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STELLING EN 

1. Als twee algebraische groepen schema's Gen G' over een perfect lichaam k 

quasi-algebraisch equivalent zijn, dan geldt: 

Ext(G,Sk):::::: Ext(G',Sk) 

voor elk constant algebraisch groepenschema Sk. Dit maakt het mogelijk de 

stelling (5.4.D) uit dit proefschrift te bewijzen zonder quasi-algebraische 

groepen in te voeren. 

M. Hazewinkel. Crops de classes local. Appendix in: M. Demazure, 
P. Gabriel. Groupes Algebriques. North Holland Puhl. Cy., verschijnt 
binnenkort. 

2. Zij K een lokaal lichaam met perfect restklassen lichaam k; zij L een eindige 

separabele uitbreiding van K met restklassenlichaam 1. Laat UL het pro­

algebraisch groepenschema over 1 van eenheden van L zijn. Als er een on­

vertakte uitbreiding K /K is zodat L.K /K galois is, dan bestaat er een n n n 
pro-algebraisch groepenschema U over k zodat (U)1 :::::: UL. 

3. Zij K een lokaal lichaam met een eindig restklassen lichaam, bestaande uit 

q elementen; laat A(K) de ring van gehelen van K zijn en 7T een uniformise-­

rende. 'J:' rr = {foA(K)[(X]] I f::1rXmod.X 2,f=Xqmod.1r} Zijf(m) de 

me geitereerde van f; A een wortel van f(m), dan is K(A) een totaal vertakte 

abelse uitbreiding van K ( cf. § 11 van dit proefschrift). Omgekeerd geldt: 

voor elke uniformiserencle A1 van K(A) is er een gel\r zodat glm)(A1
) = 0. 

4. Zij Geen eindige groep; A een G-moduul zoclat PA= £ aEA I pa= o} eindig 
is voor alle priemgetallen p (die #G delen). Ste! dat de groepen Hq(G,A) 

en Hq+l(G,A) einclig zijn voor een zekere qeZ, clan is Hn(G,A) eindigvoor 

alle neZ. 

5. Zij Bn de n-dimensionale bal; a Bn zijn rand. 

a) Als f: Bn ➔ Bn een differentieerbare afbeelding is zodat fl3Bn = id., clan 

is er een inwendig dekpunt van fin de gevallen: 

1° det(df) > 1 op 3Bn; 

2° det( clf) < 1 op 3Bn en f is injectief. 

b) Zij f: Bn ➔ Bn een continue functie zonder inwendige dekpunten zodat 

f I oBn = id .. Dan is er voor elke cx > 0 en elke Pin het inwendige van Bn een 

punt x op afstand <e van 3Bn, zodat de lijn door x en f(x) door P gaat. 
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k 
6. Zij O< A1 <X2< ... <X , P.eR, i = 1, ... ,n, zodat ~ P. > 0 voor alle k = 1, ... ,n. 

n 1 i=l 1 

Stel datµ 1, ... ,µn-l de (n-1) nulpunten zijn van de functie 

.!!. Pk 
f(a)= 1:--. 

i=l z-Ak 

Dan geldt ap,1' ... ,An-l) <ai(µl' ... ,µn_ 1) waarbij al' ... ,an-l de eerste 
(n-1) elementair symmetrische functies zijn. 

7. Een algebra A= k[X]/(£) is dan en slechts dan star (rigid) als de tweede 
Hochschild cohomologie groep H2(A,A) = O. Dit is dan en slechts dan het 
geval als alle nulpunten van fin een algebraische afsluiting le van k geisoleerd 

liggen. 

A. Nijenhuis. Graded Lie Algebras and their applications. Univ. of A'dam 

1963/1964. Lecture notes. 

8. Zij C een kleine categorie; A de functor die aan een object XeC de verza­
meling van zeven boven X toevoegt. Een deelfunctor J CA die voldoet aan 

de hieronder genoemde axiomas definieert een topologie op C. 
Hl. Als R' :J ReJ(X), dan R' eJ(X), 

H2. Als ReJ(X), dan is RAJ eJ(X). 

