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1. Introduction 

In this paper we show how to fit together the various (universal) formal groups 
Fv (X, Y) for Z(p>-algebras of [2], to obtain a global (one dimensional commutative) 
formal group. 

If Ju (X) E Z[ U2, U,, ... ] [[X]] is the logarithm of a universal formal group over 
Z[U], then it follows from the functional equation lemma [2, Lemma 7.1] that 
Ju (X) must satisfy 

(1.1) Ju (X) - i .!!L Jt'>(xP') E Z(p)[ U][[X]] 
,~, p 

for all prime numbers p. So the natural thing to do is to construct the power series 
Ju (X) according to the recipe (1. 1) starting with X. The first thing one writes down 
is then 

However, it now appears that the two prime numbers 2 and 3 interfere with one 
another. The term 6- 1 U3 Ut which has to be there because of condition (1. 1) in case 
p = 3, prevents (1.2) from satisfying (1.1) for p = 2, and vice versa with respect to 
the term 6- 1 U 2 Ut The solution is to insert suitable coefficients. Thus 

X + ~2 X 2 + ~' X'+ (u~m+ ~•) x•+ ~s xs_+ (2U;U~+ U22U~+ u6 ) X6+ ... 

(1.3) 
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does satisfy (1.1) mod degree 7 for p = 2, 3. (To construct a universal formal group 

it is also necessary to insert UoX 6 so as to have a free variable available in 

dimension 6.) So the only problem in constructing a universal formal group is in 

showing that one can always find suitable coefficients. This readily leads to the 

following formula for the logarithm hv (X) of a possible universal formal group: 

X 

hu (X) = L, a, ( U)X\ 
i=l 

(1.4) a"(U) = 

where q, is a power of the prime number p,, U1 = 1, and the sum is over all 

sequences (qi, ... , q,, d) with q, prime powers and d = 1 or divisible by at least two 

diffcren t primes. such that q 1 ••• q, d = n. The coefficients n ( q 1, •.• , q,, d) can be 

chosen arbitrarily provided they satisfy the congruences 

n(q1, ... , q,, d) = 1 mod Pi 

(1.5) n(q1, ... ,q,,d)=Omodp; 

n(q1, ... ,q,,d)=l modp 

if Pt -J. P2, 

if Pt -J. P2 = · · · = Pr+I Ji Pr+2, 

if Pi= P2 = • • • = p,-J. Pr+I• 

It turns out that Hu (X, Y) = h Z)(hu (X) + hu ( Y)) is indeed a universal formal 

group (over Z[ U]). Cf. [3] and [4]. 

If one chooses the n(qi, ... , q" d) in a rather special way (cf. [3] and [4] for 

details) then one finds reasonable formulae for the U, in terms of the a,(U). Now 

there is another universal formal group viz. the formal group of complex co

bordism. Using the formulae for U, in terms of a, ( U) one then finds polynomial 

generators for MU(pt) in terms of the (classes of) complex projective spaces. Cf. [3] 

and [4]. 

Subsequenrly, Kozma [6], using Witt vectors and a theorem of Cartier, wrote 

down similar generators for MU(pt). These are different and satisfy a more elegant 

recursion formula. Translating back one obtains another universal formal group. 

The formula for its logarithm [u (X) = :22 m" ( U)X" is very similar to (1.4) above (cf. 
(2.2.1) and (2.2.4) below). 

This logarithm also satisfies functional equations (1.1 ), which is the essential 

property for integrality of the corresponding formal group by the functional 

equation lemma [2, 7.1]. 

It is slightly more complicated in terms of the number of different monomials 

occurring in the m, ( U) (compared to a, ( U)) but, I think, superior because of the 

more elegant recursion relations. The calculations which one has to do to prove that 

these two different universal formal gr0ups are integral (i.e. defined over Z[ U]) are 
identical. 

As in the local case (cf. [2]) using the approach of Buhstaber and Novikov [1] one 
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can prove directly that Fu (X, Y) is universal, without using Lazard's comparison 
lemma, which now appears as a corollary. 

Section 2 below contains the main constructions and results. In Sections 3, 4, 5 we 
prove the integrality and universality theorems. In Section 7 we show how to 
choose the coefficients in such a way that nice recursion relations result. In Section 
6 we construct a universal strict isomorphism of formal groups. 

