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ABSTRACT

Fixes are presented for the solution errors (`pressure oscillations') that may occur near two-uid interfaces when

applying a capturing method. The �xes are analyzed and tested. For two-uid ows with arbitrarily large

density ratios, a variant of the ghost-uid method appears to be a perfect remedy. Results are presented for

compressible water-air ows. The results are promising for a further elaboration of this important application

area. The paper contributes to the state-of-the-art in computing two-uid ows.
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1. Introduction

A known di�culty of capturing contact discontinuities in a conservative formulation of, e.g., the Euler
equations is that large solution errors (in literature often referred to as `pressure oscillations') may
arise near the contact discontinuity. (For tracking and �tting approaches the problem does not exist.)
We will show that the solution error referred to is proportional to the density ratio. For large density
jumps across the interface, the errors may even degenerate to instabilities. Fixes for this solution-error
problem are available. We refer to the works of Karni [1, 2] and Abgrall [3], their common paper [4],
and also to [5, 6, 7]. In most of the available capturing literature though, the ratio of the two densities
at the interface is O(1){O(102). To our knowledge, only in [5, 6] ratios of O(103), typical water-air
ratios, are considered.
Conservative capturing through the two-uid, linearized Godunov scheme proposed in our foregoing

paper [8] also su�ers from the problem. In the present paper, we will show this on the basis of a model
ow with known exact solution. Flows with a single spatial dimension only are considered. The spatial
simplicity allows us to compute uid-ow problems with known exact solutions.
The contents of the paper is the following. In Section 2, we analyze the solution-error problem near

interfaces. Next, in Section 3, some approaches to �x the problem are described. Not all of these
approaches (some of them already known) appear to work for water-air ow with its large density
jump. One �x is proposed which works perfectly, it is a simple variant of the ghost-uid method [6].
In Section 4, numerical results are presented for compressible water-air ows.
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2. Error near interface

2.1 Fluid-ow equations
To describe a 1D two-uid (water-air) ow, consider (for a su�ciently small control volume 
) the
following system of equations:

Z



d

dt

0
@ �

�u

��

1
A dx+

0
@ �u

�u2 + p

�u�

1
A

@
right

�
0
@ �u

�u2 + p

�u�

1
A

@
left

= 0; (2.1a)

with � the bulk density, which is de�ned as

� = �(�)�w(p) + (1� �(�))�a(p); (2.1b)

where � is the volume-of-water fraction, � the level-set function, and where �w(p) and �a(p) are the
equations of state for water and air, respectively. For the latter, we use Tait's:

�w(p) =

�
p+Bwp1
(1 +Bw)p1

� 1
w

(�w)1; �a(p) =

�
p+Bap1
(1 +Ba)p1

� 1
a

(�a)1: (2.1c)

The level-set function � is de�ned as the signed-distance function and is taken positive in water. For
a further discussion of this ow model, see Section 2 in [8].

2.2 Analysis for model ow
Consider a 1D tube with unit length, x 2 [0; 1], inow at x = 0, outow at x = 1 and with as initial
solution:

u(x; t = 0) = U > 0; (2.2a)

p(x; t = 0) = P; (2.2b)

�(x; t = 0) =

�
�w(P ); x � (xfs)t=0 ;
�a(P ); x � (xfs)t=0 ;

(2.2c)

where U and P are constant, and where xfs is the location of the free surface, the water-air interface.
For t > 0, the corresponding exact Euler-ow solution simply reads u(x; t) = U , p(x; t) = P , �(x; t) =
�w(P ) for x � (xfs)t=0 + Ut and �(x; t) = �a(P ) for x � (xfs)t=0 + Ut (Figure 1). The model ow
seems trivial, but it is not. It precisely uncovers the de�ciency of capturing methods with regard to
material interfaces. For the problem at hand, for the space discretization of (2.1a) we consider an

ρ

ρw

ρ

1

a

U

P

P

(  )

(  )

