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Constructing formal groups I. Over Z{P) - algebras )

Michiel Hazewinkel

0. INTRODUCTION

Let A be an integral domain of characteristic zero, and let X
be its quotient field. Let F(X,Y) be a one dimensional formal group
over A. Then F is strictly isomorphic to the additive group over K;
i.e. there exists a formal power series f(X) with coefficients in K,
£(X) =X + a2X2 + .... such that

(1) F(X,Y) = f“(f(x) + £(Y))

where f‘1 is the inverse power series to f; i.e. f"(f(x)) = X,

This power series is called the logarithm of F. It is now natural

(cf. also Honda [ 2 ]) to construct formal groups by taking a power
series f and setting F(X,Y) = f°1(f(X) + £(Y)). This F(X,Y) is
automatically commutative and associative. It "only" remains to

find conditions on f which guarantee that all the coefficients of

F(X,Y) are in A. It is not difficult to show that if £(X) = X + a)X° + ...
that then

(2) nanéA for all nel®

(In fact by differentiating (1) one gets (5%-F)(0, ))-1= FLY)  tem which ()
follows; cf, also [ 2 ] Prop.1)

In the following we shall as in [ 2 ] write down some (explicit)
power series f to construct a universal formal group for formal groups
over Z(p) - algebras. As an application we get necessary and sufficient
conditions on f that F be in A [[X,Y]]. No doubt a large part if not all
of the results obtained below are contained in some way in the work of
Cartier (Cf. [ 1 1),

*) Research supported by Z.W.0. (the Netherlands Organization for

the Advancement of Pure Research).
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1. CONSTRUCTIOR OF A FORMAL GROUP

We work over the ring Z [T]= ZPT1,’P2, ... ] of polynomials

in a countably infinite number of indeterminates over the integers.

1.1. The Construction

Choose a prime number p and let f1 be the power series

fr(X) =X + a2x2 + ... , Which is recursively defined by
o T . i
i (1)/4p
(3) (X) =x+ ¢ — (x )
o ST

where ﬁél) denotes the power series obtained from £T by raising
each of the indeterminates’T1,’T2, ++s to the pl—th pover. The
condition (3) completely determines the series :T (recursively). It

starts off as

2 2
T, TP T, 2 (ML S SR . 0 T,
(%) (X) =X+ —xP + (—= + =)x* + ( + + + =2)xP +
i;I‘ P p2 P P3 p2 p2 P

Let tF(r) stand for . Then one easily

g
(T1,’I‘2, «ev5 T.50,0, ved)
checks that

T r+1
(s) fP(X) = :T(r)(x) + ;+1 ¥ mod( degree pr+1+ 1)

Now let ET(X,Y) be the formal group defined by
_ o1

(6) FT(X’Y) = (fT(X) + ﬂr(Y))

It then follows from (5) that

(1)

1

mod (degree p* | + 1)

where



Remark
p 2
Let fT(X) =X + a1X + aZXp + ... then one can of course
calculate the generatots T1, Cees Tn, ee. Of

Z(p)[T1’ cees T, ...] (or Z(p)[T1, oo T, ...]) from the a;.
This yields a recursion formula for the Ti:

T, = pa,
- b

T2 Pa, T.la.1

P2 TP
(8) T3 = pay - T, &, - T8,

S D

Ty, = pey - Ty a3 - Tp 8y - T35
n-1 n-1



1.2. Theorem.

All coefficients of ET(X,Y) are in 2[T].

Proof. In the following we shall work in the ring QITI[[ X,Y]]. The
expression G = H mod(a, degree n), where a¢ Z will mean that
G - Hea Z[TII[X,Y]] modelo terms of total degree (in X,Y) greater

or equal n. We proceed by induction. Let Er(X,Y) = F1 +F_+ ...,

2
where F. is homogeneous of degree i (in X,Y). Suppose that

(9) F

4> +ees F e zlTilx,Y].
n

It is clear that if s >2

(10) (FT(X,Y))S = (F o+ .+ pn)s mod(degree n + 2)

Using this, one shows without difficulty, because F1 seees F € z(11lx,Y]

+£

o~ (k). 0% D~ pz
(1) (Fp(x,Y)) =HEp (X, Y )

mod(p£+1, degree n + 2)

Here E%k) denotes the formal group, obtained from ET by raising all

of the parameters’T1,'T2, ++s to the pk—th power; i.e.

