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1. Infroduction

Let K be a mixed characteristic complete discrete valuation field; A its ring of
integers. Let F be a formal group over A; let p be the residue characteristic of K and
let K /K be a I'-extension of K, with layers - —K,— K, ;— ---. In this paper
we continue our investigation of the image of the norm map

F-Norm,,: F(K,)- F(K)

begun in [3]. The main result is Theorem 3. 1, which is proved in Sections 4—11. The
proof is, except for some technical complications, the same as the proof of Theorem 6. 1
of [3] given in [3]. Cf. also 12.1 below.

Most of the notations and conventions of [3] remain in force.
The residue field of K is always supposed to be perfect.

2. I'-extensions

A TI'-extension of a local field K (associated to the prime ¢) is a galois extension
K /K with galois group isomorphic to Z,, the ¢g-adic numbers. Let p be the residue char-
acteristic of K. We shall only consider I™-extensions associated to the prime p. (Other
TI'-extensions are not very interesting in view of [3], 3. 1.) Let L be the maximal unrami-
fied extension of K contained in K. If L = K _ we again know the image of the norm
map ([3], 3.1). If L &= K then K_/L is a totally ramified I'-extension. Using the proof
of [3], 3.1 (cf. also [3], 6. 3, and 3. 4 below) we see that it suffices for our purposes to
consider only totally ramified [-extensions associated to the prime p, where p is the
residue characteristic of the local field XK. All I“extensions occurring below will be as-
sumed to be of this type.

*) Research for this paper was done in 1969/1970 when the author stayed at the Steklov Institute of Mache-
matics in Moscow and was supported by Z. W. O., the Netherlands Organization for the Advancement of Pure
Research.
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‘ If LIK is.a cyclic extension of prime degree P, let m(L/K) be the number gover-
ning the behaviour of Tryg, i.e. m(L/K) is such that Tryg(%A;) = 7,4, where
r=[p7'((m(LIK) + 1)(p — 1) +¢].

(If z €R, [z] denotes the entier of z; (cf. [9], Ch.V, §3).)

Now let K /K be a (totally ramified) I™extension; let K, be the invariant field
of p"Gal(K ./K). We write m, = m(K,/K, ;). Then the following holds

2, 1. Lemma (Tate [10]). There is a constant my such that

my=ex(l+p+ -+ p") +my
for all sufficiently large n.

Here e, denotes the absolute index of ramification of K, ex = vg(p).

It L/K is a totally ramified extension of degree p, then m(L/K) < (p — 1) pe,
(cf. e. g. [2], (6. 2D) and Lemma (6. 3. B)). It follows that

2. 2, Lemma. exg—(p—1)ym, = 0.

3. Statement of the theorem. Some remarks as to the proof
The main theorem of this paper is

3. 1. Theorem. Let K be a mized characteristic local field with algebraically closed
residue field; let F be a one parameter formal group over the ring of integers A of K of height
hilet -+ —K,—++-—K,— K,— K be a I'extension of K. Then there exist constants
¢y, Cy Such that

F*n(K) = F-Norm,(F(K,))> Ff»(K)

where an:h—;iehyn—cl, B, = h_;i exn + c,.

(If b = oo, (h—1)1™" should be interpreted as 1.)

Basically, this theorem is proved by means of the same techniques as used in [3].
There are however some complications.

a) We have no longer a completely regular formula for m,. This causes difficulties
in the calculation of the o,,(t) and «, (cf. §8, §9). The same fact causes difficulties in
the calculation of Try, , (2") and thus makes necessary the introduction of some extra
functions g, (1) and ,,(?), to keep track of what is happening. Cf. §6.

b) It is no longer true that either Tr,,_, or Ng}‘,,’_l ; (in the step from level & to level
k—1) is the most important term in the expansion of F-Norm/(z) as

F-Norm (z) = Tr(z) + go,‘: a; N (z) + X ay, Tr(M)

(cf. [3]). In fact there is for every z € F'(K,) a finite number of levels (bounded indepently
of n!) in which terms of the form ¢, V', 1 < ¢ < p"** dominate.

c) In the case of the cyclotomic I-extension of Q, it so happened that, provided
we started with elements of particularly nice valuations we could always neglect all
except precisely one term of the expansion of F-Norm (). This is not true in the more
general case and it is this fact that makes the assumption “the residue field is algebra-
ically closed” mnecessary. This also causes us to consider “‘change points” (cf. §7).
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d) It is no longer true as in the cyclotomic case that the set {0, () |t = 1,2, ...}
is of the form {s € N | s = so}. In general there will be “holes” in the sequence {o,,(?)}.
The difficulties due to these facts can be diminished to some extent by “changing the
base field”. That is instead of considering K /K we take a (suitable) finite extension
L/K such that L - K /L is still totally ramified (and a I'-extension) and prove the theo-
rem for the /-extension L - K/L.

The most difficult part of the theorem then follows also for K_/K according to
(3. 5) below. To prove this we need some preliminaries.

Let L/K be a finite extension. We define functions 4; . (#) and y . (s) as follows:
3. 2. Definitions. (i) If L/K is unramified 1y, (t) = t.
(i) If L/K is tamely and totally ramified of prime degree [ &= p we define
Ay (t) = (7 —1 4 1)
(iii) If L/K is totally and wildly ramified of prime degree p we define
Aye(t) =[p7 ((m(L/K) + 1) (p—1) + 1))
(iv) It M —L— K is a tower we define A,z as Ay g = Agx o Ay -

This defines 4, for all L/K because every L/K decomposes as a tower of exten-
sions of the types considered under (i), (i), (iii), as K is a mixed characteristic local field
with perfect residue field.

For each integer s = A7z (1) we define the number y; . (s) as the largest integer ¢
such that A, () = s. (Note that such a ¢ always exists if s = 2,,,(1).)

3.3. Lemma. (i) Try,(n54;) = a%Ag with s = Ay (1).

(i) If t = yyx(s), and L|K is totally ramified, then vy (Tryx(z)) =s, if v,(z) =t

(This also shows that the definition of 1,/ does not depend on the decomposition
of L/K as a tower.)

3.4. Lemma. Let L/K be a finite extension and F a one parameter formal group
defined over A .. Then there exists a constant ty such that for t > 1,

F-Normy, (FY(L)) = F'7<9 (k).

Proof. In case L/K is unramified this follows from the proof of [3], 3. 1. In case
L/K is totally ramified of prime degree we have an expansion of Norm(z) as

(3. 4. 1) Norm (z) = Tr,z(2) + =2; a;N% g (@) + ,%’ Oy Trp) (M).

Now because m(L/K) < (p — 1) "pex we have that

ve(aNye(@) >Aye(v,(®) i vy(2) = peg/(p—1).
Hence we have that Norm(z) = Try g (2) modnz’—"’w)+1 if vy (z) is of the form yx;,.(s)
for some s = Ay ((p — 1)7'peg)- This proves the lemma in this case (cf. 3. 3 above and
[3], 3.2). Finally let M/L/K and suppose the lemma holds for M/L and L/K, then it
also holds for M/K because Ayx = Aygody, Ayx(')=Ayg) if =1t and
}Ln:o Apgyp(8) = oo.
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We are now in a position to prove

3. 5. Proposition. Let
L,++—L,—-+—L,—L

| ' ]
K, —K,——K,—K
be a diagram of field extensions such that L _|L and K._|K are I'-extensions and L[K is

finite. Let F be a one dimensional formal group over Ay of height h and suppose that there
exists a constant ¢’ such that

oo

Norm, ,(F(L,))> Ff(L) where ;= L _h_ ! neyp + c'.
Then there exists a constant ¢ such that
Normy . (F(K,))> Fn(K) where p,= {-— neg + c.

Proof. Let t, € N be such that Lemma 3. 4 applies to L/K. For n sufficiently large
B, = t, and then

Normy ¢ (F(K,))> Normy,(Normy, , (F(L,)) > F*ZE%) (k).

It now suffices to remark that
(3.5.1) Ayg(t) = + e,
L

where the e, are bounded independently of . (This follows directly from the definition
of Ay x(2).) q. e. d.

4. A trace lemma

As in [3] we shall need to know something of Try, ,(«*) for totally ramified exten-
sions of degree p (cf. [3], § 4. D).

4. 1. Proposition. Let L/K be a totally ramified galois extension of degree p; let
m = m(L|K) and r =[p~'((m 4+ 1) (p —1) 4+ 1)]; let n, be a uniformizing element of
L and let my = (—1)""*Ny g (7z). Then we have

Try g (@) = paf modagtFr,

Proof. The element =, € L satisfies an equation of type

(4.1.1) w A anl T A ay Ty = g
where the a; are equal to a; = (— 1)%,(v,7y, . - ., T,7z), Where o, is the i-th elementary
symmetric function in p variables and 7,7y, ..., 7,7, are the conjugates of x,.

If §={r,...,7}is asubset of G(L/K), let v8 = {v7;, ..., 7%}, 2] = Il v,
and |S| = the number of elements of S. With these notations i

(4.1.2) @, = (—1)" 3 af.

|8]=1

Now if |S| # 0, p, then 7§ + 5 if 7 & id because G(L/K) is cyclic of prime order p.
Hence each a, is of the form

(4. 1. 3) ;= Tryg(b) b €atAd,.

