groups there is a
unique homomorphism ¢ : Z[ V]— A such that F4(X, Y)= F(X, Y). Suppose we
,\, ‘ve already found a homomorphism ¢, :Z[V; T]|— A such that

(7.7.1) F&(X,Y)=F(X,Y), ie. ¢. extends ¢,
(7.7.2) o (X)=B(X)mod degree (p" + 1)

and suppose we have proved that ¢, is unique on Z[V;T,,...,T,]JCZ[V; T].
Write . (X) for a{r.(X). Now quite generally if 8(X) is a strict isomorphism from
a formal group H\(X,Y) to a formal group H,(X,Y), ie. if B(H\(X, Y)) =
H>(B(X),B(Y)) and if HAX,Y) is a p-typical formal group, then B7(X) is a
p-typical curve for H,(X, Y). (Very easy to check.)

Now B(X) is a strict isomorphism from F(X, Y)to G(X, Y) and a.(X) is a strict
isomorphism from F(X, Y) to F{ (X), because of (7.7.1). Both G(X,Y) and
F% (X.Y) are p-typical formal groups. Therefore we have that

(7.7.3) B7'(X) and «,'(X) are p-typical for F(X, Y).
Using (7.7.2), (7.7.3) and Lemma 7.6 we see that
(7.7.4) ot (X)=B(X)+aX"" mod(degree p"*' + 1)

r a certain unique a € A.
Now from (4.3.2) e.g. we see that

(7.7.5)  fur(X)=fu(X)+ T.o X" ' mod(T,, ..., T, degree p"*' + 1).
It follows that we have for av.r(X)= f3'+(fv (X)) that
(7.7.6)  avr(X)=X-T..X" "'mod(T,..., T, degree p""' + 1).

Now define ¢, :Z[V:T]—= A by ¢ = b onZ[V:T......T.]. & l(T.))= —a

¢..(T)=0, i>n+1. Then ¢,. satisfies (7.7.1) and (7.7.2) with n replaced by

n+ 1and ¢, is unique on Z[ V; T...., T...]. Both, because of (7.7.6) and (7.7.4).
O

7.8. Remark. The triple (Fy(X, Y), @v.+(X), Fv.r (X, Y)) is not universal for tri-
ples over arbitrary rings. The easiest counter example is probably the following.
Take A = Z/(q) (g a prime number). Choose a prime number p > g. Let F(X, Y)=
X+Y, a(X)=X+X% G(X, Y)=X+Y. Both F(X,Y) and G(X.,Y) are p-

typical and «a(X) is a strict isomorphism (over Z/(g)").
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7.9. Let v = (v, v, ...) be a sequence of elements of a ring A. We write F,(X, Y)
for the formal group FU(X,Y) where ¢ : Z[V]— A is the homomorphism which

takes V; into v, i =1,2,.... Every p-typical formal group over A is equal to an
F.(X,Y) according to Theorem 2.8.

Corollary 1. Let A be a Z,-algebra or a characteristic zero ring. The formal groups

FAXY), FAX,Y) are strictly isomorphic iff there exist t,,t,,...€ A such that
F (X, Y)=F.(X,Y).

Corollary 2. Let A be a characteristic zero ring. The formal groups F,(X,Y) awm
F, (X, Y) are strictly isomorphic iff there exist t,, 1,,... € A such that Lo

a(v)-a(v)=1,€A CAR.Q,
a(v)—a(Witi—a(v)=nLE A,

ax(v) = ai(v)t5— ax(v)t? — ax(v) = 1, € A,
where a;(v) (resp. a;(v')) is the element of A ®.Q obtained by substituting v,, v,, . . .
(resp. vi,v3,...) for Vi, V,, ... in the polynomials a;,(V). The t,,t, ... are unique if
they exist.

This follows from (4.3.2) and Theorem 2.12. The ¢y, t,, ... in Corollary 1 above
need not be unique.

