Constructing Formal Groups I.

Over \mathbb{Z}_p - Algebras.

by Michiel Hazewinkel

October 11, 1971

Preliminary and Confidential
Constructing formal groups I. Over \mathbb{Z}_p - algebras *)

Michiel Hazewinkel

0. INTRODUCTION

Let A be an integral domain of characteristic zero, and let K be its quotient field. Let $F(X,Y)$ be a one dimensional formal group over A. Then F is strictly isomorphic to the additive group over K; i.e. there exists a formal power series $f(X)$ with coefficients in K, $f(X) = X + a_2 x^2 + \ldots$ such that

\begin{equation}
F(X,Y) = f^{-1}(f(X) + f(Y))
\end{equation}

where f^{-1} is the inverse power series to f; i.e. $f^{-1}(f(X)) = X$.

This power series is called the logarithm of F. It is now natural (cf. also Honda [2]) to construct formal groups by taking a power series f and setting $F(X,Y) = f^{-1}(f(X) + f(Y))$. This $F(X,Y)$ is automatically commutative and associative. It "only" remains to find conditions on f which guarantee that all the coefficients of $F(X,Y)$ are in A. It is not difficult to show that if $f(X) = X + a_2 x^2 + \ldots$ then

\begin{equation}
a_n \in A \quad \text{for all } n \in \mathbb{N}
\end{equation}

(In fact by differentiating (1) one gets $\left(\frac{\partial}{\partial X} F\right)(0, 0)^{-1} = f'(Y)$ from which (2) follows; cf. also [2] Prop.1)

In the following we shall as in [2] write down some (explicit) power series f to construct a universal formal group for formal groups over \mathbb{Z}_p - algebras. As an application we get necessary and sufficient conditions on f that F be in $A[[X,Y]]$. No doubt a large part if not all of the results obtained below are contained in some way in the work of Cartier (Cf. [1]).

(*) Research supported by Z.W.O. (the Netherlands Organization for the Advancement of Pure Research).
1. CONSTRUCTION OF A FORMAL GROUP

We work over the ring $\mathbb{Z}\llbracket T\rrbracket = \mathbb{Z}[T_1, T_2, \ldots]$ of polynomials in a countably infinite number of indeterminates over the integers.

1.1. The Construction

Choose a prime number p and let f_1 be the power series $f_T(X) = X + a_2X^2 + \ldots$, which is recursively defined by

$$f_T(X) = X + \sum_{i=1}^{\infty} \frac{T_i}{p} f_T^i(X^p^i)$$

where f_T^i denotes the power series obtained from f_T by raising each of the indeterminates T_1, T_2, \ldots to the p^i-th power. The condition (3) completely determines the series f_T (recursively). It starts off as

$$f_T(X) = X + \frac{T_1}{p}X^p + \frac{T_1^{1+p}}{p^2}X^{p^2} + \frac{T_1^{1+p+p^2}}{p^3}X^{p^3} + \ldots$$

Let $f_T(r)$ stand for $f(T_1, T_2, \ldots, T_r, 0, 0, \ldots)$. Then one easily checks that

$$f_T(X) = f_T(r)(X) + \frac{T_{r+1}}{p}X^{p^{r+1}} \mod (\text{degree } p^{r+1} + 1)$$

Now let $F_T(X, Y)$ be the formal group defined by

$$F_T(X, Y) = f_T^{-1}(f_T(X) + f_T(Y))$$

It then follows from (5) that

$$F_T(r+1)(X, Y) \equiv F_T(X, Y) \equiv F_T(r)(X, Y) + \frac{T_{r+1}}{p}X^{p^{r+1}} \mod (\text{degree } p^{r+1} + 1)$$

where

$$C_{p^{r+1}}(X, Y) = p^{-1}((X+Y)^{p^{r+1}} - X^{p^{r+1}} - Y^{p^{r+1}})$$
Remark

Let \(f_n(X) = X + a_1X^p + a_2X^{2p} + \ldots \) then one can of course calculate the generators \(T_1, \ldots, T_n, \ldots \) of \(Z_p(T_1, \ldots, T_{n1}, \ldots) \) (or \(Z_p(T_1, \ldots, T_{n}, \ldots) \)) from the \(a_i \).

This yields a recursion formula for the \(T_i \):

\[
T_1 = pa_1
\]

\[
T_2 = pa_2 - T_1 a_1
\]

\[
T_3 = pa_3 - T_1^2 a_2 - T_2 a_1
\]

\[
T_4 = pa_4 - T_1^3 a_3 - T_2^2 a_2 - T_3 a_1
\]

\[
\vdots
\]

\[
T_n = pa_n - \sum_{i=1}^{n-1} T_i^{p^{n-i}} a_{n-i}
\]

\[
\vdots
\]
1.2. **Theorem.**

All coefficients of $F_T(X,Y)$ are in $\mathbb{Z}[T]$.

Proof. In the following we shall work in the ring $\mathbb{Q}[T][[X,Y]]$. The expression $G = H \mod(a, \text{ degree } n)$, where $a \in \mathbb{Z}$ will mean that $G - H \in a \mathbb{Z}[T][[X,Y]]$ modulo terms of total degree (in X,Y) greater or equal n. We proceed by induction. Let $F_T(X,Y) = F_1 + F_2 + \ldots$, where F_i is homogeneous of degree i (in X,Y). Suppose that

\[(9) \quad F_1, \ldots, F_n \in \mathbb{Z}[T][X,Y].\]

It is clear that if $s \geq 2$

\[(10) \quad (F_T(X,Y))^s \equiv (F_1 + \ldots + F_n)^s \mod(\text{degree } n + 2)\]

Using this, one shows without difficulty, because $F_1, \ldots, F_n \in \mathbb{Z}[T][X,Y]$

\[(11) \quad (F_T(X,Y))^p = (F_T^{(k)}(x^p, y^p))^p \mod(p + 1, \text{ degree } n + 2)\]

Here $F_T^{(k)}$ denotes the formal group, obtained from F_T by raising all of the parameters T_1, T_2, \ldots to the p^k-th power; i.e.