Journal fiir Mathematik. Band 268/269 29
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Therefore vg(a,) = r. Now apply Try p to the relation (4. 1.1) to obtain
(4. 1. 4) Trp g (7}) = prg modn%.

This proves the proposition for £ = 1. For k£ >1 multiply the relation (4.1.1)
above with #{™? apply Tr; . to the result, use induction, and use

ve(Trye@y) = k—1 47
it s> (k—1)p + 1. Cf. 3. 3.

5. Some functions

Let F be a formal group over Az and K _/K a I'-extension of K. Let
F(Xy, ..., X)) =Tr(X)) + ._Zl'aiNi(X) + ‘HZJIQMTP(M)

(cf. [3], 2. 4). We write Norm,, for the norm map F(K,)~> F(K;). In [3] we used a
number of functions o, t,;, d,; to keep track of what was happening and to calculate
o, We used some auxiliary functions j, and [,. All these functions and some more will
be needed again. All of them will be defined in this section.

We use v = vy for the normalised exponential valuation on K and v, = vg, for
the normalised exponential valuation on K.

5. 1. The function o,,(t). Let d, = v(a;) = vg(a,), where a; is the coefficient of
N'(X) in the expansion of F(X,, ..., X,). We define for all t€R, t =1,

(my +1)(p—1) + ¢
O‘O_t= ]
(. 1. 1) -2 ) 2 i=1,2 ...

Ohp () = d,p* ' + it

(note that the ok, ,(2) of [3] is equal to o?% () as defined here).
k=1 k[k—1
Using the o}, , we define

(. 1.2) Opa() = min L {oh ()

Remark. Let ¢ be an integer. Then the smallest integer ¢, such that
a}.co/k——l(t) = i=1g,11ig,... {U;;/k—l @)} =s

is necessarily equal to 0, 1 or a power of p. Indeed Norm,,_; induces a homomorphism
(K is the residue field of K)

K* o FYK)[F™Y(K,) > F(K,_)/F*+ (K,_)) = K*.

And if iy > 0 this homomorphism is given by a polynomial a, z* 4 higher degree terms.
It follows that i; = 1 or a power of p.

A corollary of this remark is that
(5.1.3) Norm,,_, (FY(K,)) < F*1(K,_)), t€N.
We now define o,,(t) for £ < n inductively by

(5. 1. 4) Gn/n(t) =1, Gn/k(t) = Gk+l/k(an/k+1(t))‘
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It follows from (5. 1. 3) that

(5. 1. 5) Norm,, (F¥(K,)) < F"* (K,).
We define
5.1.6) bp(t) = —1if gy (1) = oppy (2),

) =1 i oy (1) = of_, (¢) < s (1), =04, p,...,p %
Using this, we also define

(5.1.7) o (1) = s (0us (1), E=1,2,....n,
(5.1.8) () = 05 0 (8) = 1 (1) + b1 (2),
’Tn/n(t) =1
T (t) = Vi (@pr) + P T (1) if e (t) =120,
(5-1.9) 4 T (t) = 0(P) + P77 Ty s (2) o) =—1, 0, () 2 1,
1 —1 " ) .
~T'n/k(t) = gy 1) (p 7 ) ¥ a4 () I oty (t) = —1, o1 (1) =0,
Qn/n(t) =1,
(5. 1. 10) § 0a(t) = V(@) + P" * Opjis1 () iy, () =r=0,
[ 0ax(8) = 9(P) + P Qg1 (2) if e, (t) =—1

Further we define

(5. 1.11) L,(5) =0 if x,,(t) 20,
l,(¢) = smallest natural number ¢ such that «,;(t) = 0 and ¢,, () = — 1,
if o,0(t) <O,
(5.1.12) k,(¢) = largest integer i such that 4,,(¢) = —1,
(5.1.13) j,(t) = number of different indices i such that ¢,,(t) = 2 — 1.

The last function we define is

(5.1.14) Ao (1) = Ty, () + P%lk(t)(%— my) if o, (t) 20, ¢ = (p—1)""eg,

6. Some elementary properties of the funetions
Gn/kv Pn/k7 Tn/k, ln/kv lnaj:n kn’ an/k

Let K _ /K be a I-extension and let F be a formal group over Ag. In this section we
assume that the Iextension K /K is such that

My =1 +p+ -+ pNeg+ m
for all n =1, 2,3, ... (cf. Lemma 2. 1).
6. 1. Lemma. ¢,;(t) = ¢34, () forall t, 1 < k <n
Proof. Let s = 0, 1(t) and s’ = 0,,(t). Suppose that ¢,;,,(t) =7 =0, i.e.
(6.1.1) p*d, +is = p*d, + p's for i =p"T p™ . pPL
29*
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Then s’ = p*d,, + p"s and we must show that

(6.1.2) p'd, +is' = p*id, + p's’ for i=p™ pt L. N
which follows from (6. 1. 1) because s’ = p~*s. Now suppose that ¢,,.,(¢) = — 1. This
means that

s = (mlc+1+1)]()p——1)+3 épkdz-i—w for i:,l’p’p2’”"ph—1

which is equivalent to

_1 . k+1d. . _
(6. 1. 3) ngm(ppi_)_ip Loied,ppt ., P
And we must show that
—_— J— k . .
(6. 1. 4) S,gmk(ppif)_ipdz’ i=1,p,p% ..., p"

It suffices to show that s’ > m,. We have
s = (e + D (p—D +NZp (2 —Dmypy
=p p—DU+p+ -+ e+ p(p—1)m,
=pleg—p e+ p7 (p—1)m,.
And this is greater or equal to my = (1 + p + - - + p* Nex + m, because
PPzltp+ P4
and e = (p — 1)m,. q.e.d.
Note that we have also shown that
(6.1.5) Galt) = —1 it 12 (p— 1) phey

(this result holds because m, < (p — 1)~ 'p*e, and is independent of the assumption
on K_/K).

6. 2. Some properties of ¢,;, i, Ouiyr Tupr %np- Directly from the definition of
e one sees that

(6.2.1) () = yt) i =1t
This is obvious if ¢, (1) = 0. If 4, (t) = —1, then writing b, for d,p*~*, and ¢ for
(my + 1) (p — 1) we have
lc-}—t}gbi-]—it, i=1,2 ..., "

¢+t . o
+ I >b; 4+ it' for a certain i then

Now suppose that there is a ¢’ >¢ such that [
L

p
{C -;t > [c ;[— l}; let ¢" be such that E—ﬂ} =C.__J___t_, then also {c—l}—)t } >b, 4 it"
and ¢ >t and ¢ is an integer. Then ¢t > b, + it” + 1 because ¢+t and

. . t . .
b, + tt’" are integers, and c;— < b, + it + 1 while t"” >t which is a contradiction.
As a corollary to Lemma 6.1 we get

(6.2.2) O () = Qup(8) = T (8)  if by (8) = 0.
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Using this and (6. 2. 1) we see that

(6.2.3) 0, (t") = 0y (0); 00 (1) Z Qi (1), T () = 70 (8)  if 2 =2
and this and (6. 2. 1) gives

(6. 2. 4) (1) S o), () S 1) 31 =0

The functions v,,, 0,, and g,, do not differ much. Indeed we have

(6.2.5) oy (t) = Tupt) = 0 (8) = 0p(t) + (p— 1) ey — my.
This is proved by induction on k. The first two inequalities are immediate. As to the
last ome if ¢,,,(t) = 0 then o,,(t) = 0,,(t), for k = m — 1. It remains to show that if
O r1(t) = Oppia(t) + (p— 1) Teg —my, and ., (t) = —1 then

One(t) < 0, (t) + (p— 1) Teg — my,.

We have

(mlc+1 + 1) (p— 1) + Onit1(t)
p

ou(t) = = p_lan/k+1(t) +rip—1) (Myyy)

_ _ —1
=p 1Un/k+1(t) + pkeK——p lex +L}T‘mo-

On the other hand

D) — e -t p-l N < e pk 4 Tni+1(t) ex  mg
0 (2) kD P O (t) = exgp” + » +p(p——1) )
(374 mg ex p— 1
<o)+ —"———2F —— m
= Un/k(t) + (P - 1)_18K_— my-
6. 3. Some properties of j,, k,, ,.
(6.3.1) L) = L(0), kut) = ko(0), jult) S jult) i =1

Further we have as a consequence of 6. 1, (6. 2. 1), (6. 2. 4):

(6.3.2) Ifl,(t')=1,(t) >0 then for all 0 < & < n we have
(D) = L) AN o (1) = at).

Finally we have

(6.3.3) Typ(t) — ) =t —1t i 0 <k=1,0)=L)

(6. 3. 4) t =7, () modp* if 0 <k=1L,().