(12) 20 = ()7 (W«

The formal group Fr satisfies (by definition)
(13) £r(Bp(X,Y)) = £r(X) + £4(Y)

and therefore, according to (3)

© T. .. i © T. . i .
i.(1) Py = i,.(1) 4P (1)
(14)  Fr(x,Y) + 151' T (Fp(X,Y)7 ) = X + Y + 151 —-(p fp (X)) + £ (Y



(e

"

L
: od p -J
The coefficient of X® in f(X) is of the form p “u,
u€eZ[T]; therefore, using (11), we have that
(15) £ (r(x Y)pl) = f(i)(F(i)(Xpl YPl)) d(p, a +2)
ﬂT Pl Xs = I T ’ mod(p, degree n

However, (cf. (12)),

(16) DD, @) = ) 4 D)
Combining (15) and (16) and substituting this in (14) we get

(17) E(X,Y)s X+ Y mod (1, degree n + 2),

i.e. Fn+1 has all its coefficients in Z[PT]. This completes the

induction and the proof.

1.3. A Generalization.

Let g be any formal series in Z[TI[[X]] ox Z[TUIL[X]] which bl off &

g(Xx) =X+ ... The U au additiondd f'aﬁamclms and must ol & vawed o bhe piver P}
m ¥, &t be the  pewct sevies
o T. . 1
(18) £(X) = g(x) + 1 — (1)@
i=1 P
and let F(X,Y) = f"(f(x) + £(Y)) as before. Then one proves in the
same way as in (1.2) that F(X,Y) has all its coefficients in Z[T]{w, ZL[7

A good g (for later purposes)is the following

oo .
(19) gx)= £ ux + X
i=1
(i,p)=1
Substituting U i for"['i in (18) for this particular g we get a

)
series fU(X) such that if U(r) denotes (U1, cee s Ur,0,0,...)

(20) FU(r)(X,Y)E FU(X,Y) + Bﬁ‘(x,y) mod (degree r+2)

if r+1 is not a power of p
FU(r)(X,Y) = FU(X,Y) + crﬂ(x,r) mod(degree r+2)

if r+1 is a power of p



i ur

_ r+1 r+1 r+1 _ =1
Here B_ . (X,Y) = (X+Y) - X -Y 7, and C_ (X,Y) = q Br+1(X,Y)

if r+1 is a power of the prime q.

Remark. If g(X)e Z(p)ET], then the corresponding F(X,Y) has
all its coefficients in Z(p)ET].

2. UNIVERSALITY PROPERTIES

All formal groups in this section are one dimensional.

It follows almost directly from a fundamental proposition of
Lazard on the comparison of two formal groups, that the formal
group F constructed in 1.1 is universal for formal groups over
Z(p) - algebras in sofar as a formal group of this special type

can be universal; and that the formal group FU of 1.3 is universal

for formal groups over Z(p) - algebras. Precise definitions are given
in 2.3 below.

2.1. Proposition (Lazard).

If F, G are two one dimensional formal groups over a ring A
such that F(X,Y) =G(X,Y) mod(degree n + 1), then )
F(X,Y) =6(X,Y) + a Cn+1(X’Y) mod(degree n + 2) for some a €A.

2.2. p- Typical Groups (Cartier).

Let F be a formal group over a ring A. A formal power series c
without constant terms is called a curve. We can add two curves by means
of the formula

(21) (c, + Fc2)(x) = F(c1(X), c2(X))

In addition one defines operators

([ale)(X) = clax) a A
(22) (Ve)(x) = c(x™) n=1, 2, ...
n .
: (Fe)(x) = i£1Fc(g;x”“) n=1,2, ...



where En is a primitive n-th root of unity.

A formal group is called p-typical if Fqco = 0 for all primes
q # p, where c, is the curve co(x) = X. If A is a characteristic
zero integral domain then this is the same as the requirement that
the logarithm of F looks like

2
£X) =X+ a X +ax’ + ...

cf. Cartier [ 1 7.
The group EF of 1.1 is therefore p-typical.

2.3. Definitions.

Ifp : B+ A is a ring homomorphism, and F is a formal group
over B one obtains a formal group p,F by applying p to the
coefficients of F.