8. Concluding remarks

In Honda [9] the reader will find a construction for formal groups very similar to
the constructions carried out here. The integrality proof is also similar. (They weﬂ
found indepently however.) In Ditters [3] still other constructions can be found of
similar flavour. Both Honda and Ditters work with power series f(X) =2 aX' for
which the a; satisfy relations like (4.3.1) rather than with power series which satisfy
a functional equation like (3.1.1). It may be of interest to remark that fy (X) seems
to be the only power series which satisfies a relation like (4.3.1) and a functional
equation like (3.1.1).

The p-typical formal groups Fv (X, Y) for various p can be fitted together to
yield a (global) universal (one dimensional commutative) formal group Fu (X, Y').
There are also more dimensional versions of Fv (X, Y) and Fu (X, Y). Cf. [5]
and [8].

The explicit formulae (4.3.1) relating the coefficients of fv (X) and a similar
formula concerning fi, (X), the logarithm of the global universal formal group, can
be used to find generators for the coefficient ring BP,(pt) of Brown-Peterson
cohomology and the coefficient ring MU ,(pt) of complex cobordism cohomology.
Cf. [5] and [6].
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1. Introduction

In this paper we show how to fit together the various (universal) formal groups

Fy (X, Y) for Z,-algebras of [2], to obtain a global (one dimensional commutative)
formal group.

If fi. (X)EZ[U,, U, ...][[X]] is the logarithm of a universal formal group over
Z[U]. then it follows from the functional equation lemma [2, Lemma 7.1} that
fo (X)) must satisfy

=1

> Ut g .
s —_ £ (Lg»{r’ . X
@ FoO- 2 X EL UV

for all prime numbers p. So the natural thing to do is to construct the power series
fu (X) according to the recipe (1.1) starting with .X. The first thing one writes down
is then

(1.2) x+%3 X2+y—" X-‘+(

2 U.Uz, —L—J—‘) X+

I, LU ULURY
UE, L) s Uy (UL UL

s f

+

However, it now appears that the two prime numbers 2 and 3 interfere with one
another. The term 6 ' U, U3, which has to be there because of condition {1.1)in case
p =3, prevents (1.2) from satisfying (1.1) for p = 2, and vice versa with respect to
the term 6 'U.U?Z The solution is to insert suitable coefficients. Thus

U X3+—QE X“+(

U:U§+U4 U5
2 3

20U, ULUS

X+ 3 2

)N

(1.3)
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does satisfy (1.1) mod degree 7 for p =2,3. (To construct a universal formal group
it is also necessary to insert U,X° so as to have a free variable available in
dimension 6.) So the only problem in constructing a universal formal group is in
showing that one can always find suitable coefficients. This readily leads to the
following formula for the logarithm hy (X) of a possible universal formal group:

=

hy (X)=> a(U)X, a=1

i=1

(1.4) a.(U)=

Ly M@ d) n@eged)  1ed) e gy
qu-.-.qs.d) D1 p2 Ps
where ¢ is a power of the prime number p, U, =1, and the sum is over all
sequences (qi, - - -, 4 d) with g; prime powers and d = 1 or divisible by at least two
different primes, such that q,...q.d = n. The coefficients n(q.,...,q. d) can be
chosen arbitrarily provided they satisfy the congruences

n(qi,-.., g.d)=1modp, if pi#p,
(1.5) n(q--., g.d)=0modp: if pi#p=...=pi # Ppriay
n(qi...,q,d)=1modp ifpr=p.=...=p#& prr

It turns out that Hy (X, Y)=hi'(hy (X)+ hu(Y)) is indeed a universal formal
group (over Z[U]). Cf. [3] and [4].

If one chooses the n(qi,...,q,d) in a rather special way (cf. [3] and [4] for
details) then one finds reasonable formulae for the U, in terms of the a;(U). Now
there is another universal formal group viz. the formal group of complex co-
bordism. Using the formulae for U, in terms of a;(U) one then finds polynomial
generators for MU(pt) in terms of the (classes of) complex projective spaces. Cf. [ﬂ
and [4]. -

Subsequently, Kozma [6], using Witt vectors and a theorem of Cartier, wrote
down similar generators for MU(pt). These are different and satisfy a more elegant
recursion formula. Translating back one obtains another universal formal group.
The formula for its logarithm f, (X) = 2 m, (U)X" is very similar to (1.4) above (cf.
(2.2.1) and (2.2.4) below).