(6.3.5) Ifl,(t) =5 >0, then «,,(!)=1i—5b for b <i=k,(t) and
ot <i1—0b for k() <i=n

n/i

(6 3. 6) For s g ln(t)a @nls(t) = Tn/s(t)'

The properties (6. 3. 3)—(6. 3. 6) follow directly from the definitions of the various
functions involved.
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7. Change points and nice pairs (F, K/K)
Let F be a formal group over A, and K_/K a I'-extension of K. Let

menjwsmm+é%mm+f%ﬁm)

(ef. [3], 2. 4). We write Norm,, , for the norm map F(K,)—~ F(K,_;). It may happen
that for certain xz € F(K,) there occur several terms of the same (minimal) valuation
in the expansion

Normklk—l () = Tryp_y (2) + 151’ a;N. wi—1 (%) + %' aMTrlc/k—l(M )-

The valuations v, (z) of elements x at which thisis to be expected will be called change points.
More precisely, the smallest number ¢ such that of,_, (t) = o}, (2),0 < ¢ +j < p*7,
k=1,2,...,n will be called an (i, j)-level k-change point, and will be denoted c;;(k).
The change point c;;(k) is called actual if moreover
Okjh—1 (ei(R)) = 07;/1:—1(017(]‘9)) = O’?G/lc—-1 (k).

d;,—d

7.1. Lemma. c;(k) = ——J’T-_-_—iipk‘l if 0<i<j,
. ok . o ok
pt—1 pi—1 pi—1
Proof. The first part is obvious. As to the second if ¢ = ¢;4(k) then
(7.1. 1) “%+“g"**+q=ﬁ*m+u
1

which means

(my + 1) (p—1) +¢
p

=P, titts, 0Ss<t,

(7.1.2)
= (m+1)—p'd _ pe
pi—1 pi—1°

This proves the lemma.
Corollary. If my=(1+p+ -+ p"Nex + m, then
— k — —
(7. 1. 3) Cio(k) — (eK dz)p — (7:¢ (P 1) (mo + 1) pe 0 § e < 1.

pi—1 pt—1 pt—1’

Remark. If i =1, then we see from (7. 1. 1) that ¢, (k) = ¢ is an integer; it fol-
lows that ¢ < —E—;—-—l, s0 that

. I . ok
p—1 p—1
7. 2. Definition. A pair (F, K_/K) consisting of a formal group over A, and a
(totally ramified) Iextension will be called nice if the following conditions are satisfied:

@) m,=m(K,/K, ;)=eg(l +p+ ---+p" ') +m, for some constant m,
foralln=1,2,3, ...,

! are integers for all 1 < i < j < p*Y,

(ii) the numbers %i'—i




Hazewinkel, Norm maps for one dimensional formal groups. 11 231

eg—d; .
(iii) the numbers pKi__ [ are integers for all 1 < i< pt1,
(iv) eg is divisible by p — 1.

- In the follovying section we shall need a few technical results on the position of
various change points in the case of nice pairs (F, K ol K)

7.3. Lemma. If i <j,t=cyk) then ol (1) < Ty (2).
If i <j,t <ey(k) then O (1) > Oy (2).

This is not immediately clear only in the case that i = 0. In this case one uses the
same argum_ent as was .used to establish (6. 2. 1); note that ¢;;(k) is the smallest number ¢
such that a3, (1) = o}, (1)

7. 4. Lemma. Let (F, K_|K) be a nice pair and suppose p* >1i > 0. Let t be an

integer, v, (¢) = r, and suppose that c; ,» (k) does not belong to the interval (4, ¢o,pr(K)]. Then
co,i (k) = Co,pr (k)

‘ Proof. .We write j = p". Because ¢, (t) =r we have, because i < p" =j, that
O () > o’,?,k_l (¢) and henge, by (7.3), ¢;;(k) >t therefore c¢;;(k) > c,;(k) and hence,
by (7.3), ohy_y(coj(k)) < obp_1(co;(k)) and as i1 (Cos(k)) = 0¥y (co;(k)) we have
again by (7. 3) that cy;(k) = ¢y, (k).

7.5. Lemma. Let(F, K /K) be a nice pair and let e, — my = 1, p* > (e, — m,) + 1.
Suppose that 0 <1 <j and co(k) < coj(k) then co(k—1) < ek —1) + 1 (here
ey = (p—1)""eg). _

Proof. We have (using the fact that m, =eg(1 + p + - - + p*1) 4+ m,) accor-
ding to (7.1)

o) = E— AP ex— (=) me+ 1) pe

pi—1 pi—1 T pi—1’
co;(k) = (gdei)p’“__ ex—(p—1(m+1  pe¢
o pj—1 pj—1 pj—1

where 0 < e, ¢ <1. Because 0 < (pt—1)"'(eg— (p—1) (my+ 1) + pe) < p* by
hypothesis, we have that (pt —1)" ez —d;) < (pj — 1)" (ex — d;). (Both these num-
bers are integers because (¥, K /K) is nice.) Therefore

o,ilk —1) < co;(k—1) +;flfj < ook —1) + 1

because (pi— 1) (ex — (p— 1) (m + 1) > (pj— )7 (ex — (p — 1) (mo + 1)).

7.6. Lemma. Let (F, K_/K) be a nice pair and suppose that e,—m,= 2,
t =—(e,— my)p' modp’?, FENU{0}, (e,—my) <p’ k>f-+g and y,(t)=r.
Then ¢y (k) <t for i >j, where j=p" if r 20, j =0 if r =—1, except possibly in the
case f=0,r=—1,1=1 '

Proof. Because t,,(t) = r we have in any case ¢;(k) = (cf. (7. 3)). Suppos:e that
r =0, then ¢;;(k) = 0 modp*~* because (F, K/K) is nice. This makes ¢;;(k) = ¢ impos-
sible. Now let r = — 1 then we have

(pi — 1) eg— (p —1) (my + 1) + 1) < (e,—mg)p’
if either f >0 or i > 1, which makes ¢;,(k) =t impossible (ef. (7.1.3)).
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7.7. Lemma. Let (F, K_/K) be a nice pair, t€N, ¢ . ,(t)=—1, and
p* = 2(e, —mg) = 4. Then
Oypqps(t) >¢oi(s) +1  forall 1=1,2, P
Proof. Let -
ep

eos) = (pi— 1) ex—d)p* — (pi— 1) (ex— (P — 1) (mo + 1)) =y

(3%

then
cor(s + 1) = (pi— 1) Heg —d)p* — (pi— 1) (exg— (p —1) (my + 1)) — pff_ T

with the same ¢ (cf. (7. 1.1)). Because ¢, ,,.,(t) = —1 we have that ¢t = c,,(s + 1).
It follows that
(ms-l—l + 1‘) (p_ 1) + 4 _’005(3)_“1

Oornys(t) — coi(s) —1 = ?
—1) .t
2 Zeall= 0 4 () —1
2Pt —my)
L e —d)p  (p=De—m) e
p(pi—1) p(pi—1) pr—1
(ex—d)p’ , (p—1)(e,—mg) p—1 ep
i1 T i1 i1 T it !
— —1 —m
—pre— P o 2 p(p)i(e_li) o)
p—Ules—m) (peti—p)(p—1)
T pr—1 T p(pr—1)

—1
>p5ex—”p (e, — mo) — 2 = poey — (6, — mg) — 2
> pleg—2 (e, —my) = 0.

7.8. Corollary. Let (F, K./K) be a nice pair, t€N, ¢, ,(t) =—1, and
exp’ =2 (e,—my) = 4. Then .
Tysr1(Tog1ss (1)) > 0%y (0,40,(1))  forall i=1,2,....
This follows directly from Lemma 7. 7 above, and the definition of the o, because
' —1

if ¢ is an integer then of, ,(t 4+ ¢') < 0%, () + 1 +

8. The main proposition

The proposition below is our main tool in the proof of Theorem 3. 1. The proof is
rather lengthy and involved but not difficult.

8. 1. Proposition. Let (F, K .,/ K) be a nice pair such that e,—m, = p, ex = (e, — m,).
Let t be an integer of the form yz,,(t'), b €N, b < n such that

(8.1.1) L(t) = b,
(8.1.2) t= P ey —my) + prti(e, — mq + 2)
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where 1, 1s the smallest natural number such that p™ = (e, — my), and
(8.1.3) p° = ple,—my) (P + 3),
(8. 1. 4) pi =2 (e, —my + 1).
Then we have
(i) Gpo(t) = 7,0(t), F-Norm,,, maps F*(K,) into F™°(K).
(i) F-Norm,, maps F™(K) into F*™"(K,) for all b < i< n.
(ii) F-Normy, maps F™(K) into F™ Y (K) for all 1 < i < n.

(iv) The induced map F'(K,)- F0® gy F00T k) is surjective if the residue
field of K ts algebraically closed.

Proof. To prove (i) we must show that 2 (%0 (1) = 0,,(t) (because
b (1) = — 1 1f k < 1,(¢); cf. the definitions of 7, and o,,). Now
Tajty () = Tup(8) =
and by (6. 3. 4), 7,,(t) = ¢ mod p®. Because ¢ is of the form Xpr0(8) it follows that z,, (t)
is also in the image of y,,. And we have therefore
(8.1.5) Ay (t') = lb/o(rnlb(t)) if  7,,(0) —p' <t = T (0)-

Now a,,(t) < 7,,(t) < 0,,(t) + (6,— mg) by (6.2.5) and (e;— my) < p® by condi-
tion (8. 1. 3). This proves the first part of (i), the second part follows immediately (cf.
(5. 1. 5)).

