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I. INTRODUCTION 

Let K be a local field with finite residue field. For the purposes of 
paper, "local class field theory" consists of the (more or less) exp 
description of the maximal abelian extension Kab of K, of the calcula 
of the galois group Gal(K11h1K); i.e., the proof that Gal(Ka1,/K) ~ 
the completion of K* with respect to the topology given by the c 
subgroups of finite index in K*, and finally of a description of 
isomorphism K* ~ Gal(K,,0 / K). Local class field theory in this p, 
does not include, e.g., a calculation of the Brauer group Br(K). 

It is the aim of this paper, which is partly expository in nature, to s 
that local class field theory in this sense can be treated briefly and witl 
using any of the involved (but powerful) machinery that one "usua 
finds in this connection. In particular we need nothing at all (not t 

in a concealed way) of the cohomology of groups. All the facts we ass1 
known are collected in Section 2. A large part of this paper (Sections : 
6, and most of 7) is closely related to the authors 1969 Amsterdam th, 

The remaining part of this introduction consists of an outline of 
structure of the theory. 

First let K be a local field with algebraically closed residue field, 
IetL/K be an abelian (necessarily totally ramified) extension of K. T 
one forms the following sequence. 

where U(L) and U(K) are the units of Land K, respectively; V(L/} 
the subgroup of U(L) generated by the elements of the form s(u) 

* Part of the work for this paper was done while the author enjoyed a Fullbright-: 
traveling grant (February/March, 1973). 
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u E U(L), s E Gal(L/K); the homomorphism i associates the class of 
s(7TL)(7TL)-1 to s E Gal(L/K), where 1TL is a uniformizing element of L; 
and N is induced by the norm map NL/K. 

The first main result on which the theory rests is 

THEOREM 1.2. The sequence (1.1) is exact. 

The proof of this theorem (cf. Section 4) presented here, is completely 
new. The old proof in [4] still used some cohomology of groups theory. 

Next, let K be a local field with finite residue field and L/ K an abelian 
extension of K. Taking maximal unramified extensions and completing 
them we obtain an abelian extension of local fields with algebraically 
closed residue fields Lnrf Knr with galois group Gal(Lnrf.Knr) canonically 
isomorphic to Gal(L/K)ram, the ramification subgroup of Gal(L/K). We 
can now form the diagram with exact rows. 

0-+ Gal(L/K)ram-+ U(L .. r)/V(Lnrf k,.r)-+ U(knr)-+ 0 

!F-1 !F-1 !F-1 
0-+ Gal(L/K)ram-+ U(Lnr)/V(Lnrfk .. r)-+ U(knr)-+ 0 

where F is a lift of the Frobenius automorphism FE Gal(k8/ k), k8 the 
algebraic closure of k. Because ker(F - 1: U(.Knr) -+ U(.Knr)) = U(K) 
and the induced map F - 1: Gal(K/K)ram-+ Gal(L/K)ram is the zero 
map, we obtain by means of the snake lemma a homomorphism 

<f,(L/K): U(K)-+ Gal(L/K)ram . 

The same kind of morphism occurs in [6]. This homomorphism turns 
out to be surjective and its kernel is NuKU(L). It is also functorial in L. 
These homomorphisms then look remarkably like part of the "reciprocity 
homomorphisms" r(L/K): K*-+ Gal(L/K), which we are trying to 
construct. 

The next step is to construct a number of abelian totally ramified 
extensions Lm/K which have maximally small norm groups. These are 
the Lubin-Tate extensions first constructed in [7]. In case K = QP 
they are the extensions generated by the prth roots of unity. 

They are obtained as follows. Choose a uniformizing element 1Tx of K. 
Letf(X) be a polynomial of the form 
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where ai E A(K), the integers of K, and q is the number of elements of k, 
the residue field of K. LetJ<m>(X) be inductively defined asJ<m>(X) = 
J(J<m-1>(X)) and let -\i be a root ofj'ml(X) that is not a root ofJ<m-1>(X). 
One defines Lm = K('Am)- One now proves the following. 

THEOREM 1.3. (i) 

NLm!K(U(Lm)) C Um(K) = {u E U(K) I U = I mod 7TKm}. 

(ii) Lm/ K is an abelian totally ramified extension of degree (q - 1 )qm-1 • 

The "almost reciprocity homomorphism" then gives NL 1x(U(L111)) = 
Um(K), and using this (and the fact that Gal(Knr/K) = Z i; topologically 
free) the almost reciprocity homomorphism yields that Gal(Kab/K) ~ 
U(K) X Z and that Kab = L"' · Knr , where L"' = U Lm . It remains to 
"extend" the almost reciprocity homomorphism 

cf>: U(K)-+ Gal(Kab/K)ram 

to a reciprocity homomorphism r: K*-+ Gal(Kub/K) such that the kernel 
of r: K*-+ Gal(Kab/K)-+ Gal(L/K) is precisely NLJK(L*) for abelian 
extensions L/K. It turns out that the map u i-+ <fi(u-1) can indeed be 
extended in this way. 

Finally we give the "explicit" description of r: K*-+ Gal(Kab/K), due 
to Lubin and Tate. This final part of Section 7 is based on [7]. 

Over the years I have had many valuable conversations with various 
people about local class field theory. It remains for me to thank them, 
especially Dr. A. Menalda (to whom I owe a main part of the idea of the 
proof of Theorem l.3(ii), Prof. J. Neukirch (who challenged me to 
get rid of all cohomological considerations), Prof. F. Oort, and the many 
people who urged me to write this. 

2. PRECIS OF NOTATIONS, CONVENTIONS AND RESULTS ASSUMED KNOWN 

In this section we have collected the results without proofs that 
will be used in the following. They can all be found in a standard text 
like [8, Parts I, II; 9]. 

2.1. Notations (!or Local Fields) 

A local field K is a field K with a (normalized exponential) valuation 
Vx: K* -+ Z on it. We define: 
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A(K) = {x EK I vx(x) ~ O}, the ring of integers of K. 

U(K) = {x EK I vx(x) = O}, the units of K. 
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1Tx , a uniformizing element of K; i.e., an element of K such that 
vx(1Tx) = 1. 

9J1(K) = {xEKI vK(x) > O} = 'TTKA(K),themaximalidealofA(K). 

um(K) = {x E U(K) I x = 1 mod(7Txm)}. 

k = A(K)/W'l(K), the residue field of K. We shall always assume 
that k is perfect. 

K* = K\{0}, the invertible elements of K. 

Finally# S denotes the number of elements of a set S. 

2.2. Extensions of Local Fields 

Let LiK be a finite galois extension. The galois group is denoted 
Gal(L/K). This is a solvable group if the residue field is finite or alge
braically closed ( cf. [8, chap. IV, Sect. 2]). (If L/ K is not galois one 
denotes with I'(K, L-. Q) the various isomorphisms of L into a (large 
enough) algebraically closed field Q). Let KL be the maximal unramified 
subextension of L/K. The subgroup Gal(L, KL) is denoted Gal(L/K)ram 
and is called the ramification subgroup of Gal(L/K). Gal(L/K)ram is 
a normal subgroup of Gal(L/K). If M/K is a galois extension containing 
L/K then the natural map Gal(M/K)-. Gal(L/K) maps Gal(M/K)ram 
into Gal(L/ K)ram . 

Let Knr be a maximal unramified extension of K. The completion 
Knr, is a local field with as residue field k,i , an algebraic closure of k. 
We now choose once and for all an algebraically closed extension Q of 
Knr and all extensions of K are supposed to be contained in Q. If k is 
finite, then Gal( Kn,/ K) = Z ( the completion of Z with respect to the 
topology of subgroups of finite index) and we use F to denote the 
Frobenius automorphism in Gal (k8/k), to denote its canonical lift in 
Gal(Knr/ K) and its extension to a K-automorphism of Kn,. 

Kab denotes the maximal abelian extension of K. If k is finite 
Knr C Kab · 

If L/ K is finite galois, then Lnrl Knr is a galois extension with its galois 
group Gal(Lnrl Knr) canonically isomorphic to Gal(L/ K)ram [ restrict 
s E Gal(Ln,/ Knr) to L]. 
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2.3. Two Results on Norm Maps 

(i) Let K be a local field with algebraically closed residue field, and 
L/ K a finite extension of K. Then 

and 

are surjective ( cf. [8, Chap. V]). 
(ii) Let K be a local field with finite residue field and L/ K an 

unramified galois extension. Then NL/K: U(L)--►- U(K) is surjective 
( cf. [8, Chap. V, Sect. 2]). 

