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1. Introduction 

This is the first of a series of papers in which we first give fairly explicit formulas 
for universal commutative formal groups and then proceed to give various 
applications of these constructions to e.g. complex cobordism and Brown-Peterson 
cohomology (part III), norm maps (part VII), classification theory via 
Cartier-Dieudonne modules (part VI) and formal moduli (part V). The following 
special case may serve to give the flavor of the constructions. If g (X) is a power 
series over Z[ VJ = Z[ Vi, V,, ... ] then g<•l(X) denotes the power series obtained 
from g(X) by replacing each V, with V~, i = 1, 2, .... Choose a prime number p 

41,d let /v(X) be the power series defined by the functional equation 

(1.1) 

and let Fv (X, Y) = fv'(fv (X) + fv( Y)). Then Fv(X, Y) is a p-typically universal, 
one dimensional, commutative formal group over Z[V]. It turns out that "satisfying 
a function equation like (1.1)" is the essential (and sufficient) condition for 
integrality of Fv (X, Y). Moreover two logarithms which satisfy functional equa­
tions (1. 1) "with the same V," yield isomorphic formal groups. For a more precise 
statement, cf. the functional equation Lemma 7.1 below. 

Given such a fairly explicit candidate for a universal formal group it becomes 
possible to use a method of Buhstaber and Novikov [1] to give a direct proof of 
universality. They used this method for the formal group of complex cobordism. 

• Most of the research for this paper was done in I 969/1970 while the author stayed at the Steklov 
Inst. of Mathematics in Moscow and was supported by ZWO (The Netherlands Organization for the 
Advancement of Pure Research). 

131 



132 M. Hauwlnkel I CONtrwcting fomial growps 1 

Thus one obtains noticeably shorter proofs of the main theorems concerning 
universal formal groups and one avoids part of Lazard's difficult comparison 
lemma. Cf. also Section 5 below. 

Now let A be a ~,1-algebra. One dimensional formal groups over A are 
classified by left modules of the form M = EA /(f - L~- 1 V' [ v,)) over E,.,, where E,., is 
a certain ring which contains f ( = Frobenius), V ( = Verschiebung) and elements 
(a), a E A. Cf. [2]. Let F. (X, Y) be the formal group over A obtained from 
Fv (X, Y) by substituting v, for V,, i = I, 2, .... Then M is the module of p-typical 
curves of F,(X, Y). This is possibly the best way to look at these constructions. 

In this first part we construct a one dimensional formal group which is univers. 
for one dimensional commutative formal groups over Z,p,•algebras, a p-typical 
universal one dimensional commutative formal group, and a universal strict 
isomorphism between p-typical formal groups. Most of the results in this paper 
have appeared in preprint form in [5]: some of these results have been announced 
in [6). 

For the basic definitions concerning formal groups cf. e.g. [4). We take the power 
series point of view. All formal groups in this paper will be commutative one 
dimensional. All rings will be commutative with unit element. If F(X, Y) is a formal 
group over a ring A and cf, : A - B a homomorphism of rings then F.,, (X, Y) 
denotes the formal group over B obtained from F(X, Y) by applying <f, to the 
coefficients of F(X, Y). Z stands for the integers, Z1p 1 for the integers localized at p 
and Q for the rational numbers; N denotes the natural numbers; that is N = 
{1.2, 3, ... }. 

2. Constructions, definitions and statement of main results 

2.1. Notation. Let A be a ring and let gu (X) be a power series oveA 
A [ U,, U,, ... ), i.e. the coefficients of gu (X) are polynomials i~ 
U,, U,, ... over A. Then g~i(X) denotes the polynomial obtained by replacing each 
U, with u;, j = 1. 2, ... ; i.e. gW(X) is obtained from gu (X) by applying the 
A-endomorphism U;..,. u; of A [ U1, v~ .... J to the coefficeints of gu (X). 

2.2. Constructions. Choose a prime number p. The three power series [v (X), 
[i r (X ), [s (X) over respectively Q[ V,, Vz •... ], Q[ Vi, V2, ... ; T 1, T2, ••• ], 

Q[S,, S., ... J are defined by 

f.(X) = X + i V. [<e' 1(XP'), 
,., p 

(2.2.1) 

(2.2.2) fv r (X) = X + i T,)(P' + i V; {<e.'}(XP' ), 
,~1 i~I P 

(2.2.3) [s (X) = f S;X; - f SP,XP' + i §e: f<{>(XP'), S1 = 1. 
l=l i=l i=-1 P 
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These "functional equations" define the power series /v (X ), k r( X) and f, (X) 
recursively. For explicit formulae cf. Section 4 below. Now define 

(2.2.4) 

(2.2.5) 

(2.2.6) 

F, (X. Y) = f, 1(/, (X)+ /, ( \-')) in QI Vll(X. }']I 

K r(X, Y) = /,\(/u (X) + /u ( Y)) in Q( V; Tl[IX, Y)l 

Fs(X, Y)= /s1<./dX)+ fdY)) in Q(Sl[[X, YJI 

where, if g(X) = a,X + a"X" + ... is a power series over A with zero constant 
term and a, a unit, g · 1(X) denotes the inverse power series i.e. g-'(g(X)) = 

-(g-'(X)) = X. 

2.3. IDtegrality theorem. The formal power series F, (X, Y), Fu (X. Y) and 
F~ (X, Y) all have integral coefficients. 

I.e. their coefficients are respectively in Z[ V], Z( V, TJ and Z[S]. This is the usual 
Witt-vector-type miracle. 

2.4. Definitions. Let A be a ring and F(X. Y) a (one dimensional commutative) 
formal group over a ring L. The formal group F(X, Y) will be said to be universal 
for formal groups over A-algebras if for every formal group G(X, Y) over an 
A-algebra B there exists a unique homomorphism c/J: L - B sm·h that F•(X. Y) == 

G(X, Y). Note that if F(X, Y) and F'(X. Y) are two formal groups defined over L 
and L' respectively which are both universal for formal groups over A -algebras 
then we need not have L = L '. Except when A = Z. But in the case that A is a 
localisation of Z, e.g. A = Z1p, we do have that L ® Z(p, and L' ® Z1r, are 
isomorphic. 

e-s. Theorem. F, (X. Y) is universal for formal groups over Z(r,-algebras. 

2.6. Curves. Let F(X. Y) be a formal group over a ring A. A curve over A is a 
formal power series y (X) over A with constant term equal to zero. Two curves can 
be added by means of F(X. Y) as follows: 

This turns the set of curves into an abelian group. which is denoted CF. For every 
n EN we define an operation f. on CF as follows. Choose variables Z1o ... , z. and 
let -y(X) be a curve. Write down 

(2.6. l) 

This is a power series in X 11" with coefficients in A [Z1, ... , Z.] and because Fis 
commutative and associative the coefficient of X "" in (2.6. I) is a homogeneous 
symmetric polynomial in the Z1, .... z. of degree i. So we can write 

(2.6.2) f3(Z1, •••• Z.; X) = /3'(u1 ••••• u.; X) 
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where 0-1, ••• , u" are the elementary symmetric polynomials in the Z1, ... , Zn, Now 
substitute O for 0-1, .•• , u,,_ 1 and (- 1)"- 1 for u. in /3 1(0-1, .•• , a.; X). This results in a 1 

power series in X which is denoted f.,y(X). 
If the ring A is .such that it makes sense to talk about the n (different) roots of 

unity over A then one has 

fny (X) = y({.X 1'") +F, •• + F')'(~~X 1'") 

where bn is a primitive n-th root of unity. 

2.7. Definitions. Choose a prime number p. The formal group F(X, Y) is calle~ ! 
p-typical if fq')'o(X) = 0 for all prime numbers q different from p, where ')'o(X) is thLf{ 
curve ')'o(X) = X. 

A p-typical formal group F(X, Y) over a ring L is called universal for p-typical 
formal groups over ZcpJ·algebras or characteristic zero rings if for every p-typical 
formal group G(X, Y) over A, where A is a Zcp>•algebra or a characteristic zero 
ring, there is a unique homomorphism cp : L - A such that F"' (X, Y) = G (X, Y). 
(A ring A is said to be of characteristic zero if A - A® zQ is injective.) 

2.8. Theorem. The formal group Fv (X, Y) is p-typical and universal for p-typical 
formal groups over Zcp>•algebras or characteristic zero rings. 

2.9. Definition. Two formal groups F(X, Y) and G (X, Y) over the same ring A are 
said to be strictly isomorphic if there is a power series a (X) of the form 

such that 

a(F(X, Y)) = G(a(X), a(Y)). 