0 fsx
x

Figure 1: Water-air interface running from left to right through a 1D tube, at constant speed U and
pressure P .
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equidistant �nite-volume grid with mesh size h. For the time integration, just for convenience, we
take the forward Euler scheme. The space discretization is taken �rst-order accurate. Then, denoting
the solution in cell i at the old time level by qni , q = (�; �u; ��)T , we have as equation for the solution
qn+1i at the new time level:

qn+1i = qni �
�t

h

�
F (qni ; q

n
i+1)� F (qni�1; q

n
i )
�
; (2.3)

with �t the time step, and with F denoting the two-uid, linearized Godunov ux (3.11){(3.12) from
[8]. Considering the situation where qni�1, q

n
i and qni+1 are according to initial solution (2.2), with

(xfs)
n = (xfs)t=0 = xi� 1

2
(Figure 2), with the two-uid, linearized Godunov scheme presented in [8]

we get

�n+1i = ��w + (1� �)�a; (2.4a)

(�u)
n+1
i = (��w + (1� �)�a)U; (2.4b)

(��)
n+1
i = (��w � (1� �)�a)

h

2
; (2.4c)

where � � U�t
h

.
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Figure 2: Bulk density distribution near cell i at time level n, water-air interface at xi� 1
2
.

Note that �n+1i according to (2.4) is exact, as is un+1i =
(�u)n+1i

�
n+1
i

= U . However, for �n+1i it follows

from (2.4)

�n+1i =
(��)n+1i

�n+1i

=
��w � (1� �)�a
��w + (1� �)�a

h

2
; (2.5)

whereas the exact discrete solution reads (�n+1i )exact = �h
2 + �h. Hence, for the local discretization

error ��n+1i = �n+1i � ��n+1i

�
exact

it holds

��n+1i = �(1� �)
�w � �a

��w + (1� �)�a
h: (2.6)

So, ��n+1i = 0 only if { trivially { � = 0, if � = 1 (formally unstable with forward Euler and � � U�t
h

),

or if �w = �a. For 0 < � < 1 and �w > �a it always holds ��n+1i > 0. The local discretization error
(2.6) is O(h), but can not be made of higher order by applying a higher-order discretization. (This
holds for any numerical ux function F .) Higher than �rst-order accuracy is simply inhibited by the
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bulk density, which is a smeared out representation of the exact discrete density. Through bulk-density
formula

�(�; p) = �(�)�w(p) + (1� �(�))�a(p); �(�) 2 [0; 1]; (2.7)

with � denoting the volume-of-uid (water) fraction, the error (2.6) carries over into a pressure error

�pn+1i . Given ��n+1i = 0, from (2.7) it follows after linearization �n+1i =
�
�n+1i +��n+1i

��
�w(P ) +

�p
n+1
i

c2w(P )

�
+�

1� �n+1i ���n+1i

� �
�a(P ) +

�p
n+1
i

c2a(P )

�
, i.e.,

�pn+1i =
�c2wc2a�

�n+1i +��n+1i

�
c2a +

�
1� �n+1i ���n+1i

�
c2w

(�w � �a)��n+1i : (2.8)

From the formulae for the volume-of-uid fraction �i as given in Section 3.1 of [8], it follows that,
besides on ��n+1i , ��n+1i also depends on ��n+1i�1 and ��n+1i+1 . For the model ow considered, it

follows with the two-uid, linearized Godunov scheme: �n+1i�1 =
(��)n+1

i�1

�
n+1
i�1

= h
2 + �h and �n+1i+1 =

(��)n+1
i+1

�
n+1
i+1

= � 3h
2 +�h, which are both the exact results. Resuming, we have �n+1i = �h

2 +�h+��n+1i ,

�n+1
i� 1

2

= �h + 1
2��n+1i and �n+1

i+ 1
2

= �h + �h + 1
2��n+1i , with ��n+1i according to (2.6). With the

procedure for computing the volume-of-uid fraction � as described in Section 3.1 of [8], the following
expressions can then be derived for the error ��n+1i = �n+1i � ��n+1i

�
exact

:

��n+1i =

�
1

2
+ �

�
��n+1i

h���n+1i

; �n+1i � 0; (2.9a)

��n+1i =

�
3

2
� �

�
��n+1i

h+��n+1i

; �n+1i � 0: (2.9b)

Note that ��n+1i = O(1) (i.e., mesh-size-independent) and { hence { with (2.8) also the pressure error
�pn+1i is! Also note that the pressure error (2.8) is proportional to the density ratio �w

�a
. This illustrates

the poor, density-ratio-dependent solution-error behavior already mentioned in the beginning of this
section. (Note that the error behavior is not so poor that the denominator h���n+1i in (2.9a) may
become zero for 0 < � < 1 and �w > �a.)

