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Michiel Hazewinkel 

O. INTRODUCTION 

Let A be an integral domain of characteristic zero, and let K 

be its quotient field. Let F(X~Y) be a one dimensional formal group 

over A. Then Fis strictly isomorphic to the additive group over K; 

i.e. there exists a forma.l power series f{X) with coefficients in K, 

f(X) = X + a2x2 + •••• such that 

( 1) 

where r-1 is the inverse power series to f; i.e. f- 1(f(X)) = X. 

This power series is called the logarithm of F. It is now natural 

(cf. also Honda [ i]) to construct formal groups by taking a power 

series f and setting F{X,Y) = f-1(f(X) + f(Y)). This F(X,Y) is 

automatically commutative and associative. It "only" remains to 

find conditions on f which guarantee that a.11 the coefficients of 

l • 

F(X,Y) are in A. It is not difficult to show that if f(X) = X + a2J?- + ••• 

that then 

(2) n a € A 
n 

for all n E fi 

(In fa.ct by differentiating (1) one gets (a~ F)(O, »-\= f'(Y) 

follows; cf. also [ 2 ] Prop. 1) 

In the following we shall as in [ 2. ] write down some (explicit) 

power series f to construct a universal formal group for formal groups 

over Z(p) - algebras. As an application we get necessary and sufficient 

conditions on f that F be in A [[X,Y]]. No doubt a large part if not all 

of the results obtained below are contained in some way in the work of 

Cartier (Cf, [ 1 ]}. 

*) Research supported by z.w.o. (the Netherlands Organization for 
the Advancement of Pure Research). 

r,.-: • 'r'\ ·r::r,~ I\ '"!·1 1:rt 1 
• , · ' , .. , 1 • . I. ~ , I 



1,t 

1. CONSTRUCTION OF A FORMAL GROUP 

We work over the ring Z [T] • Z[T 1 , T 2 , • • • ] of polynomials 

in a countably infinite number of indeterminates over the integers. 

1.1. The Construction 

Choose a prime number p and let r1 be the power series 
2 

:t;,(X) = X + a2X + ••• , which is recursively defined by 

Ill Ti (") i 
f_ ( X) • X + . r - ~ 1 ( xP ) 
---r 1=1 p T 

( 3) 

where ~i) denotes the power series obtained fr~ r,. by raising 

each of the in determinates T 1 , T 2 , • • • to the p 1 -th power. The 

condition (3) completelY determines the series ¼t' (recursively). It 

starts off as 

(4) 

Let L(r) stand for f( 
1 T 1, 'I'2 , •.• , Tr,o,o, 

checks that 

(5) 

Then one easily 

r+1 mod(degree p + 1) 

Now let FT(X,Y) be the formal group defined by 

It then follows from (5) that 

where 

FT(r+1)(X,Y): FT(X,Y) = FT(r)(X,Y) +Tr+1cpr+1(X,Y) 

mod(degree pr+1 + 1) 

1 r+1 r+1 r+1 
C r+1(X,Y) = p- ((X+Y)P - xP - yP ) 

p 
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Remark 
2 

Let fT(X) = X + a 1xP + a2xP + ••• then one can of course 

calculate the genera tots T 1, ... , Tn, ... of 

z(p)[r 1, ... , Tn 1 ... ] (or z(plT,, .•. , Tn, 

This yields a recursion formula for the T.: 
l. 

( 8) 

n-1 n-i 

... ]) from the a .. 
l 

T = pa - 1: T~ a . 
n n i=l 1 n-1 



.. 

i 

3 

1 .2. Theorem. 

(9) 

All coefficients of FT(X,Y} are in Zrt']. 

Proof. In the following we shall work in the ring Qrr][[ X,Y]]. The 

expression G = H mod(a, degree n), where aE Z will mean that 

G - HE a Z[T][[X,Y]] moda.lo terms of total degree (in X,Y) greater 

or equal n. We proceed by induction. Let FT(X,Y) = F1 + F2 + ••• , 

where F. is homogeneous of degree i (in X,Y). Suppose that 
1 

... , F E- Z[T][X,Y]. 
n 

It is clear that ifs> 2 

(10) mod(degree n + 2) 

Using this, one shows without difficulty, because F 1 , ••• , FnE z[T][X,Y] 

( 11 ) 1+1 mod(p , degree n + 2) 

Here F+k) denotes the formal group, obtained from FT by raising all 

of the parameters T 1, T 2 , • • • to the pk-th power; i.e. 