Some of the applications of this paper and the previous one [2] to complex 
cobordism and Brown-Peterson cohomology will appear in [5]. Other applications 
will appear in subsequent papers. Most of the results of this paper have appeared in 
preprint form in [ 4]. The conventions of [2] remain in force, in particular all formal 
groups will be commutative and one dimensional and all rings are commutative and 
have a unit element. 

2. Constructions, definitions and statement of main results 

2.1. Choice of coefficients. For each s ?= 1 and each sequence (i1, ... , i,), ii E N\{l} 
let n (ii, ... , i,) be an integer such that 

(2.1.1) n(i1, ... ,i,)=l ifs=l;, 

n(i1, ... , i,) == 0 mod p'- 1 if i 2, .•• , i,-1 are powers of 
(2.1.2) 

a prime number p and i 1 and i, are not powers of p; 

n(i1, ... , is)== 1 mod p' if i 1, ••• , i, are powers of a prime 
(2.1.3) 

number p and i, r1 is not a power of p. 

Note that there are (many) numbers n(i1, ... , i,) satisfying these conditions; 
n(i1, ... , i,) has to satisfy two different congruences if and only if i1 and i2 are 
powers of two different prime numbers. 

2.2. Constructions. We now define the power series fu (X), Ju (X), fu. T (X) by the 

following formulae: 

(2.2.1) fu(X) = 2 mk(U)X\ m1(U)= 1, 
k = I 

(2.2.2) fu(X) = 2 mk(U)X\ mi(U)= 1, 
k ~1 

-~ 

(2.2.3) /u.r(X) = 2 mk(U, T)X\ m1(U, T)= l 
k - 1 

where 

(2.2.4) mk(U) = 2 
(ii, ... , i,~) 
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where v(ii) = p if i; is a power of the prime number p and v(i;) = 1 if i; is not a 
prime power and where the sum is over all sequences (i1, ... , i,) with ii E N\{1} and 
s ~ 1 and i1 ••• i, = k. The numbers n(i 1, ••• , i,) are such that (2.1.1 )-(2.1.3) hold. 

(2.2.5) 
mk ( U) is obtained from mk ( U) by substituting O for all Ud 

with d > I and d not a power of a prime number. 

The power series f u (X) and f u (X) are over Q[ U2, 1/.;, ... ] = Q[ U] and Ju. r (X) is a 
power series with its coefficients in Q[ U2, U3, ... ; Ti, T3, ... ]. We now define 

Fu (X, Y) = [r)(f u (X) + f u ( Y)), 
(2.2.7) 

2.3. lntegrality theorem. The power series Fu (X, Y), Fu (X, Y) and Fu, r (X, Y) 

have their coefficients respectively in Z[ U], Z[ U], Z[ U, T]. 

I.e. these power series are formal groups over Z[ U] and i[ U, T]. 

2.4. Universality theorem. The formal group Fu (X, Y) is universal. 

I.e. for every ring A and every (one dimensional commutative) formal group 
G(X, Y) over A there is a unique homomorphism </> : Z[ U]-. A such that 
Ft(X, Y) = G(X, Y). 

2.5. Isomorphism theorems. (i) The formal groups Fu (X, Y) and Fu (X, Y) are 

strictly isomorphic (over Z[ U]). 
(ii) The formal groups Fu (X, Y) and Fu, r (X, Y) are strictly isomorphic (over 

Z[ U, T], where Z[ U] is seen as a subring of Z[ U, T]). 

Let au. r (X) be the unique strict isomorphism between Fu (X, Y) and 
Fu, T (X, Y), i.e. au, T (X) = fr} r(f u (X)), 

2.6. Universal isomorphism theorem. The triple (Fu (X, Y), au, r (X), Fu, r (X, Y)) 
is universal for formal groups and a strict isomorphism between them. 

I.e. for every ring A and every triple (F(X, Y), a (X), G (X, Y)) consisting of two 
formal groups F(X, Y), G(X, Y) and a strict isomorphism a (X) from F(X, Y) to 
G (X, Y) there is unique homomorphism </> : Z[ U, VJ-. A such that Ft(X, Y) = 
F(X, Y), at,r(X)= a(X) and Ft,r(X, Y)= G(X, Y). 
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3. Some congruences and lemmas 

This section contains some technical results on the fu, fu. rand n (ii, ... , i,) which 
will be needed in the sequel. 