3. THE DECOMPOSITION THEOREM 

Let K be a local field (in the sense of Section 2). We fix some alge
braically closed field Q containing Knr . All composite fields are supposed 
to be taken in this large field. 

THEOREM 3.1. Let LJK be a finite galois extension, where K is a local 
field with finite residue field. Then there is a totally ramified extension 
L'/K such that L~r = L' · Knr = L · Knr = Lnr. If Gal(L/K)ram C 
Z Gal(L/K) we can take L' /K to be an (abelian) galois extension. (Here ZG 
denotes the center of the group G.) 

Proof. Let KL be the maximal unramified subextension of L/K. 
The galois group Gal(KdK) is cyclic withF(Frobenius) as a 

L 

K--KL 

generator. Let F' be any lift in Gal(L/K) of F. Let r be the order of F'. 
Let Kr be the unramified extension of degree r of K. Then KL C Kr. Define 
F" E Gal(L · Kr/K) by means of the conditions F" / Kr = Frobenius E 

Gal(Kr/K) and F" / L = F' E Gal(L/K). Then F" is well defined. Let 
L' be the invariant field of F". Then L'/K is totally ramified and 
L' . Kr = L . Kr. 

Finally, if Gal(L/K)ram CZ Gal(L/K), then 

G(L · Kr/K)ram CZ Gal(L · Kr/K) 
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which implies that the subgroup of Gal(L · Kr/ K) generated by F" is 
normal, so that L' is galois over K. 

Remark 3.2. Theorem (3.1) is also true for local fields K with 
perfect (but not necessarily finite) residue fields ( cf. [ 4, 2.8; or, 5, no. 2]). 
The proof is different in those cases. 

COROLLARY 3.3. Let Kab be the maximal abelian extension of K. Then 
Kab = Knr · L where L/K is a maximal totally ramified abelian extension 
ofK. 

Proof. Use infinite galois theory and the fact that Gal(Knr/K) ~ Z 
is topologically free. 

COROLLARY 3.4. Gal(Kab/K)ram = Jim Gal(L/K)ram whereL/K runs 
over all finite abelian extensions and the maps Gal(L/K)ram-. Gal(M/K)ram 
are induced by the natural projections Gal(L/K)-. Gal(M/K) if MC L; 
Gal(Kab/K) ~ Gal(Kab/K)ram X Z. 

4. LOCAL FIELDS WITH ALGEBRAICALL y CLOSED RESIDUE FIELD 

In this section K is a local field with algebraically closed residue field. 

4.1. Let L/K be a finite abelian galois extension (necessarily totally 
ramified). We consider the following sequence of abelian groups 

i U(L) XLJK 
0 - Gal (L/K) - V(L/K) ----+- U(K)--+- 0 (4.1.1) 

where U(L) is the group of units of L; U(K) is the group of units of K; 
V(L/K) is the subgroup of U(L) generated by the elements of the form 
su/u, u E U(L), s E Gal(L/K); NL/K is induced by the norm map U(L) _. 
U(K)(it is clear that NL!K(V(L/K)) = {I}); and i is defined as i(s) = class 
of S7TLJ"rrL (this does not depend on the choice of 7TL)-

LEMMA 4.2. The map i is a homomorphism of groups. 

Proof. 
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because t(1rL) is another uniformizing element of L; 1.e., t(1rL) = U7rL 
for a certain u E U(L ). 

THEOREM 4.3 ON THE FUNDAMENTAL EXACT SEQUENCE. Let L/K he 
a finite ahelian extension of the local field K ( with algebraically closed 
residue field). Then sequence ( 4.1.1) 

; U(L) 
0 -->- Gal (L/K) - V(L/K) -->- U(K) - 0 

is exact. This sequence will be called the fundamental exact sequence. 

The proof of Theorem (4.3) is divided into several steps. We first 
prove the injectivity of i. To do this we use the following elementary 
lemma on abelian groups. 

LEMMA 4.4. Let G be a finite abelian group and g E G an element of G. 
Then there exists a subgroup H of G such that the following conditions are 
fulfilled 

(i) G/H is cyclic. 

(ii) If r: G .- G/H is the canonical map, then ord(g) = ord(r(g)) 
where ord( ) denotes the order of a group element. 

Proof. Let G = E8 GP be the decomposition of G into its Sylow 
subgroups, and let g = (g1,)p under this decomposition. We write G1, 

as a direct sum of cyclic groups 

For n E Z, let vp(n) denote the number of factors p in n; 1.e., 
n = pvv(nJ • m with (p, m) = 1 and let 

wv(g,,) = max{in - v,,(g,,(n))} 
n 

Then 
ord(g 7,) = pw,,(g,,) 

Now choose an index b such that wp(gp) = ib - 7.,•JJ(gp(b)). And let 

z 
HJ)= EB_( ___ -) CG,,, 

i,.,-b p'n 
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Then if rP: GP->- Gp/Hp is the canonical map, ord(gv) = ord(rp(gp)) 
and consequently ord(g) = ord(r(g)). 

4.5. Proof of the injecti·vity of i. Gal(L/K)->- U(L)/V(L/K) 

Let 1 =I=- g E G = Gal(L/K); and let H be a subgroup of G such that 
the two assertions of (4.4) hold. Let g be the image of gin GjH, then 
g =I=- I; let J be a generator of G; H and let f be any lift in G of j; then if 
g =Jr 

for a certain h E H. 

Suppose that i(g) E V(L;K). Then we have [using (4.2)] 

j(Tr~') . h(Trid_ = TI Jihlu;5) 
7T L 7T L i ,j U;; 

(4.5.1) 

where i = I, 2, ... , ord(j); and hj runs through the elements of H; and 
uii E U(L). 

Now because 

jih(u) 
p-1h(u) 

we can rewrite (4.5.1) as 

p-1h(u) 
Ji-2h(u) 

j(7TL') . h(7TL) cc_ f(w) . TI h(u11) 
7TLr TTL W /!EH U1, 

j2h(u) . fh(u) . h(u) 
Jh(u) h(u) u ( 4·5·2) 

w E U(L), ll1i E U(L) (4.5.3) 

Let M be the invariant field of the subgroup Hof G. Taking NL/M on 
both sides of equation (4.5.3) we obtain 

( 4.5.4) 

where TrM = NL/M(TrL) and w = NL/M(w). Because M/K is cyclic, 
Eq. (4.5.4) implies that TrMrw-1 EK, which is impossible because M/K is 
totally ramified and r < ord(f ) = [ M : K], as g =I=- I. 

The second step of the proof of Theorem ( 4.3) consists of the proof 
of the exactness of the fundamental sequence in the case that L/K is a 
cyclic extension. To do this we need the "classical" version of "Hilbert 
90" (cf. [3, Sect. 13, Satz 114]). 

We repeat the proof for completeness sake. 
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LEMMA 4.8. Let L/ K be a finite galois extension, and M a galois sub
extension of L. Then the induced map 

is surjective. 

Proof. Let H be the subgroup of G = Gal(L/K) corresponding to M. 
It suffices to show that g(u)/u E Im NL/M for g E G/H and u E U(M). 
Because NL/M: U(L)--+ U(M) is surjective there is an v E U(L) such that 
NLtM(v) = u. Letg E G be any lift of g. Then 

N LIM ( g(v) ) = TI hg(v) = TT g(g-lhg)(v) = g(u) 
v 1teH h(v) TT h(v) u 

which proves the lemma. 