To prove (ii) we use induction on t. Let k = k,(t) = largest integer for which
by (t) = — 1. Let i < k. Then we have

(8.1.6) Ub(TPi/b (x)) = Ty (t) + T i vz = Ty (1) + (P —1) (eg—mg) + 1.

This will be proved in (8. 4) below. This proves (ii) for i < & because 7,,(t) + 1 = d,,(?),
and d,;(t) = p* (e, — my) + 7, (t) (%,s(t) = i — b because [,(t) = b and 1,;(t) = — 1).

Now let t =k + 1 =k,(t) + 1. Let t’ be the smallest actual level i-change point
(cf.7) such that ¢’ = 7,,(t). There are three possibilities

1) " —7,5(0) > (e, — mg) p™i.
D) ¢ — 1y (t) = (e — m) .

3) ' —7,() < (e — mg) p.

n/i

by the definition of d,; and 7,

032—1 (dn/i(t)) = Piﬂldpr + Pr(fn/i(t) + Pan/i(t)(% - mo))

= T (1) + P (0, — mg) = dyyy (1)

In the first case as o,,(t) = 7,; (1) we have t;,;(d,;(t)) = 4;;(z,;(t)) =r = 0 and hence

which implies
Normy,_, (F*(K ) < F=19(K )

which proves the induction step in this case. -
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In case 2) we have that d,,(t) =1/, let t' = (i), j <p". Then by (A (1)) <7
and oy, (dyi(t)) = oliy (dyyi(t))- But because d,(t) =t = c,; We have that

g (s (1) = B (4 ()
and the same calculation as above proves the induction step also in this case.
Now suppose that case 3) applies. Because (F, K /K) is a nice pair we have that
(p—1)|ex and as ¢ is of the form yx,,(t”) for some t” we have according to 8.3,
t = — (e, — m,) mod p°. It follows that

pfilt) b+ o i(t)

8.1.7) Tpi(t) = — (e, —mg) p E<iz=n

(cf. (6.3.5)). Let 1,,;(t) =r = 0, then ¢ must be a c,,(i) with s < p” because ¢’ is the
next largest actual change point. Now if s > 0 then

mod p

(8.1.8) Cpry() = 0 modp™?
because (F, K_/K) is nice. Furthermore o, (t) <i—b (ef. (6. 3.5)) so that
b+zxnli(t).

Cyrs (1) = 0 mod p

further (e, — mg) < p® (condition (8. 1. 3)). It follows that case 3) can only occur if ¢’ is
the actual change point t' = c (). We then have (cf. (7.1.3) and (7. 1. 4))

i
P ex — Oyr —1 P>
— (e, —mg)p /t)+p;rf1_f)_(p£kl_1) (el—mo_i)_pr—kll)___,l )
Pllex—dy) p—1 pe

< Tut) £ pH—1  pri_1 (e, —my—1) TR =1 = Cpro(2)

where 0 < e <1ifr>0and 0 <e=< p—1if r=0. Note also that z,,(2) = ¢,(?)
is impossible because then i,,(t) = —1 which contradicts i = &k + 1. The number
(p™** —1)"*(eg —d,) is an integer because (F, K./K) is nice, p* =0 mod p° i
and (p™' —1)"Yp —1) (¢, — my— 1) >0. Now

gyt —1 ‘—‘-““8
(e, — mg)p ’tz(el——mo)éﬁr:'((el"mo_“*' p"*‘]l?—-—i—’

because of (8. 1. 7) it follows that case 3) can only occur if

ex — dpr 06y 1
(8.1.9) Tpi(t) = _I%T:P_l_pz —p afi® (e — my).

Suppose first that ¢ = & + 1. This gives us

P e —-—dr r_%pli _
Taia (8) = ™ '_pTK?:—_%[—-‘p p /(L)(ef“mo) + dpp'.

Further d,,(t) = 7,,(¢) + P (e — mg) = Cpro(t) and ¢ (i) is an actual change point
so that

Oifim1 (dn/i(t)) = G?/i—l (dn i(t)) = [P_l ((mi +H(p—1)+ Pi : H)

S (p'—Nex+ (p—1)my 4 opt1 . x—dy

= P 1 "
The difference o;;,_; (dn,,.(t))—r,,,i +1(t) is larger than or equal to
r % i) —1
p 'Pn}t(el‘mo)"‘p (g — my)

p
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because

i ' e d e d
1 -1 %K " r+ K — Qpr —
’ R i A . d ,pi 1= 0.

cx + P pri—1 P %

Further
p’ po‘nh(t)( —my) — (eg—mg) = (Pan/i_l 1) —mg) + 1

because o,;_;(t) = «,;(t) + r and (e;—m,) = p. And according to (8.1.6) we have
that

Normy, (F*'(K,)) = F™O (K,)

it ¢ = 7,,(0) + (p“””‘“) 1) (e, —mg) + 1, because 4, (t") =—1. This proves (i)
for k =1 + 1.

Finally if 1 > % + 1 then case 2) cannot occur. For suppose that

— i
(8.1.10)  4(1) =1, 7,(0) = pi;fT;ﬁ——p " (6 — my).

All (j,, jo)-level i-change points are = 0 modp** if j,,j, = 1. There are therefore be-

cause Cy(l) < p tp—Jl——dT no change points of type ¢; ; (), j;, Jo = 1 between 7,,(t) and

¢yro(2). It follows that (cf. 7. 4)

(8.1.11) ¢,i(1) = ¢ (@) it pT>j >0.
Using Lemma 7. 5 we find

(8.1.12) L4 (i —1) = ¢ (i — 1), 0<j<p.

Now suppose we can show that

(8.1.13) iy (B) = o pr(t — 1) + 1.
We know that ¢,,(t) = r, therefore ¢,; ,(¢) <r, and (8.1.12), (8.1.13) then imply
tpjicy = — 1, (cf. Lemma’s 6.1 and 7.3). This is a contradiction because : >%k + 1
and k is the largest index such that ¢,, () = —1.

It remains to prove (8. 1. 13), this calculation is done below in 8. 5. This proves (ii).

(iii) follows from (ii) because z,,(t) is of the form y;,(s’), ¢,,;(t) = —1 for i < b

and d,,(t) = 7,,(t) + 1 for i < b.
To prove (iv) we distinguish two cases A) w, (1) >0, B) «,;.(t) = 0 where k = k,(t)
as before. First suppose that o, ; (t) > 0. We shall show that if ¢,,(¢) = r then

8.1.14) @V (w0 A) e P4, 1< s<ni>p
8. 1.15)  Try_ (m @A) <94, 1<s<n

Let j=01if r =—1, j=p"if r = 0. First suppose that s = k, then either o, (f) >0
or ¢,,(t) >0 (or both), otherwise we would have «,;,(¢) = 0 by (5. 1. 8) and Lemma 6. 1.
Now 1,,(t) = (e, — mo)p™* " modp™ ™", 2 < e, —my <p'™, () +b—1 <s
(cf. (6.3.5)). We can therefore apply Lemma 7.6 (with g =b—1, f = «,,(t)) to con-
clude

(8 1. 16) Tn/s(t) = o'n/s(t) > cij(s)a $ 2_ k’ i >j'
30*
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If b <s < k we can apply Lemma 7.7 (with o, () for ¢) to conclude

(8 1' 17) Tn/.s(t) Z On/s(t) > 001(8)7 L > 07 b <s < k
It follows that for b <s < n
t) —c.; = — m k 2 G‘n/s(t),
(8 1. 18) Tn/s( ) C“(S) = (61 0) (p + )pa " J <1 é ph_d; b <s é n
Guis (1) — ¢53(8) = (e —myg) (p" + 1) p™,
= ¢4(9)
ex — (p—1) (my + 1) 14
= i1 T i1
= 0 modp*?
l an[s(t) 1
> poi = (6, — my)
Tn/s(t)
+ oo 7
= (e, —my) P%Ism
| = O0modp**

(ei<1ifi>1; eig-p;1 if = 1; cf.(7.1))

This is most easily seen by looking at the picture drawn above. Use s = b + «,,(t),
&ys(t) = 0 and condition (8. 1. 3) of the proposition. That the relative position of 7, (t),

0, () and c;;(s) with respect to points = 0 modp** is as indicated, follows from the
following facts:

¢1j(8) < (1) < To(t) (8- 1.16), (8. 1.17) ¢yy(s) = Omodp® if i >j >0

_ex—(p—1(my+1)  ep
pi—1 pi—1

Ci(s) = mod p®~?!

where 0 < e <1, if 0 <1< p" ! (¢f. 7.1) and ex— (p—1) (my + 1) >0.
Finally for & < s < n we have

(o — m)p™ 2 oy —mg) 2 EZ LDt L) _pes

pi—1 pi—1

which in view of (8. 1. 16) shows that the picture represents things correctly and thus
establishes (8. 1. 18). It is now a matter of some straightforward calculations to prove
(8. 1. 14) for b < s < n. This is done in 8. 6 below.

Now let s < b; let ry be the smallest natural number such that p™ = (e; — m)-

Note that ry < b because of (8.1.4). Because «, o >0 we know that b <k = k, ().
It follows that

(8.1.19) 0,y (1) = 074115 (Oas1 (1)) = 07414 (1) = exp® — (63— my).
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Using (8. 1. 19) one checks directly that (8. 1. 14) holds for b = s >b—r,. Cf. 8. 8.