(Hierbij is RAJ het inverse beeld van J onder het, volgens het lemma van 
Yoneda, als functormorphisme R: hx ➔ A geinterpreteerde element 
ReJ(X) CA (X).) 

F. Oort. Schoven en topologi.een. Interuniversitair colloquim '64/'65. 
M. Hazewinkel. Enkele opmerkingen over schoven en topologieen. Ibid. 

9. Zij G een commutatieve eindige groep (multiplicatief geschreven) van ex­
ponent d; Z[G} de groep ring van G. Dan geldt: 
l: agg is een eenheid in Z{G] desda c,0(1: a g) een eenheid is in Z[td] voor 
filecpeHomAlg{Z[G], Z[fd]). g g 

{f d = een primitieve de-machts eenheidswortel). 

10. De hypothese 'God', als basis voor een wereldverklaring, voldoet niet aan 
'Occam's razor' ('entia non sunt multiplicanda praeter necessitatem'). 

-

J. Hospers. An introduction to philosophical analysis p. 287. 
Routledge & Kegan Paul, 1956. 



11. Spellingsvereenvoudigingen verlagen de 'redundancy' van een gegeven tekst; 

een tekst met zeer lage 'redundancy' is echter moeilijk leesbaar. Het is dus 

wenselijk dat men eerst meet bij welk percentage 'redundancy' het efficientst 

gelezen wordt alvorens over te gaan tot het invoeren van een nieuwe spelling. 

P. Guiraud. Language et la theorie de la communication. Encyclopedie de 
la Pleiade. Language. 

12. De ontwikkelingvan een theorie kan eerder belemmerd dan bevorderd wor­

den door het verzamelen van zeer grote aantallen feiten (bijv. metingen of 

losse stellingen) 

M. Beckner. The biological way of thought. Univ. of Calif. Press, 1968. p.1. 
A.N. Whitehead. Modes of thought. Capricorn Books, 1958. 

13. 'De dwerg Monkel-Oor was een zeer belezen iemand die reeds jaren doende 

was de dikke Van Dale uit het hoofd te leren. Dit had zijn denkraam welis­

waar niet verruimd, maar toch kwam zijn kennis soms handig van pas, zoals 

we zullen zien.' 

M. Toonder. Heer Bommel en de wisselschat. 5567 

'Kweetal: 'Ik wilde wel dat ik een grater denkraam had. Monkel-Oor heeft 

het helemaal volgepraat en nu het ik geen uitzicht meer." 

ibid. 5568 

Bovenstaande twee citaten geven een goed beeld van een van de moeilijk­

heden, waarmee student(e) en wetenschapsman dagelijks te maken hebben. 

Stellingen behorende bij 
het proefschrift van 

M. Hazewinkel 
Amsterdam, 1969 
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0. INTRODUCTION. NOTATIONS AND CONVENTIONS. 

( 0.1) Introduction 

Let K be a local field, i.e. a field with a discrete nonarchimedean absolute 

value, complete in the metric induced by this absolute value; suppose that the 

residue field k of K is perfect. The object of this study is a description of the 

abelian galois extensions L/K of K. (A galois extension is called abelian if its 

galois group is abelian.) Chapter I(= sections 1-4) contains the preparations 
for chapters II and III. 

Suppose frrsnhat k is algebraically closed. One can give the group U ( K) of 
units of K the structure of a pro-algebraic group over k ( cf. ( 4.3) ). Serre has 
shown in [CAC] that to every abelian finite extension of K there corresponds 

an isogeny of U (K) (i.e. an epimorphic map of pro-algebraic groups f: 
Uc ➔ U (K) with finite kernel); and that esentially all isogenies of U (K) are 
obtained in this way. A generalisation of this theorem to the case that k is 
perfect but no longer necessarily algebraically closed is the subject matter of 
chapter II. The proof is an adaptation of Serre's proof in [CAC]. 
As to chapter Ill: suppose that k is a finite field. Exactly as in [LT] we start 
off by constructing some totally ramified extenai~ns Lm/K of K; then we prove 
that they are abelian (without using formal groups; cf. (11.2)); next we more 
or less reverse the procedure of [LT] by proving first that the set of the Lm/K 
contains suficiently many totally ramified extensions (11.3), by means of a 

theorem on the norm map U (Lm) ➔ U (K) ( 11.1.B ), and then using this result 

to construct a reciprocity isomorphism ( of which we prove that it is identical 
with the ('classical') reciprocity law isomorphism, given by the norm residue 

symbol, although we neither need nor use this fact). 
The advantage of this approach (in the authors opinion) is that one can dispense 
with the rather involved machinery of local class field theory centring round 
the existence of a fundamental 2-cocycle. This method of obtaining tlu: reci­

procity isomorphism was suggested by Serre in [ 17] section 7; it is implicit in 
Dwork's description of the reciprocity isomorphism in [ 4] (cf. also [CL] 