LEMMA 4.9. Let L/ K be a finite abelian extension, and Ma subextension 
of L such that L/ Mis cyclic. Then the following sequence is exact 

. U(L) N 

0 - Gal (L/M) ~ V(L/K) -->-
U(M) 

V(M/K) -o 
Proof. i is injective because Gal(L/M) is a subgroup of Gal(L/K) 

[cf. (4.5)] and N is surjective because N: U(L)--+ U(M) is surjective. 
Now consider the following commutative diagram 

0 - Gal(L/M) ~ U(L)/V(L/M)-N--+ U(M) --- 0 

I ! ! 
0 -- Gal(L/M) _!_~ U(L)/V(L/K) ~ U(M)/V(M/K) - 0 

where the two arrows in the middle and on the right are natural projec
tions. Let u E U(L) and suppose N(u) E V(M/K). Because of Lemma 4.8 
there is a v E V(L/K) such that N(v) = N(u), i.e., N(uv-1 ) = I. Using 
exactness of the top line (4.7) we obtain that uv-1 == s(1TL)/1TL mod V(L/M) 
for a certain s E Gal(L/M), which implies u = s(1rL) 1r-/ mod V(L/K). 
This proves the lemma. 

The final step in the proof of Theorem 4.3 is an induction argument. 

4.10. Proof of Theorem 4.3 

Let L/ K be an abelian extension and M/ K be a subextension such that 
L/M is cyclic. By induction we can assume that the fundamental sequence 
for M/ K is exact. Now consider the following diagram 
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LEMMA 4.6. ("Hilbert 90.") Let LJK be a cyclic galois extension and 
suppose that NLtx(x) = 1 for a certain x EL. Then there exists any EL 
such that x = sy/ y, wheres E Gal(L/K) is a generator of the galois group. 

Proof. Let a be any element of L. One forms 

y = a + s(a) x-1 + s2(a) · s(x-1) • x-1 + · ·· + s11- 1(a) · s11 - 2(x-1) ••• s(-"·-1) • x-1 

where n = ord(s). We then have 

s(y) = s(a) + s2(a) s(x-1) + · · · + s"-1(a) · sn-2(x-1) ••• s(x-1) 

+ sn(a) · s"-1(x-1) •· • s(.x--1). 

As s11(a) = a and s11 - 1(x-1) ••• s(x-1) x-1 = 1, it follows that 

s(y) .x--1 = y. 

If y were equal to zero for all a, then letting a run through a basis of L 
over K we would have a nontrivial solution (viz., (I, x-1, s(x-1) x-1 ··· 

s11 - 2(x-1) • •· s(x-1) x-1)) for an n x n system of linear equations with 
nonzero determinant. Therefore y =I= 0 for suitable a, which means that 
X = s(y)y-l. 

4.7. Proof of the Exactness of the Fundamental Exact Sequence in the 
Cyclic Case 

Let LJK be a cyclic extension. We consider 

. U(L) N ' 
0 - Gal (L/K) ~ V(L/K) ---+ u(K) -~ 0 (4.7.1) 

The injectivity of i has just been proven. The surjectivity of N is very 
well known [ cf. (2.3)]. It remains to prove that ker N = Im i. That 
No i is the zero map is obvious. Suppose then that N( u) = I. According 
to Lemma 4.6 there is any EL* such that u = s(y)y-1 , where s is a 
generator of Gal(L/K). Write y = 7TLrv. Then 

s(w r) s'(w ) 
u = --~- == __ L_ mod V(L/K) 

'TrL 'TrL 

which concludes the proof. 
The next step (the third) of the proof of Theorem 4.3 consists of two 

easy technical lemmata. 
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0 0 

t t 
Gal(L/M) Gal(L/M) 

t t 
o- Gal(L/K)- U(L)/V(L/K)--+ U(K)-O 

t t II 
0 - Gal(M/K)-+ U(M)(V(M/K) - U(K) - 0 

t 1 
0 0 

The second column is exact according to Lemma 4.9. The first column is 
exact and so is the third row (induction hypothesis). It follows that the 
second row is also exact. 

Remark 4.11. It is not difficult to extend Theorem 4.3 to cover the 
case of nonabelian (totally ramified) galois extensions. The fundamental 
exact sequence then becomes 

0-+ Gal(L/K)ab-+ U(L)/V(L/K)- U(K)- 0 (4.11.1) 

where Gab denotes the maximal abelian quotient of G. Indeed let M be 
the field corresponding to < G, G), the commutator subgroup of 
G = Gal(L/K). By induction on the number of elements of (G, G) 
we see that it suffices to prove the exactness of sequence ( 4.11.1) in the 
case that M'/K is a subgalois extension of LJK containing M such that 
L/M' is abelian and such that the fundamental sequence for M'/K is 
exact. We now have the following diagram. 

0 

t 
Gal(L/M') Gal(L/M') 

ts t 
Gal(L/K)ab ~ U(L)/V(L/K) .....!!___. U(K)- 0 

1~ ly II 
0 - Gal(M'/Klb - U(M')/V(M'/K) _!Y_. U(K) - 0 

1 
0 
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The map a is an isomorphism and f3 is the zero map because M' contains 
M, the field of invariants of (G, G). It follows that i is injective, as the 
bottom ro\V is exact by induction hypothesis. The second column 
is exact by an argument identical to the one used in ( 4.9), using 
Theorem 4.3 instead of ( 4.5). It follows that the second row is exact. 

5. "ALMOST" THE RECIPROCITY HOMOMORPHISM 

5.1. In this section K is a local field with finite residue field of q 
elements, and L/K is a finite (abelian) galois extension that is totally 
ramified. Let Knr and Lnr be the maximal unramified extensions of K 
and L and let 1( nr and Lnr be their completions. The extension Lnrl Knr is 
also (abelian) galois and totally ramified and the galois group Gal(Lnrl Knr) 
is naturally isomorphic with Gal(L/K) [cf. (2.2)]. 

The algebraic closure of the residue field k of K is denoted k8 ; it is the 
residue field of Knr and Knr . 

We use the symbol F for the Frobenius morphism of Gal(k8/k) for 
their canonical lifts in Gal(Knrl K) and Gal(Lnr!L) and also for their 
extensions to Knr and Lnr. We can now form the following diagram 
(cf. Section 4). 

(5.1.1) 

where F - 1 is the homomorphism which associates F(u) u-1 to 
u E U(K,,r); X, Y, C, Dare the appropriate kernels and cokernels. 

LEMMA 5.2. 

(i) F - I: U(.K,.r)-+ U(Knr) is surjective;F - 1: A(K11r)-+ A(Knr) 
is surjective. 

(ii) F - 1: V(Lnrf.Knr)--+ V(Lnrf.Knr) is surjective. 

(iii) ker(F - 1: U(Knr) --+ U(Knr)) = U(K). 
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Proof. (i) Use the filtration of U(K11,) by the subgroups Un(knr) of 
units congruent to I mod rrx11 , The induced homomorphisms 

F - I: U(Knr)/ U1(.Kn,) ~ks* -+ k/ ~ U(Kn,)/ U1(.Kn,) 

F - I: U"(K.,,,)/ un+l(Kn,) ~ k.,-+ ks'.::::'. un(_Kn,)/Un+I(Kn,-) 

are 
F - 1: ks*-+ ks*, 

F - I: ks -+ ks , 

which are surjective because ks is algebraically closed. The first part of (i) 
now follows by a well-known argument concerning homomorphisms 
of complete filtered abelian groups. For the second part of (i) use the 
filtration by the 7TxnA(Kn,) of A(Kn,)· The induced maps F - I: k8 -+ k8 

are (again) the maps x H- xq - x. 

(ii) Now let t(x) x-1 E V(L 11,/Knr)· It suffices to show that these 
elements are in Im(F - 1). Choose y E U(Ln,) such that (F - l)(y) = x. 
Then we have 

(F _ I) ( t(y) ) _ Ft(y) . ( t(y) )-1 ~ tF(y) . ( F(y) )-1 = tx 
y F(y) y t(y) y X 

becauseF and t commute asL/K is totally ramified. 

(iii) Let u E U(Kn,.), and F(u) = u. We write u = u 0 ' + rrKw1', 

with u0 E K.11 ,; F(u) = u yields Fu0 ' ,= u0 ' mod 7Tx. Hence we can 
write u = u0 + 7TKW1 with u0 E K; then Fu = u yields Fw1 = w1 . 

Now write w1 = 7T;1u1 , u1 E U(Kn,); this gives Fu1 = u1 ; repeating 
this process with u1 instead of u gives 

Continuing in this way we see that u E K mod rrKn for all n, and hence that 
u E U(K) because K is complete. 