(12) 

The formal group FT satisfies (by definition) 

( 13) 

and therefore, according to (3) 

(14) F. (X Y) : T~i (i){F. (X y)Pi) = X + y + : Ti_,~(i)(Xpi) + r+(i)(" 
T , + t. • T , t. ---'\ .1., .i 

i=1 P i•1 P T 
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j 
The coefficient of xP in f(X) is of the form p-ju, 

u e Z[T]; therefore, using (11), ve have that 

mod(p, degree n + 2) 

However, (cf. ( 12)), 

Combining (15) and (16) and substituting this in (14) we get 

(17) mod (1, degree n + 2), 

i.e. Fn+ 1 has all its coefficients in ZPI']. This completes the 

induction and the proof. 

1.3. ! Generalization. 

Let g be any formal series in .Z[T][[X]] o"t. Z Crr.l.lJ [[i]J wt,.Ji ~ba:it~ off lli 

g( X) = X + • • • Th.: U Wl.t ci.Jd.:t·,o,.,o.l ftl·1Q wubns anJ Mlllt a1l:lc -k 'ltl11J1J IQ l:hc f•""'-'1 f>'" 
,.,, ft~J ; .fi.t f hi! the fcrJt1 ierzit~ 

( 18) f(X) = g(X) + i Ti /i)(xPi) 
i=1 P 

and let F(X,I) = r-1(f(X) + f(Y)) as before. Then one proves in the 

same way as in (1.2) that F{X,Y) has all its coefficients in ZCT]l'!l,)r Z[1 

A good g (for later purposes)is the following 

( 19) g(X) = l: 
i=1. 

(i,p)=1 

+ X 

Substituting U. forT. in (18) for this particular g ve get a 
pl l 

series fu(X) such that if U(r) denotes (u1, , ur,o,o, ••• ) 

(20) mod(degree r+2) 

if r+1 is not a power of p 

FU(r)(X,Y) = F0(X,Y) + Cr+1(X,Y) mod(degree r+2) 

if r+1 is a power of p 
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r+1 r+1 r+1 1 ) Here Br+1(X,Y) = (X+Y) - X - Y , and Cr+1(X,Y) = q- Br+1(X,Y 

if r+1 is a power of the prime q. 

Remark. If g(X)c Z( }[T], then the corresponding F(X,Y) has 
. p 

all its coefficients in Z(p)[T]. 

2. UNIVERSALITY PROPERTIES 

All formal groups in this section are one dimensional. 

It follows almost directly from a fundamental proposition of 

Lazard on the comparison of two formal groups, that the formal 

group F constructed in 1.1 is universal for formal groups over 

Z(p) - algebras in sofar as a formal group of this special type 

can be universal; and that the formal group FU of 1.3 is universal 

for formal groups over Z(p) - algebras. Precise definitions are given 

in 2 .3 below. 

2.1. Proposition (Lazard). 

If F, Gare two one dimensional formal groups over a ring A 

such that F(X,Y) =G(X,Y) mod(degree n + 1), then 

F(X,Y) =G(X,Y) + a Cn+ 1(X,Y) mod(degree n + 2) for some a EA. 

2.2 • .J2=. Typical Groups (Cartier). 

Let F be a formal group over a ring A. A formal power series c 

without constant terms is called a curve. We can add two curves by means 

of' the f'ormula 

(21) 

In addition one defines operators 

( Ea Jc )(X) = c(aX) a A 

(22) (V c)(X) = c(Xn) 
n n = 1, 2, ••• 

(F c){X) 
n F . 1/ 

= r cU:1 x n) n i=1 n n = 1, 2, ••• 



where~ is a primitive n-th root of unity. 
n 
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A formal group is called p-typical if F c = 0 for all primes 
q 0 

q ~ p, where c is the curve c (X) = X. If A is a characteristic 
0 0 

zero integral domain then this is the same as the requirement that 

the logarithm of F looks like 

2 
f(X) = X + a xP + Q xP + ••• 

1 2 

cf. Cartier [ 1 ] . 

The group FT of 1.1 is therefore p-typical. 

2.3. Definitions. 

If p : B ~ A is a ring homomorphism, and Fis a formal group 

over Bone obtains a formal group p*F by applying p to the 

coefficients of F. 

A formal group G over a ring B is called universal if for eYery 

formal group F over a ring A., there is a unique homomorphism 

p: B ~ A such that p*G = F. 

A p-typical Gover a ring Bis called p-typically universal 

if for every p-typical formal group F over a ring A there is a unique 

homomorphism p: B ~ A such that p*G = F. 