Let , : Z[ VJ - Z[ V, TJ be the canonical embedding, let K : Z[ VJ - Z[ SJ be the 
injection defined by v; .... SP, and let A denote any of the localization homomor­
phisms Z[VJ-z<P>[V], Z[V, T]-ZcP>[V, T], Z(S]-Zcp>(S]. 

2.10. Theorem. The formal groups F~(X, Y), Fs (X, Y) are strictly isomorphic and 
the formal groups F'v(X, Y) and Fv. r (X, Y) are strictly isomorphic. 

2.11. Corollary. Every formal group over a Zcp>•algebra A is strictly isomorphic to a 
p-typica/ formal group over A. 

2.12. Theorem. The triple (F'v(X, Y), av, r (X), Fv. r (X, Y)), where av. T (X) is the 
unique strict isomorphism from F'v(X, Y) to Fv, r (X, Y), is universal for triples 
(F(X, Y), a(X), G(X, Y)) consisting of two formal groups and a strict isomorphism 
between them over a ring A which is a ZcpJ·algebra or a ring of characteristic zero. 
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3. The integrality theorems 

In this section we prove Theorem 2.3. 

3.1. Let f(X) be a power series in one variable of the form f(X) = X + b2X 2 + ... 
with coefficients in Q[ V,, V2, .. . ; W,, W2, ... ]. Suppose that f(X) satisfies a 
functional equation of the form 

(3.1.1) f(X) = g(X) + i V; t<p')(XP') 
,~, p 

,_,ith g(X) E Z(p)[ Vi, V2, ... ; w,, W2, ... ], i.e. f(X)- L;-, p- 1 v;r')(XP') is integral 
with respect to p. 

3.2. Lemma. Let f(X) = X + b2X 2 + ... be as in 3.1. Then p "P'"'bn E Zcp)[ V, W], 
where Vr (n) is the highest integer r such that p' I n. 

eroof. Obvious from formula (3.1. I). 

3.3. Lemma. Let f (X) be as in 3.1 and let F(X, Y) = r'(f(X) + f ( Y)). Then 

F(X, Y) E Zcr>[ V, W][[X, Y]]. 

Proof. We shall work in Q[ V, W][[X, Y]]. The expression 

G = H mod(p ', degree n) 

means that G - HE p'Z<P)[ V, W] [[X, Y]] modulo terms of total degree 2:: n (in 
X, Y). 

Let - F(X, Y) = F1 + F2 + ... 

where F, is homogeneous of degree i (in X, Y). Then 

Suppose we have already proved that 

(3.3.1) 

It is clear that if s ;;;,,, 2 

(3.3.2) (F(X, Y))-' = (F, + ... + Fn)' mod (degree n + 2). 

Now if H(X, Y) is in Zcri[ V, W][[X, Y]] one has that 

(3.3.3) H(X, Y)Pk = H<rk>(xr•, yr") mod(p) 

and hence 

(3.3.4) 
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Combining this with (3.3.1) and (3.3.2) we see that 

(3.3.5) 

Now by definition we have 

(3.3.6) l(F(X, Y)) = f(X) + f( Y) 

and therefore according to (3.1.1) 

(3.3.7) 

By (3.3.5) and Lemma 3.2 we see that 

(3.3.8) 

It follows from (3.3.6) that 

(3.3.9) 

Using (3.3.8) and (3.3.9) in (3.3.7) we conclude that 

(3.3.IO) g(F(X, Y)) = g(X) + g( Y) mod(l, degree n + 2). 

And it follows that F.+ 1 is also in Z<Pi[ V, W][[ X, Y]] because g (X) is of the form 
g(X)= X+.... □ 

3.4. Proof of the integrality Theorem 2.3. It is now easy to prove 2.3. Indeed, it is 
obvious from the defining equations (2.2.1), (2.2.2), (2.2.3) that the only de­
nominators which occur in fv (X), Iv. r (X) and Is (X) are powers of p. Hence th~----, 
only denominators which occur in f;)(X), 1-;,,\(X), fs1(X) and Fv (X, Yf,':.. -· 
E. r (X, Y), F,, (X, Y) are powers of p. It now suffices to apply Lemma 3.3. 

4. Some formulae 

For various reasons it is useful to have some explicit formulae and congruences 
available. 

4.1. Formulae for Iv, lv.r and Is- The "functional equations" (2.2.1), (2.2.2) and 
(2.2.3) define the power series Iv, lv.-r and Is recursively. Writing 

Iv (X) = I a, ( V)XP', Iv. r (X) = L a, ( V, T)XP', 
i ""() i=O 

(4,1.1) 
t, (X) = I b, (S)X' 

i = 1 
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it is not difficult to prove that the following formulae hold: 

(4.1.2) 
i1+, .. +i,=11 p' ao(V) = 1 

where the sum is over all sequences (i., ... , i,), i; EN= {1, 2, 3, ... }, r ~ 1, such that 
i1 + ... + i, = n; 

•. 3) 

(4.1.4) 

~ 
i1+ ... +i,.=n 

V;l Vf,' 1 ••• Vf,' 1• 

p' 

ao(V, T) = 1, 

bn(S) = L 
(q,, ... ,q"d) 

½1 Vf21 I ••. V( \+ .. +i,-2 

pr-I 

S S q, sq, ... q, .. , 
91 q.2· .. q, Sq1···q, 

p' d , 

where the sum is over all sequences (q 1, ••• , q,, d) such that q; is a power of p, 
q, = p\ r, EN; r 2:0; d EN and not a power of p and q 1 ••• q,d = n. Note that 
d = 1 is allowed and also r = 0. 

4.2. Examples. The first few a" ( V), an ( V, T), bn (S) look as follows: 

(4.2.1) ao(V) = 1, 

ao(V, T) = 1, 

(4.2.2) aJ(V, T) = V1 ~!Vf' + V1 ~!Tf' + v~y~ 
+ V2 Tf' + V2 Vf' + V2Tf 2 + Vi+ y 3 _ 

p p2 p p 

1 aking p = 3, the first few b" (S) are equal to 

b 1(S) = 1, bi(S) = S2, biS) = ; 3 , b4(S) = S4, bs(S) = Ss, 

(4.2.3) 

4.3. Relations between the a" ( V), an ( V, T) and bn (S ). The following formulae 
between the an ( V), an ( V, T) and bn (S) follow directly from the formulae in 4.1: 
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(4.3.1) 

(4.3.2) 
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Vf" 1 V~-, V" a,.(V) = a,.-1(V) -- + ... + a1(V)-- + - , 
p p p 

a,,( V, T) = a,,(V)+ a,. 1(V)Tf"-I + ... + a1(V)n. I+ T,.. 

Let us write a,. (S) for the polynomial obtained from a,. ( V) by substituting Sp' for 

V;, i = I, 2, .... Then if n = p'm, (m, p) = 1 we have 

b,. (S) = a,(S)S!:,' + a,-,(S)s:.:: 1 + ... + a,s:,-,m + S p'm if m > 1 

(4.3.3) 

4.4. Congruence formulae. For each n ~ 2 let B" (X, Y) be the polynomial 

(4.4.1) B,.(X, Y) = (X + Y)" - X" - Y". 

Let V(n ). n;,,, 0 be short for V(n) = ( Vi, V2, ... , V,., 0, 0, 0, ... ) and S(n ), n ~ 1 for 
S (n) = (S 2, ••• , S," 0, 0, ... ). Then one has directly from 4.1: 

Fs (X, Y) = F.~,,.-l)(X, Y)- S"B" (X, Y) mod(degree n + 1) 

if n not a power of p, 
( 4.4.2) 

F.~ (X, Y) = F sc .. -1J(X, Y)- S,. (p- 1B,. (X, Y)) mod(degree n + 1) 

if n is a power of p; 

(4.4.3) 

Writing Fs (X, Y) = Fs(l) + Fs(2) + ... , Fv (X, Y) = Fv (1) + Fv (2) +... where 

Fs (i) and Fv (i) are homogeneous of degree i (in X, Y) we have in particular for 
n;,,, 2: 

if n is not a power or 
( 4.4.4) 

and if r is the smallest integer such that p' ;,,, n 

if n is not a power of p, 

( 4.4.5) 

5. A bit of binomial coefficient arithmetic 

To prove the universality of various formal groups we shall have occasion to use 

the following bit of binomial coefficient arithmetic several times in this series of 
papers. There is nothing new about it. It is simply a restatement of Lazard's 

fundamental lemma for R = Z. Cf. Frohlich [ 4] p. 60. The proof is practically 
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identical with the proof given by Frohlich Joe. cit. on pages 64, 65 for the cases 
R = Q, R a field of characteristic p > 0. 