A formal group G over a ring B is called universal if for every
formal group F over a ring A., there is a unique homomorphism
p: B+ A such that p,G = F.

A p-typical G over a ring B is called p-typically universal

if for every p-typical formal group F over a ring A there is a unique
homomorphism p: B + A such that p,G = F.
We add the qualification "over Z(p)-algebras" in the definitions

if these statements (only) hold for formal groups F over a Z(p)—algebra.

2.4. Theorem.

The formal group F

U of 1.3 is universal over Z(p)-algebras

2.5. Theorem.

The formal group EP of 1.1 is p-typically universal over Z(p)-

algebras

2.6. Theoren.

Every formal group G over a Z(p)-algebra A is strictly isomorphic

to a formal group Ft where t = (t1, t ...) is a sequence of elements

2’
of A.
("Strict" means that the isomorphism is given by a power series of the
form X + a2X2 + e aiE‘A.



2.7. The proof of 2.4, is standard. One uses Lazard's result 2.1
and the fact that all primes q # p are invertible in a Z(p)-algebra A.

To prove 2.5 we need a lemma.

2.8. Lemma.
Let F and G be two p-typical formal groups over a Z(p)-algebra A
and suppose that

N

F(X,Y) = G(X,Y) mod(degree p +1)

then

F(X,Y) = G(X,Y) mod(degree p* 1)

Proof. Suppose this is not true, and let m be the smallest integer
such that F(X,Y) i G(X,Y) mod(degree m+1)’ then pr+1 _<_ m i pr+1_.1.

Then
(23) F(X,Y) = G(X,Y) + a Bm(X,Y) mod(degree m+1)

for some a A. Now let q be any prime different from p which divides m.

Let F2(X1, X)) = F(X,, X)), F3(x F2(X

5 ) = F(X

5 X ) and so on;

1! 2’ 3

and similarly for G. One then checks easily that

(28)  FHA, e, X)) 2 0%y, e, X))+ al(Xg 4 e+ X )T - XX

mod(degree m+1)

Now (cf. (22)), (Fqco)F(X) = Fq(gqx’/q, e2yt/a 5qx’/q), and

similarly for G. (The superscript F indicates that the operator Fq of
2.2 is to be taken with respect to the formal group F). Therefore

by (24) the coefficients of Xm/q in (Fqco)F(X) and (Fqco)G(X) differ

by -aq. On the other hand (Fqco)F =0 = (Fqco)G because F and G are

p-typical. Therefore, as q is invertible in A, a = 0 which contradicts
our assumption.

q.e.d.



Remark. This lemma is just about completely trivial if A is an
integral domain of characteristic zero, because we can then use the

logarithm.

2.9. Proof of 2.5.

Let G be a p-typical formal group over a Z(p)-algebra A,

Suppose we have already found elements t cees tre A such that

19

G(X.Y) = F(t1’ N vees t_, 0,0, _“)(X,Y) mod(degree pr+1)
r

2’

Then because both these formal groups are p-typical

- r+1
F X,¥) = G(X,Y) mod(a
(tys tys +vvs 50,0, (%Y = 6(Y) mod(degree p7 )

By (2.1) and (5) there is now a unique a t_,q €A such that

1

r+1
= +
F(tv fps +evs Boyqs 020 .”)(X,Y) G(X,Y) mod(degree p 1)

2.10. Proof of 2.6.

Let G be & formal group over A. We proceed by induction.

Suppose that we have already found t csey tr €A and a strict

1’
isomorphism given by a power series ¢, over A such that ¢n : Ft(r) + G
defines an isomorphism mod(degree n+1), where t(r) = (t1, cees tr,O,...),

and pr <nc< pr+1. I.e.

(25) Ft(r)(X’Y) ¢;1G(Qn(x), ¢n(Y)) mod(degree n + 1)

It now follows from 2.1 that
(26) Ft(r)(X,Y) = ¢;‘G(¢n(x), ¢n(Y)) +a cn+1(x,x) mod(degree n + 2)

for some a € A. We distinguish three cases
(1) n+1 < pr+1 is not a power of a prime. Then ¢n+1(x) = ¢n(x) + a )(m.1
defines an isomorphism mod(degree n+2) between Ft(r) and G.
(ii) n+1 <pr+1 is a power of a prime q # p. Then q is invertible in A

and ¢ (x) = ¢n(x) + q—1a. Xnﬂ defines an isomorphism mod(degree n+2)

n+1
between Ft(r) and G.



