B. Mond

Complex Space," paper presented at the Sixth Annual Convention of the Operational Research Society of India, New Delhi, November 10-12, 1973.

- O. P. JAIN AND P. C. SAXENA, "A Duality Theorem for a Special Class of Programming Problems in Complex Space," J. Optim. Theory Appl. 16, 207-230 (1975).
- B. MOND, "On a Duality Theorem for a Nonlinear Programming Problem," Opns. Res. 21, 369-370 (1973).
- 5. B. MOND AND M. SCHECHTER, "On a Constraint Qualification in a Nondifferentiable Programming Problem," Naval Res. Log. Quart. 23, 611-613, (1976).
- 6. M. SCHECHTER, "Symmetric Duality via Conjugate Duality," Zeitschrift fuer Angewandte Mathematik und Mechanik (to appear).

Some Examples Concerning Linear Continuity of Solutions to Programming Problems

MICHIEL HAZEWINKEL

Erasmus University, Rotterdam, The Netherlands

(Received original November 1974; final, December 1976)

In this note we construct some counterexamples concerning upper semicontinuity and linear upper and lower semicontinuity of the solution sets and ϵ -solution sets of nonlinear programming programs: max f(x), subject to $g(x) \leq b$. These examples answer some of the questions in a recent paper by Stern and Topkis.

WE CONSIDER the programming problem max f(x), $g(x) \leq b$, where f is a function $\mathbb{R}^n \to \mathbb{R}$, g a function $\mathbb{R}^n \to \mathbb{R}^m$, and b an m-vector. Here $g(x) \leq b$ means $g_j(x) \leq b_j$ for all $j = 1, \dots, m$. We define $S_b = \{x \in \mathbb{R}^n | g(x) \leq b\}$ and for all $\epsilon \geq 0$ we define the ϵ -solution set

ł

 $S_{b,\epsilon}^* = \{x \in \mathfrak{R}^n | x \in S_b \text{ and } f(x) \ge -\epsilon + \max_{z \in S_b} f(z)\}.$

We are interested in upper and lower semicontinuity and linear upper and lower semicontinuity of $S_{b,\epsilon}^*$ as b varies. For a definition of these notions see [2]. We will construct some examples that answer some of the questions asked in [2].

1. EXAMPLES

Example 1. In this example g_j is linear for all j, -f is a convex differentiable function, S_b is compact, but $S_{b,0}^*$ is not lower semicontinuous.

Technical Notes

Let f be the function defined by $f(x_1, x_2) = x_2^2/x_1$ on the open halfspace of \mathfrak{R}^2 where $x_1 < 0$. The function -f is convex on $\{x \in \mathfrak{R}^2 | x_1 < 0\}$.

ŧ

ł

Now define $g_1(x_1, x_2) = x_1, g_2(x_1, x_2) = -x_1, g_3(x_1, x_2) = x_2, g_4(x_1, x_2) = -x_2.$ Let b(0) be the vector $(-\frac{1}{2}, 1, 0, 1)$ and $b(\delta)$ the vector $(-\frac{1}{2}, 1, -\delta, 1)$. Then $S_{b(\delta)} = \{(x_1, x_2) | -1 \le x_1 \le -\frac{1}{2}, -1 \le x_2 \le -\delta\}$ and the solution sets $S_{b(\delta),0}^*$ of the problem max $f(x), g(x) \le b(\delta)$ are $S_{b(0),0}^* = \{(x_1, x_2) | x_2 = 0, -1 \le x_1 \le -\frac{1}{2}\}$ and $S_{b(\delta),0}^* = \{(-1, -\delta)\}$ for all $\delta > 0$. Therefore, $S_{b,0}^*$ is not lower semicontinuous with respect to b in b(0).

Example 2. In this example g_j is linear for all j, -f is a convex differentiable function, S_b is compact, but $S_{b,0}^*$ is not linearly upper semicontinuous. Let $D \subset \mathbb{R}^2$ be the region $x_1^2 + x_2^2 \leq 1$. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x) = -(d(x))^2$, where d(x) is the distance of $x = (x_1, x_2)$ to D. A formula for f(x) is $f(x) = -(\max\{0, (x_1^2 + x_2^2)^{1/2} - 1\})^2$. The function f is continuously differentiable. Further, -f is a convex function. Now define $g_1(x) = x_2, g_2(x) = x_1, g_3(x) = -x_2, g_4(x) = -x_1$. Let b(0) be the vector (2, 1, -1, 1) and $b(\delta) = (2, 1, -1 + \delta, 1), \delta > 0$. Then we have $S_{b(0),0}^* = \{(0, 1)\}$ and $S_{b(\delta),0}^* = \{(x_1, x_2) | x_1^2 + x_2^2 \leq 1, x_2 \geq 1 - \delta\}$. The point $B = ((2\delta - \delta^2)^{1/2}, 1 - \delta)$ is in $S_{b(\delta),0}^*$ and has distance $\geq (2\delta - \delta^2)^{1/2}$