We add the qualification "over Z(p)-algebras" in the definitions 

if these statements (only) hold for formal groups F over a Z(p)-algebra. 

2.4. Theorem. 

The formal group FU of 1.3 is universal over Z(p)-algebras 

2.5. Theorem. 

The formal group FT of 1.1 is p-typically universal over Z(p)­

algebras 

2.6. Theorem. 

Every formal group Gover a Z(p)-algebra A is strictly isomorphic 

to a formal group Ft where t = (t 1 , t 2 , ••• ) is a sequence of elements 

of A. 

("Strict" means that the isomorphism is given by a power series of the 

form X + a2x2 + • • • , ai .:: A, 
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2.7. The proof of 2.4. is standard. One uses Lazard's result 2.1 

and the fact that all primes q; pare invertible in a Z(p)-algebra A. 

To prove 2.5 we need a lemma. 

2. 8. Lemma. 

Let F and G be two p-typical formal groups over a Z(p)-algebra A; 

and suppose that 

F(X,Y) - G(X,Y) 

then 

F(X,Y) - G(X,Y} { r+1 mod degree p ) 

Proof. Suppose this is not true, and let m be the smallest integer 

such that F(X,Y) 1 G(X,Y) mod(degree m+1), then pr+1 < m < pr+1-1. 

Then 

(23) F(X,Y) = G(X,Y) + a Bm(X,Y) mod{degree m+1) 

for some a A. Now let q be any prime different from p which divides m. 

Let F2(x,, x2) = F(x,, X2), F3(x,, X2, x3) = F(x,, F2(x2, X3) and so on; 

and similarly for G. One then checks easily that 

mod( degree m+1) 

q 1/q) ••• , f;; X ' q 
and 

similarly for G. (The superscript F indicates that the operator F4 of 

2.2 is to be taken with respect to the formal group F). Therefore 

by (24) the coefficients of y:n/q in (F c )F(X) and (F c )G(X) differ 
q O q 0 

by -aq, On the other hand (F c )F = 0 = (F c )G because F and Gare 
q O q 0 

p-typical. Therefore, as q is invertible in A, a= 0 which contradicts 

our assumption. 

q.e.d, 
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Remark. This lemma is just about completely trivial if A is an 

integral domain of characteristic zero, because we can then use the 

logarithm. 

2.9. Proof of 2.5. 

Let G be a p-typical formal group over a Z(p)-algebra A. 
Suppose we have already found elements t 1, ••• , tr E" A such that 

GlX,Y) ~ F(t )(X,Y) 
1 , t 2 , ••• , tr, O, O, ••• 

Then because both these formal groups are p-typical 

F(t t ,O,O, ••• )(X,Y) '=- G(X,Y) mod(degree pr+1 ) 
1' t2' • • • ' r 

By ( 2. 1) and ( 5) there 1s now a unique a tr+1 € A such that 

t 0 , 0 , ••• ) (X,Y)= G(X,Y} 
• • •' r+1' 

( r+1 mod degree p +1) 

2.10. Proof of 2.6. 

Let G be a formal group over A. We proceed by induction. 

Suppose that ve have already found t 1 , • , • , tr e A and a strict 

isomorphism given by a power series 'f n over A such that 4> n : Ft ( r) + G 

defines an isomorphism mod(degree n+1), where t(r) = (t 1, ••• , tr,o, ••• ), 

r r+l and p ~ n < p • I • e • 

(25) Ft( ) (X,Y) = <J,- 1G(q, (X), (j, (Y)) 
r n n n 

mod(degree n + 1) 

It now follows from 2.1 that 

for some a E. A. We distinguish three cases 

(i) n+1 < pr+1 is not a power .of a prime. Then <fi0 +1(x) = <fin(X) + a Xn+l 

detines an isomorphism mod(degree n+2) between Ft(r) and G. 

(ii) n+1 <pr-t 1 is a power of a prime q #i p. Then q is invertible in A 

and 4> 1 (X) = <f> (X) + q-1a t1+1 defines an isomorphism mod(degree n+2) 
n+ n 

between Ft(r} and G. 
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( i• i· 1·) n+1 -- pr+1 Let ,.. · · · , tr+1 =a.Then ~n defines an isomorphism 

between Ft(r+,) and G. 

q.e.d. 

Remark. 

The elements t 1 , t 2 , •••• are not uniquely determined by G. 

They also depend on the choice of <f,, Cf. also sections (3.4), (3.5). 

2.11. Corollary. 

Ever,r formal group over Z(p)-algebra is isomorphic to a 

p-typical one. 