N +1 . . .
(iii) n+t = pr . Let tr+1 = a. Then ¢n defines an isomorphism

between Ft( and G.

r+1)
q.e.d.

Remark.

The elements t1, t2’ «++. are not uniquely determined by G.
They also depend on the choice of ¢. Cf. also sections (3.4}, (3.5).

2.11, Corollary.

Every formal group over Z(p)—algébra is isomorphic to a
p-typical one.

Remark.

Cartier [ 1 ] gives a canonical transformation for rendering

a given group law typical. Cf. also 3.3 and 3.2.

3. ISOMORPHISMS

The groups FU of 1.3 and ET of 1.1 are isomorphic over Z(p)ET]
according to theorem 2.6. There is,however, an isomorphism between
them over Z[T], which can be indicated fairly precisely. To see this

we need some lemmas.

3.1. Lemma.

Let u(X) = X + u2X2 + ... be a pover series over z[T] (or QPFP}).
= —j = pf 1 =
Let b =c p°, c € z[T] (or Z(P)PT]), where n = p'k, with (k,p) = 1.

Then we have
i (i) i
bn(u(X)p o= b (u (P nn mod p.

where u(l) is the power series obtained from u by raising all the

parameters T1,‘T2, «+. to the power pl.
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Proof.
. i . . i ]
p e (0P )™ = pe () 4 p( .2 -
. i) . . . i
Rt LA GO P Y IO S SR

3.2. Lemma.

= Ty (1), 40"

Let #(X) =x + I —f (X° ) + £ (X), g(X) =x +

i=1

+ ; 'I—‘i (i)(xpi)+ (X), where £ (X) (X) ezl ulx]]
fo D g 80 s e ° s go '

(resp. Z(p)fnuHIX[] and fo(X), go(X) = 0 mod(degree 2). Then there

exists a power series u(X)e Z[T.WJII] (resp. Z(p)[T,U]ﬁX]] such that
u(X) = X mod(degree 2) and f(u(X)) = g(x).

Proof.

<}

Suppose f(X) = g(X) mod degree r. Let a8, b, bg be the

r
coefficients of X* in £(X), fo(X), g(Xx), gO(X) respectively.
Then

T.

a = T 2 a(l) + ao
r 1 P 3 r
P j=r
T. )
b o= 1 Lpli) 0
r i P J r
p j=r

- _ o _ 0. .
It follows that u br a = ‘br a_is in 2T U} (resp. Z(p)fnbﬂ

Now substitute u(X) = X + urXr for X in f(X). Then
£1(X) = f(u(X)) = g(X) mod(degree r + 1)

To complete the proof it remains to show that f'(X) is of the
same general shape as f(X) (with a different f'O(X) of course). This
follows from 3.1,

q.e.d.
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A corollary of 3.1 is that the logarithm of any universal

formal group law satisfies an identity of the type

o T, . i
£f(X) =X + fo(X) + I -—% f(")(xP ). By means of 3.2, and 3.1 over
i=1.

an integral domain A which is (not necessarily a Z(p)-algebra)

one sees that a formal group over A is isomorphic over A to a

p-typical one iff it comes from FU.

3.3. Corollary.

The logarithm f of a formal group F over Z(p)—algebra A, which

is an integral domain, satisfies an identity

25 i),
(27) £(X) =X+ £,(X) + T=F (xP )
i=1

where fo(X)eA[[X]] is = 0 mod(degree 2), and ti € A. This is a

necessary and sufficient condition for F(X,Y) to be in A[[X,Y]].

To determine therefore whether a given power series f(X) = X + a X2 + ...