The point $B = ((2\delta - \delta^2)^{1/2}, 1 - \delta)$ is in $S_{b(\delta),0}^*$ and has distance $\geq (2\delta - \delta^2)^{1/2}$ to A = (0, 1). It follows that $S_{b,0}$ is not linearly upper semicontinuous in b at b(0).

Example 3. In this example -f is a convex differentiable function, S_b is compact and uniformly linearly continuous. For every ϵ with $0 \leq \epsilon \leq \frac{1}{16}$ there is a $b(\epsilon, 0)$ such that $S_{b,\epsilon}^*$ is not linearly upper semicontinuous in b at $b(\epsilon, 0)$.

The function f in this example is the same as the function f in example 2 above. There are five restriction functions:

$$g_{1}(x) = \begin{cases} -(\frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{8}) + \frac{1}{4}(\frac{1}{4} - 4(x_{1} - x_{2})(x_{1} - x_{2} + \frac{1}{2}))^{1/2} \\ \text{if } x_{1} - x_{2} \leq 0 \text{ and } x_{2} - x_{1} \leq \frac{1}{2} \\ -x_{1} \text{ if } x_{1} - x_{2} \geq 0 \\ -x_{2} + \frac{1}{4} \text{ if } x_{2} - x_{1} \geq \frac{1}{2}, \end{cases}$$

 $g_2(x) = x_1, g_3(x) = -x_2, g_4(x) = x_2$, and $g_5(x) = -x_1$.

The functions g_j are all continuously differentiable. The level curves of g_1 are straight lines joined by a quarter circle of radius $\frac{1}{4}$ (see Figure 1). Choose $0 \le \epsilon \le \frac{1}{16}$. Let $b(\epsilon, 0)$ be the vector $\left(-\frac{3}{4}-\epsilon^{1/2}, \frac{9}{4}, \frac{3}{2}, \frac{9}{4}, \frac{3}{2}\right)$ and $b(\epsilon, \delta) = \left(-\frac{3}{4}-\epsilon^{1/2}+\delta, \frac{9}{4}, \frac{3}{2}, \frac{9}{4}, \frac{3}{2}\right)$. We then have for $\delta \ge 0$ sufficiently small $S^*_{\delta(\epsilon,\delta),\epsilon} = \{(x_1, x_2) | x_1^2 + x_2^2 \le 1 + \epsilon, x_1 \ge \frac{3}{4} + \epsilon^{1/2} - \delta\} \cup \{(x_1, x_2) | x_1^2 + x_2^2 \le 1 + \epsilon, x_2 \ge 1 + \epsilon^{1/2} - \delta\}$. In Figure 1 the case $\epsilon = \frac{1}{16}, \delta = \frac{1}{10}$ is shown. $S^*_{\delta(\epsilon,0),\epsilon}$ consists of the cross-hatched area and the point A and $S^*_{\delta(\epsilon,\delta),\epsilon}$ is the union of the cross-hatched and shaded areas.

It now follows as in example 2 that $S_{b,\epsilon}^*$ is not linearly upper semicontinuous in b at $b(\epsilon, 0)$.

716

Michiel Hazewinkel

2. REMARKS

Example 4.1. If one changes the function f of example 3 to $\tilde{f}(x) = -(e(x))^2$, where e(x) is the distance of x to the region $\{(x_1, x_2) | x_2 \le -x_1^2 + 1\}$, one can construct an example similar to example 3 such that for every $\epsilon \ge 0$ there is a $b(\epsilon)$ such that $S_{b,\epsilon}^*$ is not linearly upper semicontinuous in b at $b(\epsilon, 0)$.