Now suppose that 1 < s < b —r,. Because 7,,(t) is of the form Zpjo (") for some b’
(cf. the proof of (i) above), we have that

(8. 1. 20) gy (Tags (1) — &) = 2y (7,5 (1) if & < p*°

It follows from this that (because Opys (1) = Ty (1) — (€,—my ) and p™ > (e, — my))
(8.1.21) Tys(t) = 0,5(t)  if s=b—r.

To prove (8.1.14) for s < b —r, it therefore suffices to show that

(8.1.22) 0hs 1 (Oas (1)) > 09,1 (0, (1),  s=Zb—rg, 121,

and this follows from 7.8 because s = 1, ex = (e, — my), (e, — my) = p.
We have now proved (8. 1. 14) for all 1 < s < n, in the case Oy > 0. As to
(8. 1. 15) we remark that

(8 1. 23) O‘g/.s—l (2 Onjs (t)) - U.ﬁ?/s—l (an/s (t)) g p—lan/s (t) — L

Using this it is not difficult to prove (8. 1.15) for s = b. Cf. 8. 9 below. To prove (8. 1. 15)
for b > s > b—r,, where r,is again the smallest natural number such that = (e,—my),
we use the fact that

(8. 1. 24) Oy (t) = egp® — (e, — my)

which follows from ¢, (0o,,(t)) = —1. Cf. (8.1.19). To check that (8. 1.15) holds for
n >s >b-—r,is now straightforward. Cf. 8. 10 below.

Finally for s < b—r, we have that =,,(t) = 0,,(t) (cf. (8 1.21) above); more-
over 7,,(t) is of the form g, (¢') for these s. So that

(8 1 25) s/s—l (rn/s + 1) - ls/s—l (Tn/s )+ 1 - Tn/s—-l( ) + 1

and this proves (8. 1. 15) for s £ & — r,. We have now proved (8. 1. 15) forall 1 < s < n.
Note that the hypothesis o, ; >0 has not been used in the proof of (8. 1. 15).

We are now in a position to prove statement (iv) of the proposition in case A;
i e. in case &, ¢ > 0.

Let = be a uniformizing element of K; and let =, s =1, 2, ..., n be uniformizing
elements of K, s=1,...,n, chosen such that N, , (%) = m,_;, Ny,(7,) =7 Let
2 € Ag; it follows from (8.1.14) and (8. 1. 15) that for s = k,(t) =k

(8.1.26)  Norm,,(e7) = b, &% + b, ;27 + - -+ + b,z + b, moda,"*"
where
b, = 2,79, 1(s) = PVt 2, € Ay, v,(b,) = T, (1) = 0, (1),

vg(b,) = gn/s(t), i=01,...,8,—1, 4 = pm-i—l 4 e prs+1+1

if gy=rn,j=n,...,5s+1L

(8. 1. 27)

This can e. g. be seen as follows. One uses induction. Suppose (8. 1. 26), (8. 1. 27) have
been proved for s + 1. Because 7, (t) = 0,511(2) = P9 — m) we also have

ty —
Norm,, ,, (¥7,) = b"s+1

et 4 + b,z —|~ b, mod 7 d"/s“(t)
¥r
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It follows that

d,, 15
Norm (xnib) = Norms—l—lls(b qu—l) + e + Norma+1/s(b0) mOdnsnIS()
F F

nls U1

and hence

(2% /S(t)

Norm,,, (z7t) = Norm, (b, . z°**) + - + Norm,,,,(b,) modz,

Us41
Now let ¢, ,(t) =ry,,, then we have using (8. 1. 14), (8. 1. 15)

’ d, st
Norm, (b, . z°*%) = by 2+ -+ -+ biz + b mod s/

Up+1

with vg(b;) = 0,,(t), and for i = 0,1, ..., u,,, —1
Norm,., ,,(b,2") = b2+ - -+ + by'z + by moda;**

where i’ < p’s+1t! 4 i < u, and v,(d}') = o,,(¢). This proves the induction step.
For s < k = k,(t) one sees from (8.1.14) and (8. 1.15) that

dy /s(t)

(8. 1. 28) Norm,,, (zn%) = Try,(Norm,,, (zz})) mod s,

nls

We now use the trace lemma of Section 4 above to keep track of what happens to
the “leading coefficient’” of (8. 1. 26). We have

(8.1.29)  Try, (5,7 = z,p7 modmi®® b <5<k =Fk,(1)
if 0, (2,9) = 7,5, £s) = P08 t(s—1) = p7ie(s) = P, 7 €4y

This follows directly from proposition 4. 41 and condition (8. 1. 3). Cf. 8. 11 below.
From (8. 1. 26), (8. 1. 27), (8. 1. 28), (8. 1. 29) and (5. 1. 5) we obtain for b < s < k

(8. 1. 30) Normnls(xn;) =b,a" + b, 2  + -+ bz + b, mOdﬂfﬂls(t)

7, 7] +1 & 1(L)
where u =u, =p"* 4 pHT b, =24, t(s) =p 0,(,) = T (D),

Vs(by) = 0 (), t=0,1, ..., u—1,b < s <k In particular we have that

(8.1.31) Norm,,, (znt) = ¢,a* + ¢, 2% + - + ;2 + ¢, modnﬁ“/b(t)

U= U, ¢, = ané(b)7 t(b) = ta /vb(cu) = Tn/b(t)7 vb(ci) g Gn/b (t)'/ i = 07 1, cee, U — L.
Now 7,,(t) is of the form y,, (") for some ¢'; further
V5(Cs) = T (8) = T (8) — (61— M) > 7, (1) —‘Pb, 1=0,1,...,u—1
It follows that

(8. 1.32) Vo (Try0(eu)) = Aojo (Tapp () = Tpo (1) = 00 (8),
S 00(Tryg(d) Z Ao (T (8) = o)) = 0o®), 1= 0,1, ... u—1.

Putting (8. 1. 31), (8. 1. 28) and (8. 1. 32) together yields

Norm, o (z7;) = cpa* + « - + 12 + ¢ mod n0®
(8.1.33) ) ’ -
’UQ(Cu) = Unlo(t)a 'Uo(c,i) g Gn/O(t)) 1= 0, 1’ N 1

and this proves statement (iv) of the proposition in the case that «,; , > 0.
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Now suppose that we are in case B; i.e. w,;(t) =0 where k= k,(¢). Then
tys() =0fors=mn, ..., k+1;4,,0) =—1fors=k k—1,...,2,1;b=Fk Itis
not difficult to check that the proof given for (8.1.14) in case A for n = s = £k also
works in case B provided s > k. (The hypothesis «,,(t) > 0 is used twice: to establish
(8.1.16) in case s = k and to establish (8. 1. 19) in case s = b.) The arguments used to
prove (8. 1. 14) for s < b in case A also remain valid, except in the case s = & (cf. 8. 1. 19).
In the case s = b = k we have instead of (8. 1. 16) (cf. Lemma 7. 6 exceptional case)

(8. 1.34) 7, (8) = Gpp(2) > c;0(b), & > 15 7,(2) = 0, (1) = ¢49(d).

There are therefore two possibilities in case B.

By 7,5(t) > ¢y,(b) in which case (8. 1.14) also holds for s =& =& (cf. (8. 12)).
B,. 7,5 (t) = ¢,0(b) in which case (8. 1. 14) fails to hold for s =k = b.

Formula (8. 1. 15) has been proved above without any hypothesis on «,, (). We are now
in a position to prove (iv) also in case B. Exactly as above one shows that

Normn/k(xnjb) = bux“ + -+ bl.’E + bo modn:n/k(t)

v (b,) = T (t) = O (1) v(b;) = 0, (2),
t=0,1,...,u—1, u=(n—k)p.

(8. 1. 35)

Applying Norm,, , to this we find

(8. 1. 36) Norm,;_, (znl) =2 + -+ + ¢ modni’i’f‘l(t)

where u' = up in case B,, and then v,_,(¢c,) = 7,1 () = 0, (¢) because «,;(t) =0
and 7, (t) = ¢yo(k); or u’ = u in case B; and then v,_,(c,)) = 7,1 (f) = 0,3, because
To(t) is of the form (') for some #'. Also in both cases v;_;(c;) = 0,31 (¢). Using
(8. 1. 36) instead of (8. 1. 31) one obtains in the same way as in case A that

(8.1.37) Norm, () = cja* + -+ - + ¢jz + ¢ mod 0"

’UO(C;,) = n/o(t) = n/o(t); ’UO(C;) 2 Tn/()(t) = Un/o(t)7 1= 07 11 K] u —1
which proves statement (iv) of the proposition in case B.

8.2. Lemma. Let (F, K /K) be a nice pair, let «,()=1i—>b, t>b and
tyi(t) = —1, Then

xip (Tapp (1)) = (P —1) (e, — myg) + 7,(2)-

(Note that y,(7,(t) is defined, because Aipp (T () = 7, (¢), from which we also
see that (7. (1)) = Tu(t))-

Proof. According to Lemma 8. 3 below we have

i-b 1
Xin (T (2)) = (Tap (2) —pleg(i—b) —mo) p*~" + my + exgﬁ:T

and because ¢,,(f) = —1 and «,;(t) =i-—>b we have that
Tuil) = P07, (1) — (L — D) Pleg

(by the definition of the functions 7). q. e d.
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8.8. Lemma. Let (F, K /K) be a nice pair. If the function y.,, i >b is defined
for a certain s, then

b
. . i —1
Zin(8) = (s — pPex(i —b) — my)p P+ mg + ex%—_“r

(and y;,(s) is defined for all s for which this expression is positive).