2
gives rise to a formal group over A. One first sets

2 p-1, - .
fo(X) =aX + ...+ apa1X 3 P ap is in A; one teakes t1 = app,

then (27) is satisfied nod(degree p + 1). (One can also take

- 1 : »
t, = oy * pPs,,s, €A and correct fo(X) vith a term - X ). Let

t
= 2 p-1, 1 (1),p
(28) g (X) =X + e X" + ..o+ X+ g, (x7)

Then f£(X) - 31(X) must be of the form (if F is to bve in AL[xX,Y11)

2 4 2
¢ +1xp+1+ e + °p2 P -1, —%XP mod(degree p2'+ 1)

P 1

. . . 2
with Cpe1r o3 € o dze:A, this determines fo(X) mod (degree p~ + 1)

p -1

and t2 = d2 (Again we can also take t2 = d2 + s, and correct
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fi(X) which is the polynomial of consisting of the terms of degree < p2

of £ (X) with a term - szx? .

Now let
(29) () = x+ 2(x) + 1 dgld)
& .} 1=1 p%Q

(xpl)

Then f£(X) - 32(X) must be of the form (if F is to be in A[[X,Y]1])

2 3 da 3
c, e s 3 X1, 3P mod(degree p3+ 1)
p +1 p -1 p
with ¢ s sesy C » d_€A. This determines f (X) mod(degree p3 + 1)
2 3 3 o}
p +1 p -1
and t_ (with again the same indeterminacy); etc ....etc ....

3

i

N.B. Applying an isomorphism X + sixp does not changg the form of £(X)
according to 3.1., and changing fo(x) by a term sixp comes from

an isomorphism according to 3.2. This is why one can change ti to

ti + ps, 3 in the test described sbove.

3.4, Corollary.

If £(X) =X + a.2X2 + ... is the logarithm of a formal group over

a characteristic zero integral domain A over Z(p) . Then f(p)(X) =

2
X + a.po + a 2Xp + ... is the logarithm of an isomorphic p-typical
b

formal group.

3.5. This procedure for rendering a given group law p-typical
is in fact the same as that of Cartier [ 1 ]. Let c, be the curve

- T oum)
co(X) = X and let % = T V F c, where all sums and
(n,p)=1
operators are in the (filtered) groups of curves. Cf. (2.2);u(n) is the

Mdbi s function. Then according to [1]

cp F(eL(X), cp(¥)



is a p-typical formal group. Because F(X,Y) = fq(f(x) + £(Y))
the logarithm of this p-typical formasl group is be(x), which is

f(cF(X)) = (n §)=1ﬁiﬁl{r(gnx) + .00 4 f(ng) (ordinary sum)

because £ (n+c)(X) = f"(n{(c(X)) and (c1 +FC2)(X) = f‘1(fc1(x) + fcz(X))

2
If £ =X+ a2x + ..., then f(gnx) + ...+ f(sz) = n(anxn + aznxzn + ...)

The coefficient of X© in £ cF(X)) is therefore equal to

I ul)a, = {0 if m is not a power of p

Llm a_ if m is a power of p
(1-,1))31
We have, if m = pm', (p,m') =1, I u(2) = T p(R) and this
: 2im 2)m'
(2,p)=1

is zero if m' # 1 and 1 if m' = 1)

(3.6) Suppose F, and F, are two p-typical formal groups over an
integral domain A, obtained from Fmpby substituting two different
sequences t = (t., t,, «..), t' = (t!, ...). We ask ourselves when
they are isocmorphic. We know from (3.1) and (3. 2)f"1j is necessary
and sufficient for this that ft,(X) is of the form

(30) £,,(0 = a(X) + T £ (x)
P
i=1
with s(X) = X + ... €A[[x]]. Because ft,(x) is p-typical we must
have that s(X) is of the form

2

Xp+sXp + e

(31) s(X) = X+ s, 5

An easy calculation now shows that if f(X) = X + a.1xp + ... and

; £(X) =X + b1xp + ..., it follows fraom (30) and (31) that
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(32) by = ag + s,
b2-52+52+a1311) .
by=aytay+as; ‘231:2 ;
bh = 8, + 8), + 3191; + 3.2512) + 5333
Necessary and sufficient conditions for F. and Ft' to be isomorphie
over A are therefore that
(33) b -a =58, EA
-b2 - a1sl1’ - 8, =2szc-:A
b3 - a?ag - a2’11"2 -8 "3836A
bh - a.1a§ - a.zsg - aasf - a.h = sheA

L. HIGHER DIMENSIONAL COMMUTATIVE FORMAL GROUPS

Concerning higher dimensional commutative formal groups over
a ring A, Lazard [ # ] provead

4.1. Proposition.

If F(X,Y) = G(X,Y) mod degree r, then F(X,Y) = G(X,Y) + A(X,¥)
mod degree r+1, with A(X,Y) of the form T'(X) - Tr'(x+Y) + I'(Y) for
some form of degree r over A if r is not a power of a prime,and

ifr = qJ, then there is a form of degree r, I'yand aa nxn matrix
D (with coefficients m A) such that

A(X,Y) = I'(X) - I'(x+Y) + I'(Y) + DT i(x,x)
q

where qu(x’Y) = (cqi(x1,y1), cees qu(xn’Yn))
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4.2. Construction.