2.3 Guidelines for error improvements
Before proposing improvements of the poor local error behavior near the interface, it is useful to make
an error analysis of bulk-density relation (2.7) and { also { to consider the conservative equations near
the interface.

2.3.1 Error analysis of bulk-density relation Errors in the pressure and volume-of-uid fraction (�p

and ��) induce an error in the bulk density (��), which, given (2.7), satis�es the equation

�+�� = (�+��)�w(p+�p) + (1� ����)�a(p+�p): (2.10)

For the model ow and discretization method considered in Section 2.2, we found �� = 0 and
�� = O(1). Then, according to (2.10), �p = O(1) as well, which is in agreement with what we
derived in Section 2.2. Near the interface, instead of the zeroth-order pressure error �p described by
(2.8){(2.9), we ideally prefer �p = 0, which implies according to (2.10)

�� = ��(�w(p)� �a(p)): (2.11)

One of the �xes to be considered in the following is to make the numerical method so that �� and
�� exactly satisfy (2.11).
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2.3.2 Reconsideration of uid-ow equations near interface Consider the situation in which the
interface is in cell 
 = 
i (only the interface, so no shock or rarefaction). Since velocity and pressure
are continuous across the interface, for su�ciently small 
i, we may then write by good approximation:
ui� 1

2
= ui+ 1

2
= ui and pi� 1

2
= pi+ 1

2
. With this, (2.1a) can be rewritten as

Z

i

d

dt
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0
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1
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@

i� 1

2

1
CCA = 0; (2.12)

i.e., as

Z

i

dq

dt
dx+ ui

�
qi+ 1

2
� qi� 1

2

�
= 0; (2.13)

which is a system of advection equations for the entire solution vector qi. (Contact discontinuities
are linear phenomena.) If all conservative solution components are advected { �i, (�u)i and (��)i
{ then any solution component in 
i (either conservative or non-conservative) is. I.e., in (2.13), in
a cell with (only) a contact discontinuity, instead of the fully conservative solution representation
qi = (�i; (�u)i; (��)i) we may equally well consider, e.g., the partially conservative representation
qi = (�i; (�u)i; �i), the fully non-conservative representation qi = (ui; pi; �i), or whatever. This
knowledge is important. In combination with error equation (2.10), it allows us to derive a �x for the
zeroth-order error observed in Section 2.2.

3. Fixes for error in cell with interface

3.1 Advection of level-set function
This approach is based on the observation made in Section 2.2 that the update of �ni through division
of (��)n+1i by �n+1i leads to a �rst-order accuracy barrier in �n+1i because of the intrinsic smearing in
the bulk-density representation itself. For the update of the real physical quantities �i and (�u)i we
may stick to the conservative formulation and, hence, to the two-uid, linearized Godunov scheme.
Doing so, with the forward Euler, �rst-order upwind discretization of the single advection equation

Z

i

d�

dt
dx+ ui

�
�i+ 1

2
� �i� 1

2

�
= 0; (3.1)

for the model ow considered { in addition to (2.4a) and (2.4b) for �n+1i and (�u)n+1i { we get

�n+1i = �h

2
+ �h; (3.2)

which is exact. Note that �n+1i is exact because � has been de�ned as the signed-distance function. (A
nonlinear spatial distribution of � would have yielded an error ��n+1i .) Because ��n+1i = 0, it also
holds ��n+1i = 0. Since ��n+1i = 0 as well (Section 2.2), from (2.10) it then follows �pn+1i = 0. In
all other cells, the fully conservative scheme (2.3) is applied, yielding there the exact discrete solution.
However, at time level n + 2 the numerical solution is no longer exact. According to the linearized
Godunov scheme it holds for �rst-order state interpolation to the cell faces: �n+1