3.1. Some congruences. Directly from the definitions (2.2.1)-(2.2.7) one sees that 

(3.1.1) 

(3.1.2) 

(3.1.3) 

fu(X) = X + v(nf1 UnXn mod( U2, ... ' Un-I, degree n + 1), 

fu. T (X) = fu (X) + T.x· mod(T2, ... ' Tn-1, degree n + 1), 

au. r (X) = X - T.Xn mod(T2, ... , T.-1, degree n + l), 

(3.1.4) fu (X, Y) = X + Y- Un(v(nf1Bn(X, Y)) mod(U2, ... ' Un-I, degree n + 1) 

where B.(X, Y) = (X + Y)" - xn - yn_ (If n is a power of a prime number q, then 
Bn(X, Y) is divisible by q = v(n).) 

More precisely one has the following. Let U(n) be short for 
(U2, U3, ... , Un, 0, 0, ... ) and let fucn>(X), Fvcn>(X, Y) be the formal power series 
obtained from fu (X) and Fu (X, Y) by substituting zero for u .• 1, U.+2, ... . Then 
one has (immediately from (2.2.1)-(2.2.7)): 

(3.1.5) fu (X) = fucn)(X) + v(n + 1r1 Un+lx•+I mod(degree n + 2), 

(3.1.6) 

(3.1.7) 

fu.r(X) = fu.TcniX)+ Tn+lxn+I mod(degree n + 2), 

av. r (X) = au, 7'(n)(X)-" Tn+lxn+I mod(degree n + 2), 

(3.1.8) Fu (X, Y) = FucnlX, Y)- Un+1(11(n + lf1Bn+1(X, Y)) mod(degree n + 2). 

3.2. For each sequence (i1, ... , i,), ii E N\{1} let 

(3.2.1) 

where the n (i 1, ... , i,) satisfy the conditions of 2.1. 

3.3. Lemma. (i) If l f 11(i1) = 11(i2) = ... = v(i,) 'I v(i,.1), r,,;;; s, then 
p'd(i 1, ••• , i,) E Z where p = 11(i1) = ... = v(i,). (If r = s then v(i,) I- v(i,+1) is taken 
to be automatically fulfilled.) 

(ii) If 11(i1) = 1 then d(ii, ... , i,) E Z. 

Proof. We prove both parts of the lemma simultaneously by induction on s. The 
case s = l is trivial. If s > 1 we distinguish four cases. 

Case (1): 11(i1)=l=v(i2). Then d(iz, ... ,i,)EZ and hence d(i1, ... ,i,)= 
11(i,f1n(i1, i2, ... , i,)d(i2, ... , i,) E Z. 

Case (2): 11(i 1) = 1 f 11(i2) = p. Let 11(i2) = ... = v(i,) I- v(i,.1)- Then by induction 
p'-1d(i2, ... ,i,)EZ and hence d(i1, ... ,i,)= 11(i1t1n(i1,i2,--·,i,)d(i2,, .. ,i,)EZ 
because n (i 1, i2, ... , i,) = 0 mod p ,_, by (2.1.2) in this case. 
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Case (3): Ii i,(i,)= v(i2). Then p'. 1d(i2, ... ,i,)EZ and hence 

p'd(i1, ... , i,) = v(i 1)"1n(i1, i2, ... , i,)p'd(i2, ... , i,) 

= n(i,, ... , i,)p'- 1d(i 2, ••• , i,) E Z. 

Case (4): 1 -1- v(i,) I v(i2) cl 1. Let q = v(i2) = ... = v(i,) I (i,+1). Then by induc

tion q'- 1d(i2, ••• , i,) E Zand hence pd(i1, ... , i,) = n(i,, ... , i,)d(i2, ... , i,) E Z be

cause by (2.1.2) n (i1, i2 , ••• , i,) = 0 mod q' 1 in this case. □ 

Proof. We distinguish three cases 
Case (1): v(i2) = 1. Then d(i 2 , ••• , i,) E Z by Lemma 3.3 and hence 

d ( i 1, ••• , i,) - p _, d ( i2 , ••• , i,) = p _ ,( n ( i 1, .•• , i,) - 1 )d ( i2, ... , i,) E Z 

because n (i,, . .. , i,) = 1 mod p in this case by (2.1.3). 