Let n EN, n ;a,, 2. We define v(n) = p if n = p', r EN, p a prime number and 
v(n) = 1 if n is not a prime power. Consider the binomial coefficients (r), ... , (.':.,). 
Their greatest common divisor is v(n ). Hence there exist A, E Z such that 
A,G)+ · • • + An-1(n':.1) = v(n). 

S.l. Lemma. Let X,, ... , Xn-1 be indeterminates, X, = Xn-i, i = 1, ... , n - 1. Let 
Ai, .. - , An-1 be integers such that A,G) + ... + A.-,V-,) = v(n). Then every X. can be 

eritten as an integral linear combination of the expressions 

(5.1.1) A,X, + ... + A.-,Xn-1, 

(5.1.2) ( i + j\ (k + j) 
. i J X.+j - j Xk+j, i,j, k ;a,, 1, i+j+k=n. 

Proof. To prove this it suffices.to show: (i) every X. can be written as a rational 
linear combination of the expressions (5.1.1) and (5.1.2) and (ii) for every prime 
number p, X, can be written modulo p as a linear combination of the expressions 
(5.1.1) and (5.1.2). 

S.2. The rational case. Take i = 1; j = 1, ... , n - 2; k = n - 2, ... , 2, 1 in (5.1.2) to 
obtain the following matrix of coefficients (using X. = Xn-i ): 

A, A1 ,\3 

_ (n ~ 1) (D 0 0 

A _ (n ~ 1) 0 (D 

_ (n - 1) 
n-2 

0 

One finds 

det(A) = t (n - l)! (~) ,\; = (n - l)! v(n ), 
i=1 n I n 

which takes care of the rational case. 

5.3. The mod p case with n = p or (n, p) = 1. If n = p or (n, p) = 1, then for every 
i = 1, ... , n - 1 we have (i, p) = 1 or (n - i, p) = 1. For each i = 1, ... , n - 1 let 
a(i)E{i,n-i} be such that (a(i),p)= 1. Using X. =X.-, we can assume that 
A;= O if i~ a(i). We take a(l) = l. Now consider the matrix of coefficients 
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I A1 ,\,, (2) Aa(3> Aa(m) 

( n - 1 ) ( a i2)) 
a (2)- 1 

0 0 

A'= ( /l - 1 ) 
a (3) - 1 

0 (a?)) 
0 

( n - I ) 0 0 (a(~)) 
a(m)-1 

~ 
where m =½n if (n,2)=2 and m =hn-1) if (n,2)= l. We have 

d A ,=,E, a(I) ... a(m)( n), 
et L.., (") lla(i) 

1--1 n a 1 

[(m ·)m(/1) -(m •)~ =-;;- 1] a(1) ~ a(i) "-a<'> - 1] a(1) n 

because,\, =0 if ii{a(1), ... ,a(m)}. 
We see that det(A'),¢0modp because (a(i),p)=l and either v(n)=n or 

(n, p) = I. This takes care of this case. 
Note that for this proof to work we only need to know that LA, (7) = 1 mod p in 

case (n,p)= 1 and LA,(7)=p modp 2 if n = p. 

5.4. The mod p case with n = pm and m > l. Let n = pm and m > 1. 

Taking j = I in (5.1.2) and using Xk+i = X, we find the expressions 

(5.4.1) -(pm - i)X, + (i + l)Xe1. 

Taking i = pl and i + 1 = pl we see that mod p we can write the xpi--1 and X pi +I r 
integral linear combinations of the expressions (5.1.2). And then taking i =-­
pi + 1, ... , pi + p - 2 and i = pi - 1, ... , pi - p + 2 in (5.4.1) we see that modulo p 
all X, with (i, p) = I can be written as linear combinations of the expressions (5.1.2). 

To obtain the Xp,, i = I, ... , m we use induction. The induction hypothesis is: if 
A1, ••• , A,, 1 are such that LA,(7) = v(n) mod p if v(n) i p and LA,(7) = p mod p 2 if 
11(n) = p then each X, can be written modulo p as a linear combination of the 
expressions (5.1.1) and (5.1.2). The induction starts because of 5.3. 

Let Y, Z be indeterminates. We have 

(YP + zr)m = (Y j- zr modp, er+ ZPY' = (Y + zy"' modp 2 • 

It follows that 

( n) = (pm)= (m) (p'+ 1
) = (p') 2 

pi pi - i mod p, \ pi - i mod p if r ~ I, 

(;) = (pr)= 0 mod p if (i, p) = I, (p~" 1
) = 0 mod p 2 if r ~ 1 and (p, i) = 1. 
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Hence 

v(n) = Z A; (7) = ~' A;p (7) mod p if n is not a power of p, 

By induction it follows that we can write the Xp; modulo p as linear combina­
tions of the expressions (5.1.2) with p / i, p / j, p / k and the expression 
v(m)v(nt'(APXP + ... + An-pXn-p) (resp. (..\PXP + ... +An pXn-p)) if v(n)~ p (resp . 

• n)=p). This concludes the proof because v(n)~Omodp if v(n)lp and 
~~cause we have already shown that the X; with (i, p) = 1 can modulo p be written 

as linear combinations of the (5.1.2). 

6. The universality theorems 

We are now in a position to prove some universality theorems. The proof of 
Theorem 2.5 follows the proof given in [I) by Buhstaber and Novikov slightly 
adapted from the topological case to our algebraic setting. In both cases one has a 
good candidate for being a universal formal group and in both cases one knows 
enough about this formal group to be able to dispense with practially all of Lazard's 
difficult comparison lemma (wich now appears as a corollary) except for the bit of 
binomial coefficient arithmetic which was discussed in Section 5. We first need a 
lemma. 

6.1. For each n EN choose A;.n E Z, i = 1, ... , n - I such that 

tl.1.1) 
Now let 

(6.1.2) 

and let 

(6.1.3) 

F., (X, Y) = X + Y + L e;iX;P, e;,i E Z[S] 

n-l 

Yn = L Ai, rrei, n-i, 
i = 1 

i,j:;,,:] 

n = 2,3, .... 

Lemma. They,. are a set of polynomial generators for Z(p 1[S2, S,, ... ]. 

I.e. every element of Z(P 1[S,, S1, ... ) can be written uniquely as a polynomial in 
the Yn, n ;;;,, 2 with coefficients in Z<pl• 

Proof. Immediate from (4.4.4). 



6.2. Proof of Theorem 25. / l ni, a~,tlity of F, { X. Y) for formal groups over 

Z., .-ali:d'r,1~ i I cl A i,~· .1 Z , .. -Hi!;ebra and kt 

lh.2.l l 

" I 

(h.2 2) ${\'al= L A,nll,,n ,. 
' I 

Thi\ i~ a w,·ll defined hnmornorphism because of Lemma 6. L his also certainly t~ 

on:y p,.1s~ihk lwmnmorphism such that F4' (X. }/) = G (X. Y). because such ~ 

hnmnmorphism must takt· t, , into u, ,. This takes care of uniqueness. So it remains 

to pni\ e :hat <b(e, l"" a, for all i, j?: !. \Ve have cp(e,,) = au because Yi= e1, 1. So 

"'ilh mducticm we can assume that qi(e,,) = a,. 1 for i + j < n. 

Comrnuta!i\ ity and assnciati\'ity of G and Fs mean that certain universal 

rdatinns mu~! hold between the coefficients a,,. e,. 1• These are of the form 

i=l. ... ,n-1 

i, j. k ;;,,, I , i + j + k = n 

i. j. k ;;,,, l. i + j + k = n 

\\ her,· P ,,, is a polynomial in the am, 1 (resp. em.1) with m + l < n. Now apply Lemma 

'i.! hl c,mdudt that d>(e,.,~) = a,.,. for all i.j. k;;,,, 1, i + j + k = n. 
\Ve have now provtd that F~(X, Y) over Z,P 1[S} is universal for formal groups 

<Wt'r Z".,-alge!'lra. It follows that F, (X. }') over Z[S] is also universal because there 

is a one-one correspondence hctween homomorphisms Z,r,[ S ]- A al)ll!_. 
homomorphisms Z[ S]-> A if A is a Z<r 1-algebra. L 

6.3. Corollar). Let F(X. Y) and G(X, Y) be two formal groups over a Z,r 1-algebra 
A such that F(X. Y) = G (X, Y) mod(degree n ). Then there is an a EA such that 

Thb is Lazard's comparison lemma. (Cf. [10].) Of course it holds for all rings A, not 

just for Zw,-algebras. To prove it for all rings A in the way we have done it for 

Z,, .-algebras requires first the wnstruction of a (globally) universal formal group. 