Ch. XIII § 5), and of course in the results obtained by Lubin and Tate in [LT]. 

In fact the machinery needed for chapter III is rather modest. From the coho­
mology of groups and galois cohomology we only need that there exist such 

theories and a description of the cohomology groups in terms of cycles and 

boundaries. (Section 1 deals with this topic and some consequences bound up 

3 



with it.) As to local field theory: the first three chapters of Weiss's book [22] 
cover much more than we require in section 2 to prove some lemmas and pro­

positions needed further down. 
For chapter II we need in addition some general nonsense (treated in section 3) 

and some algebraic geometry connected with the definition of the homotopy 
groups of a pro-algebraic group (cf. (GP] and (4.5)) and with the Greenberg 
constructio'ns ( [CAC] § 1, [ 6] §1, ( 4.2), ( 4.3)). (Section 4 deals with these 
matters.) 

As indicated in (0.2) (interdependence of sections and chapters), chapter III is 
independant of chapter II and sections 3,4 of chapter I (except lemma (3.1)), 

although the considerations of sections 10, 11 were originally suggested by the 

results of chapter II. Cf. section 9 for further details on this point. 

For a more detailed description of what happens in each chapter and section, 
the reader is referred to the brief introductory paragraphs heading each chapter 
and section. 

Acknowledgements. From the introduction it has become clear that I am in­

debted to a large number of people. In particular, however, I have incurred a 

steadily increasing debt to Prof.Dr. F. Oort, who was the first to maintain that 
there ought to be a theorem like (5. 4. D), and without whose continuous in­
terest and help this thesis would not have been written. Grateful! acknowled­
gement must be made to Prof. Dr. N.H. Kuiper who arranged my various 
duties in such a way that there was time enough to work on this thesis, as well 
as to Dr. A. Menalda who perused the manuscript carefully, which resulted in 
many suggestions for improvements. 
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( O. 2) Interdependence of sections and chapters 

1------------------------ I 

1 

--------------1 

11 
:m 

II 

7 6 8 9 

' ·------------------------' ' ---------------· 
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( 0.4) Notations and conventions. 

Convention. A commutative diagram will be called exact if all its rows and 

columns are exact. 

Standard notations 
Z : = integers. 
N : = natural numbers. 
Q : = rational numbers. 
R : = real numbers. 

QP : = field of p-adic numbers. 
ZP : ::: ring of p-adic integers. 
2/pZ : ::: group of p elements. 

Notations associated with a local field K. 
I I : = absolute value on K (and also its extension to an absolute 

A(K) 
m(K) 
k 

e 

value on an algebraic closure n of K). 
: = normalized exponential valuation of K. 
:=K\{o}. 
:=ringofintegersofK:= {xeK lvK(x);;;,,o}. 

: = maximal ideal of A(K): = {x eK I vK(x) > 0 }. 

: = residue field ofK (always assumed perfect; k: = A(K)/m(K)). 

: = unifonnizing element ofK (i.e. vK(trK) = 1). 

: = U0 (K): = group of units of A(K) = {xeK lvK(x) = 0 }. 

: = 1 + rrKA(K). n #' 1. 

: = characteristic ofk. 

: = eK : = vK (p) = : absolute index of ramification of K. 
: ::: e/(p-1). 