5.3. DEFINITION OF cp(L/K): U(K)-+ Gal(L/K). Let L/K be totally 
ramified abelian. One forms the diagram (5.1.1). The rows of this diagram 
are exact by Theorem 4.3. Therefore, there is (by the snake lemma) an 
induced homomorphism g: Y-+ C as shown. According to Lemma 
5.2(iii), Y = U(K). Further, becauseL/K is totally ramified,F commutes 
with every t E Gal(L/K) so that F - I: Gal(L/K)-+ Gal(L/K) is the 
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zero map, which permits us to identify C with Gal(L/K). We therefore 
., obtain "the almost reciprocity homomorphism" 

• 

cf,(L/K): U(K)-,. Gal(L/K) 

for abelian totally ramified extensions L/ K. 

PROPOSITION 5.4. 

(i) cf,(L/K) is surjective. 

(ii) ker(cf,(L/K)) = NLJK(U(L)). 

Proof. (i) To prove (i) it suffices to show that D = 0 in diagram 5.1. I, 
which follows from the surjectivity of F - 1: U(lnr) -+ U(Lnr) 
[Lemma 5.2(i)]. 

(ii) It is clear that NLJK(U(L)) C a(X) (cf. diagram 5.1.1). Now let 
the element x EX be represented by x E U(Lnr)· Then 

(Fx) .'\'-1 E V(L,,r/lt.,,,.) 

(because x EX). According to Lemma 5.2(ii) there is a y E V(LnrfKnr) 
such that (Fy)y-1 = (Fx)x-1• Or, in other words, F(xy-1) = xy-1, which 
implies xy-1 E U(L) by Lemma 5.2(iii). And therefore NL1K(x) = 
NL1K(xy-1) E NLJK(U(L)), i.e., a(x) E NLJK(U(L)). This concludes the 
proof of the proposition. 

THEOREM 5.5. For every finite abelian totally ramified extension L/ K. 
we hai,e an isomorphism 

ef,(L/K): U(K)/NL;KU(L)-,. GaI(L/K) 

These isomorphisms are functorial in the sense that if L / K is totally ramified 
abelian extension and M/K a subextension of VK then the following 
diagram is commutative 

U(K)JNL;KU(L)-->- Gal(LJK) 

1 1 
U(K)/N M!KU(M) --- GaI(M/K) 

Proof. The first statement is Proposition 5.4 and the second statement 
follows from the functoriality of the connecting morphism g of the snake 
lemma. 

607/18/2-4 
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5.6. It is convenient to have a slight extension of Theorem 5.5 to the 
case of finite abelian (not necessarily totally ramified) extensions L/K. 
LetF' be any lift in GaI(Lnr,K) of the Frobenius morphism in Gal(k8/k); 
letL' be the invariant field of F'. ThenL' /K is abelian totally ramified and 
L~, = Ln, . Identifying Gal(L/K)ram and Gal(L' / K) in the canonical 
way we find a diagram: 

X---a __ ""* y 

0---+ Gal(L/K)ram - U(Lnr)/V(L.,,./Kn·r) - U(Km.) __,._ 0 

C-------..D 

This, as in Proposition 5.4, yields an isomorphism: 

U(K)/NL';K(U(L'))----,. Gal(L/K)ram = Gal(L'/K) 

But L' · Kn = L · K 11 for some finite unramified extension Kn/ K and 
L · Kn.IL and L' · Kn.1L are unramified extensions. Further 

NM';M(U(l\lI')) = U(i11) 

if M'/M is an unramified extension (2.3). Therefore NL'/K(U(L')) = 
NL!K(U(L)), which gives us an isomorphism 

cf>(L/K): U(K)/NL;K(U(L)) --=-► Gal(L/K)ram 

THEOREM 5. 7. For every finite abelian extension L/ K there is a canonical 
isomorphism 

rp(L/K): U(K)/NL;K(U(L))--=-► Gal(L/K)ram 

that is functorial in the sense that if M/ K is a larger abelian extension 
(i.e., LCM) then the following diagram commutes 

U(K)/NL;K(U(L))-=--+ Gal(L/K)ram 

i i 
U(K)/N M;x(U(L))--=-► Gal(M/K)ram 
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where the first vertical arrow is the canonical projection and the second one 
is induced by the canonical projection Gal(M/K)-+ Gal(L/K). 

Proof. Cf. 5.6. The functoriality follows again from the functoriality 
of the snake lemma. 

6. THE LUBIN-TATE EXTENSIONS 

As in the previous section, let K be a local field with finite residue field 
k of q elements. Let 1TK = 1T be a uniformizing element of K; A(K) is the 
ring of integers of K. · 

6.1. Definition of the Lubin-Tate extensions Lm/K 

Letf(X) be a polynomial over A(K) of the form 

We usef<m>(X) to denote the mth iterate off(X); i.e.,j<1>(X) =f(X), 
pm>(X) = J(J<m-I>(X)). As X divides f(X), it follows that f<m-ll(X) 
dividesj<ml(X). For each m let,\,,. be a root ofj<in>(X) that is not a root 
of J<m-ll(X). We can choose (and shall do so) the\,, in such a way that 
f(,\m) = ,\m-l for each m ;:,,: 2. We define the Lubin-Tate extensions 
Lm/K as L 111 = K(,\,,.). 

It is the aim of this section to prove the following theorem concerning 
the extensions Lm/ K. 

THEOREM 6.2. 

(i) Lm./K is totally ramified abelian. Its galois group is isomorphic 
to U(K)/ Um(K). 

(ii) NL /K( V(Lm)) = um(K). 
m 

The proof of this is in several steps. 

LEMMA 6.2. L 11)K is totally ramified; ,\"' is a uniformizing element 
of Lm. 

Proof. pm>(X)IJ<m-ll(X) is an Eisenstein polynomial. 
The second step is to show that NL /K( U(Lm)) C Um(K). To do this 

we need a "denseness of separable poly;omials" lemma. 
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LEMMA 6.3. Let k be an arbitrary field, g = xn + an-lxn-l + ... + ao) 
a polynomial m.:er k such that (n, char(k)) = 1 if char(k) cf 0. Then there 
exists an r > 0 and a polynomial g of degree :(; r - I such that the 
polynomial h = X'g + g is separable (i.e., has only simple roots). 

Proof. If k has infinitely many elements, we can choose r = I and g 
equal to some suitable constant c Ek. [For (djdX)(Xg + c) is independent 
of c and has only finitely many roots.] Suppose now that #k = q, then 
dg,'dX "iE O (because (n, char(k)) = 1). Let x1 , ... , xn-i be the set of roots 
of dg,dX. The x1 , ... , xn-i are all contained in some finite extension k' of 
k. Let #k' = q8 ; we can assume that q8 > degree(g). Let h be the 
polynomial (r = qs+l; li : = - Xqg( X) + 1) 

If a is a root of dh,!dX, then we have either that a is a root of Xq'+' - Xq 
and then h(a) = 1, or ,ve have that a is a root of dg/dX, then a Ek', hence 
aq' = a, and also h(a) = 1. Q.E.D. 

We are now in a position to prove the inclusion 

NL,,,rK(U(L,,,)) C U"'(K). 

THEOREM 6.5. 