Case (2): 11 v(i2) = q Ip. Then d (i2, ... , i,) E Z<Pl by Lemma 3.3 and 

d(i 1, ••• ,i,)-p-1d(i2,••·,i,)EZ1P> as in case (1). 

Case (3): v(i2) = p. Let v(i2) = v(i3) = ... = v(i,) cl v(i,+1). Then p'-1d(i2, ... , i,) 

E Zand hence 

d(ii, ... , i,)- p- 1d(i2, ... , i,) = p-'(n(i,, ... , i,)- l)d(i2, ... , i,) E Z 

because according to (2.1.3) n (i,, ... , i,) = 1 mod p' in this case. D 

4. Proof of the integrality theorems 

4.1. For each k ;;,,, 2, let ck be an element of Z[ U; T] and for each i EN let ct 1 be 

the polynomial obtained from ck by replacing each Ui and T, by their i-th powers 

U) and T;. We define 

(4.1.1) 

(4.1.2) 

~ 

g(X) = I e1X', 
i= I 

where the sum is over all (i1, ... , i,) such that i, ... i, = i, ii EN\ {1}, and d (i,, ... , i,) 

is as in (3.2) 

4.2. Lemma. For all prime numbers p we have that 

(4.2.1) 

Proof. Consider the coefficient of X" in (4.2.1). If (p, n) = 1 this coefficient is equal 

to e" and is in Z<PJ[ U; T] by Lemma 3.3. Now suppose (p, n) > 1 and let n = p'i, 
(p, i) = l. The coefficient of X" in (4.2.1) is then equal to 
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(4.2.2) 

For the terms of ep'; with v(i,)~ p we have that d(i,, ... ,i,)EZcrl· It remains to 
dP,al with the terms with i, = p, p2, ... , p'. We have, if i > 1 or t < r, 

And because of Lemma 3.4 we see that the part of e p'; with i, = p' minus 
p-'ur,e<,(\ is in Zcr)(U, T] if i > 1 or t < r. 

And if i = 1, t = r we have that the part of e p'; with i, = p' is equal to 
p-'Ur,+cr,=p-'Up,er+cp, and cp,EZ[U;T]. So we see that (4.2.2) is in 

Zcp)[U; T]. □ 

4.3. Proof of the integrality theorem 2.3 (parts (i) and (iii)). Taking ck = 0 for all 

k ;;,, 2 we get g (X) = fu (X). Hence Ju satisfies a functional equation (4.2.1), and we 
can apply [2, 3.3] to conclude that Fu(X, Y) E ZcrilU]([X]] for all prime numbers 
p, hence Fu (X, Y) E Z[Ul[[X, Y]]. 

Taking ck = Tk, k = 2, 3, ... we find g ( U) = f u. r (X) and the same argument gives 
that Fu.r(X, Y)EZ[U;T][[X, Y]]. 

4.4. Proof of the integrality theorem 2.3 (part (ii)). Fu (X, Y) is obtained from 
Fu (X, Y) by substituting O for all Ud with d not a power of a prime number. So 
Fu (X, Y) is integral because Fu (X, Y) is integral. (One can also show that fu (X) 
satisfies a functional equation of type (4.2.1) for all p.) 

5. Proof of the universality theorem 2.4 

This proof is completely analogous to the proof of universality of Fs (X, Y) in (2]. 

5.1. For each n EN\ {l} we have that g.c.d. (G), ... , (n"-,)) = v( n ). Choose An.; E Z 
such that 

(5.1.1) 

Write 

(5.1.2) Fu(X, Y)=X+ Y+ I e;iX;yi 
i,j;;iet 

anu define 
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n-1 

Yn == L An,iei,11-i• 
i=t 

5.2. Lemma. The Yn, n = 2, 3, ... are a polynomial basis for Z[ U] = Z( U2, U3, ... ]. 

I.e. every element of Z[ U] can be uniquely written as a polynomial in the Yn with 
coefficients in Z. 

Proof. This follows directly from (3.1.4 ). 