i� 1
2

= �n+1i�1 = �w,

�n+1
i+ 1

2

= �n+1i = ��w+(1��)�a and u
n+1
i� 1

2

= un+1
i+ 1

2

= U . Then, from (2.3) it follows �n+2i = 2��w+(1�
2�)�a��2(�w��a), whereas

�
�n+2i

�
exact

= 2��w+(1�2�)�a. Hence, ��n+2i = ��2(�w��a). With the

forward-Euler, �rst-order upwind discretization of (3.1), it follows ��n+2i = 0 and, as a consequence,
��n+2i = 0. With (2.10), it then follows, since ��n+2i = O(1), that �pn+2i = O(1). So, this partially
conservative approach is not a �x. With some tricks one can make the method work. Taking for the left
and right cell-face densities to be substituted into the linearized Godunov scheme, instead of the bulk
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densities, the local (non-bulk) densities (pure water or pure air) at t = tn, the method works as long
as the interface does not cross a cell face during a time step. I.e., the method works for � = 1

m
, with

m integer. For the problem at hand, verify that, instead of �n+1
i+ 1

2

= ��w + (1� �)�a, this would have

yielded �n+1
i+ 1

2

= �a (pure air), and so (with �n+1
i� 1

2

= �w and un+1
i� 1

2

= U): �n+2i = 2��w+(1�2�)�a, thus

��n+2i = 0, and { hence { with ��n+2i = 0: �pn+2i = 0, instead of �pn+2i = O(1). Aforementioned
requirement on � is too restrictive to let the method be of much practical use.

3.2 Advection of velocity, pressure and level-set function
Taking in (2.13) qi = (ui; pi; �i), with (ui� 1

2
; pi� 1

2
) = (ui+ 1

2
; pi+ 1

2
), it follows the exact result

0
@ u

p

�

1
A

n+1

i

=

0
@ u

p

�

1
A

n

i

+

0
@ 0

0
�h

1
A =

0
@ U

P

�h
2 + �h

1
A : (3.3)

However, in cell 
i+1 an error arises. Verify that qn+1i+1 is still exact, qn+1i+1 = (U; P;� 3
2h + �h), as

is qn+1i+2 = (U; P;� 5
2h + �h), but for t = tn+2 we �nd with the linearized Godunov scheme: �n+2i+1 =

�a + �2(�w � �a). For � < 1
2 , this is wrong; water is erroneously transported from cell i into cell

i + 1. The corresponding error reads: ��n+2i = �2(�w � �a) = O(1). Meanwhile, for � < 1
2 such

that �n+2
i+ 1

2

= �n+2
i+ 3

2

are both still negative, we correctly �nd �n+2i+1 = 0. So, with (2.10) it then follows

�pn+2i+1 = O(1) and therefore this approach { although (trivially) �xing the pressure-error problem in
the cell with interface { is not (yet) good either, because it yields an error in a neighboring cell.

3.3 Advection of density and volume-of-uid fraction
In Section 2.3 we have seen that if �� and �� are such that (2.11) is satis�ed, then �p = 0. We
derive a possible �x which is based on (2.11). On the basis of general advection equation (2.13), we
can directly write the advection equations

Z

i

d�

dt
dx + ui

�
�i+ 1

2
� �i� 1

2

�
= 0; (3.4a)

Z

i

d�

dt
dx+ ui

�
�i+ 1

2
� �i� 1

2

�
= 0: (3.4b)

The peculiar cell-face based volume-of-uid fractions �i� 1
2
and �i+ 1

2
in (3.4b) may become functions

of real volume-of-uid fractions upon further discretization. Yet, further discretization is not necessary
since (3.4a) and (3.4b) are identical. `Extension' of the relation pi� 1

2
= pi+ 1

2
, which underlies (2.13),

to pi� 1
2
= pi+ 1

2
= pi implies that with � = ��w(p) + (1� �)�a(p), (3.4a) can be rewritten as (3.4b).

So, when we maintain (3.4a), the updates (�n+1i � �ni ), (�
n+2
i � �n+1i ), etc. which it renders, may be

directly translated (through (2.11)) into updates (�n+1i � �ni ), (�
n+2
i � �n+1i ), etc. Whereas in the

previous �x the pressure error was explicitly set to zero, here it is implicitly done so. However, as with
the fully non-conservative approach from Section 3.2, in the second time step an O(1) pressure error
arises in neighboring cell 
i+1, when the fully conservative approach is still applied there. Moreover,
even in a better case, this �x will yield an exact pressure solution at the expense of a di�used density
pro�le. A perfect �x is a variant of the so-called ghost-uid method [6]. The variant is described in
the next section.