This will be done in part If of this series of papers [8]. 

6.4. p-t)pical formal groups. Let A be a characteristic zero ring. We define this as 

a ring A such that n E Z, a E A and na = () implies n = 0 or a = 0. The natural 

homomorphism A -> A S;z Q is then injective. Let F(X, Y) be a formal group over 

A and let f(X) = X + b,X" + ... be a power series with coefficients in A @z Q such 
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that F(X, Y) = r'(f(X) + f(Y)). Then F(X, Y) is p-typical iff f(X) is of the form 
f(X) = X + bpXP + bpoXP2 + .... Indeed we have 

f(fqyo(X)) = f(Z1X 11q) + f(Z1X 11q) + ... + f(ZqX 11q) 

from which the result readily follows. 

6.5. To prove Theorem 2.8 (p-typical universality of F.,/ (X, Y)) we need a lemma. 

Lemma. Let F(X, Y) be two p-typical formal groups over a ring A which is of 
-aracteristic zero or a Z<P>-algebra. Suppose that 

(6.5.1) F(X, Y) = G(X, Y) mod(degree p' + 1), r;;,,; 0 

then 

(6.5.2) F(X, Y)= G(X, Y)mod(degree p'+ 1). 

To prove this lemma for all rings A we need the comparison lemma for all rings A, 

which we have not yet proved. So the proof of this lemma and also of Theorem 2.8 
which depends on this lemma still has a gap. This gap will be filled in [8]. 

Proof of the lemma. We use induction. Suppose we have already proved that 
F(X, Y) = G(X, Y) mod(degree m ), p'+ 1 > m ~ p' + 1. Then by the comparison 
lemma we have 

(6.5.3) F(X, Y)=G(X, Y)+a(v(m) 'Bm(X, Y))mod(degree m +1) 

for a certain a EA. Let q be a prime number different from p which divides m. It 
follows directly from (6.5.3) that 

-(6.5.4) 

'Yo(Z1X'1q) + F· .. +F 'Yu(ZqX 11q) 

= 'Yo(Z1X 11q) + G ••. +o 'Yo(ZqX 11•) 

+ Q (v(m r'[(Z1X 11q + ... + ZqX 11q r - ZT'Xm/q - ... - z;•xm/q]) 

where the congruence is mod(degree m + 1). Now if T., = Z7 + ... + z;; and <T, is 
the i-th elementary symmetric function in the Z, we have 

(6.5.5) 

It follows from (6.5.4) and (6.5.5) that 

(6.5.6) f:yu(X) = f 0 )'u(Y)+ (v(m r 1q)aXm/q mod(degree m + 1). 

On the other hand because F(X, Y) and G(X, Y) are p-typical we know that 

f;y 0(X) = f~yo(X) = 0. Therefore 

(6.5.7) 
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for all prime numbers q different from p dividing m. If m is a power of q then 
(6.5.7) says that a = 0 and if m is not a power of a prime different from p then 
v(m) = 1 and there is a prime number q1 -;i p such that q1a = 0. It follows that a = 0 
because A is a Ztp>•algebra or of characteristic zero. D 

6.6. Proof of Theorem 2.8 (p-typical universality of Fv(X, Y}). First of all 
Fv (X, Y) is a p-typical formal group, because of 6.4. Now let G(X, Y) be a 
p-typical formal group over a ring A. Suppose we have already constructed 
<f>, : Z[ V] .- A, r ;;;,, 0 such that 

(6.6.1) Fj(X, Y) = G(X, Y) mod(degree p' + 1) 

(the case r = 0 is trivial, take cf>o( ½) = 0, i = 1, 2, ... ) and suppose we have proved 
that such a cf>, is uniquely determined on the subring Z[ Vi, ... , V,] of Z[ V] by 
(6.6.1). Because Fj(X, Y) and G(X, Y) are both p-typical formal groups it follows 
from (6.6.1) and the comparison Lemma 6.3 that 

(6.6.2) 

for a certain a EA. Now define cf>,+ 1 as follows, <f>,+1( V,) = cf>, ( v;) for i "'= r, 
</>,T1(V,+1)= -a, cf>,+1(V,)=O if i>r+l. Then because of (4.4.3) we have 

(6.6.3) Fj+1(X, Y) = G(X, Y) mod{degree p'+1 + 1) 

and it is also clear that cf>,+1 is uniquely determined on Z[ V1, . .. , V,+i] by (6.6.3). □ 

7. Isomorphisms 

In this section we first want to prove Theorem 2.10. Now to prove that the formal 
groups Ft'(X, Y) and F~(X, Y) and that the formal groups Ft(X, Y) and F'v.r~ 
strictly isomorphic can be done in the standard way by constructing the isomoi:-'­
phism step by step using the comparison lemma to calculate the next coefficient at 
each stage. Here A is the appropriate localization map A .- A ®z Z<P>· 

It then follows that F"v(X, Y) and Fs (X, Y), and F'v(X, Y) and Fv, r (X, Y), are 
also isomorphic. 

Another proof uses what I like to call the functional equation lemma (cf. 7.1 
below). This proof gives directly that the pairs of formal groups F"v(X, Y) and 
Fs (X, Y), and F'v(X, Y) and Fv, r (X, Y) are isomorphic. Later we shall also find 
this lemma useful or at least suggestive in the construction of a global universal 
formal group (cf. [8]). 

7.1. Functional equation lemma. (i) Let f. (X), i = 1, 2 be a power series over 
Q[ V; W] of the form f. (X) = X + ... such that 

(7.1.1) f. (X) = g;(X) + i v. f)P")(XP"), 
n-1 P 

i = 1, 2 
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with g1(X) E Z[ V; W][[X]] and g2(X) E Z<P>[ V; Wl[[X]]. Let h1(X) and hi(X) be 
power series of the form hi(X) = X + ... over Z[ V; WJ, respectively Z1P1[ V; WJ, 
and let {; (X) = f; (hi (X)). Then one has 

(7.1.2) J;(X)= g,(X) + f Vn Jlp")(XP"), i = 1,2 
n-1 P 

with g1(X)EZ[V; Wl[[X]] and g"i{X)EZcpi[V; Wl[[X]]. 
(ii) Inversely, suppose we have power series f;(X), J; (X), i = 1, 2 of the form 

/; (X) = X + ... , J; (X) = X + ... such that (7.1.2) and (7.1.1) hold with g1(X), 
41111111i(~) E Z[ V; W] [[ X]] and g2(X), g2(X) E Zcp>[ V; WJ [[X]] then there exist power 
•nes h 1(X) (resp. h2(X)) of the form hj (X) = X + ... with coefficients in Z[ V; W] 

(resp. Zcpi(V; WJ) such that fi(X)=f;(hi(X)). 
In other words, if a power series f (X) satisfies a functional equation of type 

(7.1.1) then all power series obtained by a strict substitution satisfy the same kind of 
functional equation, and inversely if two power series both satisfy a functional 
equation of type (7.1.1) then they are strict substitutes of one another. 

N.B. It is not true in general that g, (X) = g, (hJX)). 

7.2. Proof of part (i) of the functional equation lemma. It is obvious that the only 
denominators occurring in f1(X) and f1(X) are powers of p. Therefore the only 
denominators occurring in 

are powers of p. It suffices therefore to prove (7.1.2) for the case i = 2. 
Precisely as in the proof of Lemma 3.3 we have that 

4I h2(X)P" = h'!" 1(XP") mod(p) 

and 

It follows that we have mod I that 

7.3. Proof of part (ii) of the functional equation lemma. If there exits a h1(X) such 
that f1(X) = f 1(h,(X)) then it is equal to f~'(f,(X)). So because the only de­
nominators occurring in /1(X) and f1(X) are powers of p, it suffices to prove the 
case i = 2. Let h 2(X) = fi1(f2(X)). Write hiX) = X + b2X 2 + ... and suppose we 
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have already proved that b; E Zcpil V, W] for i ,;;; n. Exactly as in Lemma 3.3 one 
now shows that 

tf"\hc{XY") = f'f")(h'!")(XP" )) mod(p, degree n + 2). 