Notations associated with extensions of a local field K. 
n : = fixed algebraic closure of K. All algebraic extensions of K 

are assumed to be contained in n. 
Knr : = maximal unramified extension of K in n. 
Kni; : = completion of Knr (in a fixed completion n of D). 
K~r : = maximal abelian unramifled extension of K. 
Let L/K be an extension of K. 
G(K,L ➔ nJ : ::: set ofK-isomorphisms ofL into n. 
G(L/K) : = set ofK-automorphisms of L (= galois group of L/K when 

L/K is a galois extension). 
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[L: K] 

K1 
G(L/K\am 
G(L/K)i 

NL/K 
Tr1 /K 

eL/K 

fL/K 
Kn 
F 

: = G(Kab /K:) = G(Kab /K)ram = inertia subgroup of the galois-

group of the maximal abelian extension of K. 

: = degree of L/K = dimension of L as a vectorspace over K. 

: = maximal unramified extension of K contained in L. 

: = G(L/Kd =: G(L/K) 0 = inertia subgroup ofG(L/K). 
: = the i-th ramification subgroup of G(L/K). 
: = the norm map L ➔ K. 
: = the trace map L ➔ K. 

: = ramification index of L/K ( = [ L : K 1 ]). 

: = residue class degree of L/K (= [K1 : K] ). 
: = unramified extension of degree n of K. 

: = Frobenius automorphism in G(Kn/K) of an unramified ex­
tension Kn/K defined when the residue field of K is finite 
( or q uasifini te). 

Notations associated with abstract groups and the cohomology of groups. 

#G : = number of elements of G 
< H, G> : = subgroup of G generated by the elements of the form h-1g-1hg, 

Z(G) 

Z[G] 

g e G, he H, where H is a subgroup of G. 

: = commutator subgroup of G. 

: = G/<G,G> 
: = center of the group G. 

: = group ring of G. 
: = augmentation ideal ofZ[G] (= kernel of the map Z[G] ➔ Z, 

gr+l=setofallelementsofZ[G] ofthetype k n (g-1), 
geG g 

nee Z). 
Let G act on an abelian group A as a group of automorphisms (i.e. A is a G­

module). 
AG 

N 

:={aeA lg(a)=aforallgeG} 
: = the norm map A ➔ A, a >-+ k g(a). 

geG 

: = the i-th cohomology group of G with coefficients in A, i e Z. 

Notations having to do with algebraic group schemes and pro-algebraic groups. 

CGk : = the category of commutative algebraic group schemes over k. 
Pro(CGk) : = the procategory ofCGk. 
CQGk : = category of commutative quasi-algebraic groups over k. 

Pro( CQGk) : = procategory of CQGk. 
CCQGk : = the category of commutative, constant, quasi-algebraic groups 

over k. 
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rro(X) 

rr, (X) 

Q(X) 

71-(X) 
Lie X 

Xred 

xinf 

Sk 

12 

: == the category of finite, commutative, quasi-algebraic groups 

over k. 
: == the connected component of the identity of X, XE CQGk, 

Pro(CQGk)· 
: ::: X/X0 , XeCQGk, Pro(CQGk)· 
: = first homotopy group of X; ( 7T 1 : = first derived functor of 

1To). 
: = maximal constant quotient of a (pro-)finite commutative 

quasi-algebraic group X. 

: == Q(rr 1 (X)), XeCQGk, Pro(CQGk)· 

: = tangent Lie-algebra at the identity of X, XE CGk. 

: == maximal reduced subgroup scheme ofX, X € CGk. 

: = X/Xred• XeCGk· 

: = the constant algebraic group scheme over k of an abstract 

group S. 



CHAPTER I 

PRELIMINARY CONSIDERATIONS IN LOCAL FIELD THEORY, 

GALOIS COHOMOLOGY AND ALGEBRAIC GEOMETRY 

1. SOME GALOIS COHOMOLOGY 

This section deals with what is needed in the sequel of the cohomology of 

groups and galois cohomology. The definition of the cohomology groups is 

given in (1.1). In (1.2)-(1.5) one finds some elementary properties and calcu­
lations. Section (1.6) contains the construction and proof of part of the low 

term exact sequence of the homology spectral sequence associated with a 
change of groups G ➔ G/H (where His a normal subgroup of G ). This is done 
explicitly by constructing some cochains (i.e. without using spectral sequences). 