3.4 Ghost-uid method
In [6], the ghost-uid method is introduced for the non-homentropic Euler equations of gas dynamics.
For our more compact system of uid-ow equations, we propose a simple variant of the ghost-uid
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method. As the so-called ghost cells we de�ne those cells in which there is an interface (i.e., a zero
of the level-set function). These cells are considered in an ambiguous manner: as fully �lled with
water (ghost water) and as fully �lled with air (ghost air). Then, still considering the 1D situation for
convenience, across the two walls of the ghost cell, both water and air uxes of mass and momentum
are computed (ghost uxes). On the basis of the di�erence between the two ghost-water uxes,
the ghost-water solution is updated (i.e., its mass and momentum). Likewise, the ghost-air solution
is. Expressed in (u; p)-variables, these two new ghost solutions (for water and air) will generally not
di�er very much. (For the 1D problem introduced in Section 2.2, both solutions will be even identical.)
Throughout the entire computational domain the level-set function is simply advected with (3.1). In
case the updated ghost-water and ghost-air solutions do di�er, we propose the following. From the
(updated) level-set solution, the volume-of-uid fraction in the ghost cell can be computed. Then, the
solution in the ghost cell is made unique with

�
u

p

�
= �

�
uw
pw

�
+ (1� �)

�
ua
pa

�
: (3.5)

There are no physical or mathematical arguments for applying this weighting, other choices are possi-
ble. The uxes (real and ghost) are computed with the single-uid version of the two-uid, linearized
Godunov scheme. To compute a water ux (either real or ghost), in the expressions for u 1

2
and p 1

2

(given in Section 3.3 of [8]), for �0; �1; c0 and c1 the water values are taken. The similar is done for the
computation of the air uxes. Note that in the computation of all types of uxes (real or ghost, water
or air), use is made of the same, unique values of u and p in each cell. This uniqueness ensures that
the free-surface conditions are satis�ed implicitly. In [6], for the non-homentropic Euler equations of
gas dynamics, entropy is extrapolated across the interface. The present homentropic equations do not
require any solution-component extrapolation. Tangential velocity components do not yet apply here.
In multi-D, in each cell, besides the physical normal velocity component and pressure, we would also
use the physical tangential velocity components available there. (With Navier-Stokes as the ultimate
ow model, like the normal velocity component and pressure, the tangential velocity components will
also be continuous across the interface.) Considering the 1D situation with, at time t = tn, the in-
terface somewhere in cell i, with { say { water at the left, in case of the �rst-order accurate space
discretization, the uxes to be computed are those depicted in Figure 3. So, only across the cell faces
i � 1

2 and i + 1
2 ghost-water and ghost-air uxes are computed, across all cell faces left of cell face

i� 1
2 : real water uxes and across all cell faces right of i+ 1

2 : real air uxes.

interface

:  real-water flux
:  real-air flux

:  ghost-water flux
:  ghost-air flux

i+ 3
2i+ 5

2

x
2i+ 1i- 1

22
5 i- i-3

2

Figure 3: Types of uxes computed in present ghost-uid method.

Note that in the ghost-uid method the interface is no longer captured at the smallest discrete level
(that of a cell face), but at the next larger: a cell. Because in the ghost-uid method uxes are always
of the single-uid type, explicit calculation of u 1

2
and p 1

2
can be done by using, e.g., Osher's scheme,

instead of the linearized Godunov scheme.
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4. Numerical results

4.1 Water front at constant speed and pressure
4.1.1 Numerical choices The �rst test case to be considered is the 1D tube ow already introduced
in Section 2.2. Numerical values to be considered are: (xfs)t=0 = 0:5 (initial interface halfway tube)
or (xfs)t=0 = 0 (initial interface at inlet boundary), U = 1, P = 1, �w(P ) = 1, �a(P ) = 0:001 (in the
ideal case), w = 7, a =

7
5 , Bw = 3000 and Ba = 0. According to the speed-of-sound relations

c2w = w
(1 +Bw)p

�w
; (4.1a)

c2a = a
p

�a
; (4.1b)

these values imply cw(P ) �
p
15 ca(P ), which agrees fairly well with common sea-level conditions.