Proof. For calculations like this the following fact is useful. If a,, a,, ..., @, is
a series of integers, t € R and we define

a; +t a, +1i,_ ' a, + ¢ ,
t1={ lp -},..., t, = -—’———’—i}, t; = 2% ey b=

p p p
then ¢, = [t/]. Using this we find

e _ome b
}‘ilb(t) = [P eg(l b) + m, P +1 pb €xP p+1 + P

The lemma follows from this.
8. 4. Proof of (8. 1. 6). Because v,(z) = (p“ —1) (e, —m,) + 1 and Lemma 8. 2

we have that v,(2) = xi,(7,5(t)) + 1 which implies 2, (v,(%)) = 7, (¢) + 1 = d, (¢)
which implies (8.1.6) because 4,;(t) = —1, t,;,(t) = — 1, ..., 4, (8) = — L.

8. 5. Proof of (8. 1. 13). We have

; ex — Opr 1
L(t) =1 >0, 7,,(t) = Pz}TrI:—T__L{[——P i

e, — Mmy)
and we must show that ¢, ;(t) = ¢, (i —1) + 1. First, suppose that 0 < r <h—1,
then d, = 1 and we find

Unli—l(t) - c;pro(i —1)—1= Tn/i—l(t) - Cpro(i —1)—1

> pitr eK"—d

7 r %n /i)
=P FraTI— pp ™

e, — M)

. — dyr —(p—1 1
+d,pt—ptt ;f{—l _—p1 + oK (];,._,_1 _?_(lino +1) —1=0

(
because p'~! = p' T i

and

ey —mg) a8 I 4 o, (1) = o, () S i—1—b and p® = e, —my

rei GK—dpr i—1 CK—dpr
g P w120

(because (p"** — 1) (ex — d,) is an integer > 0).
Now let r = h —1, then d, = 0 and we find

. — 4 —1, %))
ui-a (0) — e (i 1) — 1 = p e g™
i1 Ex eg—(p—1)(me+1)
P + P—1 1

_ e ol
Z Pt —Op T = P e —m + ) 2 0

because p® > e, —m, and «,,; ,(t) <1 —1—20.
=& 0 nli—1
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§ 8. 6. Proof of .(8. 1.14) in the case Yy >0, n=s >1,(t)=b Let
nz=s >1,(t) = b. First suppose that r = tys(8) 2 0, let j = p”, and i > then

94151 (uss (1)) — 051 (¢51(8)) = (0 (1) — ¢4(5)),
04101 (O (8)) — 0hjo_ (¢14(8)) = P (0,1, (1) — ;1(5)),
and of,_, (05 (1) = st (8); 0Ly (c14(8)) = e (€51(9))-
It follows that
93101 (0njs (1)) — 0oy (8) = (£ — ") (0 () — €34())-
Using (8. 1. 18) and (6. 2. 5) we see that for i >
b1 (s (1) — Twua () Z (8 — ) (&3 —m) (8" + ) p™ " — (e, — my)
= (" + )™ ey — mg) — (e — my)
= p" 0 e —mg) 2 p 0 (e, — my)
which proves (8.1.14) for the case r =0, p" <i< p" b<s<n

Now let r = ¢,,(t) = —1, then for t =1

O"4{;/3—1 (Gn/s (t)) - Ji/s-—l (Cio (3)> = i(gn/s (t) - cio (S))
and

g5 (Tnss (1)) — 095y (€40(8)) =

(my+1)(p—1) +ouws(@) ] [ (ms+1) (p—1) + ¢4(5) |
; | 7
(me+1)(p—1) + ons(t) _ (mg+1) (p—1) + ¢io(5)

- 1
JZ JZ *

= p—l(an/s () — Cto(s)) + 1.

It follows that of,_, (0, () — Oy (t) = (1 — p7") (05 (t) — €40(s)) — 1 and hence

A

Gy (Gugs (1)) — Tagun (1) = (L — ™) (" + 1) (6 — mg) ™ — 1 — (e — my)
= (p—1) (P + 1) (e — m) "™ — 1 — (e, — m,)
= ((p— 1) (P + V™0 — 1) (e —mg) —1
= ey — mg) — 1 = p e, — my)
which proves (8. 1.14) for the case r=—1, 1 i1 =p", b<s=n
It remains to prove (8.1.14) for b <s < n, > p" 1. We have (cf. 8. 7 below)
(8.6.1) o (1) = P01
For i > p"' we have
01yt (T (1) — Tgoa (8) Z T (s (1)) — s (8) — (21— my)
2 0t)y_1 (0 (1)) — 0%z (s (1)) — (21— o)
> (1 — PP 0, (1) — (63— M) Z Ty 1) — (&1 — o)
> p Ot — (e, —my) = p™ ey — o)

31
Journal fiir Mathematik. Band 268/269
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because ¢t = (p* + 1) (e, — m,), according to condition (8. 1. 2). This concludes the proof
of (8. 1. 14) in case Kty > 0,n=s >1,02) =0

8.7. Lemma. Ifb<s<n, b=1,0) >0, then o,,(t) = p sy

Proof. This is obvious if s = k,(t). Using ¢3,_,(t') = 0o (2) if ¢ = 1, it therefore
remains to show that of,_;(p?') = t' which follows from the definition of oj,_,.

8.8. Proof of (8.1.14) in the case o,y >0, b=s >b—r,. If i is not a
multiple of p"~* we have :
O'i/s—l (Gn/s(t)) - Tn/s—l (t) g O-i/s——l (Gn/s (t)) - 0'nls—l (t) - (el - mo)
g C":c:/s—-l (Gn/s(l)) - O'g/s-—l (Gn/a (t)>"‘ (61 - mo)'

And because o, (t) = egp® — (e, — m,) this is larger than or equal to (cf. (8. 8. 1) below)

‘721:9—1(31&'17’s — (e, — mo)) — 03/3—1 (exps — (e — mo)) — (&g — my)
= egp’—(e;—mg) + p*t—p~ (exgp’ — (e,—mg) + (p —1) (my + 1)) — (e, — my)
= egp®— (e,—mg) + p°?
—p ' (exp® —(es—mp) + plex —ex + (p—D)my + (p — 1)) — (e, — my)
gps‘l—(el——mo)+p‘1(el—mo)+p"ex~—p“(p—1)mo—-p;1
p—1

=Ps_1'—‘ (el—m()) - P = pb‘ro - (61"— my + 1) g 1= dn/s—l(t) - Tn/s—l(t)

— (e —my)

because of conditions (8.1.4) and (e, — my) = p.
If i is a multiple of p"~* we have as above
0-.i/ar—-l (Un/s (t)) - Tnls—l (t) g 0'::/3—1 (ers - (el - mo))
- 0'2/3-—1 (exps — (e, — mo)) — (&, — my)
which is larger than or equal to
Ph—l(eKPs — (e, —mg)) —2exp* ™t — (e, — my)
= P (egp® — (63— my)) — egp® — (&, — my)
= (p"t1—1) (ers — (e, — mo)) — 2(e; — my)
= egp®—3(e;—mg) = pP Tt —3(e; —my) = 1
because of (8. 1. 4). Note that we have used
(8.8.1) L >t >4, t€N=>of,_ (t') — ol (t') = o}, (t) — of),_; (2).

This is obvious from the definitions of o},_,, o/, if j = 1. If j = 0 to prove (8.8.1)
one uses

, t—1—1
G.?/s-—l () = 03/3—1 () +14 *——;——*“ )
Ui/s—l (tl) = 0'2/5—1 (t) + i(t, - t) (l > O)'
8.9. Proof of (8.1.15) for n = s = b =1,(t). If s = b then (cf. Lemma (8. 7))

(8.9.1) as®) = ™1
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Using (8. 1. 23) and (8. 1. 2) we see from this that
02/&—1 (2 Oynjs (t)) — Ty (B) = 63/3—1 (2 s (2) ))— Ogjs—1 (Un/.s (t)) — (e, — my)
= 0g,1(20,,(2) — gis—1 (s (1) — (&, — my)
= p Pt — (e —mg) —1
= p O P e, —mo) + pT O p(ey— my + 2) — (6 — mg) — 1
= p (e, —mg) = p™ (e, — my).