This logarithm also satisfies functional equations (1.1), which is the essential
property for integrality of the corresponding formal group by the functional
equation lemma [2, 7.1].

It is slightly more complicated in terms of the number of different monomials
occurring in the m;(U) (compared to a;(U)) but, I think, superior because of the
more elegant recursion relations. The calculations which one has to do to prove that
these two different universal formal groups are integral (i.e. defined over Z[U]) are
identical.

As in the local case (cf. [2]) using the approach of Buhstaber and Novikov [1] one
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can prove directly that Fy (X, Y) is universal, without using Lazard’s comparison
lemma, which now appears as a corollary.

Section 2 below contains the main constructions and results. In Sections 3, 4, 5 we
prove the integrality and universality theorems. In Section 7 we show how to
choose the coefficients in such a way that nice recursion relations result. In Section
6 we construct a universal strict isomorphism of formal groups.

Some of the applications of this paper and the previous one [2] to complex
cobordism and Brown—-Peterson cohomology will appear in [5]. Other applications
will appear in subsequent papers. Most of the results of this paper have appeared in

eprint form in [4]. The conventions of [2] remain in force, in particular all formal

Qoups will be commutative and one dimensional and all rings are commutative and
have a unit element.

2. Constructions, definitions and statement of main results

2.1. Choice of coefficients. For each s = 1 and each sequence (i), ..., L), ; EN\{1}
let n(ii,...,i) be an integer such that

.1.1)  n(in.....i)=1 ifs=1;.

n(in...,)=0modp™" ifis.... i,_, are powers of
(2.1.2) ) ) )
a prime number p and i, and i, are not powers of p;
n(i,..., ii\)=1modp’ if iy,..., i, are powers of a prime
(2.1.3) o
number p and i,., is not a power of p.
Note that there are (many) numbers n(iy,...,I) satisfying these conditions;

i1,...,1) has to satisfy two different congruences if and only if i, and i, are
powers of two different prime numbers.

2.2. Constructions. We now define the power series fi (X), fu (X), fu.r (X) by the
following formulae:

x

(2.2.1) fU(X)=k2mk(U)X", my(U)=1,

=1

x

(2.22) fe(X)= 2 m(U)X* mU)=1,

k=1

x

(2.2.3)  for(X)= 2 m(U, T)X% m(U, T)=1

k=1

_ n(iy...,5) n(iy..., i) n(i,) i, i
(2.2.4) mk(U)—m‘Z_.m ST e ...V(l_s)ui‘U..z...U.,
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where v(i;)= p if i; is a power of the prime number p and v(i;)=1 if j; is not a
prime power and where the sum is over all sequences (i,,. .., i;) with i; € N\{1} and
s=1andi,...i, = k. The numbers n(iy, ..., i) are such that (2.1.1)~(2.1.3) hold.

225) i (U) is obtained from m, (U) by substituting 0 for all U,

with d >1 and d not a power of a prime number.

22.6) m(U,T)=

n(iy ..., 6) nlsy...,i)  n(i) ; o o o
= - . ~ . - l]uU.; ) Ui:_.l s—2 Uusl el . ;l...l:_l X
B 7 ST % R (Ut @) T )

.

The power series fu (X) and fu (X) are over Q[Us, Us,...] = Q[U] and fu, r (X) is a
power series with its coefficients in Q[U., Us,...; Ts, Ts,...]. We now define

Fu (X, Y)=fo(fu (X)+fu(Y)),  Fu(X, Y)=Fo(Ffu(X)+ fu (Y)),
(2.2.7)

Fur (X, Y) = for(fur (X)+ fu,r (Y)).

2.3. Integrality theorem. The power series Fy (X, Y), Fu(X,Y) and Fyr(X,Y)
have their coefficients respectively in Z[U], Z[U], Z[U, T.

Le. these power series are formal groups over Z[U] and Z[U, T].
2.4. Universality theorem. The formal group Fy, (X, Y) is universal.

Le. for every ring A and every (one dimensional commutative) formal group
G(X,Y) over A there is a unique homomorphism ¢ :Z[U]— A such that
F3(X, Y)=G(X,Y).