Let ﬂ? be an n-dimensional (column)vector of power series in

the n-variables X' = (X1, Xps vees Xn) over Q[T] such that

T. i) i
(3Y4) £ —%fp (xP )

’it—\
z
"
>
+
Wo8

(
: r

where now Ti is an n x n matrix of parameters

Thyn o Tidyy

We define the commulative n-dimensional formal group ET by

-1
(35) FT(X.Y) = f,r, (f'T‘(X) + fT.(Y))

Theorem. All coefficients of ET(X,Y) are in Z[T].

Same proof asVtheorem 1.2,

L.3. Universal n-dimensional formal groups,

Exactly as in 1.3 we can take instead of X in formula (34) a
pover series g(X) with coefficients in a suitable ring of polynomials
over Z (or Z(p)). By taking a good g(X) (cf. 4.1) we get a formal
group which is universal for commulative n-dimensional formal groups
over Z(p)—algebras (the analogue of Th. 2.4). The analogues of 2.5
and 2.6 also hold. Same kind of proof, using 4.1 instead of 2.1.
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5. ADDITIONAL REMARKS AND COMMENTS.

5.1. Honda's Groups

Iet K be a finite extension of Qp; n the degree of the
residue field extension and 7 a uniformizing element of K., In [ 2 ]
Honda defines a series of one dimensional formal groups by means
of the logarithmic series

P P
(36) £(X) =x+xw + X

where ae N is arbitrary.

This series (36) satisfies the relation
1 an
(37) £(x) =X+ 7 £(XP )

One can now prove in almost exactly the same way as in §1

that the formal group
(38) F(X,Y) = £ (£(X) + £(¥))

has all its coefficients in AK’ the ring of integers of K.
An endomorphism u(X) of the formal group (38) is necessarily
of the form

u(x) = £ N (ue(x))

where u is integral over AK' Using the relation f(u(X)) = u £(X)
one can apply similar arguments as those of §1 to the determination

of the (absolute) endomorphism ring of F.

5.2. Height.

Let ET be the one dimensional formal group defined in §1. Let
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A be the ring of integers of some finite extension of Qp;

let (t1, t., ...) be & sequence of elements of A. Let h be the
.

smallest number such that t €A = U(A), let h = if such a t

h
does not exist. Then height (Ft) = h.

5.3, Formal moduli.

Let R be a complete noetherian local ring with maximal ideal

such that R/m = k, a field of characteristic p > 0. Let & be a
formal group over k such that J(X,Y) = X + Y + Cq(X,Y) mod(degree q+1)
(Any formal group law over k is isomorphic to one of these). Then
there is a 1lift F of § of the form

F

(0, «.vy O, 858 4 ees)

where q = pn, and 8 reduces to a mod . Now consider the formal

group law

(39) Fop

ceesT )

a, a

1? n-1*> "n’ “n+1*°°°

over RPT1, cees Tn—1
of Proposition 1.1 of [ 5 ]. It then follows from [ 5 1 that (39)

]. This forma{ group law satisfies the conditions

gives an (explicit) paremetrization of the ¥-isomorphism classes

of lifts of §. ( *-isomorphism = strict isomorphism).
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5.4L. Application to complex cobordism theory.

The formal group law FU of 1.3 is universal for formal groups

over Z(p)-algebras (ef.2.k4), If

£(X) = X + a2X2 + a3x3 o

is its logarithm, then we can calculate the generators U1,U
of Z(p)[U1,U

remark. Writing 'I‘i for U ; this gives the following recursion formula:

2’.‘.
2,...] from the 855835000 Cf. also formula (8) of 1.1

p
"T'1=pa.p
- P
T2—pta.2--T1 a.p
P
P2 P
(40) T.=pa_-T, a,-"T,8a
3 1 2 2
p3 p P
n-1 n-i
Tn=pan_ ZTlp ® n-i
P et 1 P

If k 1is not a power of p, then k is of the form psr, where (p,r) = 1.