Remark. 

Cartier [ 1 ] gives a canonical transformation for rendering 

a given group law typical. Cf. also 3,3 and 3.2. 

3. ISOMORPHISMS 

The groups FU of 1.3 and FT of 1.1 are isomorphic over Z(p)CTJ 
according to theorem 2.6. There is,however, an isomorphism between 

them over zCT], which can be indicated fairly precisely. To see this 

we need some lemmas. 

3,1. Lemma. 

Let u(X) = X + u2r + • • • be a power series o°!'er zCTJ 

= cnp-\ en~ zrrJ (or z(p)CTJ), where n = p'k, with Let bn 

Then we have 

mod p. 

(or ZJTJ). 

(k,p) = 1. 

where u(i) is the power series obtained from u by raising all the 
i parameters T 1, 'I' 2 , ••• to the power p • 
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Proof. 

P-jcn(u(x)Pi)n = P-jcn(u(i)(xPi) + p( ••• ))pjk = 

= p-jc (u(i)(xPi)pj + pj+1( ••• ))k = p-jc (u(i)(Xpi}}n + p{ ••• ). 
n n 

3,2. Lemma. 
CD T. (") i 

Let f'(X) = X + E ...!.f 1 (Xp ) + f (X), g(X) = X + 
i=1 p o 

+ ; Ti g(i)(xP\ + g (X), where f (X), g (X) EZ[1',U][X]] 
i=1 P O O O 

and f (X), g (X}: 0 mod(degree 2). Then there 
0 0 

exists a power series u(X} e zrr.l.(](00] (resp. Z(p)[T,U][X]] such that 

u(X} • X mod(degree 2) and f(u(X)) = g(X). 

Proof. 

Suppose f(X) = g(X) mod degree r. Let a , a0 , b , b0 be the 
r r r r 

coefficients 

Then 

a r 

b r 

of Xr in f'(X}, f (X), g(X}, g (X) respectively. 
0 0 

I 
Ti (i} 0 

= - a. + a 
i. 

p J r 
P J•r 

T. (.) 
+ bd = r ...!. b.1 

i. p J r 
P J•r 

It follows that u = b - a = b0 - a0 is in ZCT,U)(resp. Z(p)[T,U] 
r r r r r 

Now substitute u(X) = X + u Xr for X in f(X}. Then 
r 

f'(X) • f'(u(X)) _ g(X) mod(degree r + 1) 

To complete the proof it remains to show that f''(X) is o~ the 

same general shape as f(X) (with a different f' (X) of' course). This 
0 

follows from 3.1, 
q.e.d. 



A corollary of 3.1 is that the logarithm of any universal 

formal group law satisfies an identity of the type 

11 

00 1'. (") i 
f(X) = X + f (X) + E if 1 (xP ). By- means of 3.2, and 3.1 over 

o i=1. p 

an integral domain A which is (not necessarily_ a Z(p)-algebra) 

one sees that a formal group over A is isomorphic over A to a 

p-typical one iff it comes from FU. 

3.3. Corollary. 

The logarithm f of' a formal group F over Z(p)-algebra A, which 

is an integral domain, satisfies an identity 

(27) 

where f (X) E A[[X]] is = 0 mod(degree 2), and t. E A. This is a 
0 l 

necessary and sufficient condition for F(X,Y) to be in A[[X,Y]]. 
2 To determine therefore whether a given power series f(X) = X + a2x + ••• 

gives rise to a formal group over A. One first sets 

2 p-1 f 0 (X) = a2x + ••• + ap•lX ; pap is in A; one takes t 1 = app. 

then (27) is satisfied nod(degree p + 1). (One can also take 

t 1 = ap + ps 1, s 1 e A and correct r!(x) with a term - s 1xP). Let 

2 p-1 :1_ g( 1 )(Xp) (28) 'f,(X) = X + a2x + ••• + ap_1X + p 1 

Then f(X) - g1(x) must be of the form (if Fis to be in A[[x,Y]J) 

• • • + 
2 mod(degree p · + 1) 

with cp+l' ••• , c 2 , ~EA, this determines f 0 (X) mod( degree p2 + 1) 
p -1 

and t 2 = d2 (Again we can also take t 2 = d2 + ps2 and correct 
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r2(x) which is the polynomi~l of consisting of the terms of degree< p2 
0 c; 

of f 0 (X) with a term - s 2xP • 

Now let 

(29) 

Then f(X) - g2{x) must be of the form (if Fis to be in A[[X,Y]]) 