\[(12) \quad F_T^{(k)}(X,Y) = (F_T^{(k)})^{-1} (F_T^{(k)}(X) + F_T^{(k)}(Y))\]

The formal group F_T satisfies (by definition)

\[(13) \quad F_T(F_T(X,Y)) = F_T(X) + F_T(Y)\]

and therefore, according to (3)

\[(14) \quad F_T(X,Y) + \sum_{i=1}^{\infty} \frac{T_i}{p^T} F_T^{(i)}(X^p, Y^p) = X + Y + \sum_{i=1}^{\infty} \frac{T_i}{p^T} (x^p)^i + (y^p)^i\]
The coefficient of X^p^j in $f(X)$ is of the form $p^{-j}u$, $u \in \mathbb{Z}[T]$; therefore, using (11), we have that

\[(15) \quad f_T(i)(F_n(X,Y)^p) \equiv f_T(i)(F_n(i)(X^p, Y^p)) \mod(p, \text{degree } n + 2)\]

However, (cf. (12)),

\[(16) \quad f_T(i)(F_n(i)(X^p, Y^p)) = f_T(i)(X^p) + f_T(i)(Y^p)\]

Combining (15) and (16) and substituting this in (14) we get

\[(17) \quad F_n(X,Y) \equiv X + Y \mod (1, \text{degree } n + 2),\]

i.e. F_{n+1} has all its coefficients in $\mathbb{Z}[T]$. This completes the induction and the proof.

1.3. A Generalization.

Let g be any formal series in $\mathbb{Z}[T][[X]]$ or $\mathbb{Z}[T][[U]]$ which starts off as $g(X) = X + \ldots$. The U are additional parameters and must also be raised to the power p^r in f_U; let f be the power series

\[(18) \quad f(X) = g(X) + \sum_{i=1}^{\infty} \frac{T_i}{p} f(i)(X^p)\]

and let $F(X,Y) = f^{-1}(f(X) + f(Y))$ as before. Then one proves in the same way as in (1.2) that $F(X,Y)$ has all its coefficients in $\mathbb{Z}[T][U, \mathbb{Z}[T]]$.

A good g (for later purposes) is the following

\[(19) \quad g(X) = \sum_{i=1}^{\infty} U_i X^i + X\]

Substituting U_i for T_i in (18) for this particular g we get a series $F_U(X)$ such that if $U(r)$ denotes $(U_1, \ldots, U_r, 0, 0, \ldots)$

\[(20) \quad F_{U(r)}(X,Y) = F_U(X,Y) + B_{r+1}(X,Y) \mod(\text{degree } r+2)\]

if $r+1$ is not a power of p

\[F_{U(r)}(X,Y) = F_U(X,Y) + C_{r+1}(X,Y) \mod(\text{degree } r+2)\]

if $r+1$ is a power of p
Here \(B_{r+1}(X,Y) = (X+Y)^{r+1} - X^{r+1} - Y^{r+1} \), and \(C_{r+1}(X,Y) = q^{-1} B_{r+1}(X,Y) \) if \(r+1 \) is a power of the prime \(q \).

Remark. If \(g(X) \in Z_{(p)}[T] \), then the corresponding \(F(X,Y) \) has all its coefficients in \(Z_{(p)}[T] \).

2. UNIVERSALITY PROPERTIES

All formal groups in this section are one dimensional.

It follows almost directly from a fundamental proposition of Lazard on the comparison of two formal groups, that the formal group \(F \) constructed in 1.1 is universal for formal groups over \(Z_{(p)} \) - algebras insofar as a formal group of this special type can be universal; and that the formal group \(F_U \) of 1.3 is universal for formal groups over \(Z_{(p)} \) - algebras. Precise definitions are given in 2.3 below.

2.1. Proposition (Lazard).

If \(F, G \) are two one dimensional formal groups over a ring \(A \) such that \(F(X,Y) \equiv G(X,Y) \mod(\text{degree } n + 1) \), then
\[
F(X,Y) \equiv G(X,Y) + a C_{n+1}(X,Y) \mod(\text{degree } n + 2)
\]
for some \(a \in A \).

2.2. \(p \)- Typical Groups (Cartier).

Let \(F \) be a formal group over a ring \(A \). A formal power series \(c \) without constant terms is called a curve. We can add two curves by means of the formula
\[
(21) \quad (c_1 + F c_2)(X) = F(c_1(X), c_2(X))
\]

In addition one defines operators
\[
(22) \quad \begin{align*}
([a]c)(X) &= c(ax) & a & \in A \\
(V^nc)(X) &= c(x^n) & n &= 1, 2, \ldots \\
(F^nc)(X) &= \sum_{i=1}^{n} c(\zeta^n i x^{1/n}) & n &= 1, 2, \ldots
\end{align*}
\]
where ξ_n is a primitive n-th root of unity.

A formal group is called p-typical if $F_{q^0} = 0$ for all primes $q \neq p$, where c_0 is the curve $c_0(X) = X$. If A is a characteristic zero integral domain then this is the same as the requirement that the logarithm of F looks like

$$f(X) = X + a_1 x + a_2 x^2 + \ldots$$

cf. Cartier [1].
The group F_T of 1.1 is therefore p-typical.

2.3. Definitions.

If $\rho : B \to A$ is a ring homomorphism, and F is a formal group over B one obtains a formal group $\rho_* F$ by applying ρ to the coefficients of F.

A formal group G over a ring B is called universal if for every formal group F over a ring A, there is a unique homomorphism $\rho : B \to A$ such that $\rho_* G = F$.

A p-typical G over a ring B is called p-typically universal if for every p-typical formal group F over a ring A, there is a unique homomorphism $\rho : B \to A$ such that $\rho_* G = F$.

We add the qualification "over $Z(p)$-algebras" in the definitions if these statements (only) hold for formal groups F over a $Z(p)$-algebra.

2.4. Theorem.

The formal group F_U of 1.3 is universal over $Z(p)$-algebras.

2.5. Theorem.

The formal group F_T of 1.1 is p-typically universal over $Z(p)$-algebras.