For these Uk one finds recusively

Ur= ar
P
pr = %pr ~ %p'r
P P
U = a - a U -8 U
2 2 r r
p°r p°r p PP
z‘_—_1 ps—l
u = 8 - .4-a's—iU1
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The formal group law of complex cobordism theory is universal over Z

(cf. Quillen [6]) and hence also universal over Z(p) Its logarithm is
equal to )

'P1 5 P

x + —2—-X + ooo+——x +

where P is the class of cP® in ﬂ."2n(pt). Two universal group laws
are isomorphic. Therefore, writing & 4y = (n+1)'1Pn, a free set of
generators for the algebra ﬂev(pt) ® Z(P) over Z(p) is given by

the formulas (40) and (41) above.

The formulas (40) give the generators of QT*(pt), where
QT* is the generalized cohomology theory associated to the Brown

Peterson spectrum as obtained from MU(.;).p by the Quillen splitting [6].

5. &mm_k In this paper we have constructed some universal formal
groups for formal groups over Z(p)—algebras (FU) , Where p was chosen
in advance. This formal group Fy is not universal for commutative
formal groups over Z-algebras (i.e. commulative rings with identity
element)., In a subsequent paper we shall show how to fit the formal
groups F . for each prime p together to get a truly universal formal

U
group (i.e. over Z-algebras).
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Appendix to : Constructing Formal Groups I

In [ Jthe formulas (8), (34), (40) and (41) were stated without
proof.

Formulas (8), (40), (41) follow from the

A.1. Proposition

Let f(X) be the power series over Q[U2, U3, — T1m2’ «..] defined
v 2T )t
£(X) = g(x) + T = (xP) (1)
i=1 P
where g(X) =X + I Uixl and f(l) is obtained from f by
i>2

(i,p)=1
5 U3,... to the
p>- the power. Then if a is the coéfficient of X° in £(X) we

raising all of the parameters T1, T2, eeey U

have:
T = a
1 P Tp
T2 = ap2 -5 ép
®a P
T, =pa_ - a . - a (2)
3 1 2 2
P3 P P
n-1 Tp

T = - - -

n P%g T1 & n-1 ‘e n—1ap

P P
and if ui = pks , (s,p) = 1, we have for U,

U =a

s s
U = g - Up

ps DS ap s (3)
U, =a, -a U -atl

pES pQS p2 s P sSp

o~ pF-? D
Uk =a -a U - a U - vee = a U
s k k's k-1"ps k-1

P p's P o P P s

(p is some fixed prime number).

-




To prove this we need some lemmss.

. Lemma

Let f£(X) and a be as before. Then for n > 1
J.i J

where the sum is taken over all jke NU{0}, i, €N, k= 1, ..., r,

k
rinsuch that
< 3. < <3
; i0_31 Jg :
1
pp -1+ . +pT(p T -1)=pPa (5)

and, if s > 1, (p,s) = 1

= 1 r P
a )3 = U, (6)
p s Y D s

where the sum is taken over all %, jké NU{0}, k =0, 1, ...,r;
ike N, k=1, ..., r such that
£+3j =n,0<j, <]
o - 2 r
J i, i g1
L 1 1
p %(p's=1) +p (p -1)+ ...+p (p

Proof. We use induction. Assume therefore that (L) holds for all

m < n. It follows from (5) that j1 =0, i1 < n, and that

1. < J, < o<j.
1,29, Ir Therefore

; ; i §,-i i §-i
1 r 1 2 71 1 2 71
® .. n i (P )P cen (T2 )P
1 1, 1 1, Sl
r —L =, % I
r i=1p r-1
1Y 1 P
J, 1 i i
where p (p S - 1) + «o. +p (p T - 1) =p" = p ' and hence



A.3‘

0 §_32 -1, < 33- 1, < eee¥ Jp = 14

and it follows by the induction hypothesis that

where ail) is obtained from a, by replacing the parameters

T1, oo Tn’ ees by T? s eees Tﬁ s «+.. But according to (1)

one has n T. G
&n = z - n-i /
P i=1t P p

which proves formula (k4).