5.3. Proof of the universality theorem. Let A be a ring and G (X, Y) a formal 

group over A. Write 

(5.3.1) G(X, Y) = X + Y + L a1iX 1Yi. 
i,j;;,,l 

Now define r:f> : Z[ U]- A by the requirement r:f> (y") = L~:i An. ;a;. n-i• This is a well 
defined homomorphism because of Lemma 5.2. Further if if, is a homomorphism 
Z[U]-A such that F't(X, Y)= G(X, Y) then we have if,(e;i)= a;i and hence 
t/J(Yn) = r:f>(yn). This takes care of uniqueness. One now proves that cf.>(e,i) = a1i 

exactly as in [2, 6.2]. D 

5.4. Corollary (Lazard's comparison lemma). Let A be a ring and F(X, Y) and 

G(X, Y) two formal groups over A. Suppose that 

(5.4.1) F(X, Y) = G(X, Y) mod(degree n ). 

Then there is a (unique) a E A such that 

(5.4.2) F(X, Y) = G(X, Y)+ a(v(nt 1Bn(X, Y)) mod(degree n + 1). 

This follows directly from Theorem 2.4 and (3. 1.5). 
This corollary completes the proofs of Theorem 2.8 and its corollaries in (2]. 

6. Isomorphism theorems 

6.1. Proof of Theorem 2.5. Let F(X, Y) and G (X, Y) be two formal groups over 
Z[U;T] with logarithms f(X), g(X)EQ(U;T][(X]]; i.e. F(X,Y)= 
r1<f(X)+f(Y)), G(X, Y)=g- 1(g(X)+g(Y)). The formal groups F(X, Y) and 
G(X, Y) are strictly isomorphic if and only if g- 1(f(X))E Z[U;Tl[[XI] and this is 
the case if and only if g- 1(/(X)) E Z<P 1(T; U] [[X]] for all prime numbers p. 

The power series fu (X), fu (X), fu. r(X) all satisfy functional equations (4.2.1). 
Hence it suffices to apply the functional equation lemma [2, 7. 1] to prove 
Theorem 2.5. 
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6.2. Proof of Theorem 2.6 (universality of the triple (Fu (X, Y), au. T (X), 
Fu:r(X, Y))). Let F(X, Y) and G(X, Y) be two formal groups over a ring A and 

a(X) an isomorphism from F(X, Y) to G(X, Y). Because of universality of 
Fu (X, Y), there is a unique homomorphism t/J : Z[ U]--;, A such that F'tr(X, Y) = 
F(X, Y). Suppose we have already found a homomorphism <f>n : Z[ U, T]--;, A such 
that 

(6.2.1) 

(6.2.2) 

F;j•(X, Y) = F(X, Y), i.e. <f>n is equal to tf; on Z[ U] CZ[ U; T], 

a '0: T(X) = a (X) mod( degree n) 

and suppose that q;," is unique on the subring Z[ U; T2 , ••• , Tn-il of Z[ U; T]. There 
is a unique a E A such that 

(6.2.3) a"J:T(X) = a (X) + aX" mod(degree n + 1). 

Now define 4in+-l by 4in+1(U,)=tf;(U,); 4in+1(T.)=<f>n(T,), i=l, ... ,n-1; 

4in+1(T,.) = - a; <p .. +1(T.) = 0, i ~ n + 1. Then (6.2.1) and (6.2.2) hold with n 
replaced by n + 1 and 4in+ 1 is unique on Z[ U; T2, ... , T,.], both because of (3.1. 7). 

6.3. Remark. The arguments of 6.1 show that if g (X) is any of the power series 
defined by (4. 1.1) and (4.1.2) and G(X, Y) = g- 1(g(X) + g(Y)), then G(X, Y) is a 

formal group over Z[ U; T] (by 4.2 and 4.3) and G (X, Y) is strictly isomorphic to 

Fu,r(X, Y). 

7. A special choice for the n ( i 1, ••• , i,) 

In this section we define special n (i,, ... , i, ), which are such that there are 

reasonable formulas for the U, in terms of the m, ( U). 

7.1. For each prime number p and each i E N \ {l} let c (p, i) be an integer such that 

C (p, i) = 1 

C (p, p ') = 1 
(7,1.1) 

c(p, ;) ;, {; 
modp 

modq 

if v(i) = 1 

if v ( i) = q r p. 

We now define b(ii, ... , i,) for all sequences (i,, ... , i,) with ii E N\{l} by the 

recursion formula 

b(i) = TT c(p, i), 
r I , 

(7.1.2) 
b c i I, ... , i,) = n c (p. i, > b < i I, ...• i, _ I> if s ~ 2 

P I i, ... i_~ 
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where the product is over all prime numbers p which divide i, ... i.,. (The factor 
c(p, i,) occurs only once, irrespective of how high a power of p divides i, ... i,.) 