2.6. Theorem.

Every formal group G over a $Z(p)$-algebra A is strictly isomorphic to a formal group F_t where $t = (t_1, t_2, \ldots)$ is a sequence of elements of A.

("Strict" means that the isomorphism is given by a power series of the form $X + a_2 x^2 + \ldots$, $a_i \in A$."")
2.7. The proof of 2.4. is standard. One uses Lazard's result 2.1 and the fact that all primes \(q \neq p \) are invertible in a \(\mathbb{Z}_p \)-algebra \(A \). To prove 2.5 we need a lemma.

2.8. **Lemma.**

Let \(F \) and \(G \) be two \(p \)-typical formal groups over a \(\mathbb{Z}_p \)-algebra \(A \); and suppose that

\[
F(X,Y) \equiv G(X,Y) \quad \text{mod(degree } p^{r+1})
\]

then

\[
F(X,Y) \equiv G(X,Y) \quad \text{mod(degree } p^{r+1})
\]

Proof. Suppose this is not true, and let \(m \) be the smallest integer such that \(F(X,Y) \not\equiv G(X,Y) \text{ mod(degree } m+1) \), then \(p^{r+1} \leq m < p^{r+1-1} \). Then

\[
(23) \quad F(X,Y) \equiv G(X,Y) + a B_m(X,Y) \quad \text{mod(degree } m+1)
\]

for some \(a \in A \). Now let \(q \) be any prime different from \(p \) which divides \(m \).

Let \(F^2(X_1, X_2) = F(X_1, X_2), F^3(X_1, X_2, X_3) = F(X_1, F^2(X_2, X_3) \) and so on; and similarly for \(G \). One then checks easily that

\[
(24) \quad F^q(X_1, \ldots, X_q) \equiv G^q(X_1, \ldots, X_q) + a((X_1 + \ldots + X_q)^m - X_1^m - \ldots - X_q^m) \quad \text{mod(degree } m+1)
\]

Now (cf. (22)), \((F_{q \circ}^q) F(X) = F^q(\xi_q^{-1/q}, \xi_q^{-2/q}, \ldots, \xi_q^{-1/q}) \), and similarly for \(G \). (The superscript \(F \) indicates that the operator \(F_q \) of 2.2 is to be taken with respect to the formal group \(F \).) Therefore by (24) the coefficients of \(X^m/q \) in \((F_{q \circ}^q) F(X) \) and \((F_{q \circ}^q) G(X) \) differ by \(-aq \). On the other hand \((F_{q \circ}^q) F = 0 = (F_{q \circ}^q) G \) because \(F \) and \(G \) are \(p \)-typical. Therefore, as \(q \) is invertible in \(A \), \(a = 0 \) which contradicts our assumption.

q.e.d.
Remark. This lemma is just about completely trivial if A is an integral domain of characteristic zero, because we can then use the logarithm.

2.9. Proof of 2.5.

Let G be a p-typical formal group over a $\mathbb{Z}(p)$-algebra A. Suppose we have already found elements $t_1, \ldots, t_r \in A$ such that

$$G(X,Y) = F(t_1, t_2, \ldots, t_r, 0, 0, \ldots)(X,Y) \mod(\text{degree } p^{r+1})$$

Then because both these formal groups are p-typical

$$F(t_1, t_2, \ldots, t_r, 0, 0, \ldots)(X,Y) \equiv G(X,Y) \mod(\text{degree } p^{r+1})$$

By (2.1) and (5) there is now a unique $t_{r+1} \in A$ such that

$$F(t_1, t_2, \ldots, t_{r+1}, 0, 0, \ldots)(X,Y) \equiv G(X,Y) \mod(\text{degree } p^{r+1+1})$$

Let G be a formal group over A. We proceed by induction. Suppose that we have already found $t_1, \ldots, t_r \in A$ and a strict isomorphism given by a power series φ_n over A such that $\phi_n : F_t(r) \to G$ defines an isomorphism mod(degree $n+1$), where $t(r) = (t_1, \ldots, t_r, 0, \ldots)$, and $p^r \leq n < p^{r+1}$. I.e.

$$F_t(r)(X,Y) \equiv \phi_n^{-1}G(\phi_n(X), \phi_n(Y)) \mod(\text{degree } n + 1)$$

(25)

It now follows from 2.1 that

$$F_t(r)(X,Y) \equiv \phi_n^{-1}G(\phi_n(X), \phi_n(Y)) + a C_{n+1}(X,Y) \mod(\text{degree } n + 2)$$

(26)

for some $a \in A$. We distinguish three cases

(i) $n+1 < p^{r+1}$ is not a power of a prime. Then $\phi_{n+1}(X) = \phi_n(X) + a X^{n+1}$ defines an isomorphism mod(degree $n+2$) between $F_t(r)$ and G.

(ii) $n+1 < p^{r+1}$ is a power of a prime $q \neq p$. Then q is invertible in A and $\phi_{n+1}(X) = \phi_n(X) + q^{-1} a X^{n+1}$ defines an isomorphism mod(degree $n+2$) between $F_t(r)$ and G.

(iii) \(n+1 = p^{r+1} \). Let \(t_{r+1} = a \). Then \(\phi_n \) defines an isomorphism between \(F_t(r+1) \) and \(G \).

q.e.d.

Remark.

The elements \(t_1, t_2, \ldots \) are not uniquely determined by \(G \). They also depend on the choice of \(\phi \). Cf. also sections (3.4), (3.5).

2.11. Corollary.

Every formal group over \(\mathbb{Z}_p \)-algebra is isomorphic to a \(p \)-typical one.

Remark.

Cartier [1] gives a canonical transformation for rendering a given group law typical. Cf. also 3.3 and 3.2.

3. ISOMORPHISMS

The groups \(F_u \) of 1.3 and \(F_T \) of 1.1 are isomorphic over \(\mathbb{Z}_p[T] \) according to theorem 2.6. There is, however, an isomorphism between them over \(\mathbb{Z}[T] \), which can be indicated fairly precisely. To see this we need some lemmas.