It follows that we have mod (1, degree n + 2) 

gc(hi(X)) = f2(hi(X)) - L v .. t<r")(hl(X)P") 
p 

= fi(h2(X)) - L v .. f'{'")(h?")(XP")) 
p 

= !2(X) - L v .. !?"1(XP") = giX) = 0 
p 

which shows that b .. +1 is integral because giX) is of the form gi(X) = X + .... D 

7.4. Proof of Theorem 2.10. Apply part (ii) of the functional equation lemma to 

f, (X) and f':.,,(X), and {v. r (X) and f'v(X). 

7.5. Corollary. Every formal group over Z<Pi-algebra A is strictly isomorphic to a 
p-typical formal group over A. 

This follows directly from the isomorphism between F~ (X, Y) and F':.,(X, Y) and 
the universality of Fs (X, Y) for formal groups over Z<PJ-algebras. This is a universal 
way of making formal groups p-typical and it agrees with Cartier's formula for 
making formal groups p-typical (cf. [2]). This last fact is easily checked by 
calculating what Cartier's formula does to (the logarithm {s (X) of) Fs (X, Y). 

7.6. To prove Theorem 2.12 we first need a lemma similar to Lemma 6.5. ~ 

Lemma. Let F(X, Y) be a formal group over A, where A is a Z<Pl-algebra or a 
charcteristic zero ring and let -y (X), 8(X) be two p-typical curves for F over A. 
Suppose that 

(7.6.1) 

then 

(7.6.2) 

-y(X) = o(X) mod(degree p" + 1) 

-y(X) = B(X) mod(degree p"+ 1). 

Remark. This lemma is not true for arbitrary rings A. 

Proof of the lemma. We use induction. Suppose we have shown that -y(X) == 
8(X) mod(degree m) where p"+' > m ;;;. p" + 1. Let q be a prime number dividing 
m different from p. We have -y(X) = 8(X) + aXm mod(degree m + 1) for a certain 
a EA It follows that (fq-y)(X)=(fq8)(X)+qaXm1q mod(degree (m/q)+l). But 
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'Y (X) and 8 (X) are both p-typical, therefore qa = 0 from which it follows that 
a = 0 because A is a Zcp>-algebra or a characteristic zero ring. 

7. 7. Proof of Theorem 2.12. (Universality of the triple (F'v(X, Y), av. 7 (X), 
Fv. T (X, Y)) for triples over Zcpl-algebras or characteristic zero rings.) 

Let A be a Z<P>-algebra or a characteristic zero ring and let F(X, Y) and G(X, Y) 
be two p-typical groups over A and a(X) a strict isomorphism from F(X, Y) to 
G(X, Y). Because Fv (X, Y) is universal for p-typical formal groups there is a 
unique homomorphism rfJ : Z[ V] -A such that F't(X, Y) = F(X, Y). Suppose we eve already found a homomorphism </>n : Z[ V; T]- A such that 

(7.7.1) Ft•'(X, Y) = F(X, Y), i.e. <f>n extends tf,, 

(7.7.2) at•7 (X) = /3(X) mod degree (p" + 1) 

and suppose we have proved that <f>n is unique on Z[V; T 1, ••• , T.]CZ[V; T]. 
Write an(X) for at~7 (X). Now quite generally if {3(X) is a strict isomorphism from 
a formal group H 1(X, Y) to a formal group Hi(X, Y), i.e. if /3(H1 (X, Y)) = 
H2(/3(X), {3(Y)) and if Hi(X, Y) is a p-typical formal group, then 13- 1(X) is a 
p-typical curve for H,(X, Y). (Very easy to check.) 

Now f3(X) is a strict isomorphism from F(X, Y) to G(X, Y) and a.(X) is a strict 
isomorphism from F(X, Y) to F~::T(X), because of (7.7.1). Both G(X, Y) and 
Ft>(X, Y) are p-typical formal groups. Therefore we have that 

(7.7.3) 13-'(X) and a ~1(X) are p-typical for F(X, Y). 

Using (7.7.2), (7.7.3) and Lemma 7.6 we see that 

(7. 7.4) 

•
r a certain unique a E A. 

l Now from (4.3.2) e.g. we see that 

(7.7.5) 

It follows that we have for av. T (X) = fv\(fv (X)) that 

(7.7.6) 

Now define q>,.+,: Z[ V; T]-A by 4>,.., = <f>., on Z[ V; T, ... . , T. ], <f:> •• ,( T • .i) = - a, 

<f,,.+ 1(T,)=O, i>n + l. Then <Pn+i satisfies (7.7.1) and (7.7.2) with n replaced by 
n + 1 and <f>.+ 1 is unique on Z[ V; T1, ••• , T.+i]. Both, because of (7.7.6) and (7.7.4). 

D 

7.8. Remark. The triple (F~,(X, Y), av. T (X), Fv. T (X, Y)) is not universal for tri­
ples over arbitrary rings. The easiest counter example is probably the following. 
Take A = Z/(q) (q a prime number). Choose a prime number p > q. Let F(X, Y) = 

X + Y, a(X) = X + Xq, G(X, Y) = X + Y. Both F(X, Y) and G(X, Y) are p­

typical and a (X) is a strict isomorphism (over Z/(q )!). 
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7.9. Let v = (vi, V2, ••. ) be a sequence of elements of a ring A. We write F0 (X, Y) 
for the formal group Ft(X, Y) where cp : Z( V]-. A is the homomorphism which 
takes V, into V;, i = 1, 2, .... Every p-typical formal group over A is equal to an 
R (X, Y) according to Theorem 2.8. 

Corollary 1. Let A be a Z<P>-algebra or a characteristic zero ring. The formal groups 
R(X, Y), F,,,(X, Y) are strictly isomorphic iff there exist ti, t2 , ••. EA such that 
Fv,(X, Y) = Fv.,(X, Y). 

Corollary 2. Let_ A b~ a char~ct~ristic zero _ring. The formal groups F0 (X, Y) a,a. 
R-(X, Y) are strictly 1somorph1c iff there exist ti, t2, ••• EA such that t:_"."." 

ai(v')- ai(v) = ti EA CA ®zQ, 

ai(v')- a1(v)tf- a2(v) = tiE A, 

a3(v')- ai(v)t~- ai(v)tf2
- a3(v) = t3E A, 

where a, ( v) (resp. a; ( v ')) is the element of A ®z Q obtained by substituting Vi, v2, ••• 

(resp. v ;, v ~ •... ) for V1, ½, ... in the polynomials a; ( V). The ti, t2 , ••• are unique if 
they exist. 

This follows from (4.3.2) and Theorem 2.12. The t1, t2, ••• in Corollary 1 above 
need not be unique. 

8. Concluding remarks 

In Honda [9] the reader will find a construction for formal groups very similar to 
the constructions carried out here. The integrality proof is also similar. (They wef"r,, 
found indepently however.) In Ditters [3] still other constructions can be found or 
simil~u flavour. Both Honda and Ditters work with power series f(X) = ~ a;X' for 
which the a1 satisfy relations like (4.3.1) rather than with power series which satisfy 
a functional equation like (3.1.1). It may be of interest to remark that fv (X) seems 
to be the only power series which satisfies a relation like (4.3.1) and a functional 
equation like (3.1.1). 

The p-typical formal groups Fv (X, Y) for various p can be fitted together to 
yield a (global) universal (one dimensional commutative) formal group Fu (X, Y). 
There are also more dimensional versions of Fv (X, Y) and Fu (X, Y). Cf. [5] 
and [8]. 

The explicit formulae (4.3.1) relating the coefficients of fv (X) and a similar 
formula concerning f u (X), the logarithm of the global universal formal group, can 
be used to find generators for the coefficient ring BP *(pt) of Brown-Peterson 
cohomology and the coefficient ring MU *(pt) of complex cobordism cohomology. 

Cf. (5] and [6]. 
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I. Introduction 

In this paper we show how to fit together the various (universal) formal group-, 
Fv (X, Y) for Z<P>-algebras of [2], to obtain a global (one dimensional commutative) 
formal group. 