2.5. Isomorphism theorems. (i) The formal groups Fy (X, Y) and Fy (X, Y) are”
strictly isomorphic (over Z[U]).

(i) The formal groups Fu (X, Y) and Fu r(X,Y) are strictly isomorphic (over
Z[U, T), where Z[U] is seen as a subring of Z[U, T]).

Let ayr(X) be the unique strict isomorphism between Fy(X,Y) and
Fur (X, Y), ie. aur(X)= fur(fu (X))

2.6. Universal isomorphism theorem. The triple (Fu (X, Y), au,r(X), Fu,r(X,Y))
is universal for formal groups and a strict isomorphism between them.

Le. forevery ring A and every triple (F(X, Y), a(X), G(X, Y)) consisting of two
formal groups F(X, Y), G(X, Y) and a strict isomorphism a (X) from F(X, Y) to
G(X, Y) there is unique homomorphism ¢ : Z[U, V]— A such that F{(X, Y)=
F(X,Y), at+(X)=a(X) and F{+(X, Y)= G(X, Y).

o
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3. Some congruences and lemmas

This section contains some technical results on the fy, fu.r and n (i, ..., i) which
will be needed in the sequel.
3.1. Some congruences. Directly from the definitions (2.2.1}-(2.2.7) one sees that
(3.1.1) fu(X)=X+v(n)'U.X" mod(U., ..., U.-,, degree n + 1),
(3.1.2) fur(X)=fu (X)+ T.X" mod(Ts, ..., T.-i, degree n + 1),
@ 135 <« (X)=X-T.X mod(Ts.... T,y degree n + 1),
B14) fu(X,Y)=X+Y - U.(v(n)"'B.(X, Y) mod(Us,..., U.,, degree n + 1)

where B.(X, Y)=(X+ Y)"— X" - Y" (If n is a power of a prime number g, then
B, (X, Y) is divisible by g = v(n).)

More precisely one has the following. Let U(n) be short for
(U, Us,..., U,0,0,...) and let fom(X), Fum(X, Y) be the formal power series
obtained from f¢ (X) and F,, (X, Y) by substituting zero for U,.,, U..., ... . Then
one has (immediately from (2.2.1)(2.2.7)):

(3.1.5) fo(X)=fea(X)+ v(n+1)'U,.. X" mod(degree n +2),

3.1.6)  for (X)=fero(X)+ Tonn X" mod(degree n +2),

(3.1.7) apr (X)=ae 10(X)— T, X" mod(degree n + 2),

(3.1.8) Fu (X, Y)=FoodX. Y)= Unr(v(n + 1) "B y(X. Y)) mod(degree n +2).

3.2. For each sequence (i, ....14). i, € N\{1} let

. oon(in ..., i) n(,) n(.....0) - )
'.2.1) d(iy,.... i) = () ) (i) d(is..... L)
where the n(i,.... i,) satisfy the conditions of 2.1.
3.3. Lemma. (i) If 1Zv(iy=v)=...=v(,)# v(i,.). r<s, then
p'd(i,...,i.)EZ where p = v(i\)=...=v(i,). (If r = s then v(i,) # v(i,.) Iis taken
to be automatically fulfilled.)
(i) If v(i,) =1 then d(i\, ..., L)EZ.

Proof. We prove both parts of the lemma simultaneously by induction on s. The
case s =1 is trivial. If s > 1 we distinguish four cases.

Case (1): v(i)=1= v(is). Then d(i»....i)EZ and hence d(in....i)=
v(i) 'nlin, is. . i)d(is ... L) E L.