"Hilbert 90" is treated in (1.7). In (1.8) we use (1.6) to establish the nullity of 
H-2 and H- 1 in some cases. Instead of sections ( 1.6), (1.8) one could use 
Tate's theorem: 

Let G be a finite group and A a G-module. Then, if Hq(G, A) 
is zero for two consecutive values of q, it is zero for all q eZ. 

(Cf. for a proof e.g. [CL] Ch. IX§ 5 Th. 8). We have preferred to use the 
treatment as discussed in (1.6) and (1.8), even though it yields less, because of 
its more elementary nature. 

(1.1) Cohomology of groups 

(1.1.A) FINITE GROUPS 

Let G be a finite group; a (left) G-module A is an abelian group A on which G 

acts (on the left) as a group of automorphisms. One can defme cohomology 
groups Hq(G,A) which form a cohomology theory (cf. [CL] Ch. VII, VIII for 

instance; an explicit description is given immediately below). In particular this 

means that if 

(1.1.A.1) 0 ➔ A1 ➔ A ➔ A" ➔ 0 

is an exact sequence of G-modules, then there exists a long exact sequence: 

13 



The functors H4(G,-) are zero on all so-called induced modules(= relatively 

projective= relatively injective). A module A is called induced if there exists a 

subgroup X of A such that A = ~ gX, the sum being direct. One obtains an 
g€G 

explicit description of the groups H4 (G, A) by taking the homology of the 

complex 

d 2 d 1 do d1 d2 
... ➔ Z [GJ 2 ®A ~ Z [G] @A ~A-. A_,,_ Hom(Z [G] ,A)-+ Hom(Z [G] 2,A) ➔ ..• 

-3 -2 -1 0 2 

(Both Hom and® in this complex are taken over Z). The map d0 = N is given 

by a~ :r ga (the norm map); dn is given by the formula: 
g 

n-1 

dnf(g1,••·,gn)=g1f(g2,••·•gn)+ ~ (-1~ f(g1,. .. ,gj-1,gjgj+l•gj+2•'"·,gn) 
j= 1 

for n ~ 1. Because G is finite, one can view the elements of Z [G] n@A also as 

functions x: en ➔ A. The formula for d_n (n;;;;. 1) then becomes: 

( 1. LB) PRO FINITE GROUPS 

Let G be a profinite group, i.e. an abstract group which can be written as a 

directed projective limit of finite groups (with the induced topology) and A a 

G-module. We suppose that the action ofG on A is continuous (discrete topo­

logy on A). That is: for all a€A, [s€GI s(a) = a} must be an open subgroup of 

G. One can then define 

H11(G,A) := lim H4(G/H, AH) -
where AH := {aeA I h(a) = a for all h eH} ;H runs through all open subgroups 

of G (which are of finite index in G); and the maps in the above inductive 

limit are induced by the natural inclusions AH C AH 1
, if H 1 C H, which com-

14 



mute with the actions ofH and H 1
• 

These cohomology groups define a cohomology theory for modules over a 

profinite group G on which G acts continuously. In particular, given a short 

exact sequence like (1.1.A.1), there results a long exact sequence like (1.1.A.2). 

( 1.2) The chomology groups in dimensions -1,0 

The map do : A ➔ A is the norm map N. To an element g ® a of Z [ G] @A 

corresponds the function x on G given by x (g) = a and x (g') = O if g =;t: g'. One 

hasd_1(x) :=g-1x(g)-x(g)=g-1a-a.Letlc betheidealofZ[G] con. 

sisting of all elements of the form Ln (g) (g-1), n (g) € Z. (The ideal le is the 
g 

socalled augmentation ideal, i.e. the kernel of the homomorphism Z(G] ➔ Z 
given by Ln(g)GI➔ Ln(g)). Then, one has according to the definition in (1.1): 

(1.2.1) 

and 

( 1.2.2) 

where AG:= {a€ Alga= a for all geG}. 

(1.3) The case: G is cyclic 

Suppose that the group G is cyclic; let s be a generator of G. We define the 

following complex C(A) for all G-modules A: 

s-1 N s-1 N 
C(A): .. , ➔ A--.A-A-A-.A ➔ ... 