+ ••• + 
:p3_1 d 3 

c 3 x + ..:.J. xP 
p -1 p 

mod(degree p 3 + 1) 

with c 2 , •• , , c 3 , d3 E: A, 
p +1 p -1 

This determines f (X) mod(degree p 3 + 1) 
0 

and t 3 (with again the same indeterminacy); etc .••• etc •••• 

N.B. Applying an isomorphism X + 

according to 3,1., and changing 

i 
s.xP 

l. 

f (X) 
0 

does not change the form of 
l 

by a term s.xP comes from 
l. 

an isomorphism according to 3,2, This is why one can change t. to 
l. 

t. + ps. ; in the test described above. 
l ~ 

3.4. Corollary. 

f(X) 

If f(X) = X + a2x2 + ••• is the logarithm of a formal group over 

a characteristic 
2 
zero integrs.l domain A over Z(p). Then f(p) IX) = 

X + a xP + a xP + ••• is the logarithm of an isomorphic p-typical 
p p2 

formal group. 

3,5, This procedure for rendering a given group law p-typical 

is in fact the same as that of Cartier [ 1 ] • Let c be the curve 
0 

F 
c0 (X) = x· and let c_ = I: l:U!!.l. VF c , where all sums and 

¥ ( ) 1 n nno n,p = 

operators are in the (filtered) groups of curves. Cf. (2.2~µ(n) is the 

M"obi s function. Then according to [11 
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is a p-typical form&l group. Because F(X,Y) = f-1{r{x) + f{Y)) 

the logarithm of this p-typical formal group is fcF(X), which is 

(ordinary sum) 

If f = X + a2x2 + ••• , then f( ~ X) + ••• + r( t0 x) • n{ a x° + a x2n + ••• ) 
n n n ~ 

The coefficient of -,tn- in f{cF(X)) is therefore equal to 

r fo((} a.m = 
1/m 
(1,p)=1 

{
O if m is not a power of' p 

am if m is a power of p 

We have,if m • prm', (p,m') • 1, t 
.tlm 

µ(.t} • t µ(t) and this 
tJm' 

( .t,p)=1 

is zero if m' ~ 1 and 1 if m• • 1) 

(3.6) Suppose Ft and Ft, are two p-typical formal groups over an 

integral domain A, obtained :f'rom FT by substituting two different 

sequences t • (t 1 , t 2 , ••• ), t' • (t 11 , ••• ). We ask ourselves when 
,r;h_4~ 

they are isomorphic. We know from {3.1) and (3.2)Yit is necessary 

and sufficient for this that ft,(X) is of the form 

( 30) f {X) (X) i ti f(i,>(x) 
t t = 8 + 

. 1 p t 
i• 

with s(X) • X + • • • € A[[x]]. Because ft, (X) is p-typical we must 

have that s(X) is of the form 

2 
( 31) s(X) = X + s 1xP + s2xP + •••• 

An easy calculation now shows that if f(X) = X + a 1xP + ••. and 

f'(X) = X + b1xP + ••• ,it follows from (30) and (31) that 
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( 32) b • 1 a1 + 15 
1 

b ,. a2 + 82 + a Sp 
2 1 1 

2 
b • a.3 + 8 3 + 

p p 
3 &1 152 + a2s1 

3 2 
b4 • l!L4 + 1!4 + 

p p + a Sp a 1s 3 + a2s2 3 1 

• 

Necessary and sufficient conditions for Ft and Ft• to be isomorphic 

over A are therefore that 

( 33) b1 - a,• s 1 eA 

·b -
p - a ,.. s EA 

2 
a 1s 1 2 2 2 

b3 
p p 

- a • s €A - &1 8 2 - &28 1 3 3 3 2 

b4 
p p 

- a 3s~ - ~\ = s 4 6A - a l!I - a.28 2 , 3 
0 

4. HIGHER DIMENSIONAL COMMUTATIVE FORMAL GROUPS 

Concerning higher dimensional commutative formal group! over 

a ring A, Lazard [ 't ] proved 

4.1. Proposition. 

If F(X,Y) = G(X 9 Y) mod degree r, then F(X,Y) = G(X,Y) + A(X,Y) 

mod degree r+1, with t(X,Y) of the form r(x) - r(X+Y) + f(Y) for 

some form of degree rover A if r is not a power of a prime,and 

if r = qj, then there is a form of degree r, r, and 8/1 n x n matrix 
D ( wtlh cveff i cio..l:s m A) ,:iuch Hi.A~ 

where 

A(X,Y) • r(x) - r(x+Y) + r(Y) + DC .(X,Y) 
ql 

C i(X,Y) = (C i(X1,Y1), ... , 
q q 

C .(X ,Y )) 
1 n n 

q 
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4.2. Construction. 