Case (2): v(iy)=1# v(i:)=p.Let v(ix) =...= v(i,) # v(i.,). Then by induction
p''d(ix...,i,)EZ and hence d(i,..., iy=v(i) 'n(, i i)d (. e Z

because n(iy,is..., i,)=0mod p'~' by (2.1.2) in this case.
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Case (3): 1# v(i)= v(i:). Then p"'d(in....L)EZ and hence

Case (4 1# v(i#F v(ix)# L. Letg=p(i2)=...= v(i,) # (i,-1)- Then by induc-
don g' 'd(in. ... i.\)€ Z and hence pd(is,...,i)= n(iy...,i)d(is ..., i) EZ be-
cause by (2.1.2) n(iyy iz.... i) =0modq" " in this case. 0

3.4. Lemma. Let 1 # v(i)=p, then d(ir,..., i)~ p 'd(is.... i) E Z).

Proof. We distinguish three cases ﬂ
Case (1): v(i»)=1. Then d(i....,i,)EZ by Lemma 3.3 and hence

d(in.... iy=pld...... Ly=p'(niy,.... L)-1d(is....,)EZ
because nli..... i,)=1mod p in this case by (2.1.3).
Case (2): 1# v(i)=q#p. Then d(i..... i,\)EZ, by Lemma 3.3 and
dii..... i)—=p 'd(i.... i,YEZ,, as in case (1).
Case (3): v(i2)=p. Let v(i:)= v(i)=...= v(i) # v(i,.,). Then p"'d(ix, ..., i)
€ Z and hence
di,.... iy-pld(is. .., iL)y=p (n(i...., i)y—Dd(i ..., i\ EZ
because according to (2.1.3) n(iy, ..., i,)=1mod p" in this case. |

4. Proof of the integrality theorems

4.1. For cach k = 2. let ¢, be an element of Z[U; T] and for each i € N let ¢’ be
the polvnomial obtained from ¢, by replacing each U, and T, by their i-th powers~, |
U and T We define {

(4.1.1) X =Y eX, e =1,

F12) o= S d(ie . UUE L US (U e (i )ef )
(1) i
where the sumisoverall (4., ... i) such that i, .. = i i, ENVIL and di, ..., i)

is as in (3.2)
4.2. Lemma. For all prime numbers p we have that

2.0 gX)-2 %ﬂ—“ g (X" VEZ, U T][X]]

k=1

Proof. Consider the coefficient of X" in (4.2.1). If (p, n) = 1 this coefficient is equal
to e, and is in Z,[U; T] by Lemma 3.3. Now suppose (p,n)>1 and let n=p'i, |
(p,i)= 1. The coefficient of X" in (4.2.1) is then equal to
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“.22)  ep—Lem, . _Ur o

p
For the terms of e, with v(i,) # p we have that d(iy,..., i) € Z,. It remains to
deal with the terms with i, = p,p%...,p". We have, if i>1 or 1 <7,

2 A i) U, Ulys2(Ui o w(i) el i)

it=p

=2 % n(isy .., i)d (i, UL U s (U 5+ v(i)el ).

ip=p'

And because of Lemma 3.4 we see that the part of e,; with i;=p' minus
P U, e% isin Z,[U, T]if i>1ort<r

And if i =1, t=r we have that the part of e, with i,=p’ is equal to
P 'Uy+c,y=p'Upef + ¢, and ¢, EZ[U; T]. So we see that (4.2.2) is in
Z,,|U;T]. ]

4.3. Proof of the integrality theorem 2.3 (parts (i) and (iii)). Taking ¢, = 0 for all
k =2 we get g(X) = f. (X). Hence f.- satisfies a functional equation (4.2.1), and we
can apply [2, 3.3] to conclude that F, (X, Y)E Z, [U][[X]] for all prime numbers
p- hence Fu, (X, Y)e Z[UI[[X. Y]]

Taking ¢x = Ti. k =2,3....we find g(U) = fo +(X) and the same argument gives
that Fu ((X. Y)EZ{U T X. Y]]

4.4. Proof of the integrality theorem 2.3 (part (ii)). F. (X.Y) is obtained from
F; (X, Y) by substituting 0 for all U, with d not a power of a prime number. So

Fu(X,Y)is integral because Fi (X, Y) is integral. (One can also show that fo(Xx)
‘tisﬁes a functional equation of tvpe (4.2.1) for all p.)

5. Proof of the universality theorem 2.4

This proof is completely analogous to the proof of universality of Fs (X, Y)in [2].