If [r: (X) E Z[ U2, U,, ... ] [[X]] is the logarithm of a universal formal group mer 
Z[ U], then it follows from the functional equation lemma [2. Lemma 7.1] that 
fL' (X) must satisfy 

for all prime numbers p. So the natural thing to do is to construct the power series 
fu (X) according to the recipe ( l. l) starting with X. The first thing one writes do\\ n 

is then 

However, it now appears that the two prime numbers 2 and 3 interfore with one 
another. The term 6-1 U,U~, which has to be there because of condition ( 1.1) in c.1~e 

p = 3, prevents (l.2) from satisfying (1.1) for p = 2. and vice versa with respect to 
the term 6- 1 U 2 U~. The solution is to insert suitable coefficients. Thus 

\
. u u (u u2 u) u (-,u,u: u,u; . ) "'' X+~ x2+--' X'+ _3._2+-· x·+~ X' + ---·--+--.,-+ l O ·" ..- ,, 

2 3 4 2 5 3 -

(1.3) 

151 
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does satisfy (l. 1) mod degree 7 for p = 2, 3. (To construct a universal formal group 
it is also necessary to insert U 0 X" so as to have a free variable available in 
dimension 6.) So the only problem in constructing a universal formal group is in 
showing that one can always find suitable coefficients. This readily leads to the 
following formula for the logarithm hu (X) of a possible universal formal group: 

hu (X) = L a,(U)X', a,= 1 
i"=I 

where q, is a power of the prime number p,, U1 = 1, and the sum is over all 
sequences (q,, ... , q" d) with q, prime powers and d = 1 or divisible by at least two 
different primes. such that q, ... q, d = 11. The coefficients 11 (q,, ... , q,, d) can he 

chosen arbitrarily provided they satisfy the congruences 

n(q,, ... , q" d) = 1 mod p, 

(1.5) n(q,. ... ,q,,d)=Omodp; 

n(q,, ... ,q,,d)= 1 modp 

if p, i P2, 

if Pi'? P2 = • · · = P,+I '? P,+2, 

if P1 = p2= ., • = p,;I PHI• 

It turns out that Hu (X, Y) = h 1)(hu (X) + hu ( Y)) is indeed a universal formal 

group (over Z[ U]). Cf. [3] and [4]. 
If one chooses the 11 (q,, ... , q,, d) in a rather special way (cf. [3] and [4] for 

details) then one finds reasonable formulae for the U, in terms of the a, ( U). Now 
there is another universal formal group viz. the formal group of complex co­
bordism. Using the formulae for U, in terms of a, ( U) one then finds polynomial 

generators for MU(pt) in terms of the (classes of) complex projective spaces. Cf. [f." 
and [4]. -· 

Subsequently, Kozma [6], using Witt vectors and a theorem of Cartier, wrote 
down similar generators for MU(pt). These are different and satisfy a more elegant 
recursion formula. Translating back one obtains another universal formal group. 
The formula for its logarithm fu (X) = L m" ( U)X" is very similar to (1.4) above (cf. 
(2.2.1) and (2.2.4) below). 

This logarithm also satisfies functional equations ( I. 1 ), which is the essential 
property for integrality of the corresponding formal group by the functional 
equation lemma (2, 7.1]. 

It is slightly more complicated in terms of the number of different monomials 
occurring in the m,(U) (compared to a,(U)) but, I think, superior because of the 
more elegant recursion relations. The calculations which one has to do to prove that 
these two different universal formal gr0ups are integral (i.e. defined over Z[U]) are 
identical. 

As in the local case (cf. [2]) using the approach of Buhstaber and Novikov [1] one 
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can prove directly that Fu (X, Y) is universal, without using Lazard's comparison 
lemma, which now appears as a corollary. 

Section 2 below contains the main constructions and results. In Sections 3, 4, 5 we 
prove the integrality and universality theorems. In Section 7 we show how to 
choose the coefficients in such a way that nice recursion relations result. In Section 
6 we construct a universal strict isomorphism of formal groups. 

Some of the applications of this paper and the previous one [2J to complex 
cobordism and Brown-Peterson cohomology will appear in [5]. Other applications 
will appear in subsequent papers. Most of the results of this paper have appeared in 

•
eprint form in [4]. The conventions of [2] remain in force, in particular all formal 
oups will be commutative and one dimensional and all rings are commutative and 

have a unit element. 

2. Constructions, definitions and statement of main results 

2.1. Choice of coefficients. For each s;;;,, 1 and each sequence (ii, ... , i, ), i; EN\ {1} 
let n (ii, ... , i,) be an integer such that 

(2.1.1) n (i 1, ... , i,) = 1 if s = 1; . 

n(i1, ... , i,) = 0 mod p'-1 if i2, ••• , i,- 1 are powers of 
(2.1.2) 

a prime number p and i 1 and i, are not powers of p; 

n (i 1, ••• , U = 1 mod p • if i 1, ••• , i, are powers of a prime 
(2.1.3) 

number p and i,. 1 is not a power of p. 

Note that there are (many) numbers n(i 1, ••• , i,) satisfying these conditions; _1, ... , i,) has to satisfy two different congruences if and only if i1 and i2 are 
powers of two different prime numbers. 

2.2. Constructions. We now define the power series fu (X), fu (X), [u. r (X) by the 
following formulae: 

(2.2.1) [u (X) = L mk(U)X\ m1(U) = 1, 
k=I 

(2.2.2) fc<X) = .Z: mdU)X\ m1(U) = 1, 
k = I 

~ 

(2.2.3) /u.-r(X) = L mk{U, T)X\ m,(U, T) = 1 
k= l 

where 

(2.2.4) mk(U)= L 
(i1, ... ,i_:s) 
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where v(i;) = p if i; is a power of the prime number p and v(i;) = 1 if i; is not a 
prime power and where the sum is over al] sequences (i 1, ••• , i.) with i1 EN\ {1} and 
s;;,,,, 1 and i1 ... i, = k. The numbers n(ii, ... , i,) are such that (2.1.1)-(2.1.3) hold. 

(2.2.5) 

(2.2.6) 

mk ( U) is obtained from mk( U) by substituting O for all Ud 

with d > 1 and d not a power of a prime number. 

mk(U, T)= 

= " n(i1, • •,, i,) n(i2, • • •, i.) ~ U- u', u1, ... i,-2(U'1···i,_, . i ... i -1) 
Li (. ) . (. ) . . . (. ) ,, 12 • • ,,_, '• + V ( l,) T ;1 • • 

(i1, •. .,i,) V 11 V 12 V Is ' f!!'--
The power series f v (X) and {v (X) are over Q[ U2, U3, . .. ] = Q[ U] and f v. T (X) is a 
power series with its coefficients in Q[ U2, U3, ... ; Tz, T3, ... ] . We now define 

Fu (X, Y) = f"i./(f u (X) + f v ( Y)), Fu (X, Y) = fcJ(fv (X) + fv (Y)), 
(2.2.7) 

Fu, T (X, Y) = fi) T(f v. T (X) + f u. T ( Y)). 

2.3. Integrality theorem. The power series Fu (X, Y), Fu (X, Y) and Fu, T (X, Y) 
have their coefficients respectively in Z[ U], Z[ U], Z[ U, T]. 

I.e. these power series are formal groups over Z[ U] and Z[ U, T]. 

2.4. Universality theorem. The formal group Fu (X, Y) is universal. 

I.e. for every ring A and every (one dimensional commutative) formal group 
G (X, Y) over A there is a unique homomorphism </> : Z[ U] - A such that 
Ft(X, Y) = G (X, Y). 

~ 
2.5. Isomorphism theorems. (i) The formal groups Fu (X, Y) and Fu (X, Y) arr 
strictly isomorphic (over Z[ U]). 

(ii) The formal groups Fu (X, Y) and Fu, T (X, Y) are strictly isomorphic (over 
Z[ U, T], where Z[ U] is seen as a subring of Z[ U, Tl). 

Let au, T (X) be the unique strict isomorphism between Fu (X, Y) and 
Fu, T (X, Y), i.e. av, T (X) = f"i) T(fv (X)). 

2.6. Universal isomorphism theorem. The triple (Fu (X, Y), av, T (X), Fu, T (X, Y)) 
is universal for formal groups and a strict isomorphism between them. 

I.e. for every ring A and every triple (F(X, Y), a(X), G(X, Y)) consisting of two 
formal groups F(X, Y), G(X, Y) and a strict isomorphism a(X) from F(X, Y) to 
G(X, Y) there is unique homomorphism </> : Z[ U, V]-A such that Ft(X, Y) = 
F(X, Y), ai,T(X) = a(X) and Ft,T(X, Y) = G(X, Y). 
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3. Some congruences and lemmas 

This section contains some technical results on the fu, fu. r and n {ii, ... , i,) which 
will be needed in the sequel. 