As in Section 2, the grids to be used are equidistant. The boundary conditions to be imposed are
u(x = 0; t) = U > 0, �(x = 0; t) = Ut and p(x = 1; t) = P . Time integration is done with the forward
Euler scheme, with the time step constant and su�ciently small to guarantee stability:

�t = �
h

U + cw(P )
; � < 1: (4.2)

The space discretization is taken �rst-order accurate, like in Section 2.2.

4.1.2 Results fully conservative approach This is the approach without any �xes for solution errors
near the interface. For the numerical values just mentioned, the computation breaks down. Stumbling
block is the large density ratio. In Figure 4, pressure errors are depicted for computations with
successively the following three still rather small density ratios: �w

�a
= 2; 4 and 8, and after the

following three numbers of time steps: 10 (left column of graphs), 20 (middle column of graphs) and
40 (right column). The time step on the coarsest grid is twice as large as that on the middle grid and
four times larger than that on the �nest grid. So, note that in each of the eight graphs (no results
were obtained for �w

�a
= 8 and 40 time steps), the three pressure-error distributions correspond with

the same number of time steps (10, 20 or 40), not with the same time. The pressure error appears to
be about linearly proportional to the number of time steps taken. In agreement with the theoretical
�ndings, it also increases with the density ratio �w

�a
. The latter increase is clearly nonlinear. With the

conservative approach, results for �w
�a

= 1000 are still far out of reach. The deceptive performance of
the conservative approach was expected given the analytical results of Section 2.2.

4.1.3 Results advection of level-set function Here the �x proposed in Section 3.1 is numerically
investigated. The �x is applied not only in the cell in which the interface actually is, but also in its
left and right neighbor cell. The �x clearly gives an improvement as compared to the fully conservative
approach, but the �x is not adequate. For (xfs)t=0 = 0 and �w

�a
= 10, in each of the three graphs

in Figure 5 we present the computed bulk-density pro�les at t = 0:0; 0:1; 0:2; : : : ; 1:0. The results
look perfect, but they are not. They are cursed with a pressure error, which for �w

�a
= 10 is still

negligibly small. But, as in the previous section, the error grows rapidly with increasing density ratio
�w
�a
. Results similar to those in Figure 5 cannot be obtained for �w

�a
= 1000, not even for �w

�a
= 100.

From Figure 6 it appears that the pressure error grows exponentially with �w
�a
.

4.1.4 Results advection of velocity, pressure and level-set function Here, the �x proposed in Section
3.2 is tested. The advection of u; p and � is applied in the cell with interface as well as in its left and
right neighboring cell. The �x is an improvement compared to that with advection of � only, but it
does not work satisfactorily either. It also breaks down for increasing density ratio �w

�a
; for �w

�a
= 100

after t = 0:7, and for �w
�a

= 1000 after t = 0:4 (Figure 7).
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After 10 time steps After 20 time steps After 40 time steps

a. �w
�a

= 2

b. �w
�a

= 4

c. �w
�a

= 8

Figure 4: Pressure-error distributions fully conservative approach (solid lines: h = 1
10 , coarsely dashed

lines: h = 1
20 , �nely dashed lines: h = 1

40 ).
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a. h = 1
10 b. h = 1

20 c. h = 1
40

Figure 5: Bulk-density pro�les at t = 0:0; 0:1; 0:2; : : : ; 1:0, �x with advection of level-set function,
�w
�a

= 10.