Proof. Every element of U(Ln,) can be written as a product uu', where 
u E U1(L,,,) and u is a (q - l)th root of unity. But 

N(u') = (u')<q-I)qm-1 = 1 

where we have written N for NL /K. Hence, it suffices to show that 
N( U1(Lm)) C Um(K). This is clea;ly true for m = I. Therefore, we 
assume m ~ 2. Every element of U1(L,,,) can be written as a sum 

with n = m(q - 1) qm-1 - 1 and v(x) ?: v(1rm), so that (n, char(k)) = 1 
(m ~ 2; v denotes the normalized exponential valuation on K). Consider 
the polynomial d(X) = xn + a1Xn-I + ··· + an (same ai as in the 
sum above). Let g be the reduction of d to a polynomial over k. Chooser 
and g as in Lemma 6.4, let g be a lift of g of the same degree as ff. Let 
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h := Xrd + g. Then the reduction of h in k[X] has no multiple roots, 
hence all roots of h are in Knr . We can choose the constant term of h 
equal to 1, which implies that the product of the roots z1 , ... , z 1 of h is 
equal to ± 1, and that therefore the roots of h are all units ( of Knr)- Then 
(1 - Zr1) ··· (1 - z 1A) = 1 + a1A + ··· + anAn + x' with v(x') ~ v(?Tm) 
and u = 1 + a1A + · · · + a,)n + x = (I - z1A) · ·· (1 - z 1i\)(1 + y) 
with v(y) ~ v(1rm). Now N(I + y) E Um(K). We have left to show that 

N (n (1 - z;,\)) E U"'(K) 

It suffices to show that NL •K /K (TI(l - zii\)) is in Um(Knr)- This 
follows from the commutati;'ity' of"the diagram below and the fact that 
Um(Knr) n U(K) = Um(K) (because Knr/K is unramified). 

lNLnJK 

K~-➔ Knr 

(6.5.1) 

(The commutativity is proved as follows. Let x E Lm , then x has the same 
minimum polynomial over K as over Knr because Knrl K is unramified 
and L11JK is totally ramified, Q.E.D.). 

In particular we have that the minimum polynomial of i\ E Lm · Knr is 
J<m>(X)!J<m-l>(X) E K 11r[XJ. This yields 

f (ml(z-1) 
N(l - zi\) = z(q-l)qm-l ~--

pm-ll(z-1) ' Z E V(Knr) (6.5.2) 

[Thanks to the commutativity of diagram (6.5.1) we can and shall use N 
for both NL /Kand NL •K /K indiscriminatedly.J 

Setting Yi~= z-:;1 we ~btai~rfrom (6.5.2) 

( 
t ) ( t )(q-l)qm-1 t J(rnl(y;) 

N [1 {I - Z;A) = TI Z; • TI pm-1)( ·) 
i=l i-1 i=l y' 

(because TI z; = ±1 and m ~ 2) 
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The zi are units, therefore the Yi too, and also the J<m-1>(yi), as is easily 
seen from the form of J<m-ll(X). It follows that it suffices to prove that 

t t 

IT J<m>(yi) - TI pm-l>(y;) = 0 mod(,r"'). 
i=l 

The automorphism FE Gal(Knr/K), the Frobenius automorphism, 
permutes the roots zi of h, hence Falso permutes the Yi. The homo
morphismF reduces to x 1-► xq mod (77). Therefore there exists a permu
tation a of I, ... , t such that 

because x 1-► f (x) also reduces to x 1-► xq mod (77). 
For any two elements a, b E A(Knr), if a = b mod ( ,rr) with r ;;:, 1 then 

a«= b« mod (77r+l) and 77Q8 = 77b8 mod (77•+1) (s = I, ... , q - 1) hence 
also f(a) =f(b) mod (77•+1). 
Applying this to the relation 

we obtain 

Taking the product over i we find 

t t t 

TI pm>(Yi) = IT prn-ll(Ya(;)) = IT pm-I>(y;) mod(,r"') 
i=l i=l i=l 

Q.E.D. 

The next step (the third) consists of proving thatLm/K is galois. To do 
this we need the following elementary but powerful lemma of Lubin 
and Tate [7]. 

LEMMA 6.6. Let K be a local field with finite residue field of q elements. 
Let TT be a fixed unijormizing element of K. Let f(X), g(X) E A(K)[[X]] be 
two power series over A( K) such that 

f(X) = ,rX = g(X) mod(X2) 

f(X) = g(X) = Xq mod(77) 
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Then for every a E A(K) there exists a unique power series [aJt.g(X) over 
A(K) such that 

f([a] 1,g (X)) = [a]1 ,g (g(X)) 

[a]1,g (X) ~ aX mod(X2) 

Proof. One defines inductively polynomials Fr(X) of degree r such 
that 

f(Fr(X)) == Fr(g(X)) mod(X•·+i) 

Fr(X) == F,.+I(X) mod(Xr+1). 

One can take F 1(X) = aX. Suppose we have found Fr(X), for a certain 
r ~ I. One then sets Fr+l(X) = Fr(X) + ar+1Xr+1 where a,+1 is yet 
to be determined. One has 

f(Fr+1(X)) == f(Fr(X)) + 1Ta,+1Xr+I mod(Xr+2) 

Fr+1(g(X)) = Fr(g(X)) + 17r+1ar+iXr+1 mod(Xr+2). 

These equations show that ar+i must satisfy 

a xr+l = f(Fr(X)) - Fr(g(X)) mod(_.,yr+2) 
r+l - 77r+l - 77 

which proves in any case (inductively) thatFr+i(X) is unique mod (Xr+2) 

for all r, thus taking care of the uniqueness assertion concerning [ a ]1,g(X). 
It remains to show that ar+l E A(K), which follows from 

The series [a]1,g(X) is the limit of the Fr. This proves the lemma. 

COROLLARY 6. 7 [7]. 

(i) [?T]lX) = f(X). 
(ii) [a]l[b]lX)) = [ab]lX), a, b E A(K). 

(iii) [1]1,g([l]u./X)) = X. 

Here we have written [a]1 for [a]1,1 . All these equalities are proven 
by showing that the left and right-hand sides both satisfy the same 
characterizing properties of Lemma 6.6. E.g., [77],(X) = 1TX mod (X2) 

and /([77]1(X)) = [77]l/(X)); on the other hand, /(X) = ?TX mod (X2) 

and f(f(x)) = f(f(X)). Therefore [77],(X) = f(X) by the uniqueness 
assertion of (6.6). 
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Now let/= xq + 7T(qq-lxq-l + ... + a2X2) + 1TX, as before. Taking 
f = g in the lemma above, we have for every u E U(K) a power series 
[u]tCX) over A(K) such that/([u)iX)) = [u]tCJ(X)). It follows that if\,. 
is a root of J<m>(X) that is not a root ofpm-ll(X), then [u]i,\,,,), which 
is in K(\,,) = L 111 because Lm is complete and [u]t(X) E A(K)[[X]], 
is another (possibly the same) root of J<ml(X), which is not a root of 
pm-ll(X). To prove thatLm/ K is galois it suffices to show that by varying 
u we get enough different roots [u]JC,\,,,) ofj(ml(X). A preliminary lemma 
for this is the following. 

LEMMA 6.8. Let f(X) be a power series over A(K); let L/K be a finite 
extension of Kand suppose that there is a A. EL with vL(;\.) > 0 such that 
f (A) = 0. Then there exists a power series g(X) over A(L) such that 
f(X) = (X - ;\.) g(X). 

Proof. Write f (X) = (X - ;\.)g.,, + b.,, mod (X") with b.,, E A(L) 
(division with remainder in A(L)[X]. Now f(;\.) = 0, therefore vL(bn) ?:: 
nvL(;\.) which goes to infinity as n-+ w because vL(;\.) > 0. We also have 
f (X) = (X - A)gn+1(X) + bn+I mod(Xn+I). And therefore 

Write 

Using (6.8.l) one obtains 

vL(a),) ;;?:: nvL(,\) 

v L(a1,\ - a0 ) ;;?:: nv L(,\) 

v L(an_1,\ - an_2) ;;?:: nv L(,\) 

which implies 
'l'L(a 0 );;?:: (n- l)vL(,\) 

vL(a1) ;;?:: (n - 2) vL(,\) 

vL(an_1)?:: 0. 

(6.8.1) 

It follows that the sequence gn(X) has a limit g(X) as n-+ w. Then 
f (X) = (X - ;\.) g(X) mod (Xn, ;\_n) for all n; i.e.,J(X) = (X - .\)g(X). 
Which proves the lemma. 

We are now in a position to prove that Lm/ K is galois and to calculate 
its galois group. 
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PROPOSITION 6.9. The extension L 111 / K is galois; its galois group is 
isomorphic to U(K)/ Um(K). 