5.1. For each n € N\{1} we have that g.c.d. ((7..... ()= v(n). Choose A, EZ
such that

n n _
G.1.1) A (1> ot A (n - 1) = v(n).
Write
(5.12) F (X, Y)=X+Y+ 2 &X'V
ij=1

and define
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"y "l
G113 =S e,

5.2. Lemma. Thev.. n =2.3... area polynomial basis for Z{U| = Z[U,, U+, ... ].

Le every element of Z{ U] can be uniquely written as a polynomial in the y, with
coethicients in Z

Proof. This follows directlv from (3.1.4).

5.3. Proof of the universality theorem. Let A be a ring and G(X,Y) a formal
group over A. Write

(5.3.1h GIX.Y)=X+Y + S a,X'Y'

Now define ¢ : Z[U] — A by the requirement é(y.) = 2.} A..a. . .. This is a well
defined homomorphism because of Lemma 5.2, Further if ¢ is a homomorphism
Z|U]— A such that F{(X.Y)= G(X.Y) then we have ¢(e,) = a, and hence
Ji(v.) = d(v.). This takes care of uniqueness. One now proves that é(e,) = a,
exactly asin [2,6.2]. O

5.4. Corollary (Lazard's comparison lemma). Let A be a ring and F(X,Y) and
G(X.Y) two formal groups over A. Suppose that

(5.4.1) F(X.Y)=G(X, Y)mod(degree n).
Then there is a (unique) a € A such that

(3.4.) FIX.Y)=G(X, YY)+ a(r(n) 'B.(X. Y)) mod(degree n + 1). p

This follows directly from Theorem 2.4 and (3.1.5).
This corollary completes the proofs of Theorem 2.8 and its corollaries in [2].

6. Isomorphism theorems

6.1. Proof of Theorem 2.5. Let F(X, Y) and G(X.Y) be two formal groups over
ZIU.T] with logarithms f(X). g(X)EQIU:T][[X]]; ie. F(X,Y)=
X+ f(Y) GX.Y)=g (g(X)+g(Y)). The formal groups F(X, Y) and
G (X, Y) are strictly isomorphic if and only if g '(f(X))€ Z[U:T][[X]] and this is
the case if and only if g '(fIX)EZ,[T; U][[X]] for all prime numbers p.

The power series fi (X), fo {(X), fo +(X) all satisfy functional equations (4.2.1).
Hence it suffices to apply the functional equation lemma [2, 7.1] to prove
Theorem 2.5.
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6.2. Proof of Theorem 2.6 (universality of the triple (Fy (X, Y),au r (X),
Fur(X, Y))). Let F(X, Y) and G(X, Y) be two formal groups over a ring A and
@(X) an isomorphism from F(X,Y) to G(X,Y). Because of universality of
Fy (X, Y), there is a unique homomorphism ¢ : Z[U]— A such that F%(X, Y)=

F(X,Y). Suppose we have already found a homomorphism ¢, : Z[U, T]— A such
that

(6.2.1) FHX, Y)=F(X,Y), ie. ¢, is equal to ¢ on Z[U]CcZ|U; T],
(6.2.2) ar (X)= a(X)mod(degree n)

'd suppose that ¢, is unique on the subring Z[U; T, ..., T,.,] of Z[U; T]. There
1S a unique a € A such that

6.2.3) alr (X)=a(X)+ aX" mod(degree n + 1).

Now define ¢n+l by ¢H+I(Ui)=¢(u); ¢"+1('Ti)=¢ﬂ(Ti)w i= 1,...,11. ’"1’
¢eei(Tn) = —a; ¢un(Ti)=0, i=n+1. Then (6.2.1) and (6.2.2) hold with n
replaced by n + 1 and @, isunique on Z[U; T, ..., T,], both because of (3.1.7).

6.3. Remark. The arguments of 6.1 show that if g(X) is any of the power series

defined by (4.1.1) and (4.1.2) and G(X, Y)= g '(g(X)+ g(Y)), then G(X,Y) isa

formal group over Z[U; T] (by 4.2 and 4.3) and G (X, Y) is strictly isomorphic to
Fur(X, Y).

7. A special choice for the n(i,,..., i)

In this section we define special n(ii,..., i), which are such that there are
8sonab1e formulas for the U, in terms of the m;(U).