8.10. Proof of (8.1.15) for b >s >b—r,. Using (8.1.23), (8.1.24), (8. 1. 4)
we see that

"g/s—1 (2 O'n/s(z»‘- Ty (8) = 03/3-1 (2Gn,s ) 0'2,8_1(%,8 (t) )— (e, — my)
=pt n/s(t)_“1—(e1‘—mo)>l’1(31’_(31“’”0)‘“1—(31—""0)
ey —myg
p
= dn/s—l (t) — Tys—1 (t)
8.11. Proof of (8. 1. 29). Because b <s < k= k,(t) we have «,,(t) >0 so that

t(s) is a multiple of p. We can therefore apply proposition (4. 1) to obtain (using that
Zs € Alc)

= exp™ Tt — — 1 —(ey—mg) = exgp" " —2(e;—mg) —1 =1

Try,_y (2,77) = pa,al {® modz s 7O+

where r, = p~*[(m, + 1) (p — 1) + 1]. It therefore only remains to show that

Ve_1(2) + 2r, + pTH(s) + 1 = dyyo (1)
Now v,(z,) + t(s) = 7,,(t), so that v,_,(z) + p~'t(s) = 7,,_(t) — p*~'eg Which means
that we must show
2r, + 1 —p*reg 2 p™10 (e, — my).
Because «,,_, (t) = s —1—05 we have
2(p—1 2 s
2r, +1—p*leg = 2p5‘lex——%——)—(el——-mo) +—5—|— 1 —p*!
> p*leg — 2(e; — mg) = p 0 (p" — 2(e,— my))

= p“n/s—1(¢) (61— 1)

because p® = 3 (e, — m,) according to condition (8. 1. 3).

8.12. Proof of (8. 1. 14) for s =k,(t) = b in case B,. Because (8.1.16) holds in
case B, we have (8. 1. 18)

Tops (1) = Cou(s) + (7" + 1) (&3 — o).
Further because we are in case B, 0, (1) = 7,,(t) for all s. As in 8. 6 we now see that
Gyt (Oags (1)) — o (8) = (8 — P77 (O (8) — coi(s))—1
S U—p (P D) —m)— 12 @+ 1) 21>,

-

which proves (8. 1. 14) in this case because d,,_; (£) = Tn—1(t) + 1 = 0,y (t) + 1 (the

case i > p"~! follows from the case i = p" ™). .



244 Hazewinkel, Norm maps for one dimensional formal growps. 11
9. Caleulation of o, (2), T,/ (¢) and Z,(2)

In this section we shall assume that K /K is an extension such that

m,=m(K,/K, )=00+p+ - -+ p"Neg +my forall n

9.1. Lemma. If ¢, (t) <h—1, then iy, ,(t) =—1, where ¢ is the smallest
integer such that p° = ey.
Proof. If ¢,,(t) = —1 then ¢,,(t) = —1 for all u <s. (Cf. Lemma6. 1.) Now

suppose — 1 < ¢,,(1) <h—1 and let j= p‘”"(t). Then

Tn/.s‘——l (t) = G'n/s—l (t) = Gils—l (Gn/s(t)) g Ps_l

because d; >0 as 1 < j < p"* Let u be the largest integer such that ¢,, () = — 1.

Suppose that u < s-—c¢—1, then

t': - n/u—l—l(t) ; Gn/s—l(t) g ps-—l.

However (cf. (7.1.3)), for i = 1,2, ..., p"*

-1 _ (eg—d)p"*!  ex—(p—1)(m+1)  pe
P> e+ 1) = pi—1 pi—1 pr—1"’
because s—1 >u + c. This shows that ¢, ), 1(t") = t,,4,(t) = — 1 contradicting
our assumption that u < s-—c¢—1. Therefore u =>s—c—1. q.e. d.

Let j,(¢) be the number of indices < n such that 4,,(t) = b —1 (cf. (5. 1. 13)).

9. 2. Lemma. For every integer b >0 there is a constant t,(b) independent of n such
that t = ty=j,(t) < h~'(n—b).

Proof. j,(t) >se4,lt)=h—1= =4, (H=h—1sy, (t)=hrh—1L
Hence if j,(t) >s then o,,_(t) = p"* ¢, and ¢,,_,(!) = 2 —1 then means

PPV < eppmr (n—9), i =0,1,2,...,p" —1,
and this implies in particular

exp”"  ex—(p—1)(mg+1) pe

POV < e (n—s) = P—1 7—1 P—1 o

IA

egp
which implies ¢ < p"~**e,. Therefore if t = t, = ey p” then j,(¢) < k™ (n — b).

9. 3. Corollary. L(t) = n—"hj,(t) — a,,
where the constants a, , are bounded independently of t and n.

9. 4. Corollary. For every b >0 there is a constant t, € N independent of n such that
1,(&) = b for all t = t,.

Proof. This follows from 9. 2 and 9. 3.

9. 5. Lemma. Let? be a fized integer > 0. Then as n varies we have j,,(1) = h™'n + ¢,
where the c, are a bounded sequence.



Hazewinkel, Norm maps for one dimensional formal groups. 11 245

Proof. Note that

Ja) >s e p* VT < cppa(n— u), 1=0,1,2,...,p"*—1; u=0,1,...,s
_ d n—u—1 .
t<—p+£—l——;~ip’“h+”, i=1,2 ...,p"'—1; u=0,1,...,s
&>
= _[exp"™ ex—(p—1)(my+1) Pe \ _uhiu _
t<<ph___1 Fr— _ph—i)p , u=20,1,...,s

The lemma follows because the d, are constants > 1 for i =1,2, ..., p"* —1.

9. 6. Corollary. Let ¢ be a constant integer > 0. Then as n varies we have

- h—1
Tn/O(t) = h neg + bn,‘t

where the b, ; are bounded independent of n.

Proof. Tt follows from 9.5 and 9.3 that ,(f) = d, where the d, are a bounded
sequence. Let k(n) = k,(f) be the largest integer % such that .,,(f) = —1. Then
k(n) = n — j,(t) — d, where the d, are bounded by ¢ + 1 according to Lemma 9. 1.

Applying 9. 1 again we obtain from the definition of =

nls
h—1)j,,(&)+ ¢ ’
Tnlk(n)(t) = tp( Dinll)+ e + C;,

where (c,) and (c,’) are bounded sequences. Therefore if ,(t) >0

Tun, i (@) = 1 4 (R —1)j. () + ) ex - pn® - pODIO— L o
T n L ’ ’ h - 1
o (&) = Ay o (Tan, o ) = ((h — 1) J (@) + cp)ex + b)) = ( h—_)' "noceg + by

where the b, and b, ; are bounded sequences (use the fact that ,(t) is bounded and 9. 5)
If 1,(t) = 0 then
7 —k(n) 7 h—1 .
Tuo(t) =P Tugiiny (8) + k(n)ey = ~—h—~n “eg + b,

where (b, ;) is a bounded sequence because k(n) = n— j, (1) — d, where (d,) is bounded,
and j,(¢) = h~'n + d, where (d,) is bounded.

9. 7. Corollary (= easy half of Theorem 3.1). Let K /K be any I-extension; F
a one parameter formal group over Ag. Then there exists a constant ¢, such that

F-Norm,,(F(K,)) < F*(K)
where o, = h™'(h— 1) egn — ¢;.

Proof. Take b >0 large enough so that m,=(1+p+ -+ p" Vexg + m,
for n = b. The I'extension K _/K, satisfies the condition stated in the beginning of
this section so that we can apply 9. 6 to find a constant ¢; such that

O (1) 2 Ty (1) — (e, —my) = B (h—1)egp’n —ci.

It follows from this that, for large enough n, g,,(1) = Ay (04o(1)). The corollary
follows from this because, for fixed b, 4,,(¢) = p~°t + ¢, where (¢, is a bounded
sequence.
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10. Proof of the theorem in the nice case

In this section (F, K /K) is a nice pair such that e, —m; = p and ey = e, — m,.
To prove Theorem 3. 1 by means of proposition 8. 1 we must show that there are enough
integers ¢ to which 8. 1 applies.

10. 1. Lemma. Let n €N be fized and let t, € N be such that 1,(t)) > 0; let sy = 7,0(2y).
Then for every s = s, there exists an integer t = t, such that

(i) t is of the form y, (L), ' €N, (ii) 7,p(t) = s.
Proof. Let Iy =1,(t,) > 0. Then 2, ;,(z,y, (t)) = s, and hence y;,0(So) = Ty, (f)- Let
(10.1. 1) ty = to =+ K10 (So) — Tupp, (o) = -

If 1,(¢) = 1,(¢) =1,, then t, satisfies (i), (ii) above for s =s, If I,(¢,) =+, then
l,(t) >1,. We want to show that

(10. 1. 2) Top, (1) = Tapr, (8) + 8 —&o-

This can be done as follows. Let £, < (1) < #(2) - - - < t(r) be the integers between
ty and ¢, (¢, included) where [, (t) changes value. I. e. t(1) is the smallest real number larger
than t, such that [,(z(1)) >1,(t,), etc. ... One has ¢, <t(l) < --- <t(r) <t,. Let
1@) = 1,(¢(2), I, =1,(ty), then Iy <l(1) < - - <l(r) £ ;.