Proof. We first remark that if u, u' E U(K), then [cf. (6.7)] 

[u]1 ([u']1 (X)) = [uu']1 (X). (6.9.1) 

Suppose we have proved that 

[u]1 (Am)= [u']1 (Am) ⇒ u == u' mod(U"'(K)) (6.9.2) 

Because U(K)/ Um(K) has (q - l)qm-1 elements and [Lm: K] = 
(q - l)qm-1 it follows from (6.9.2) that Lm/K is galois. The assignment 
s E Gal(L,,,/K) r-+ class of any u such that s(Am) = [uJtCAm) then defines an 
isomorphism of Gal(Lm/K) with U(K)/Um(K) [in virtue of (6.9.1)]. It 
therefore remains to prove (6.9.2). Using (6.9.1) we see that it suffices 
to prove that 

(6.9.3) 

Lets E I'(K, L-+ D). Then s(.:>im) is a root of [u)/X) - X, because s acts 
continuously. Further pr>(Am) is a root of [u]tCX) - X for all r ~ m 
because [u]1(f(X)) = f([u] 1(X)). Therefore, all the roots of J<m>(X) are 
roots of [u]tCX) - X. Applying Lemma 6.8 repeatedly we find a 
factorization 

[u] 1 (X)- X =J<m>(X)g(X). 

But J<m>(X) = nmX + · · ·. Comparing the coefficients of X on the left 
and on the right we see that 

u-I=1r"'·a 

where a is the constant term of g(X). As g(X) has integral coefficients 
[cf. (6.8)] the proposition is proven. 

COROLLARY 6.10. 

NL.,.!K(U(Lm)) = Um(K) 

Proof. This follows from Proposition 6.9 and Theorems 5.5 and 6.5. 

Remark 6.11. The Lubin-Tate extensions Lm depend only on the 
choice of n, not on the choice of the polynomial 
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Indeed, let g(X) be another polynomial of the same form. According to 
Lemma 6.8 there is a unique power series [1]1.u(X) such that [1]1,g(X) == 
X mod(X2) and /[11t,o(X)) = [1]1,g(g(X)). Now let f-Lm be a root of 
g<ml(X) that is not a root of g<m-ll(X); then we see that [11t,g(µ,,,,) is a root 
of pml(X) that is not a root of pm-ll(X) (look at v([l]1,/t-tm)) for this 
last statement). But [1]1,u(t-tm) E K(µ,m), and therefore Lm C K(µm) and 
comparing degrees we see that L 111 = K(µm)-

We can therefore talk about the Lubin-Tate extensions associated to 1r. 

Remark 6.12. 7T E K is a norm from each L 111 • Indeed NL ; K( - Am) = 1r 

because the constant term of f<"'l(X)/J<"'-1l(X) is equ.';1 to 1r, and 
f<"'l(X)IJ<m-ll(X) is irreducible. 

7. LOCAL CLASS FIELD THEORY 

In this section K is again a local field with finite residue field. Let 
K,,b be the maximal abelian extension of K. The first aim of this section 
is to calculate Gal(Kat/K) and to give a description of Kub. We then 
proceed to "extend" the "almost reciprocity homomorphism" 

cp(L/K): U(K)--+ GaI(L/K) 

of Section 5 to a "reciprocity homomorphism" r(L/K): K-+ Gal(L/K) 
defined for all abelian L;K. And finally we give the explicit formula for 
r(L/ K) due to Lubin and Tate (and Dwork). 

THEOREM 7.1. 

Gal(Kat/K)ram !:::'. U(K); Gal(Kab/K) !:::'. U(K) X Z 

Proof. For every finite abelian extensionL/K we have an isomorphism 

ef,(L/K): U(K)/NL;K(U(L))--+ Gal(L/K)ram (7.1.1) 

Taking the limit over all finite abelian L/ K we obtain an isomorphism 

ef,: fun U(K)/NL!K(U(L)) c::.: Gal(Kab/K)ram (7.1.2) 

(cf. Section 3.) Now U(L) is compact and NL/K is continuous. It follows 
that NL!K(U(L)) is compact and therefore closed in U(K). As it is also a 
subgroup of finite index [by (5.7)], it is also open in U(K), i.e., there 
exists an n (depending on L) such that NL/K(U(L)) ") Un(K). By 
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Theorem 6.2 there exists for every m E N an abelian extension Lm/ K 
such that NL .. !K(U(Lm)) = LJin(K). It follows from these facts that the 
projective limit on the left of (7.1.2) is equal to U(K). This proves the 
first part of the theorem and also the second in virtue of (3.4). Fix a 
uniformizing element 7T of K. Let Lm be the Lubin-Tate extensions 
corresponding to this choice of 7T. [ Cf. ( 6.1) and ( 6.11 )]. We write 
L1T = U,,,L/1!. 

COROLLARY 7.2. Kab = L,. · Knr . 

Proof. L" · K,,r is an abelian extension and therefore contained in Kab. 
We have a commutative diagram with exact rows. 

0 -Gal(Kab/K)ram - Gal(Kab/K)- Gal(Knr/K) ---,.....o 

U(K) 01.' 

g,(Ka~j 

<j>(L,.K~ 

OI 

◊- Gal(L,. Knr/K)ram __,_ Gal(L,. Knr/K )__. Gal(Knr/K) --+- 0 

where ex is the natural projection; ex' is induced by ex; and the homo
morphisms cp(Ka1i/K) and cp(L" · Knr/K) are obtained by taking the 
projective limit of the homomorphisms cp(L/ K), where L/K runs through 
the abelian subextensions of Kab and L" · Knr , respectively. 

Now cp(L" · K,,,.1 K) is the projective limit of the isomorphisms 
cp(L111/K): U(K)/NL,,,!K( U(L,,i)) ~ Gal(L1111K) and as NL,,,/K(U(Lrn)) = 
um(K) by Theorem 6.2 we conclude that<f>(L,, · Knr/K) is an isomorphism. 
The homomorphism cp(Kab/K) is also an isomorphism (Theorem 7.1) 
and therefore ex' is an isomorphism and thus ex too, which concludes the 
proof of the corollary. 

7.3. The group U(K) X Z is the completion of K* ~ U(K) X Z 
with respect to the topology of open subgroups of finite index. (Open in 
the sense of the topology on K* induced by the valuation on K.) When 
regarded as this completion we shall write K* for U(K) X Z and 
K* -. K* will be the natural inclusion. 

Of course, one can choose many isomorphisms K* c::c: U(K) X Z ~ 
Gal( Kab / K). It is the aim of the next few subsections to show that we can 
choose this isomorphism in such a way that the kernel of 

K* -+ K*-+ Gal(Kab/ K)-+ Gal(L/K) 
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is precisely NLJK(L*) CK* for every abelian L/K (where the last map 
is the natural projection). 

7.4. Preliminary Definition 

Let L' / K be a totally ramified abelian extension, 7TK a uniformizing 
element of K that is a norm from L', and Kn/Kand unramified (abelian) 
extension of K. We define a homomorphism r: K*-+ Gal(L' · Kn/K) 
as follows. (We should of course write rL'·K. or something similar). 

U(K)3 ui-+r(u) := ef,(u-1) E Gal(L'/K) = Gal(L' ·Kn/Kn)= Gal(L' · Kn/Kn)ram 

7TK I-+ FE Gal(L' · Kn/L') 

where Fis the Frobenius automorphism of Gal(L' · Kn/L') and u 1-+ rp( u) 
is the homomorphism defined in (5.5). 

The first step now is to show that this definition does not depend 
on the choice of L' in L' · Kn , and to show that for this definition one 
does have the kernel property mentioned in 7.3. To this end we need the 
following lemma, which is also useful further on. 

LEMMA 7.5. Let L/K be an abelian extension. The index of NLJK(L*) 
in K is equal to the number# GaI(L/K). 

Proof. Let KL be the maximal unramified extension of K contained 
in L. We have [L: KL] = #(U(K)/NL/K(U(L))) [cf. (5.7)]. There is an 
exact diagram. 

VL o- U(L)--+L* __,_z-,..o 

tNL/K tNL/K t XfL/K 

0--+ U(K)--+ K* ~ z-,.. 0 

where fL/K := [KL : K]. Hence 

#(K*/NL;K(L*)) = #(V(K)/NL1K(U(L))) · !LrK 

= [L : KL][KL: K] = # Gal(L/K). Q.E.D. 