7.1. For each prime number p and each i € N\{1}let c(p, i) be an integer such that

c(p,i)=1 if v(i)=1
c(pp)=1
(7.1.1)
1 modp
c(pi)= { if v(i)=q%# p.
0 modg

We now define b(iy,..., i) for all sequences (ii,...,i) with i; EN\{1} by the
recursion formula

b(i) =[] c(p, i),

pli

(7.1.2)
b(iv,...,i)= [l c@i)b(is... i) ifs=2

plit..is
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where the product is over all prime numbers p which divide i;... . (The factor
c(p, i;) occurs only once, irrespective of how high a power of p divides i;...1.)
Finally we define

(7.1.3) n(i,,...,i,)=—z%:~"—§‘—§ if s=2,and n(i)=1.

7.2. 1t follows directly from (7.1.2) that

721 b(,... i) = IH c(p.ii) ]_H‘ A H, c(p, i) H c(p,iv)

plir...iy p iy ig—y p | iz

and hence that

(722)  n(in....i)= [] c(pi) ['I C(p,i,-q)..-nC(p,lz)HC(Pah)

pPin Plh plir
pAisz. i ptiz..dg— p*x;

7.3. Lemma. The n(i,,..., 1) defined by (7.3.1) satisfy conditions (2.1.1)~(2.1.3).

Proof. (2.1.1) is satisfied by definition. Suppose that 1#p=v(i)=...=
v(i,) # v(i.1). First let r =2. The only prime number dividing i, is p, and p also
divides i, izis, ..., 4z2...is-;. Therefore n(i,,...,i,)=1 in this case. Now let
r = 1. The only prime dividing i, is p and ¢(p, i) =1 mod p for all i € N\{1}. It now
follows from (7.2.2) that n(i,...,i)=1modp. This proves (2.1.3). Now let
v(i)#p=v(i:)=...=v(i,) # v(i+,). Then there is a prime number g which
divides i, but does not divide i, i»i3,..., ... L. It now follows from (7.2.2) that
n(iy, ..., i) contains the factor c(q,i:)c(q,is)...c(q.i). But ¢(q,i)=0 modp,
because v(i,)=p# 1 for t =2,...,r. This proves (2.1.2).

7.4. Let d(is,..., i) be as in 3.2, i.e. L
(k) )
(7.4.1) d(iy,..., i) (i) )

then we have by (7.1.3)

(7.4.2) d((:,”. 1: ?) V(ll}) ) IHA..-, c(p, i) fors=2.

Note that this number depends only on the product i, ... I, and i,. We define for all
n, d €N\{1}

(7.4.3) (n,d) =[] c(p,d).

pln
7.5. A Recursion formula for the U, in terms of the m,(U)

We have according to (2.2.4) and (7.4.1) that
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m,(U)= z d(iy, .., i) U Ul .. Ui

I

5 Bl (iU, U U+ s U,

s=2 V(is 14

=3 %‘—a—;ﬁmw(U)U:“‘W(n)*'un.

d#1,n

we find

v(n)m(U)=U, + > p(ndr(n) m (UYU Y

din v(d)

d#ln
it the factor v(d)'w(n)u(n d) is always integral. Indeed, this factor is
integral if v(d) = 1 and if »(d) = p = v(n). Andif v(d) = p# v(n) thereis
number g # p dividing n so that u(n, d) contains a factor ¢(q, d) which is
1t to zero mod p by (7.1.1). Note also that v(d)'v(n)u(n,d)=1 if
(and d | n) and that »(d) 'v(n)u(n,d)=1if v(d)=1 (and hence also
). So the only factors v(d) 'm(n d)v(n) different from 1 occurring in
ave v(n)=1 and v(d)# 1. Cf. also [6].

wark. Let Ho (X, Y)=h/'(hy (X)+ hy (Y)) where hy (X) is the power
fined in (1.4). Then one has (i) Hy (X, Y) has its coefficients in Z[U]; (ii)
al groups Hi (X, Y) and Fu (X, Y) are strictly isomorphic over Z[U]; (iii)
”) is a universal formal group. These things are proved in exactly the same
he corresponding statements for Fy, (X, Y).

ural more dimensional generalization of Hy (X, Y) is discussed in [4]
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