3. 1. Some congruences. Directly from the definitions (2.2.1)-(2.2.7) one sees that 

(3.1.1) 

(3.1.2) 

e.1.3) 

(3.1.4) 

fu(X)=X+ v(nr 1 U.X" mod(U2, ... , U.-1, degree n + 1), 

Ju, r (X) = fu (X) + T.X" mod(T2, ... , Tn-1, degree n + l), 

au, T (X) = X - TnX" mod(T2, ... , Tn·l, degree n + 1), 

Ju(X, Y)=X+ Y-Un(v(nt 1B,..(X, Y))mod(U2, ... ,Un-1,degreen+ 1) 

where B" (X, Y) = (X + Yt - X" - Y". (If n is a power of a prime number q, then 
Bn (X, Y) is divisible by q = v(n ).) 

More precisely one has the following. Let U(n) be short for 
( U2, U3, ... , Un, 0, 0, ... ) and let f,(,.i(X), Fu<.,(X, Y) be the formal power series 
obtained from fu (X) and Fu (X Y) by substituting zero for U,.,1, U.,:, .... Then 
one has (immediately from (2.2.1 )-(2.2. 7)): 

(3. 1.5) Jc (X) = Ji," ,(X) + 1•(n + l r' U" ,,X"" mod(degree 11 + 2), 

(3.1.6) f,·r(X)={c1",,(X)+ T •• ,x"• 1 mod(degree n +2). 

(3.1.7) a 1 1 (X)=ar,,,, 1(X)-T,,,1X"" 1 mod(degreen+2), 

(3.1.8) Fu (X. Y)= F1 ,n,(X, Y)- U,,. 1(1•(11 + I) 'B.,,(X. Y)) mod(degree n + 2}. 

3.2. For each sequence ( i, ....• i, ), i1 E N \ { 1} let 

e.2.1) 

where the n (i,, .. ., U satisfy the conditions of 2.1. 

3.3. Lemma. (i) If I I v(iil = P(i2) = ... = F(i,) I- ,,(i,_ ,). r ~ s, then 

p 'd (i,, ... , i,) E Z where p = ,,(i,) = ... = v( i, ). (If r = s then v(i,) I 1·(i,,,) is taken 

to be automatically fulfilled.) 

(ii) If P(i,)= 1 then d(i, .... ,i,)EZ. 

Proof. We prove both parts of the lemma simultaneously by induction on s. The 

case s = 1 is trivial. If s > 1 we distinguish four cases. 
Case(!): ,,(i 1)=l=P(i2). Then d(i2, ... ,i,)EZ and hence d(i, ..... i,)= 

v ( i,f 1 n ( i, , i 2, ...• i, ) d (i,, ... , i, ) E Z. 
Case (2): F(i,) = 1 / i,(i2) = p. Let F(jJ =.,. = 11 (i,) I- 1•(i,. ,). Then by induction 

pHd(i1, •.. ,i,)EZ and hence d(i 1, ••• ,i,)=1•(i,f 1n(i,,i, ..... i,)d(i,, .... i,)EZ 

because n(i,,i1 , ... ,i,)=0modp'- 1 by (2.1.2) in this case. 
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Case (:,): l /. i,(i,) = l'(i,). Then p'· 1d(i1, ... , i,)E Zand hence 

ri'd(l, ..... i,)= l'(i,) 111(i,,i1,--··i,)p'd(i:, .... i,) 
. =n(i 1, ••• ,i,)p'· 1d(iz, ... ,i,)EZ. 

CN: (4): l ~ l'(i:) r' i·(i2) f I. let q = 1•(i2) == •.• = i 1(i,) ,;z:f (i,~,)- Then by induc­

..ion ,( 'J(i1, .... i,)EZ and hence pd(ii, ... ,i,)= n(i1, ... ,i,)d(i2, ... ,i,)EZ be­

cause by (2. 1.2) n(i,. i, .... , i,) = 0 mod q' 1 in this case. □ 

Proof. We distinguish three cases 
Case ( I): v(iJ"' I. Then d ( i1 , ••• , i,) E Z by Lemma :u and hence 

d(i,, ... ,i,)-p'd(i, .... ,i,)=p '(n(i, ..... U- l)d(i, •... ,i,)EZ 

because 11(i,, .. ,. L) ?= I mod p in this case by (2.1.3). 
Case (2): Ii" i 1(i:)=q,;ip. Then d(i,, ... ,i,)EZ,p, by Lemma 3.3 and 

d(!, ... J)··•p 'd(i.,, .... UEZ,p,asincase(l). 
Case (3): 1·(i,)=p. Let i•(i,)= F(i.)= ... = 11(i,)/ P(i,"). Then p'.'d(i,, .... i,) 

E Zand hence 

h:c s1tN' aL'etHding tn (2. L3) n ( i1, ... , i,) = l mod p' in this case. □ 

4. Proof of the integralitJ theorems 

,ti. hi: ,•,1d1 /.; ••".;.kt c, he an element of Z[U; T] and for each i EN let d 1 be . 
th·L' p, ,11 n()" llll:11 ()1'!'.1ined from t', hy replacing each u, and T, by their i-th powt,i~)·. j 
l .ind l . \\ l' ddrne ·. l 

e, = L 

(4. l..;) 

wherethe,umiso1erall (i, ..... 1,),uch that i, ... i, -~ i. i, EN {l!. ;1:1d d 11, .... ,i,) 

is as in (.L~ J 

4.2. Lemma. For all prime nwnhers p we hon' 1h01 

(--i.2.1) 

Proof. Consider the coefficient of X" in (4.2.1). lf (p, n) = I this coefficient is equal 
to e,, and is in Z1p,( U; T] by Lein ma 3.3. Now suppose (p, n) > 1 and let n = p'i, 

(p. i) = I. The coefficient of X" in (4.2.1) is then equal to 
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(4.2.2) Ue· <P') - e, 
p 

For the terms of e p', with v(i 1) -Ip we have that d(i 1, ••• , i,) E Z<pl• It remains to 
df!a] with the terms with i, = p, p2, ... , p'. We have, if i > I or t < r, 

= "v ~ c· · )d(" · )u', u', .. ·'•-2(u', .. 1 -~, p n li, .... , l.,. l2, ... , ls ;_2 ••• t,_ 1 ;,, 11 - 1 + v(i.,.)c~: 1 

11=p -And because of Lemma 3.4 we see that the part of e p'' with 11 = p' minus 
p-' Up•e;f':J,, is in Z<pi[U, T] if i > 1 or t < r. 

And if i = 1, t = r we have that the part of er'' with i, = p' is equal to 
p-'Up•+cp•=p- 1Up,e\P' 1+cp, and Cp•EZ{U;T]. So we see that (4.2.2) is rn 
Z(p)[ U; T]. D 

4.3. Proof of the integrality theorem 2.3 (parts (i) and (iii)). Taking c, = 0 for all 
k ;;,, 2 we get g(X) = A (X). Hence/, satisfies a functional equation (..J..2.1). and we 
can apply [2. 3.3] to conclude that Fl'(X. Y) E Z,",[ Ul[[X]] for all prime numbers 
p. hence F 1 . (X. Y) E Z[ U][IX. Y]]. 

Taking ck = T,. k = 2. 3 .... we find g( U) = fi-, (X) and the same argument gives 

that Fe r(X. Y)EZ!l':T]l[X. Y]l. 

4.4. Proof of the integraiitJ theorem 2.3 (part (ii)). F, (X. Y) is nhtaincd from 

Fu (X, Y) by substituting() for all U, with d nol a power nf a prime numher. So 
Fu (X, Y) is integral he cause F, (X. Y) is integral. (One can abo show that (X) 

-tisfies a functional equation of type (4.2.1) for all p.) 

5. Proof of the universality theorem 2.4 

This proof is completely analogous to the proof of universality of F, ()()")in [2]. 

5.1. For each n E N\{l} we have that g.c.d. (C'). .... (.i" ,)) = l'(n ). Choose A,,, E Z 
such that 

(5.1.1) 

Write 

(5.1.2) Fu(XY)=X+Y+}: e,>l('Y1 

i,j-~1 

and define 



Z[ll,, U, .. 

It· t\en ekmcnl ,,f Z! (' l ~·an he uniquely writh.:n :1~ .,1 p,ih1H•mial in they., with 
,'tH,.~ttk:H . .':its ~n Z. 

Proof. fhr, fnl!1•\\~ dirl'..:lh fmm (.~.!Al. 