Figure 6: Pressure-error distributions at t = 0:1 for �w
�a

= 70(+); 75(�) and 80(�), �x with advection

of level-set function, h = 1
40 .

a. �w
�a

= 10 b. �w
�a

= 100 c. �w
�a

= 1000

Figure 7: Bulk-density pro�les at t = 0:0; 0:1; 0:2; : : : ; 1:0, �x with advection of velocity, pressure and
level-set function, h = 1

40 .
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a. �w
�a

= 10 b. �w
�a

= 100 c. �w
�a

= 1000

Figure 8: Bulk-density pro�les at t = 0:0; 0:1; 0:2; : : : ; 1:0, ghost-uid method, h = 1
40 .

a. �w
�a

= 10
10 b. �w

�a
= 10

20 c. �w
�a

= 10
30

Figure 9: Bulk-density pro�les at t = 0:0; 0:1; 0:2; : : : ; 1:0, ghost-uid method, extremely high density
ratios, h = 1

40 .
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4.1.5 Results ghost-uid method The �x proposed in Section 3.3 is skipped, its expected smearing
of the density excludes it as an interesting option here. The ghost-uid method described in Section
3.4 is interesting; it works (Figure 8). For the problem at hand, it even works for arbitrarily large
density ratios (Figure 9).

4.2 Oscillating water column
4.2.1 Analysis Although the previous constant-speed-and-pressure test case is not trivial from a
numerical point of view, from a physical perspective it is. As a second test case we propose the
following, physically more interesting one. Consider a 1D tubular circuit with a valve in it which for
t < 0 is in open position. The tube contains a water and air column (Figure 10), owing (for t < 0)
at constant speed U and pressure P .

valve

U

air

water

Figure 10: Tubular circuit with columns of water and air owing at constant speed U and pressure P .

At t = 0, when the water column's center of gravity is at the maximum distance from the valve, the
latter is instantaneously closed. Ignoring curvilinearity, the initial situation is as sketched in Figure
11. Then, starting from t = 0, the air at the right will be compressed by the water and the air at

Uair

1-1

water

0

air

x fs- x fs
x

Figure 11: Initial condition: shut o� tube with column of water in between two columns of air, all
three columns owing to the right at constant speed U and pressure P .

the left will expand. Hence, a pressure di�erence is built up across the column of water, with as a
consequence a deceleration of the latter's ow to the right, followed by a stagnation, and next an
acceleration and ow to the left. The latter leads to a reverse pressure gradient across the water,
which will redirect the ow from left to right again, and so on. The water column starts to oscillate.
An elementary analytical ow solution can be derived by making three simplifying assumptions. The
�rst is that the density in the two air columns depends on time t only (not on the spatial coordinate
x). Then, denoting the displacement of the water column in positive x-direction by s(t), the density
in the left and right air columns can be approximated as

�la(t) =
1� xfs

1� xfs + s(t)
�a(0) and (4.3a)
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�ra(t) =
1� xfs

1� xfs � s(t)
�a(0); (4.3b)

respectively. With the equation of state, for the pressure in the two air columns it then follows:

pl(t) =

�
1� xfs

1� xfs + s(t)

�a

P; (4.4a)

pr(t) =

�
1� xfs

1� xfs � s(t)

�a

P: (4.4b)

The second assumption is that the water column behaves as a rigid body (as an ice cube say). With
this, Newton's second law of motion applied to the water column's motion reads

�w2xfs
d2s

dt2
= pl(t)� pr(t); (4.5)

which, with (4.4a) and (4.4b), yields as di�erential equation for s(t):

�w2xfs
d2s

dt2
=

��
1� xfs

1� xfs + s(t)

�a

�
�

1� xfs

1� xfs � s(t)

�a�
P: (4.6)

The third assumption made is that the water column's displacements are small with respect to the
length of the initial air columns: js(t)j � 1 � xfs. With this, the pressure expressions (4.4a) and
(4.4b), and hence the nonlinear di�erential di�erential equation (4.6), can be linearized by good
approximation:

d2s

dt2
+ �s = 0; � =

aP

�wxfs(1� xfs)
: (4.7)

With the initial conditions s(0) = 0 and ds(0)
dt

= U , the solution of (4.7) is

s(t) =
Up
�
sin
p
�t; (4.8)

the water column makes a harmonic oscillation with amplitude Up
�
and oscillation time � = 2�p

�
. The

assumption that the pressure in the air columns is space-independent is satis�ed by good approxima-
tion if ca� � 1� xfs, i.e., if

2�

r
xfs

1� xfs

�w

�a(P )
� 1: (4.9a)

The small-displacement assumption js(t)j � 1� xfs implies

U

ca(P )

r
xfs

1� xfs

�w

�a(P )
� 1: (4.9b)