One has (cf. the definition of ¢ and (6. 3. 3), (6. 3. 6))

2, (F(1)) — 04y, (t5) = t(1) — 15,
Qn/l,, (t (2))_ Qn/lo(t (1)) = (t(z) - t(i))plo-l(l)a

0, (63)) — 0,1, (1(2)) = (£(3) — £(2))p~"®,
(10. 1. 3) ‘

Qn/z,,(t(")) — Qn)l,,(t(r — 1)) = (@(r) —t(r — 1))p~ D,
Oty (1) = 0y, (2(r)) = (8, — £ (r))p™
(note that 1,(t(1) —e) = L,(t,), thus g, (£(1) —&) — g, (t,) = t(1) — e —1,, taking
the limit as ¢ > 0 gives the first of the formulas above because g,;(t) is a continuous tunc-
tion of ¢; the other formulas of (10.1.3) are proved similarly). Adding the formulas
(10. 1. 3) and using I(1) = 1,, i = 0,1, ..., r gives
Onft, (1) — Oy, (B0) = 8, — 1,

and hence (cf. (6. 3. 6), (6. 2. 5))
Tty (1) = Oy, (81) = Qup, (B0) + t1— 1y = Ty () + 81— 1,
which proves (10. 1. 2). Using (10. 1. 1) we see

T, (8) = Tyt (o) + (to + Xupo ($o) — Tty (to)) — by = Y1,10(S0)-
Now

Ay, (T, (1) = T (E1) = 21,70 (S0)

which implies 7, (t;) =< 2;,0(8o)- Now let
(10. 1. 4) ty =t 4 2350(So) — Ty, (t1)-
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If 1,(¢,) = 1,(t;) = I, then ¢, satisfies (i) and (ii) of the lemma for s = s,; if not then
l,(ty) = 1, > 1, and we construct a ¢, from t, as we constructed ¢, from ¢,. This process
must terminate because [, < I, <, < -+ < n. This proves the lemma for s = s,.

One proceeds by induction. Let ¢, satisfy (i) and (ii) for s = s,. Let | = [,(t,), then
Zyo(s + 1) is larger than 7,,(2,) = xy0(s). Let

by =1+ xyo(s + 1) — 7 (t)-

It 1,(t,) = [, then ¢, satisties (i) and (ii) for s + 1. If not then 1,(;) >1,(t) =1 .... (same
argument as above) .... g.e.d.

10. 2. Proof of theorem 3.1 in the nice case. We have that (F, K_/K) is nice,
e;—my = p, ex = e, — my. Now choose b € N such that p® = p(e, — m,) (p" + 3) and
p’ = 2p"(e;,— m, + 1) where 1, is the smallest natural number such that p™ > (e, —my).
According to 9. 4 there is a constant ¢, such that [,(¢,) = b for all n. Let

to = max{t;, p"*l(e; —mp) + pT e, —mg + 2)},  Sp = T, (to)-

According to Lemma 10.1 above there exists for every s=s, a t,=1t, such that
Tajo(ts) = 8, Ty, (ts) is of the form Xia0(t’) for some ¢ € N; further 7, (2) = & for all
§ = s, because t, = t,. We can therefore apply proposition 8. 1 with ¢ = ¢, for all s = s,.
This proves (cf. [3], Lemma (3. 2))

Norm, o (F*(K,)) = F*(K).

According to 9. 6 there exists a constant ¢, such that 7,,(%,) = b -}: ! neg— ¢, for all n.

This proves the righthand inclusion of 3. 1. The lefthand inclusion was proved in Corol-
lary 9. 7. :

11. Proof of Theorem 3. 1

In view of 10. 2, 9.7 and 3. 5 it suffices to show that given a I-extension K_/K
and a formal group F over Ay there exists a finite extension L/K such that

(i) L - K /L is a I'-extension, (i1) e;(L) — my(L) = p,
(iil) e = e, (L) — my(L), (iv) (L - K4 /L, F) is a nice pair

(where F is considered as a formal group over A, and e,(L), m,(L) are the numbers of
the I'extension L - K /L corresponding to e, and m, for Kw/K).

11. 1. Lemma. Let K'|K and L|K be two totally ramified galois extensions of prime
degree p and p’ respectively such that m(K'|K) > m(L|K). Let L’ = L - K’, then L'|L and
L’|K’ are both totally ramified (galois) of degree p and p’ respectively and

m(L'|L) = m(L/K) + p(m(K'|K) — m(L|K)), m(L'|K') = m(L/K).

Proof. Let M be the maximal unrami- K =LK =KM=LM
fied extension of K contained in L - K'.

It M+K, then L-M=L-K =K'M, L
which because M[K is unramified implies Y
m(LIK)=m((LM|M)=m(KM|M)=m(K'|K), )¢
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a contradiction. Hence M = K and L'/K’ and L'/L are totally ramified of degree p,p

respectively. K B
The statement on m(L'/L) and m(L'/K’) now follows from the
fact that we must have ‘ l
Yo Yoe = Yyg o Yex K

where the ¥p, are the Herbrand ¥-functions. Cf. [9]; if P/Q is totally ramified, galois
of degree p then ¥po(t) =t if ¢ < m(P/Q) and ¥p () = m(P[Q) + p(t—m(P[Q))
if t = m(P|Q). q.e.d.

Let K_/K be a I'extension; L/K a finite extension. We write L, for L-K_,.If
L. /L is again a totally ramified I-extension let m,(L) denote the natural number such
that m(L,/L, ;) =1 +p+ -+ p" e, + my(L) for n large; we write e,(L) for
(p—1)""ey

11. 2. Lemma. Let K_|K be a I'-extension; q,, - .., q, a finite set of integers. Then
there exists a fintte extension L|K such that

(1) Lo/L ts a totally ramified I'-extension such that
M(Ly/Lyoy) = (L 4+ p+ -+ + " Neg + mo(L)  for all n.
(ii) g, divides ey x = vi(ng), 1= 1, ...,
(i) ey (L) — my(L) = p.
(iv) eg = ey (L) — my(L).

Proof. Let ¢’ be the smallest common multiple of the ¢; and let ¢’ = p°q where
(p,q) = 1. Let b €N be such that

m(K K, ) =0 +p+ -+ p"Neg +mg for n = b.

Take L™ = K, where ¢ = max(b, s). Then LY/L® satisfies (i) and p'ley . Let
L®[L™ be the extension of L® obtained by adjoining a root of X?—uz .. The

extension L'P/L® then satisfies (i) and (ii). This follows from Lemma 11.1 above. Re-
placing L® with L if necessary we can also assume that

m(LPIL®) = e g + mo(LP) Z 4.

Let r=3if p =2 and r = 2 if p > 2. There exists a totally ramified (galois) extension
L®|L® of degree p such that m(L®/L®) = r. (E. g. a socalled Artin-Schreier extension
(cf. [2] (6. 5.)) for example.) It follows from Lemma 11. 1 that L&/L® still satisfies (i)
and (ii). Further also according to Lemma 11. 1

m(LPILY) = my(L®) 4 e, gy =r + p(m(LP|L®) —r)
=)t pege + ()
which gives us mo(L®) = pm,(L®) + (1 — p)r and hence
es(B%) — my(L9) = pe (1) — pmy(1) + (p —1)r 2

i.e. LY/L® also satisfies (iii). Finally we get e,(L®) — m, (L&) = e, (L®) — m,(L®)
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as is easily checked. To get an extension I" such that (1)—(iv) hold we can therefore take
L = L) for i €N sufficiently large. ~ q.e. d.

11. 3. Proof of Theorem 3.1. Apply Lemma 11.2 with
=il Sij<SpP Yo pi—1]i=12 ..., Yo ip—1)
as the set of the ¢,. Now apply 10.2, 9. 7 and 3. 5.

12. Concluding remarks -

12.1. The Proof of Theorem 3. 1 is except for some technical complications the
same as the proof of the main theorem of [3] as given in [3]. This is a main reason why
we proved the main theorem of [3] as we did. There does exist in fact an easier proof of
[3], Theorem 6. 1. Let F be a formal group over A,. The formal group F is isomorphic
over Ay to a formal group F’ with a logarithm of type f,(X); t,,t,, ... € Ag, where

fo(X)= X+ Z%fgf)(X”i) €Q[T,, T,, ...1[[X]] where f# is obtained from f, by

raising all the parameters 7,, T,, ... to the p*th power and f,(X) is obtained from f(X)
by substituting ¢, for T,; cf. [4]; R(F') = hiff v (t) =1, 0=1, ..., h—1, vx(8) = 0.
If K is an unramified local field (i. e. vgz(p) = 1), then one shows relatively easily that
if R(F') = h, F'(X,Y)=f"(f(X) + f,(Y)) where f, is as above, and

f(X) = 3 aXP, ay=1,4,¢€K

=0
then
vge(a;) =0, 1=0,1,...,h—1,
(12.1.1) vg(@y) =—n, n=012 ...,
vgla) =—n, nhSi<(m+ 1)k

Now let K_/K be the cyclotomic I-extension and consider the commutative diagram
Fi(K,) —L s K
F-Norm Tt (K! is the additive group of K,).

Y
F'(K) Tl g
Using (12. 1. 1) and the trace lemma of [3] it is not difficult to calculate the irfage gf
Tt o f,- Finally f, is an isomorphism of F’'(K) with the subgroup pAg < K*. This
provides another proof of [3], Theorem 6. 1.

12. 2. The same method as sketched above in 12.1 gives the same res'ult as in
Theorem 3. 1 in case K /K is any I'-extension, K a l(_)_cal field with perfect residue field
and F a formal group defined over Ayx, where W (K) is the maximal unramified sub-
field of K. .

12. 3. It should be possible to use the method of 12.‘1 to obtain a.nother (anlc{i
easier) proof of Theorem 3. 1. The problem is that (12. 1.1) is not necessarily true if
is not unramified.
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