)
o

To prove (6) one proceeds similarly. If § = n, jo =
and r = 0. If ¢ < n, j1 = 0 and the rest of the proof is
completely analogous.

Lemma
i, i j i
Let p (p ' =1) + oo +p T(p T = 1) = pP=1, with 1o ey i >

and 0 < J. <

1 32 Cos ok Jr. Then Jr =1 =n.

Proof. By induction on r. The case r = 1 is trivial. Suppose
therefore that r > 1. It follows from the asymptions that
J

1 = 0, and therefore

32( i j i n i

pAp2-1)+...+pT(pT-1)=p"-p

It follows from this that j2 = i1, because 0 < j2 <uaol jn’ and

i1 < n. Therefore we find

i Jo-i., 1 jo-i, i n-i
1 1
2-D+p3 e -1+ ..+p” pT-1=0p
By the induction hypothesis we now have (jr ~-i)+i_=n - i,

and hence j +1_ =1,
r r



A.4, Proof of proposition A.1.

According to lemma A.3 we have that ir + jr =n in
formula (k).
It follows that

where, because ir + jr =n

1 Jr—1(p1r—1 - 1) r

J -
1 1 -
p (p -1)+0-c +p =p -1=Pn1_
Therefore
n-i
n .
i
® n o & pei > ® 7 ]
pr i=1 P P

from which (2) follows.
According to (7) we have that

i, i j_ i J
1
p1(p -+ o +tp T (pT-1)=p°-1

for the j1 <o 'jr occurring in (6). It follows that

from which (3) follows

To prove formula (J1) we need another lemma.

A.S5. Lemma
Let f(X)e Q[s1, Sy s eees T1, T2, ... ] be defined by the
formula
£(X) = X+ 3 s, X® + g2 ot(F)
i=1 i=1 P
Then if

2
£(X) = X + b1xP + bsz + ...

we have



J J J J.
1 r 1 r o
L. S | =1 4
i, i i i iy
bn =1z r + 1 r
P P
where the first sum is taken over all jke N{ 0}, ike N, reN

such that 31 < J2 <oo & Jr and
j1 i1 jr ir
p (p =1)+ ... +p (p =1) = p"~1; and the second sum

is taken over all jké Nu{C, reNv{0Q}, iké N such that

g, 1 j_ i

. . . . . 1 1 r r
= e . -1 ees + -1) +
i+, =m J;< jy¢< <j,» P (p ) + p (p )

jO iO
+p (p =1)=p =1,

Proof. Similar to the proof of Lemma A.2.

A.6. Corollary.

Let f(X) be as above, and let g(X) = X+ a’Xp + ...

be defined by

© T (1)
gx) =x+ ¢ 2P
=1

then we have
1% 8+ 5,

P
+
p T8y v a5 +5,

o’
[}
o

o'
]

2
p D,
3 =83+ a5 +ab, + 5,

o'
L}

n-1

b =a +a _SP + ... +as?  +58
n n n-1"1 1 n-1 n

Proof. Exactly as in A.4, starting from A.5 instead of A.2.
Note that this proves formuls () of [1].

A.T7. Remark

Let now X be a vector and let f(X) be the n-dimensional

power series defined by



© T. .. i
p(x) = X+ 5 Zeli)yp)
i=1 P

vhere now the T, are n X n matrices of parameters as in (11 (P¢).
i

i i
(1f XT = (Xys oees Xn), then (xP )T = (xf s eees xﬁ )3

..T denotes transposition as usual)
Then f(X) is of the form

2
£(X) =+ a1Xp + aZXp + ...

where now the a; aren xn matrices. Then if we write
)
for the matrix 'I‘i with all its entries raised to the

power pk, one has

plP
1

=
!

1 - P8y

- (p)
T2 =7p a2 - a1T1

. 2
(p7) (p)
3 P a3 - a2T1 - a1T2

=)
L1}

)

(p
T 1

(p
P an -a T - hee = a1Tn_

=]
L}

This is proved in the same way as A.1. One also has analogues
for the second part of A.2. and for A.6., which gives multi-
dimensional enalogues for the formulas (8), (32), (40) and
(L1) of [1].
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