Lett;, be an n-dimensional (column)vector of power series in 
t 

then-variables X = {X1, x2 , ..• , Xn) over Q[T] such that 

( 34) = X + ; Ti f(pi)(XPi) 
i=1 P r 

where now T. is an n x n matrix of parameters 
l. 

(Ti)l,1 (T.) 1 
i n 

T. = i 

(T.) 1 
i n (T.) 

1. nn 
l. 

and xP l.S short for 
i xP 

1 
l. 

xP = 

i 
xP I 

n1 

We define the commulative n-dimensional formal group FT by 

( 35) 

Theorem. All coefficients of FT(X,Y) are in Z[T]. 

Same proof aseftheorem 1.2. 

4.3, Universal n-dimensional formal groups. 

Exactly as in 1 • 3 we can ta.ke instead of X 1.n formula ( 34) a 

power series g{X) with coefficients in a suitable ring of polynomials 

over Z (or Z(p)). By taking a good g{X) (cf. 4.1) we get a formal 

group which is universal for commulative n-dimensional formal groups 

over Z(p)-algebras (the analogue of Th, 2,4). The analogues of 2,5 

and 2.6 also hold. Same kind of proof, using 4.1 instead of 2.1. 
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5. ADDITIONAL REMARKS AND COMMENTS. 

5.1. Honda's Groups 

Let K be a finite extension of'\,; n the degree of the 

residue field extension and~ a uniformizing element of K. In [ l] 

Honda defines a series of one dimensional formal groups by means 

of the logarithmic series 

an 2an 

( 36) f( X) = X + x: + X~-rr1 + ••• 

where ae ti is arbitrary. 

( 37) 

This series (36) satisfies the relation 

an 
f(X) = X + w-1f(XP ) 

One can now prove in almost exactly the same way as in §1 

that the formal group 

(38) 

has all its coefficients in~, the ring of integers of K. 

An ·endomorphism u(X) of the formal group (38) is necessarily 

of the form 

where u is integral over~- Using the relation f{u(X)) = u f(X) 

one can apply similar arguments as those of §1 to the determination 

of the (absolute) endomorphism ring of F. 

5.2. Height. 

Let FT be the one dimensional formal group defined in §1. Let 
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A be the ring of integers of some finite extension of ~; 

let (t 1, t 2 , ••• ) be a sequenc: of elements of A. Leth be the 

smallest number such that the A = U(A), let h = co if such a. th 

does not exist. Then height (Ft)= h. 

5.3. Formal moduli. 

Let R be a complete noetherian local ring with maximal ideal m 

such that R/m. ~ k, a field of characteristic p > 0. Let~ be a 

formal group over k such that j(X,Y) = X + Y + C (X,Y) mod(degree q+1) 
q 

(Any formal group lav over k is isomorphic to one of these~ Then 

there is a lift F of~ of the form 

F 
( 0, ••• , 0, an, an+ 1 , ••• ) 

n where q = p, and a reduces to a mod m. Now consider the formal n 
group law 

( 39) 

over R[T 1 , ••• , Tn_1]. This formal group law satisfies the conditions 

of Proposition 1.1 of [ ~ ]. It then follows from [ ~] that (39) 

gives an (explicit) parametrization of the *-isomorphism classes 

of lifts of j. (*-isomorphism= strict isomorphism). 



--------------~ --------~-------
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5,4. A~plication to complex cobordism theory, 

The formal group law FU of 1,3 1s universal for formal groups 

over Z(p)-algebras (cf.2.4). If 

f{X) = X + a 2x2 + a3x3 + 

is its logarithm, then we can calculate the generators u1,u2 , ••• 

of Z(p)[u1,u2 , •.. J from the a2 ,a3 , .••• Cf. also fomula (8) of 1.1 

remark. Writing Ti for U. this gives the following recursion formula: 
pl 

'T', = p ap 

T2 = p a - T Pa 
2 1 p 

p 
2 

(40) T3 = p a 3 T p a 2 T Pa 
1 2 p 

p p 

n-l n-i 
T0 = p a - L. T,P a . 

n . 1 n-1 
p •"' 1 p 

If k is not a power of p~ then k is of the form 

For these Uk one finds recusively 

U - a U P pr= apr pr 

u 2 
P r 

= 

u = 
s 

P r 

a 2 
P r 

a s 
p r 

a Up 
2 r p 

2 
- a U ppr 

p 

s p r, where (p,r) = 1. 
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The formal group law of complex cobordism theory is universal over z 
(cf. Quillen [6]) and hence also universal over Z(p). Its lo.garithm is 
equal to 