3.1. Lemma.

Let \(u(x) = x + u_2 x^2 + \ldots \) be a power series over \(\mathbb{Z}[T] \) (or \(\mathbb{Z}_p[T] \)). Let \(b_n = c_n p^{-j} \), \(c_n \in \mathbb{Z}[T] \) (or \(\mathbb{Z}_p[T] \)), where \(n = p^j k \), with \((k,p) = 1 \). Then we have

\[
b_n \left(u(X)^p \right)^i \equiv b_n \left(u^{(i)} \left(x^p \right)^i \right)^n \mod p.
\]

where \(u^{(i)} \) is the power series obtained from \(u \) by raising all the parameters \(T_1, T_2, \ldots \) to the power \(p^i \).
Proof.
\[p^{-j} c_n(u(X)^p)^n = p^{-j} c_n(u(i)(x^p)^i + p(...))p^j = \]
\[= p^{-j} c_n(u(i)(x^p)^i)p^j + p^{j+1}(...)^k = p^{-j} c_n(u(i)(x^p)^i))^n + p(...). \]

3.2. Lemma.
Let \(f(X) = x + \sum_{i=1}^{\infty} \frac{T_i}{p}(i)(x^p)^i + f_o(x), g(X) = x + \]
\[+ \sum_{i=1}^{\infty} \frac{T_i}{p} g(i)(x^p)^i + g_o(x), \] where \(f_o(x), g_o(x) \in Z[T,U][[x]] \)
(resp. \(Z(p)[T,U][[x]] \)) and \(f_o(x), g_o(x) \equiv 0 \mod(\text{degree 2}) \). Then there exists a power series \(u(x) \in Z[T,U][[x]] \) (resp. \(Z(p)[T,U][[x]] \)) such that \(u(x) = x \mod(\text{degree 2}) \) and \(f(u(x)) = g(x) \).

Proof.
Suppose \(f(X) \equiv g(X) \mod \text{degree } r \). Let \(a_r, a_r^o, b_r, b_r^o \) be the coefficients of \(x^r \) in \(f(X), f_o(x), g(x), g_o(x) \) respectively.

Then
\[a_r = \sum_{p^i j=r} \frac{T_i}{p} a_j + a_r^o \]
\[b_r = \sum_{p^i j=r} \frac{T_i}{p} b_j + b_r^o \]
It follows that \(u_r = b_r - a_r = b_r^o - a_r^o \) is in \(Z[T,U](\text{resp. } Z(p)[T,U]) \) Now substitute \(u(X) = x + u_r x^r \) for \(X \) in \(f(X) \). Then
\[f'(X) = f(u(X)) \equiv g(X) \mod(\text{degree } r + 1) \]

To complete the proof it remains to show that \(f'(X) \) is of the same general shape as \(f(X) \) (with a different \(f'_o(x) \) of course). This follows from 3.1.

q.e.d.
A corollary of 3.1 is that the logarithm of any universal formal group law satisfies an identity of the type
\[f(X) = X + f_0(X) + \sum_{i=1}^{\infty} \frac{t_i}{p} f(i)(X^p) \]
By means of 3.2, and 3.1 over an integral domain \(A \) which is (not necessarily a \(\mathbb{Z}_p \)-algebra) one sees that a formal group over \(A \) is isomorphic over \(A \) to a \(p \)-typical one iff it comes from \(F \).

3.3. Corollary.

The logarithm \(f \) of a formal group \(F \) over \(\mathbb{Z}_p \)-algebra \(A \), which is an integral domain, satisfies an identity
\[f(X) = X + f_0(X) + \sum_{i=1}^{\infty} \frac{t_i}{p} f(i)(X^p) \]
where \(f_0(X) \in A[[X]] \) is \(\equiv 0 \) mod(degree 2), and \(t_i \in A \). This is a necessary and sufficient condition for \(F(X,Y) \) to be in \(A[[X,Y]] \). To determine therefore whether a given power series \(f(X) = X + a_2X^2 + \ldots \) gives rise to a formal group over \(A \). One first sets
\[f_0(X) = a_2X^2 + \ldots + a_{p-1}X^{p-1}; \quad p \quad \text{is in } A; \quad \text{one takes } t_1 = a_p. \]
then (27) is satisfied nod(degree \(p + 1 \)). (One can also take \(t_1 = a_p + ps_1, s_1 \in A \) and correct \(f_0(X) \) with a term \(-s_1X^p \). Let
\[f_1(X) = X + a_2X^2 + \ldots + a_{p-1}X^{p-1} + \frac{t_1}{p} f_0(1)(X^p) \]
Then \(f(X) - f_1(X) \) must be of the form (if \(F \) is to be in \(A[[X,Y]] \))
\[c_{p+1}X^{p+1} + \ldots + c_{p-1}X^{2p-1} + \frac{d_{p-1}}{p}X^p \mod(\text{degree } p^2 + 1) \]
with \(c_{p+1}, \ldots, c_{p-1}, d_2 \in A \), this determines \(f_0(X) \mod(\text{degree } p^2 + 1) \)
and \(t_2 = d_2 \) (Again we can also take \(t_2 = d_2 + ps_2 \) and correct
\(f_o^2(X) \) which is the polynomial of consisting of the terms of degree \(\leq p^2 \) of \(f_o(X) \) with a term \(-s_2x^{p^2}\).

Now let

\[
g_2(X) = X + f_o^2(X) + \sum_{i=1}^{2} \frac{t_i}{p} f_2^{(i)}(X^{p^i})
\]

Then \(f(X) - g_2(X) \) must be of the form (if \(F \) is to be in \(A[[X,Y]] \))

\[
c_2 \frac{x^{p^2+1}}{p^2+1} + \ldots + c_3 \frac{x^{p^3-1}}{p^3-1} + \frac{d_3}{p} x^{p^3} \mod(\text{degree } p^3 + 1)
\]

with \(c_2 \), \ldots, \(c_3 \) \(d_3 \in A \). This determines \(f_o(X) \) \(\mod(\text{degree } p^3 + 1) \) and \(t_3 \) (with again the same indeterminacy); etc ..., etc ..., etc ...

