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The purpose of this note is to 'announce' some of the results of [5], (6], 

(7] pertaining to formal groups and complex cobordism. These should have been 

written up a number of years ago. The phrase "formal group" is used as an ab­

breviation for commutative one-dimensional formal group (law). 

1. Introduction. Below we give an explicit recursion formula for the loga­

rithm of a universal commutative formal group and a p-typically universal com­

mutative formal group. These give us a universal formal group Fu defined over 

Z[U] = Z[U2 , U3 , U4 , ... ] and a p-typically universal formal group Fr over 

Z[T1, T2 , •.. ]. Possibly the best way to look at these formal groups is as 

follows. To fix ideas let p be a fixed prime number and let A be a commutative 

ring with unit such that every prime number =I=- p is invertible in A. Let FT be 

the one-dimensional p-typically universal formal group and G a one-dimensional 

formal group over A. Cartier (4] associates to G a module of curves C(G) over 

a certain ring Cart/A). The ring Cart/A) has as its elements expressions 

~ Vi [aii] fi, aii EA, which are added and multiplied according to certain rules, 

cf. (4] and (9]; V stands for the 'Verschiebung' associated to the prime number 

p and f stands for the 'Frobenius' associated to the prime number p. The left 

modules Cover Cart/A) which arise as modules of curves of some one-dimen­

sional commutative formal group are of the form 

Now let Ft be the formal group over A obtained by substituting ti for T;, Then 

C(Ft) = C. 

2. The formulae. Choose a prime number p and let 

(2.1) 
" it i1+···+is-1 l (T) = L-, T• TP · · · TP fps n 'I 12 1s 

where the sum is over all sequences (i1 , i2 , .•. , is), ii EN= { 1, 2, 3, ... } 

such that i1 + · · · + is = n. 
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(2.2) 
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Further, let 

an(U) = L k(q 1, ... , qs, d) ... k(qs, d) 
P1P2 ... Ps 

where we take Ud = l if d = l; the sum is over all sequences (q 1 , ... , qs, d) 

with qi= P?, pi a prime number, r; EN and d = ] or d > l and not a power , 
of a prime number; the integers k(q 1 , ... , qs, d) can be chosen arbitrarily sub-

ject to the following congruences: 

(2.3) 
P 1 * P2 , qi+ 1 not a power of p2 , 

a power of p 1 . 

We now define 

where we take !0 (T) = 1 and a 1 (U) = I. 

One has the following recursion formula for the Ti in terms of the li 

(2.5) pln(T) = 111-t(T)Tf-1 + ln-2(T)Tf-2 + ... + l1(T)T~-1 + Tn. 

The situation for the a; and U; is slightly more complicated. We have 

= (i) 

(2.6) v(n)a11 (U) = U11 + L (-1Y+ 1 Lp(n, d 1)ad(U)[f/i/f~~~1 · · · lfd~r··d 2 
i= I 

if we choose the k(q 1 , ... , qs, d) in a certain special way (cf. [5, part II]). 

Here L(i) is the sum over all sequences (d, d;, di-I, ... , d 1 ) such that d, di, 

... , d 1 EN, d 1 =I= l, s, di> I and not a power of a prime number for j = 2, 

... , i and dd; · · · d 1 = s. (Note that there are contributions with d = l in 

z:U) if i;;, 2 but no contributions with d = l in ~(I).) The numbers u(n) and 

p(n, d 1 ) which occur in (2.6) are obtained as follows. For every pair of prime 

numbers let c(p, p') be an integer such that c(p, p) = I, c(p, p') = 1 mod p 

and c(p, p') = 0 mod p' if p =I= p'. Now for all (s, d) such that dis we define: 

r(s, d) = l if d = l or d > l and not a power of a prime number, r(s, pr) = 
TTc(p', p) where the product is over the set prime numbers p' which divides. 

We define v(n) = 1 if n = l or n > I and not a power of a prime number and 

v(pr) = p if r EN. p(s, d) is now defined as v(s)v(dr 1r(s, d). 
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3. Universality theorems. We define 

[September 

wherefu 1 andfi 1 are the inverse power series tofu andfy; i.e.fu 1 Cfu(X)) = 
X and similarly for fr· One now has 

3 .2. THEOREM. F y(X, Y) is a formal power series with coefficients in 

Z [T1 , T2 , ... ] . F u(X. Y) is a fonnal power series with coefficients in 

Z[U2,U3,·· .]. 

The two power series hence define commutative formal groups over Z [T] 

and Z[U]. 

3.3. THEOREM. Fu is a universal f annal group. FT is a p-typically uni­

versal formal group. 

I.e. if G(X, Y) is any formal group (resp. p-typical formal group) over a 

commutative ring with unit A, then there is a unique homomorphism ¢: Z [ U] 
-+ A (resp. ¢: Z[T] -+ A) such that G(X, Y) is equal to the formal group ob­

tained from Fu (resp. Fr) by applying¢ to its coefficients. 

There are more dimensional analogues for the Fu and FT and correspond­

ing more dimensional analogues of Theorems 3.2 and 3.3. Cf. [5]. 

4. Application to complex cobordism and Brown-Peterson cohomology. 

Let MU denote the unitary (co)bordism spectrum and BP the Brown-Peterson 

spectrum. The associated cohomology theories are complex oriented and hence 

define groups over MU(pt) and BP(pt). The logarithms of these formal groups 

are by [11], [12], cf. also [1, part II], equal to 

log µMu(X) = L mnxn+ 1, 

(4.1) 

with mn = (n + 1)-1 [CPn], where cpn is the complex projective space of (com­

plex) dimension n, and m0 = l. By [12], cf. also [1], we have that the formal 

group µMu is universal and that µBP is p-typically universal. 

Hence there are uniquely determined isomorphisms ¢: Z [U] - MU(pt) 
and'¥: Z[T] -+ BP(pt) taking (2.2) and (2.1) into (4.1). It follows that the 

¢(U2 ), ¢(U3), •.• are a free polynomial basis for MU(pt) and that the \Jl(T1 ), 

w(T2 ), .•. are a free polynomial basis for BP(pt). Knowing log µMu and 

log µ8 p we can calculate these ip(Un) and '¥(Tn) by means of formulae (2.6) 

and (2.5). We find BP(pt):::,,. z(p) [vi, V2, ... ], MU(pt) = Z [u2, U3, ... ] 

with the v,. and u, related to the m; by the formulae: 

n-1 .. vn-2 
(4.2) pmpn-1 = mpn-I-1 v{ + mpn-2-1 u-2 + ... + mp-1 V~-1 + vn, 
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BP is a direct summand of MUZ(P)' where Z(p) denotes the integers localized at 

p. Because formula (4.3) reduces to (4.2) if n = ps under the identification vi = 

upi' we see that the vi are integral i.e. they live in MU(pt) not just in MUZ(P )(pt). 

Cf. also [2]. 
ACKNOWLEDGEMENT. Liulevicius [10] was the first to write down a for­
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