LEMMA 7.6. Let L" CL'· Kn be any other totally ramified abelian 
extension such that L" · Kn = L' · Kn (i.e., [L' : K] = [L": K]; same 
situation as in the definition of r above). Then 

ker(K* ......!.-+ Gal(L' · Kn/ K)--+ Gal(L" /K)) = NL" rK(L"*). 
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Proof. Lemma 7.5 implies that it suffices to show that NL"/K(L"*) C 
ker(•"), For this it suffices to show that NL"JK(TT 11

) E ker( .. ·) when 7r" is a 
uniformizing element of L" (because NL"JK(U(L")) C ker(r) due to (5.7) 
or because the uniformizing elements of L" generate L" *). Let L" be the 
invariant field of r(u)F. Such an u E U(K) exists because r( U(K)) = 
Gal(L' · Kn/K)ram [cf. (5.7)]. Write TT 11 = XTT 1 where 7T 1 EL' is such that 
NL'/K(TT') = TTx. We have 

It follows that 
Nc.K,/K,.(x) E U(K) (7.6.1) 

Now r(u) F(7r") = TT". Therefore, using F(TT') = 7T 1 and XTT 1 = 7r" we have 
in the group U(L~r) = U(L:r) 

' 7T 

r(u)( 7r1
) 

' 7T 

r(u) F(TT') 
' 7T 

r(u) F(x-1) 

x-1 

r(u) F(x-1) • F(x-1) _ F(x-1) mod V(L' /K ) 
F(x-1) x-1 x-1 nr nr 

(7.6.2) 

Hence, by the definition of the isomorphism cp in (5.5) we must have [in 
virtue of (7.6.1) and (7.6.2)] 

(7.6.3) 

and hence 

which is the identity on L". This proves the lemma. 

COROLLARY 7.7. The definition of r in (7.4) is independent of the choice 
of L'. More precisely, 1f we had used an L" as in Lemma 7.6 instead of L' 
for the definition of r; i.e., if we had defined 

U(K) 3 u 1--+ r(u) = <f,(u-1) 

NL";K(TT 11
) 1--+F' 

where F' is the Frobenius automorphism of Gal(L" · Kn/L"), then we would 
have obtained the same homomorphism r. 
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7.8. Definition of the Reciprocity Homomorphism 

Choose a uniformizing element rr of K. Let L" be as before [cf. (7.1)] 
then Kab = LT/ · Knr (7.2). Now define 

r: K* ---+ Gal(Kab/K) 

U(K) 3 u 1--+ r(u) = cf>(u-1) E Gal(L"/K) = Gal(Kab/Kni.) 

1T 1--+ FE Gal(Kab/L,,) 

Remarks 7.9. There are several remarks to be made concerning this 
definition: 

l. As rr is in NL,.(K(L11.*) for all m, cf. (6.12), this definition agrees 
with the one given in (7.4). 

2. This definition is independent of the choice of rr [by (7.7) and 
(7.9), Remark 1]. 

3. The homomorphism r is determined by its values on the 
uniformizing elements of K. 

4. The homomorphism r is the restriction to K* of an isomorphism 
K*-. Gal(Kab/K) [cf. (7.3)]. 

THEOREM 7.10. Let L/K be an abelian extension, then we have 

ker(K*-+ Gal(Kab/K)-+ Gal(L/K)) = NL;K(L*) 

Proof. It suffices to prove that NL/K(L*) is contained in this kernel 
(7.5). Let Kn be the maximal unramified extension of K contained in 
L; let [Kn: K] = n. Let rn be the reciprocity homomorphism for the 
base field Kn . Then we claim that the following diagram is commutative: 

lr. lr (7.10.1) 

Gal(Lf Kn) ---+ G(L/K) 

To see this, let L' / K be a totally ramified abelian extension such that 
L' · Km = L · Km for some unrarnified extension K 11 j K of degree m. We 
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can assume that Kn C Km . We have the following diagram of field 
extensions 

Let FE Gal(L' · Km!L') be the Frobenius automorphism. Then pn is the 
Frobenius automorphism of L' · Km/L' · Kn . Let 7T be a uniformizing 
element of K which is in NL'/K(L'*). Then [cf. (7.4)] 

r.,,(7T) = pn, (7.10.2) 

It remains to check that 

for u E U(Kn)- (7.10.3) 

To this end let u' E U(L~r) = U(L.,,r) be a lift of u [for the norm map 
U(Lnr-+ U(Knr)]. The element u" = u' · Fu', ... , pn-lu' is then a lift of 
NKn!K(u) = u · Fu, ... ,Fn-1u. The element rn(u) E Gal(L' · Km/Km) = 
Gal (L' · Kn/Kn) is according to (5.5) and (7.4) characterized by 

rn(u)(77L') = ~ d V(l /K ) -·- pnu' mo nr nr 
'TTL' 

where 7T L' is any uniformizing element of L'. Hence 

But r(v) E Gal(L' · Km/Km) for v E U(K) is characterized by 

r(v) 'TTL' _ v' - o
== -F, mod V(Lnr/Anr) 

'TTL' V 

where v' is any lift of v. It follows that 
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Now suppose we have already found 8'r(X) such that 

{}/(X) = -&,([u]1 (X)) mod(X,.+1). 

177 

(7.12.2) 

We define &r+l(X) = f\(X) + br+lXr+I, where br E A(Knr) is yet to be 
determined. Now 

Let 

{};.+1(X) = {}; (X) + F(h,+1) xr+:i. mod(X,.+2) 

{},+1([u]1 (X)) -- -&,.([u]1 (X)) + b1+1ur-+1Xr+ 1 mod(Xr+2) (7.12.3) 

(7.12.4) 

Then we must choose h,.+1 such that F(b.-+1) = c + br+1urt-1 . Writing 
b,+1 = a7+1er+l, a,+1 must satisfy (use F(e) = eu) 

(7.12.5) 

Such an a,.+1 exists because F - I: A(Kn,.)-+ A(Kn,.) is surjective (cf. 
Lemma 5.2). Let &(X) = Iim &,.(X). This proves the lemma. 

COROLLARY 7 .13 [7, Lemma 2]. Under the conditions of Lemma 7 .12 
there exists a &(X) E A(.l(n,.)[[X]] such that (7.12.1) holds and nwreo'l,er 

for all a E A(K) (7.13.1) 

Proof. We first remark that [7T]t<X) = f(X) and [7T']/X) .t;(X) 
[cf. (6.7)(i)]. Let &(X) be as in (7.12). We consider 

h(X) = -&F(f({}-I(X)) = {}([u] 1 (j({}-1(X)))) = {}([rr']1 (-&-1(X))), (7.13.2) 

where &-1(X) is defined by &(&-1(X)) = X = &-1(&(X)). [One uses 
(6.7)(i) and (6.7)(ii) to obtain the last equality.] The series h(X) has its 
coefficients in A(K) because 

fzF(X) = {}F(([rr']1)F ((-&-1)F (X))) = -&F(f([u]1 ((-&-1y (X)) 

= {}F(f (-&-1(X))) = h(X) 

[For the one but last equality substitute (&-1)F(X) for X in (7. 12.1).] 
Further 

607/18/2-5 
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Taking account of (7.10.2) we have shown that the diagram 

l,,. lr (7.10.5) 

Gal(L' · Km/Kn)---+ Gal(L' · Km/K) 

is commutative, which implies the commutativity of (7.10.1). The kernel 
of r n in (7.10.1) is equal to NL/xJL*) according to Lemma 7.6. It follows 
that 

N LJK(L*) = N K,JK(N L;x,.(L*)) = N x,,;x(ker r n) C ker r. 

[ cf. (7 .10.1 )] . This proves the theorem. 

COROLLARY 7.11. The norm subgroups of K* (i.e., the subgroups 
NL!x(L*) where L(K is an (abelian) finite extension of K) are precisely the 
open subgroups of finite index. 

For every open subgroup R of finite index in K* there is one abelian 
extension L/K such that the kernel of r: K*->- Gal(Kab/K)-+ Gal(L/K) is 
precisely R. 

Proof. A norm subgroup is necessarily open of finite index. The rest 
of the corollary follows from (7 .10) and the fact that r: K* -+ Gal( Kab/ K) 
is the restriction to K* of an isomorphism K* C'.:'.::' Gal(Kab/K). 