N.B. Applying an isomorphism \(X + s_i x_i x_i^{p^i} \) does not change the form of \(f(X) \) according to 3.1., and changing \(f_o(X) \) by a term \(s_i x_i x_i^{p^i} \) comes from an isomorphism according to 3.2. This is why one can change \(t_i \) to \(t_i + ps_i \); in the test described above.

3.4. Corollary.

If \(f(X) = X + a_2x^2 + \ldots \) is the logarithm of a formal group over a characteristic zero integral domain \(A \) over \(Z(p) \). Then \(f_p(X) = X + a_p x^p + a_2 x^{2p} + \ldots \) is the logarithm of an isomorphic \(p \)-typical formal group.

3.5. This procedure for rendering a given group law \(p \)-typical is in fact the same as that of Cartier [1]. Let \(c_o \) be the curve \(c_o(X) = X \) and let \(c_p = \sum_{(n,p)=1}^{F} \frac{\mu(n)}{n} V_n F c_o \), where all sums and operators are in the (filtered) groups of curves. Cf. (2.2); \(\mu(n) \) is the Möbius function. Then according to [1]

\[c_p^{-1} F(c_p(X), c_p(Y)) \]
is a p-typical formal group. Because $F(X,Y) = f^{-1}(f(X) + f(Y))$
the logarithm of this p-typical formal group is $f_C(X)$, which is

$$f(c_p(X)) = \sum_{n=1}^{\mu(n)} f(\xi_n X) + \ldots + f(\xi_n^n X)$$

(ordinary sum)

because $f(n \cdot c_p(X)) = f^{-1}(n \cdot \xi(X))$ and $(c_1 + c_2) = f^{-1}(f_c(X) + f_c(X))$

If $f = x + a_2 x^2 + \ldots$, then $f(\xi_n X) + \ldots + f(\xi_n^n X) = n(a_n x^n + a_{2n} x^{2n} + \ldots)$

The coefficient of x^m in $f(c_p(X))$ is therefore equal to

$$\sum_{\substack{l|n \\ (l,p) = 1}} \mu(l) a_m = \begin{cases} 0 & \text{if } m \text{ is not a power of } p \\ a_m & \text{if } m \text{ is a power of } p \end{cases}$$

We have, if $m = p m'$, $(p,m') = 1, \sum_{\substack{l|m \\ (l,p) = 1}} \mu(l) = \sum_{\substack{l|m' \\ (l,p) = 1}} \mu(l)$ and this

is zero if $m' \neq 1$ and 1 if $m' = 1$.

(3.6) Suppose F_t and F_t' are two p-typical formal groups over an
integral domain A, obtained from F_M by substituting two different
sequences $t = (t_1, t_2, \ldots), t' = (t'_1, \ldots)$. We ask ourselves when
they are isomorphic. We know from (3.1) and (3.2) that it is necessary
and sufficient for this that $f_t'(X)$ is of the form

$$f_{t'}(X) = s(X) + \sum_{i=1}^{\infty} \frac{t_i}{p} f_t(i)(X)$$

with $s(X) = x + \ldots \in A[[X]]$. Because $f_t'(X)$ is p-typical we must
have that $s(X)$ is of the form

$$s(X) = x + s_1 x^2 + s_2 x^2 + \ldots$$

An easy calculation now shows that if $f(X) = x + a_1 x^2 + \ldots$ and
$f'(X) = x + b_1 x^2 + \ldots$, it follows from (30) and (31) that
(32) \[b_1 = a_1 + s_1 \]
\[b_2 = a_2 + s_2 + a_1 s_1 \]
\[b_3 = a_3 + s_3 + a_1 s_2 + a_2 s_1 \]
\[b_4 = a_4 + s_4 + a_1 s_3 + a_2 s_2 + a_3 s_1 \]
\[\ldots \]

Necessary and sufficient conditions for \(F_t \) and \(F_t' \) to be isomorphic over \(A \) are therefore that

(33) \[b_1 - a_1 = s_1 \in A \]
\[b_2 - a_1 s_1 - a_2 = s_2 \in A \]
\[b_3 - a_1 s_2 - a_2 s_1 - a_3 = s_3 \in A \]
\[b_4 - a_1 s_3 - a_2 s_2 - a_3 s_1 - a_4 = s_4 \in A \]
\[\ldots \]

4. HIGHER DIMENSIONAL COMMUTATIVE FORMAL GROUPS

Concerning higher dimensional commutative formal groups over a ring \(A \), Lazard \([4]\) proved

4.1. Proposition.

If \(F(X,Y) \equiv G(X,Y) \mod \text{degree } r \), then \(F(X,Y) \equiv G(X,Y) + \Delta(X,Y) \mod \text{degree } r+1 \), with \(\Delta(X,Y) \) of the form \(\Gamma(X) - \Gamma(X+Y) + \Gamma(Y) \) for some form of degree \(r \) over \(A \) if \(r \) is not a power of a prime, and if \(r = q^j \), then there is a form of degree \(r \), \(\Gamma \), and an \(n \times n \) matrix \(D \) (with coefficients in \(A \)) such that

\[\Delta(X,Y) = \Gamma(X) - \Gamma(X+Y) + \Gamma(Y) + D C_{qi} \]

where

\[C_{qi}(X,Y) = (C_{qi}(X,Y_1), \ldots, C_{qi}(X_n,Y_n)) \]
4.2. Construction.

Let \(f^n_T \) be an \(n \)-dimensional (column) vector of power series in the \(n \)-variables \(X^+ = (X_1, X_2, \ldots, X_n) \) over \(\mathbb{Q}[T] \) such that

\[
(34) \quad f^n_T(X) = X + \sum_{i=1}^{\infty} \frac{T_i}{p^i} f^{(p^i)}_T(X^{p^i})
\]

where now \(T_i \) is an \(n \times n \) matrix of parameters

\[
T_i = \begin{pmatrix}
(T_i)^{1,1} & \cdots & (T_i)^{1,n} \\
\vdots & \ddots & \vdots \\
(T_i)^{n,1} & \cdots & (T_i)^{n,n}
\end{pmatrix}
\]

and \(X^{p^i} \) is short for

\[
X^{p^i} = \begin{pmatrix}
X_1^{p^i} \\
\vdots \\
X_n^{p^i}
\end{pmatrix}
\]

We define the commutative \(n \)-dimensional formal group \(F^n_T \) by

\[
(35) \quad F^n_T(X,Y) = f^{-1}_T(f^n_T(X) + f^n_T(Y))
\]

Theorem. All coefficients of \(F^n_T(X,Y) \) are in \(\mathbb{Z}[T] \).