X + 
p1 2 
-x + 
2 • + 

p 
n xn+1 

n+1 + • • 

where P is the class of CPn in n n.-2n(pt). Two universal group laws 

are isomorphic. Therefore, writing a = (n+1)-1P a 
n+1 n' ev generators for the algebra ..n (pt) a, z(p) over z(p) 

the formulas (40) and (41) above. 

free set of 

is given by 

The formulas (40) give the generators of nT*(pt), where 

nTl'r is the generalized cohomology theory associated to the Brown 

Peterson spectrum as obtained from MU~ by the Quillen splitting [6]. 

5, .&~atk.In this paper we have constructed some universal formal 

groups for formal groups over z(p)-algebras (FU), where p was chosen 

in advance. This formal group FU is not universal for commutative 

formal groups over Z-algebras (i.e. commulative rings with identity 

element). In a subsequent paper we shall show how to fit the fonnal 

groups FU for each prime p together to get a truly universal formal 

group (i.e. over Z-algebras) • 

. -~---------------------------------------
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Appendix to : Constructing Formal Groups I 

In l'I ] the f'ormulas ( 8) , (.tt) , ( 40) and ( 4 1 ) were stated vi thout 

proof. 

Formulas (8), (40), (41) follow from the 

A.1. Proposition 

Let f(X) be the power series over Q[u2 , u3 , ••• ; T 1~ 2 , ••• ] defined 

by 

f(X) ( 1) 

where g(X) = X + r 
i>2 
(i,p)=1 

U.Xi and f(i) is obtained from f by 
1 

raising all of the parameters T1 , T2 , ••• , u2 , u3, ..• to the 

pi- the power. Then if a is the coef:ficient of r1 in f(X) we 
n 

have: 

T3 = p a 3 
p 

T =pa 
n n 

p 

n-1 
- Tp -'D 

1 a n-1 - •·· - ~;-1ap 
p 

and if u i = pks , (s,p) = 
U = a 

1, we have for U. 
1 

s s 

u = a a uP 
ps ps p s 

2 
u 2 = a 2 - a uP a uP 

2 s p sp p s p s p 

k k-1 
U k = - a uP - a uP ak - ... p s k s k-1 ps 

p s p p 

(pis some fixed prime number). 

(2) 

( 3) 

p - a U k-1 pp s 

BA 



To prove this we need some lemmas. 

A.2. Lemma 

Let f(X) and a be as before. Then for n > 1 
n 

a n p 
= E r p 

2 

(4) 

where the sum is taken over all jke NU {o}, ik € N, k= 1, ••• , r, 

r < n such that 
0 < . < 

. . - J, 
J 1 1 1 

p (p - 1) + 

••• <j r . 
J l 

••• + p r(p r _ l) • pn_1 

and, if s > 1 , ( p , s ) = 1 

a n 
p s 

jl jr 
T~ ~ j 

1 1 l p 0 
= E --'---r ____ r_ U t 

p p s 

(5) 

( 6) 

where the sum is taken over all t, jk e NU {O}, k = 0, 1, ••• ,r; 

ikE N, k = 1, ••• , r such that 

••• <j r 

,i t j 1 i, jr ir n 
p 0 ( p s-1 ) + p ( p - 1) + ••• + 'P ( p - 1) = p s-1 ( 7) 

Proof. We use induction. Assume therefore that (4) holds for all 

m < n. It follows from (5) that j 1 = O, i 1 .::_ n, and that 

i 1 .::_j 2 < ••• <jr. Therefore 

r p 

T. 
n i, 

=. ! 1- E 
l = p 

1 
r-1 p 

j2 i2 
where p (p - 1) + ••• 

j i i, 
+ p r(p r - 1) = pn - p and hence 
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0 _< j2 - i 1 < J. 3- i, < < • • • • • Jr - 1 1 

and it follows by the induction hypothesis that 

where {i) is obtained.from ak b~ replacing the parameters 
l. l. 

T 1 , ••• , Tn, ••• by T; , ... , ~ , . . . . But according to ( 1) 

one has 

which proves formula (4). 

Ti (i) 
-a . 
P n-1 p 

To prove (6) one proceeds similarly. If t = n, j = O 
0 

and r = O. If 1 < n, j 1 = 0 and the rest of the proof is 

completely analogous. 