Example 4.2. By repeating infinitely often the trick by which the function g_1 of example 3 was constructed, one can construct an example with the following properties: 1) -f is a convex differentiable function; 2) g_1 is a continuous differentiable function; 3) g_2, \dots, g_5 are linear functions; 4) S_b is uniformly linearly continuous for b in a suitable hypercube B; and 5) for every b(0) in the 4-dimensional subcube of B where $b_1 = -1$ there is an infinite sequence $\{\epsilon(n)\}_n, \epsilon(n) > 0$ such that $S_{b,\epsilon(n)}^*$ is not linearly upper semicontinuous in b at b(0) for all $n \in \mathfrak{N}$. Moreover, $\lim_{n\to\infty} \epsilon(n) = 0$ and $S_{b,0}^*$ is not linearly upper semicontinuous in b at b(0). **Technical Notes**

In this example f, g_2, \dots, g_5 are as in example 3. The function g_1 is constructed as follows. We first define the level curve $g_1(x) = -1$. Draw rays l_n from the origin in \mathbb{R}^2 at an angle of $2^{-n-1}\pi$ with the positive X_1 -axis. Let A_n be the point on l_n at distance $1+a_n$ from the origin. In the points A_n

ł

Figure 2

draw lines m_n perpendicular to l_n . If one takes, e.g., $a_n = 4^{-n-1}\pi^2/2$, then the intersection point of m_n and m_{n+1} is in the angle formed by l_n and l_{n+1} . Now join suitable segments of the m_n by "smoothing the corners in the intersection points." This can be done by means of circle arcs of radius l_8 . The resulting curve C is differentiable and has the property that it is a straight line near every intersection point $C \cap l_n = A_n, n \in \mathfrak{N}$.

Michiel Hazewinkel

Let $E \subset \mathbb{R}^2$ be the region

ţ

 $E = \{x \in \mathbb{R}^2 | x_1 \ge \frac{1}{4}\} \cup \{x \in \mathbb{R}^2 | x_2 \ge \frac{1}{4}\} \cup \{x \in \mathbb{R}^2 | x_1 \ge 0, \quad x_2 \ge 0, \quad ||x|| \ge \frac{1}{4}\}.$

The boundary of E is the dashed line in Figure 2. For each $x \in E$ let l_x be the ray from the origin passing through x, B_x be the intersection point $l_x \cap C$, and r_x be the distance of B_x to the origin. We now define $g_1(x) = -||x||r_x^{-1}$. This defines a differentiable function $g_1: E \to \mathbb{R}$, which by the familiar tools of differential topology can be extended to a suitable, continuously differentiable function $g_1: \mathbb{R}^2 \to \mathbb{R}$, such that $g_1(x) \ge -\frac{1}{2}$ for all $x \in \mathbb{R}^2 \setminus E$ (see [1]).

A suitable hypercube such that property 4 holds is, e.g., defined by the inequalities $-\frac{3}{4} \ge b_1 \ge -2$, $3 \le b_2 \le 4$, $3 \le b_3 \le 4$, $4 \le b_4 \le 5$, $2 \le b_5 \le 3$. In the example as described (see Figure 2) property 5 holds for all b(0) in this cube for which $b_1 = -1$. For example, $S_{b,0}^*$ grows nonlinearly at $b = (-1, b_2, b_3, b_4, b_5)$ as b_1 becomes greater than -1. Nonlinear growth in the S_{b,ϵ_n}^* for $\epsilon_n = a_n^2$ at $b = (-1, b_2, b_3, b_4, b_5)$ as b_1 becomes greater than -1 is caused by the straight-line sections in the curve $g_1(x) = -1$ at the points A_n .

The functions f and g_1 of examples 2, 3, and 4.2 are continuously differentiable but not twice continuously differentiable. There are similar examples with f and g_1 of class C^{∞} , i.e., n times continuously differentiable for all n. This is done by smoothing the functions g_1 suitably, using techniques as in [1]. To obtain suitable functions f one needs only a C^{∞} function h of one variable r that is convex, ≥ 0 everywhere and such that h(r) = 0 $\Leftrightarrow 0 \leq r \leq 1$. Such functions h exist, e.g., $h(r) = (r-1)^6 \exp(-(r-1)^{-2})$ if $r \geq 1$, h(r) = 0 if $0 \leq r \leq 1$.

REFERENCES

- 1. J. MUNKRES, Elementary Differential Topology, Princeton University Press, Princeton, N. J., 1963.
- M. H. STERN AND D. M. TOPKIS, "Rates of Stability in Nonlinear Programming," Opns. Res. 24, 462-476 (1976).