Same proof as theorem 1.2.

4.3. Universal \(n \)-dimensional formal groups.

Exactly as in 1.3 we can take instead of \(X \) in formula (34) a power series \(g(X) \) with coefficients in a suitable ring of polynomials over \(\mathbb{Z} \) (or \(\mathbb{Z}_{(p)} \)). By taking a good \(g(X) \) (cf. 4.1) we get a formal group which is universal for commutative \(n \)-dimensional formal groups over \(\mathbb{Z}_{(p)} \)-algebras (the analogue of Th. 2.4). The analogues of 2.5 and 2.6 also hold. Same kind of proof, using 4.1 instead of 2.1.
5. ADDITIONAL REMARKS AND COMMENTS.

5.1. Honda's Groups

Let K be a finite extension of \mathbb{Q}_p; n the degree of the residue field extension and π a uniformizing element of K. In [2] Honda defines a series of one dimensional formal groups by means of the logarithmic series

$$f(x) = x + \frac{x^{p^{an}}}{\pi} + \frac{x^{2p^{an}}}{\pi^2} + \ldots$$

where $an \in \mathbb{N}$ is arbitrary.

This series (36) satisfies the relation

$$f(x) = x + \pi^{-1}f(x^{p^{an}})$$

One can now prove in almost exactly the same way as in §1 that the formal group

$$F(x, y) = f^{-1}(f(x) + f(y))$$

has all its coefficients in A_K, the ring of integers of K.

An endomorphism $u(x)$ of the formal group (38) is necessarily of the form

$$u(x) = f^{-1}(uf(x))$$

where u is integral over A_K. Using the relation $f(u(x)) = u f(x)$ one can apply similar arguments as those of §1 to the determination of the (absolute) endomorphism ring of F.

5.2. Height.

Let F_T be the one dimensional formal group defined in §1. Let
A be the ring of integers of some finite extension of \mathbb{Q}_p; let (t_1, t_2, \ldots) be a sequence of elements of A. Let h be the smallest number such that $t_h \in A^\# = U(A)$, let $h = \infty$ if such a t_h does not exist. Then height $(F_c) = h$.

5.3. **Formal moduli.**

Let R be a complete noetherian local ring with maximal ideal m such that $R/m = k$, a field of characteristic $p > 0$. Let \hat{G} be a formal group over k such that $\hat{G}(X, Y) = X + Y + C(X, Y) \mod(\text{degree } q+1)$ (any formal group law over k is isomorphic to one of these). Then there is a lift F of \hat{G} of the form

$$F(0, \ldots, 0, a_n, a_{n+1}, \ldots)$$

where $q = p^n$, and a_n reduces to a mod m. Now consider the formal group law

$$(39) \quad F(T_1, \ldots, T_{n-1}, a_n, a_{n+1}, \ldots)$$

over $R[T_1, \ldots, T_{n-1}]$. This formal group law satisfies the conditions of Proposition 1.1 of [5]. It then follows from [5] that (39) gives an (explicit) parametrization of the *-isomorphism classes of lifts of \hat{G}. (*-isomorphism = strict isomorphism).
5.4. Application to complex cobordism theory.

The formal group law F_U of 1.3 is universal for formal groups over $Z_{(p)}$-algebras (cf. 2.4). If

$$f(x) = x + a_2x^2 + a_3x^3 + \ldots$$

is its logarithm, then we can calculate the generators U_1, U_2, \ldots of $Z_{(p)}[U_1, U_2, \ldots]$ from the a_2, a_3, \ldots. Cf. also formula (8) of 1.1 remark. Writing T_i for U_i, this gives the following recursion formula:

$$T_1 = p a_p$$

$$T_2 = p a_p^2 - T_1 p a_p$$

$$T_3 = p a_p^3 - T_1 p^2 a_p^2 - T_2 p a_p$$

$$\ldots$$

$$T_n = p a_p^n - \sum_{i=1}^{n-1} T_i p^{n-i} a_p^{n-i}$$

(40)

If k is not a power of p, then k is of the form p^sr, where $(p, r) = 1$. For these U_k one finds recursively

$$U_r = a_r$$

$$U_{pr} = a_{pr} - a_p U_r^p$$

$$U_{p^2 r} = a_{p^2 r} - a_{p^2} U_r^p - a_p U_{pr}$$

$$\ldots \ldots \ldots$$

$$U_{s \cdot p^r} = a_{s \cdot p^r} - \sum_{i=0}^{s-1} a_{s-i} U_i^{p^i} U_{p^r}$$

$$\ldots \ldots \ldots$$

$$U_{s \cdot p^r} = a_{s \cdot p^r} - \sum_{i=0}^{s-1} a_{s-i} U_i^{p^i} U_{p^r}$$
The formal group law of complex cobordism theory is universal over \mathbb{Z} (cf. Quillen [6]) and hence also universal over $\mathbb{Z}(p)$. Its logarithm is equal to

$$x + \frac{p_1}{2} x^2 + \cdots + \frac{p_n}{n+1} x^{n+1} + \cdots$$

where p_n is the class of $\mathbb{C}P^n$ in $\Omega^{2n}(pt)$. Two universal group laws are isomorphic. Therefore, writing $a_{n+1} = (n+1)^{-1} p_n$, a free set of generators for the algebra $\Omega^{ev}(pt) \otimes \mathbb{Z}(p)$ over $\mathbb{Z}(p)$ is given by the formulas (40) and (41) above.

The formulas (40) give the generators of $\Omega\mathbb{T}^*(pt)$, where $\Omega\mathbb{T}^*$ is the generalized cohomology theory associated to the Brown Peterson spectrum as obtained from $M\mathbb{U}_p$ by the Quillen splitting [6].