A.3. Lemma 

j 1 i 1 jr ir n 
Let p (p - 1) + ••• + p (p - 1) = p -1, with i 1 , ... , 

= n. 

Proof. By induction on r. The case r = 1 is trivial. Suppose 

therefore that r > 1. It follows frcm the asymptions that 

j 1 = O, and therefore 

j2 i2 j i n i, 
P (p - 1) + ··• + P r(p r - 1) = P - p 

i > 1 
r-

It follows from this that J0

2 = i , because O < J0 < ••• < J0 
, and 

1 2 n 

i 1 < n. Therefore we find 

i2 j3-i1 i3 jr-i1( ir ) n-i, 
(p - 1) + p (p - 1) + ••• + p p - 1 = p -1 

By the induction hypothesis we now have (jr - i 1 ) + 1.r = n - i 1 

and hence j + i = 1. 
r r q.e.d. 



A.4. Proof of proposition A.1. 

According to lemma A,3 we have that i + j = n in 
r r 

fonnula { 4) • 

It follows that 

n-i 
j, jr-1 

~ ~ ... ~ n l., l. r-1 a = 1: 
_!_ 

1: n p r-i p i=1 p 

where, because ir + jr = n 

4 

j, i, j i j 
{ ) r-1{ r-1 _ l) r n-i p p - 1 + ••• + p p = p _, = p - 1 

Therefore 
n-i 

n ~ 
1: 

l. 
a = n i=1 p p 

from which (2) follows. 

a n-i , a, 
p 

According to (7) we have that 

= 1 

for the j 1 < ••• < j occurring in (6), It follows that 
r 

n 
a = U + 't' n n t... 

p s p s i=1 

from which { 3) follows 

i 
p a .u . 

i n-1 
p p s 

To prove formula {J1) we need another lemma. 

A. 5. Lemma 

Let f{X}c Q[s 1, s 2 , ••• , T1, T2 , ••• ] be defined by the 

formula 

OD i 
; Ti /U{ ~\ f(X} = X+ I: s. xP + 

i=1 l. i=1 p 

Then if 2 
f(X) =X+bXP 

1 
+ b Xp 

2 
+ ... 

we have 
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jl jr jl jr jo 
T~ ... TP T~ TP s:P 

11 l. l. 1 l l. 

b r 
E 

r 0 = r + n r r 
p p 

where the first sum is taken over all jk E- NU{ O} , ik E N, r (:- N 

such that j 1 < j 2 <,. ~ jr and 

j 1 i 1 j i 
p (p -1) + .•• + p r(p r-1) = pn-1; and the second sum 

is taken over all jke- NU { O}, re N v{ O} , ikt N such that 

j i 
+ p o(p o _ l) = pn _ ,. 

Proof. Similar to the proof of Lemma A.2. 

A.6. Corollary. 

Let f(X) be as above, and let g(X) = X+ a xP 
1 + ... 

be defined by 

a, 

Ti g(i)(xP 
i 

g(X) = X+ E ) 
i=l p 

then we have 

b1 = a, + s, 

b2 = a2 + a sP + s 
1 1 2 

2 

b3 = a3 + a2S~ + a sP + S 
1 2 3 

n-1 
b = a + a sP + • • • + p + s n n n-1 1 a,sn-1 n 

Proof. Exactly as in A.4, starting from A.5 instead of A.2. 

Note that this proves formula(~) of [1]. 

A. 7. Remark 

Let now X be a vector and let f(X) be then-dimensional 

power series defined by 
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f(X) 

where now the T. are n x n matrices of parameters as in [1] (j~ ). 
l 

T i T i i 
( If X = ( Xp • , • , X n) , then (XP ) = ( X~ , ••• , X~ ) ; 

T d t ' . ) enotes ranspos1tion as usual 

Then f(X) is of the form 

f(X) = 

where now the a. are n x n matrices. Then if we write 
l 

k 
T~p) for the matrix T. with all its entries raised to the 

i k l 
power p , one has 

T 1 = p a1 

T2 = p a2 - a 1T~p) 

2 
T =pa - a T(p) 

3 3 2 1 

- . . . - a T(p) 
1 n-1 

This is proved in the same way as A.1. One also has analogues 

for the second part of A.2. and for A.6., which gives multi­

dimensional analogues for the formulas (8), (Jl), (40) and 

( 41 ) of [ 1] • 

Reference 

1, M. Hazewinkel, Constructing formal groups I. Over Z(p)-algebras. 

Report of the Econometric Institute, Netherlands School 

of Economics, no. 7119 (1971). 