Requirements (4.9a) and (4.9b) conict easily. Assuming that (4.9a) is satis�ed, (4.9b) can only be
satis�ed if U

ca(P )
� 1. With the linearized versions of pressure relations (4.4a) and (4.4b), for the

pressure coe�cients P l � pl(t)�P
P

and Pr � pr(t)�P
P

, it holds

P l(t) = �a s(t)

1� xfs
; (4.10a)

Pr(t) = a
s(t)

1� xfs
: (4.10b)

The two coe�cients are exactly opposite in phase.
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a. According to analysis

b. According to numerical computations, h = 1
40 .

Figure 12: Time evolution of pressure coe�cients at left and right boundary (solid lines: left boundary,
dashed lines: right boundary).

4.2.2 Numerics We proceed by presenting numerical results obtained through the ghost-uid method.
In the numerical computations, both water and air are taken compressible. As for the previous test
case, we take w = 7, a = 7

5 , Bw = 3000, Ba = 0, �w(P ) = 1 and �a(P ) = 0:001. Further, we take
U = 1, P = 1 and xfs = 0:1. For these numerical choices, in Figure 12a we �rst give the time evolution
of P l and Pr according to the analytical estimates (4.10a) and (4.10b). For the numerical computa-
tions, an equidistant grid with h = 1

40 is applied. Time integration is done again with the forward
Euler scheme and the space discretization is again �rst-order accurate. The level-set function is taken
as the signed-distance function. For this test case, as opposed to the foregoing, the level-set function
is reinitialized. (The reinitialization is done after each time step.) In Figure 12b the time evolution

of the pressure coe�cients P(x = �1; t) = p(x=�1;t)�P
P

and P(x = 1; t) = p(x=1;t)�P
P

is given. Note
that although requirement (4.9b) is not satis�ed very well for the aforementioned numerical values,
the analytical results depicted in Figure 12a still agree fairly well with the nonlinear numerical results.
Also for this test case, the ghost-uid method appears to work �ne. In the ghost cells, the conservation
laws are applied to virtual (ghost) amounts of water and air, not to the real physical amounts. So,
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a. h = 1
40

b. h = 1
80

Figure 13: Time evolution of relative error in total mass of air in shut o� tube.

conservation of the real amounts of mass and momentum is not guaranteed automatically. In case of
accurate resolution of the level-set function and the pressure, in and near the ghost cell(s), mass and
momentum are expected to be accurately conserved though (not exactly). In Figure 13a we give the

time evolution of the relative mass errorM(t) � ma(t)�ma(0)
ma(0)

, where ma(t) is the total mass of air in

the shut o� tube at time t. The mass error appears to be composed of two components: one oscillating
and the other behaving linearly in time. Both obey the numerical method's order of accuracy, which
is O (�t;�x) here. To show the latter, in Figure 13b the time evolution of the relative mass error
is given for a grid and time step twice as �ne as those corresponding with Figure 13a. Both the
oscillation's amplitude and the linear behavior's slope appear to been halved approximately. Due to
the still relatively coarse resolution of the water column (8 and 16 cells, respectively), the mass error
for water (not given) does not yet show asymptotic �rst-order convergence behavior.

5. Conclusions

To avoid large solution errors near interfaces (an intrinsic problem of capturing methods), four �xes
have been proposed, three consisting of some locally non-conservative solution update and as the fourth



16

a ghost-uid �x. For density ratios of the order 1000 (typical water-air ratio) the non-conservative
�xes fail, in the analyses as well as in the numerical experiments. As opposed to that, the ghost-
uid technique works. Even the computation of fronts running into vacuum (�w

�a
= 1) is expected

to be possible with the ghost-uid method. (Since in the ghost-uid method only single-uid uxes
are computed, it does not need a two-uid Godunov approach.) The �rst numerical computations
performed with the discretization method are promising. Extensions to higher dimensions, higher
accuracy, ows with gravity, etc. are challenging. The test case performed with the oscillating water
column suggests that the method may lend itself particularly well for applications as, e.g., the impact
of storm surges on ships and o�- and onshore constructions. Compressibility plays an important role
in these problems.
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