5. Remark. In this paper we have constructed some universal formal groups for formal groups over $\mathbb{Z}(p)$-algebras (F_U), where p was chosen in advance. This formal group F_U is not universal for commutative formal groups over \mathbb{Z}-algebras (i.e. commutative rings with identity element). In a subsequent paper we shall show how to fit the formal groups F_U for each prime p together to get a truly universal formal group (i.e. over \mathbb{Z}-algebras).
REFERENCES

[1]. Cartier, P, Modules associés à un groupe formal commutatif

[2]. Honda, T, Formal groups and zeta functions, Osaka J. Math. 5
(1968), 199-213.

[3]. Lazard, M, Sur les groupes de Lie formels à un paramètre,

(3) 72 (1955), 299-400.

[5]. Lubin, J and Tate, J, Formal moduli for one-parameter formal Lie

[6]. Quillen, D, On the formal group laws of unoriented and complex

Michiel Hazewinkel
Nederlandse Economische Hogeschool
Burg. Oudlaan 50
3016 Rotterdam
The Netherlands
Netherlands School of Economics

ECONOMETRIC INSTITUTE

Report 7112 (continued)

Appendix to: Constructing Formal Groups I.

Michiel Hazewinkel

October 15, 1971

Preliminary and Confidential
Appendix to: Constructing Formal Groups I

In [1] the formulas (8), (32), (40) and (41) were stated without proof.

Formulas (8), (40), (41) follow from the

A.1. Proposition

Let \(f(X) \) be the power series over \(\mathbb{Q}[U_2, U_3, \ldots; T_1, T_2, \ldots] \) defined by

\[
 f(X) = g(X) + \sum_{i=1}^{\infty} \frac{T_i}{p} f(i)(x^p)
\]

(1)

where \(g(X) = X + \sum_{i \geq 2}^{\infty} U_i X^i \) and \(f(i) \) is obtained from \(f \) by raising all of the parameters \(T_1, T_2, \ldots, U_2, U_3, \ldots \) to the \(p^i \)-the power. Then if \(a_n \) is the coefficient of \(x^n \) in \(f(X) \) we have:

\[
 T_1 = p a_p

 T_2 = p a_p^2 - T_1^p a_p

 T_3 = p a_p^3 - T_1^p a_p^2 - T_2^p a_p

 \quad (2)

 T_n = p a_p^n - T_1^p a_p^{n-1} - \ldots - T_{n-1}^p a_p

 \]

and if \(u_i = p^k s \), \((s, p) = 1 \), we have for \(u_i \)

\[
 U_s = a_s

 U_p s = a_p s - a_p U_p

 U_p^2 s = a_p^2 s - a_p U_p^2

 U_p^k s = a_p^k s - a_p U_p^k

 \quad (3)

 U_p^k s = a_p^k s - a_p U_p^k

 \]

(\(p \) is some fixed prime number).
To prove this we need some lemmas.

A.2. Lemma

Let $f(X)$ and a_n be as before. Then for $n \geq 1$

$$a_n = \sum_{p} \frac{j_1 \ldots j_r}{p^1 \cdot \ldots \cdot p^r} \quad (4)$$

where the sum is taken over all $j_k \in \mathbb{N} \cup \{0\}, i_k \in \mathbb{N}, k = 1, \ldots, r, r \leq n$ such that

$$0 \leq j_1 < \ldots < j_r$$

$$p^1(p^1 - 1) + \ldots + p^r(p^r - 1) = p^{n-1} \quad (5)$$

and, if $s > 1$, $(p,s) = 1$

$$a_n = \sum_{p^s} \frac{j_1 \ldots j_r}{p^1 \ldots p^r} \frac{j_0}{p^s} \quad (6)$$

where the sum is taken over all $\ell, j_k \in \mathbb{N} \cup \{0\}, k = 0, 1, \ldots, r; i_k \in \mathbb{N}, k = 1, \ldots, r$ such that

$$\ell + j_0 = n, 0 \leq j_1 < j_2 < \ldots < j_r$$

$$p^\ell(p^{s-1}) + p^1(p^1 - 1) + \ldots + p^r(p^r - 1) = p^{n-1} \quad (7)$$

Proof. We use induction. Assume therefore that (4) holds for all $m < n$. It follows from (5) that $j_1 = 0, i_1 \leq n$, and that $i_1 \leq j_2 < \ldots < j_r$. Therefore

$$\Sigma \frac{j_1 \ldots j_r}{p^1 \cdot \ldots \cdot p^r} \quad (4)$$

where $p^1(p^1 - 1) + \ldots + p^r(p^r - 1) = p^n - p^1$ and hence

$$\frac{j_2 \ldots j_r}{p^2 \cdot \ldots \cdot p^r} \quad (4)$$
\[0 \leq j_2 - i_1 < j_3 - i_1 < \ldots < j_r - i_1 \]

and it follows by the induction hypothesis that
\[
\sum_{i=1}^{r} \frac{T_{i}^{p}}{p^{r}} = \sum_{i=1}^{n} \frac{T_{i}^{p}}{p^{r}} a_{(i)}^{(i)}
\]

where \(a_{k}^{(i)} \) is obtained from \(a_{k} \) by replacing the parameters
\(T_{1}, \ldots, T_{n}, \ldots \) by \(T_{1}^{p}, \ldots, T_{n}^{p}, \ldots \). But according to (1)

one has
\[
a_{n} = \sum_{i=1}^{n} \frac{T_{i}^{p}}{p^{r}} a_{n-i}^{(i)}
\]

which proves formula (4).

To prove (6) one proceeds similarly. If \(g = n, j_0 = 0 \) and \(r = 0 \). If \(g < n, j_1 = 0 \) and the rest of the proof is completely analogous.

A.3. Lemma

\[
\sum_{i=1}^{r} \frac{j_{i}(p^{i} - 1)}{p} = \sum_{i=1}^{n} \frac{j_{i}}{p^{n}} (p^{r} - 1) = p^{n-1}, \text{ with } i_1, \ldots, i_r \geq 1
\]

and \(0 \leq j_1 < j_2 < \ldots < j_r \). Then \(j_r = i_r = n \).