5.3. Proof of the universalit)' tlu-orem. Let A be a ring and G ( X. Y) a form.~ 

~r,mr mer 4. Wri:e 

',ow define: 6: Z! Uj--• A 1,:, lhl" requireml'nt t.b(~'.)"' :S~ ,' A,, ,ii," ,. Thb is a wdi 

Jdincd hom,11mnphism hl·cam,e df Lemma :'i.2. Further if <11 is a homomorphism 

ll {_" J -➔ A ;,ud1 Iha! Fr (.X )"I= Q ( X. }') then we have (/1 (e',, ) = a,, and hence 

,!, ( y.) "' ,pf v0 \ •• This rnkes care of uniquenes~. One nov. proves that <!>( e,,)"" d,, 

5.4. CoroUary (Lazard'" comparison h:mma). Let A be a ring and F(X. Y) and 
GI X. YI two formal groups occr A. Suppose that 

(5.4. l l F(X. 'r') ,,, G (X. Y) mod(degree n ). 

Then there is a ( uniqut' l a E A such that 

F(X. Yi G(X. Y) + a(v(n f'B,,,(X. Y")l mod(dcgree n + I). 

Thts follows directl~ frnm Theorem 2.4 and (J.1.5). 

This rnrollary rnmpkte~ th.: proofs of Theorem 2.8 and its coro!laries in [2J. 

6. Isomorphism theorems 

6.1. Proof of Theorem 2.5. L.:t F(.'(, Y) and G(X, Y) be two formal groups over 
Z(U: Tj with logarithms f(X). g(X)EQ(U: TJ[[XJ]; i.e. F(X, Y)= 

f '(f(X\ + f( Y)), G()(, Y') = g '(g(X) + g( Y)). The formal groups F(X. Y) and 
G(X. Y) are strictly i~nmorphic if and only if g '(f(X))E Z[ U: Tll[XJI and this is 

th.: ,·ase if and only if g '(l<X))EZ.,.,[T: Ul[[Xl] for all prime numbers p. 
The power series f, (X). ,f, (X), f, ,(X) all satisfy functional equations (4.2.1). 

Hence it suffices to apply the fu11ctional equation lemma [2, 7. I j to prove 

Theorem 2.:'i. 
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6.2. Proof of Theorem 2.6 (universality of the triple (Fu (X, Y), au. r (X), 
Fu.r(X, Y))). Let F(X, Y) and G(X, Y) be two formal groups over a ring A and 
a (X) an isomorphism from F(X, Y) to G (X, Y). Because of universality of 
Fu (X, Y), there is a unique homomorphism if; : Z[ U] - A such that Ft(X, Y) = 
F(X, Y). Suppose we have already found a homomorphism </J" : Z[ U, TJ- A such 
that 

(6.2.1) 

(6.2.2) 

Ft·(X, Y) = F(X, Y), i.e. </Jn is equal to if; on Z[ U] CZ[ U; Tl, 

a:1:/X) = a(X) mod(degree n) 

ed suppose that </Jn is unique on the subring Z( U; T 2 , ••• , Tn-d of Z[ U; T]. There 
1s a unique a EA such that 

(6.2.3) at:r(X) = a(X) + aX" mod(degree n + 1). 

Now define </Jn+I by </>n+1(U,)=if;(U,); <f>n+1(T.)=</Jn(T.), i=l, ... ,n-1; 
,Pn+1(T") = - a; <f>n+1(T.) = 0, i ;:;-,: n + l. Then (6.2.1) and (6.2.2) hold with n 
replaced by n + 1 and </Jn+1 is unique on Z( U; T2, ... , Tn], both because of (3.1.7). 

6.3. Remark. The arguments of 6.1 show that if g (X) is any of the power series 
defined by (4.1.1) and (4.1.2) and G(X, Y) = g- 1(g(X) + g(Y)), then G(X, Y) is a 
formal group over Z[U; T] (by 4.2 and 4.3) and G(X, Y) is strictly isomorphic to 
Fu.r(X, Y). 

7. A special choice for the n(i,, ... , i,) 

In this section we define special n(ii, ... , i,), which are such that there are 
fsonable formulas for the U; in terms of the m; ( U). 

7.1. For each prime number p and each i EN\ {1} let c (p, i) be an integer such that 

(7.1.1) 

c(p, i) = 1 

c(p, p') = 1 

c(p, i) ':' {; 
modp 

modq 

if v(i) = 1 

ifv(i)=q'fp. 

We now define b(i 1, ••• , i,) for all sequences (i,, ... , i,) with i; E N\{l} by the 
recursion formula 

b(i) = TT c(p, i), 
p I, 

(7.1.2) 
b(i,, ... ,i,)= TT c(p,i,)b(i,, ... ,i,-,) ifs;:;-,:2 

p I i1 ... is 
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where the product is over all prime numbers p which divide i1 ... is. (The factor 
c(p, is) occurs only once, irrespective of how high a power of p divides i1 ... i,.) 

Finally we define 

(7.1.3) ( . . ) - b ( i I, •.• , i, ) 
n 11, ••• , 1, - b (. . ) 

l2, ... , ls 
ifs ;a-;2, and n(i) = 1. 

7.2. It follows directly from (7.1.2) that 

(7.2.1) b(i1,---,i,)= fl c(p,i,) fl c(p,i,-1) ... TT c(p,i2) fI c(p,i1) 
PI i1.--;, PI;, ... ;,_, p I;,;, PI;, • 

and hence that .. 

(7.2.2) n(ii, ... , i,) = c(p, i,) fl c(p,i,-i} ... n c(p,i2) fl c(p,i1)-
p I;, p I i1 PI;, 

p ,r i2 ... i.1-I p,1-'i:z 

7.3. Lemma. The n(i 1, ••• , i,) defined by (7.3.1) satisfy conditions (2.1.1)-(2.1.3). 

Proof. (2.1.1) is satisfied by definition. Suppose that 1 / p = v(i1) = ... = 
v(i,) I v(i,+ 1). First let r ~ 2. The only prime number dividing i1 is p, and p also 
divides i2,i2i3, ... ,i2 ... is-1• Therefore n(i,, ... ,i,)=1 in this case. Now let 
r = 1. The only prime dividing i, is p and c (p, i) = 1 mod p for all i EN\ {1}. It now 
follows from (7.2.2) that n(i 1, ••• ,i,)=lmodp. This proves (2.1.3). Now let 
v(i1) Ip = v(i2) = ... = v(i,) / v(i,+1). Then there is a prime number q which 
divides i, but does not divide i2, i2i3 , ••• , i2 ... i,. It now follows from (7.2.2) that 
n(i1, ... ,i,) contains the factor c(q,i2)c(q,i3) ••• c(q,i,). But c(q,i,)=0 modp, 
because v(i,) = pl l for t = 2, ... , r. This proves (2.1.2). 

7.4. Let d(i1, ... , i,) be as in 3.2, i.e. 

(7.4.1) d( . . ) = n(i1, ... , i,). . ~ 
!1, ••. ,1, (.) ... (") 

V 11 V l, 

then we have by (7.1.3) 

(7.4.2) d(i1, ... ,i,) __ 1_ fl ( .) fors:=:ao2. 
d ( . . ) - ( . ) C p, !, -

l1, ••• , ls-l 11 ls p I i 1 ... i_5 

Note that this number depends only on the product i1 ••• i, and i,. We define for all 
n, dEN\{l} 

(7.4.3) µ(n, d) = TI c(p, d). 
pjn 

7.5. A Recursion formula for the U. in terms of the m" ( U) 

We have according to (2.2.4) and (7.4.1) that 
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"' µ,(n,d) (V)Vnld+ ( )-Iv = L., (d) mnld d µ, n n• 
d In II 

d1'1,n 

Ne find 

tt the factor v(dr' v(n )µ (n, d) is always integral. Indeed, this factor is 
integral if v(d) = 1 and if v(d) = p = v(n ). And if v(d) = p-/ v(n) there is 

number q-/ p dividing n so that µ, (n, d) contains a factor c (q, d) which is 
1t to zero modp by (7.1.1). Note also that v(dr 1v(n)µ(n,d)=l if 
(and d In) and that v(dr'v(n)µ(n,d)= 1 if v(d)= 1 (and hence also 

). So the only factors v(dr'µ,(n, d)v(n) different from 1 occurring in 
ave v(n) = 1 and 11(d)-/ 1. Cf. also [6]. 

1ark. Let H1• (X, Y) = h "i,'(hu (X) + hu (Y)) where hv (X) is the power 
fined in (I .4). Then one has (i) Hu (X, Y) has its coefficients in Z[ VJ; (ii) 
al groups Hi, (X, Y) and Fu (X, Y) are strictly isomorphic over Z( U]; (iii) 
') is a universal formal group. These things are proved in exactly the same 
he corresponding statements for A, (X, Y). 
ural more dimensional generalization of Hu (X, Y) is discussed in (4] 
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