Finally we define 

(7.1.3) ( . . ) - b (i I, ..• , i,) 
n 1 , , ••• , z, - b ( . . ) 

l"2, ... , ls 
ifs ;;,,2, and n(i)= 1. 

7.2. It follows directly from (7.1.2) that 

(7 .2.1) I1 
P ) j I (~ -·l 

and hence that 

(7.2.2) TI C (p, i,) TI c(p, i,-,) ... TI c(p, i2) TI c(p, i,). 
P I i1 P I i1 PI i1 PI,, 

p (12 .. , i,, p ,I' i2. -· is~J p }' i2 

7.3. Lemma. The n(ii, ... ,i-) defined by (7.3.1) satisfy conditions (2.1.1)-(2.1.3). 

Proof. (2.1.1) is satisfied by definition. Suppose that 1 c/ p = v(i,) = ... = 
v(i,) I v(i,T1). First let r;;;,, 2. The only prime number dividing i1 is p, and p also 

divides i2, U3, ... , i2 .. . i,-1. Therefore n (i" ... , i,) = 1 in this case. Now let 
r = 1. The only prime dividing i1 is p and c (p, i) = 1 mod p for all i EN\ {l}. It now 
follows from (7.2.2) that n(i1, ... , i,) = 1 mod p. This proves (2.1.3). Now let 
v(i,) Ip= v(i2) = ... = v(i,) I v(i,+1). Then there is a prime number q which 
divides i, but does not divide i2, i2i3, ... , i2 ... i,. It now follows from (7.2.2) that 
n(i,, ... ,i,) contains the factor c(q,i2)c(q,i,) ... c(q,i,). But c(q,i,)=0 modp, 

because v(i,) = p 11 for t = 2, ... , r. This proves (2.1.2). 

7.4. Let d (i 1, ••• , i,) be as in 3.2, i.e. 

(7.4.1) d( . . ) = n(ii, ... , i,). . n(i,) 
!1, ... ,1, (') ... (') 

V !1 V l., 

then we have by (7.1.3) 

(7.4.2) d(i1, ... ,i,) __ 1_ I1 ( ') fors>-2. 
d ( . . ) - (. ) C p, I, -

l I, .•• ' '!',"-1 µ l.,,. p I j I ... j~ 

Note that this number depends only on the product i, ... i, and i,. We define for all 
n, d E N\{1} 

(7.4.3) µ(n, d) = TI c(p, d). 
pjn 

7.5. A Recursion formula for the U,. in terms of the m"(U) 

We have according to (2.2.4) and (7.4.1) that 
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- ......_..., µ,(n,d) (U)Un/d ( )-Ju 
- L, (d) m,./d a + µ, n n• 

d In V 
d r' I, n 

So that we find 

(7.5.1) V(n)m (u) U + "' µ,(n, d)v(n) (U)U"fd 
n = " L, (d) m,./d d . 

d In V 
d r' I, ,1 

Note that the factor v(dr 1 v(n)µ,(n, d) is always integral. Indeed, this factor is 
certainly integral if v(d) = 1 and if v(d) = p = v(n ). And if v(d) =pf v(n) there is 
a prime number q f p dividing n so that µ, (n, d) contains a factor c (q, d) which is 
congruent to zero modp by (7.1.1). Note also that v(df 1 v(n)µ,(n,d)=l if 
v(n) le I (and d I n) and that v(dr 1 v(n)µ,(n, d) = 1 if v(d) = 1 (and hence also 
v(n) = 1). So the only factors v(dr 1µ,(n, d)v(n) different from 1 occurring in 
(7.5.1) have v(n) = 1 and v(d)f 1. Cf. also [6]. 

7 .6. Remark. Let Hu (X, Y) = h -;:/(hu (X) + hu ( Y)) where hu (X) is the power 
series defined in (1.4). Then one has (i) Hu(X, Y) has its coefficients in Z[U]; (ii) 
the formal groups Hu (X, Y) and Fu (X, Y) are strictly isomorphic over Z[U]; (iii) 
Hu (X, Y) is a universal formal group. These things are proved in exactly the same 
way as the corresponding statements for Fu (X, Y). 

A natural more dimensional generalization of Hu (X, Y) is discussed in [4] 

part V. 
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