Proof. By induction on \(r \). The case \(r = 1 \) is trivial. Suppose therefore that \(r > 1 \). It follows from the asymptotics that \(j_1 = 0 \), and therefore
\[
\sum_{i=1}^{r} \frac{j_{i}(p^{i} - 1)}{p} = \sum_{i=1}^{n} \frac{j_{i}}{p^{n}} (p^{r} - 1) = p^{n-1}
\]

It follows from this that \(j_2 = i_1 \), because \(0 < j_2 < \ldots < j_n \), and \(i_1 < n \). Therefore we find
\[
\sum_{i=1}^{r} \frac{j_{i}}{p^{i}} (p^{i} - 1) = \sum_{i=1}^{n} \frac{j_{i}}{p^{n}} (p^{r} - 1) = p^{n-1}
\]

By the induction hypothesis we now have \(j_r = i_r = n - i_1 \), and hence \(j_r + i_r = 1 \).

q.e.d.

According to lemma A.3 we have that \(i_r + j_r = n \) in formula (4).

It follows that

\[
a_n = \sum_{i=1}^{n-i} \frac{T_p}{T_i} \frac{j_1}{p} \ldots \frac{j_{r-1}}{p-r-i}
\]

where, because \(i_r + j_r = n \)

\[
\frac{j_1}{p^1(p^1-1)} + \ldots + \frac{j_{r-1}}{p^{r-1}(p^{r-1}-1)} = \frac{j_r}{p^r-1} = \frac{n-i}{p^{n-i} - 1}
\]

Therefore

\[
a_n = \sum_{i=1}^{n-i} \frac{T_p}{T_i} \frac{a_{n-i}}{p} , \quad a_1 = 1
\]

from which (2) follows.

According to (7) we have that

\[
\frac{j_1}{p^1(p^1-1)} + \ldots + \frac{j_r}{p^r(p^r-1)} = \frac{j_0}{p^0 - 1}
\]

for the \(j_1 < \ldots < j_r \) occurring in (6). It follows that

\[
a_n = \sum_{i=1}^{n} \frac{U_n}{p^i} + \sum_{i=1}^{p} \frac{a_{n-i}}{p^i} + \sum_{i=1}^{p^i} \frac{j_1}{p^i}
\]

from which (3) follows.

To prove formula (11) we need another lemma.

A.5. Lemma

Let \(f(X) \in Q[s_1, s_2, \ldots, T_1, T_2, \ldots] \) be defined by the formula

\[
f(X) = X + \sum_{i=1}^{\infty} s_i X^i + \sum_{i=1}^{\infty} \frac{T_i}{p} f(i)(X)^{p^i}
\]

Then if

\[
f(X) = X + b_1 X^p + b_2 X^{p^2} + \ldots
\]

we have
\[b_n = \sum_{p \neq r} \frac{j_1}{\sum_{i_1}^{j_p} \ldots \sum_{i_r}^{j_r} p} + \sum_{p \neq r} \frac{j_1}{\sum_{i_1}^{j_p} \ldots \sum_{i_r}^{j_r} p} \]

where the first sum is taken over all \(j_k \in N\cup \{0\}, i_k \in N, r \in N \) such that \(j_1 < j_2 < \ldots < j_r \) and
\[p^{j_1(p^{1-1})} + \ldots + p^{j_r(p^{r-1})} = p^n - 1; \]
and the second sum is taken over all \(j_k \in N\cup \{0\}, r \in N\cup \{0\}, i_k \in N \) such that
\[i_1 + j_1 = n, j_1 < j_2 < \ldots < j_r, p^{j_1(p^{1-1})} + \ldots + p^{j_r(p^{r-1})} + \]
\[i_1 + j_2 + p^{i_1(p^{1-1})} + \ldots + p^{i_r(p^{r-1})} = p^n - 1. \]

Proof. Similar to the proof of Lemma A.2.

Let \(f(X) \) be as above, and let \(g(X) = X + a_1X^p + \ldots \)
be defined by
\[g(X) = X + \sum_{i=1}^{\infty} \frac{T_i}{p} g(i)(X^p)^i \]
then we have
\[b_1 = a_1 + S_1 \]
\[b_2 = a_2 + a_1S_1^p + S_2 \]
\[b_3 = a_3 + a_2S_1^{p^2} + a_1S_2^p + S_3 \]
\[b_n = a_n + a_{n-1}S_1^{p^{n-1}} + \ldots + a_1S_{n-1}^{p} + S_n \]

Proof. Exactly as in A.4, starting from A.5 instead of A.2.

Note that this proves formula (\(\mathfrak{A} \)) of [1].

A.7. Remark

Let now \(X \) be a vector and let \(f(X) \) be the \(n \)-dimensional power series defined by
\[f(X) = X + \sum_{i=1}^{\infty} \frac{T_i}{p^i} (X^p)^i \]

where now the \(T_i \) are \(n \times n \) matrices of parameters as in [1] (\S 4).

(If \(X^T = (X_1, \ldots, X_n) \), then \((X^p)^T = (X_1^p, \ldots, X_n^p) \);

\(.^T \) denotes transposition as usual)

Then \(f(X) \) is of the form

\[f(X) = + a_1 x^p + a_2 x^{p^2} + \ldots \]

where now the \(a_i \) are \(n \times n \) matrices. Then if we write

\(T_i^{(p^k)} \) for the matrix \(T_i \) with all its entries raised to the power \(p^k \), one has

\[
\begin{align*}
T_1^p &= p a_1 \\
T_2 &= p a_2 - a_1 T_1^p \\
T_3^p &= p a_3 - a_2 T_1^{p^2} - a_1 T_2^p \\
T_n &= p a_n - a_{n-1} T_1^{p^{n-1}} - \ldots - a_1 T_1^{p^{n-1}}
\end{align*}
\]

This is proved in the same way as A.1. One also has analogues for the second part of A.2. and for A.6., which gives multidimensional analogues for the formulas (8), (31), (40) and (41) of [1].

Reference