The last part of this section is devoted to the explicit determination 
of the reciprocity homomorphism r a la Lubin-Tate. The main tool is: 

LEMMA 7.12 [7, Lemma 2]. Let 1T and 1T' be two uniformizing elements 
of K, and let f(X), g(X) be polynomials of degree q such that f(X) = 
g(X) == Xq mod 7T and f (X) == 7TX mod (X2), g(x) = 7r' X mod X 2• Let 
1T 1 = U7T. Then there exists a formal series &(X) E A(Knr)[[X]] such that 

{}F(X)) = &([u]1 (X)), -&(X) ==-, EX mod(X2), for a certain EE U(Knr) 
(7.12.1) 

where Fis the Frobenius automorphism in Gal(Knrl K) and also its extension 
to Kn, , and JF( X)) is the series obtained from &(X) by letting F act on the 
coefficients of &(X). 

Proof. Because F - I: U(Knr)-+ U(Knr) is surjective there 1s an 
EE U(Knr) such that u = F(€)c1. Define 1\(X) = EX, then 
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and 

Therefore, h(X) is a power series of the type considered in (6.6). And 
there exists therefore a unique power series [1Ji,.1i(X) such that 
[11,.h(X) = X mod (X2) and g([IL,.1,(X)) = [IJc,.ih(X)). Now let 

&'(X) = [I] 0 ,h (&(X)) (7.13.3) 

then (7 .12.1) also holds for {}' (because [l Jc,,1,( X) has its coefficients in 
A(K)). Consider the series 

l(X) = &'([a]1 ((&')-1 (X))) 

We have 

g(l(X)) = g([l]u,1i (&([a] 1 (&-1([1],,,u (X)))))) 

= [l]u,h (h(&[a] 1 (&-1 ([lh,g (X)))))) 

= [I] 0 ,1i (&([77']1 ([alt (&-1([l]Ji, 0 (x)))))) 

= [l]a,lt (&([a], ([1r']1 (&-1([lh,a (X)))))) 

= [1]0.h (&([a], (&-1(h)([lh.a (X))))) 

= [1] 0 ,h (&([a] 1 (&-1([1],,, 0 (g(X)))))) 

= l(g(X)) 

where we have used h(X) = 8-([rr')l&-1(X))) twice and [l];,t(X) = 
[11,,,g(X) and [rr')l[aMX)) = [1r'a]t(X) = [aM[rr'MX)) [cf. (6.7)]. 

Thus l(X) satisfies the conditions that define [ a ]g(X) so that (6.6) 
l(X) = [a]g(X), which proves the corollary. 

DEFINITION 7.14. We now define a homomorphism s": K* -
Gal(L" · Knr/K) as follows 

s,,(1r) =FE Gal(L,, · Knr/L") (the Frobenius automorphism) 

sn(u) = [u-1] 1 E Gal(L,, · Knr/Kn,.) for u E U(K) 

where [u-1]1 is the automorphism of Gal(L11 • Knrf Knr) = Gal(L,,/K) 
which acts on the \ 11 as A,,,~ [u-1]/Am) (i.e., subsitute Am in the series 
[u-1],(X)). 
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THEOREM 7.15 [7, Theorem 3 and its corollary]. The homomorphism 
s,, is independent of 7T and coincides with the reciprocity homomorphism r 
defined in (7.8). 

Proof. We first show that s,,(77') = s,,•(77'), for all uniformizing 
elements 77, 1T 1 EK. This suffices to prove the first part of the theorem. 
Now on Knr C Knr. L,, = Kab = K,,r. L,,, both s,,(1r') end S17 1 (1T 1

) induce 
the Frobenius automorphism. On L,r', s11 ,(1T 1

) is the identity. Thus it 
suffices to show that s,,(77') is the identity on L,., , i.e., we have to show 
that 

s,.,.(n')(.\n') = Am' 

for all m, where Am' is a root of g<ml(X)/ g<m+l>(X) where g(X) is a monic 
polynomial of degree q such that g(X) == xa mod 77 1 and g(X) == 
1T1 X mod(X2). 

Let 8-(X) be a power series over A(K11r) such that (7.12.1) and (7.13.1) 
hold. Then because [1T]lX) = f(X) and [77'Ja = g(X) we have because 
of (7.13.1) that 8-(Am) is a root of gm(X)/g<m-ll(X). 

Now s11(1T 1
) = s,,(u) s,,(77) = s,,(u). F, where F is the Frobenius auto

morphism in Gal(L,, · Knr/L,,) C Gal(Kab/K). Thus 

s11(1r')(,\m') = s,,(u) · F({}(\n)) 

= s,,(u)({}([u], (,\m))) 

= {}([u] 1 (s11(u)(A,,,))) 

= {}([u], ([u-1]1 (,\,,,,))) 

= {}(\n) = ,\m'· 

The second assertion of the theorem now follows easily because for 
every uniformizing element rr E K both r( 1T) and s11 ( 1r) are the Frobenius 
on Knr and the identity on L,, . Q.E.D. 

8. CONCLUDING REMARKS 

In this section we add a few extra comments to the foregoing. 

8.1. "Almost the Reciprocity Morphism" for Arbitrary Finite Galois 
Extensions L/ K 

Let L/K be any finite galois extension. Then the diagram of 5.1 (or 
rather, a similar diagram), gives an isomorphism 

U(K)/NL;x(U(L))--+ Gal(L/K)ram/<Gal(L/K)ram, Gal(L/K)) 
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8.2. Functoriality of the Reciprocity Homomorphism 

Let rK: K*--->- Gal(K111,/K) be the reciprocity homomorphism for the 
base field K. Then if LK is a finite galois extension of K, the following 
diagram is commutative 

NL/K 
L*------------ >-K* 

1~ 1~ 
y t (8.2.1) 

Gal(La11/L) _!i_,,. Gal(Kab · L/L) _!!...+ Gal(KaJJ/K) 

where a is the natural projection and bis the restricting of automorphisms 
of Kab ·L to Kah. 

In the case of an unramified extension L K this has already been 
proven [commutativity of diagram (7.10.5)]. It thus suffices to prove 
the commutativity of (8.2.1) in the case that L/ K is a totally ramified 
abelian extension. 

We have to show that a O rL = rKNL/K, i.e., we only have to worry 
about abelian extensions of L "arising from some subextension of 
Kab/K". 

Let MiK be a totally ramified abelian extension and Kn/ K an 
unramified extension of K. The extension L · M/ K is abelian. By 
enlarging Kn if necessary we can assume that the maximal unramified 
sub extension of L · Mis contained in Kn . By means of a similar argument 
as in Section 3 we find an abelian extension M'/K such that M' contains 
L and such that M' · K,,, = L · M · K,11 for some unramified extension 
Km that contains Kn . 

We can now use M':L andL · Km/L to define rL: L*--->- Gal(M' · K"'!L) 
and M'/K and K,,,/K to define rK: K*--->- Gal(M' · K 11 jK). 

Let u E U(L) and u' E U(M~r) a lift of u for 

N M;,,11,.,: U(IYI~r)--+ U(L,,r)-
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Then u' is also a lift of NL/K(u) for NM~,/K.,.,: U(lV!~r) _. U(Knr), which 
proves that rL(u) = rx(NLJK(u)) for u E U(L), in view of the definition of 
rL(u) [cf. Section 5 and (7.4)]. 

And if 7T 1 is a uniformizing element of M', we have that 

and 

Q.E.D. 

8.3. Ramification 

Keeping track of ramification in the fundamental exact sequence 
and the diagram 5.1.1. one sees that cp(L / K) and hence also r is ramification 
preserving, in the sense that rK: K* .- GaI(L/K) maps Ul(K) into 
Gali(L1'K), where Gali(L/K) is the ith ramification subgroup of Gal(L/K) 
(upper numbering). 

8.4. The Case K = Q11 

In the case K = QP, taking 7T = p,f(X) = (X + l)P - 1, one finds 
pm>(X) = (1 + X)Pm - 1. The elements of \ 11 then are of the form 
(,,, - 1, where {m is a primitive pmth root of unity. In this case one has 
[u]iX) = (1 + X)u - 1 for eachp-adicinteger u. Hence [u]t<tm - 1) = 
( 111" - 1 and formula (7.14) becomes the explicit cyclotomic reciprocity 
formula given by Dwork in [1]. 
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