-2 -1 0 2 

One can also construct a cohomology theory by taking the homology of these 

complexes. This cohomology theory coincides with the one defined in ( 1.1) 

in dimensions 0, -1 ( cf. also ( 1.2)), and is also zero on induced modules ( of 

which there are sufficiently many). Therefore the two cohomology theories are 

isomorphic, and there results: 

(1.3.A) Proposition 

If G is a finite cyclic group, then the sequence of cohomology groups 

Hq(G, A) is periodic of order two for every G-module A. 
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( 1.4) Interpretation of H2 (G, A) as a group of extensions. 

Let { 1} ➔ A ➔ E ➔ G ➔ { 1} be an extension of groups ( not necessarily com­
mutative); let s: G ➔ Ebe a system of representants of Gin E. One can defme 

an action ofG on A by g(a) := s(g). a. s(g)-1. This definition does not depend 

on the choice of s, as A is commutative. 
The elements s(g). s(g1

) and s(gg') are in the same class ofE mod. A, therefore 

there exists an f(g, g') in A such that 

(1.4.1) I f I I s(g). s(g) = (g, g). s(gg ). 

Using the associativity of the multiplication in E one now proves by direct cal­
culation that for every triple g, g', g" € G, 

( 1.4.2) gf (g', g") - f(gg', g") + f (g,g'g") - f (g, g') = 0, 

i.e. that f is a cocycle. 

Inversely given such a cocycle, one uses the formula ( 1.4.1) to defme a multi­
plication in the set E : = A X G ( with s the natural section). The relation ( 1.4.2) 
then guarantees the associativity of this multiplication; and we obtain an ex­
tension { 1} ➔ A ➔ E ➔ G ➔ {1} of groups. It turns out that two extensions are 

isomorphic if and only if the corresponding cocycles are homologous. This 
means that we have found for every G-module A an isomorphism 

( 1.4.3) Ext(G,A) ➔ ff2(G,A) 

where the group on the left consists of only those extensions of G by A such 
that the induced action of G on A (as described above) is precisely the action 
of G on A as a G-module. 

An extension { 1} ➔ A ➔ E ➔ G ➔ { 1} is called central if AC Z(E) (= centre 

of E). Such extensions correspond by the above to elements of the group 
H2 (G, A), where the action of G on A is trivial. 

(1.5) CalculationofH-2(G,Z). 

Let G operate trivially on Z. We have an exact sequence of G-modules 

€ 
0 ➔ IG ➔ Z [ G] ➔ Z ➔ 0 

where le is the kernel of the map e: Z [ G] ➔ Z given by g I-+ 1 for all g € G. 
(I.e. Ic is the collection of all elements of the form Ln(g)(g-1),n(g) € Z). The 

g 
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G-module Z[G] is free, hence induced. Using the long exact sequence asso­

ciated with ( 1.5.1) there results an isomorphism 

H-2 (G, Z):; H-1 (G, le). 

Now H-1(G, le)= Ker Nile. Ie = Ie/Ib (cf. (1.2)). 

Furthermore the homomorphism defined by s ~ s-1 e le /lb induces an 

isomorphism 

as is easily checked. (<G, G> : = commutator subgroup of G). Composing these 
isomorphisms yields: 

( 1.5.2) 

We shall usually identify these two groups in the following. 

(1.6) An exact sequence for A:-2• 

Let A be a G-module; Ha normal subgroup of G. Consider the sequence 

(1.6.1) 

where a is the homomorphism induced by the homomorphism a', which as-
signs to a (-2)-chain f: H ➔ A the chain f': G ➔ A given by f' IH = f, f' I G\H := 0; 

b is induced by the map b which assigns to a (-2)-chain f: G ➔ A the chain f: 

G/H ➔ A/I8 A given by f(gH) : = ~ f(gh). 
heH 

(1.6.A) Proposition 

The sequence ( 1.6.1) is exact. 

We proof this by means of several lemmas below. 

Remark: ( 1.6.1) is in fact part of the low term exact sequence of the homology 

spectral sequence associated with the change of groups G ➔ G/H, cf. 

(2] Ch. XVI§ 6 (4a). 

(1.6.B) Lemma 

A (-2)-chain f: G ➔ A such that (f IG\{e }) = 0 is a boundary. 
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Proof. Define x: G2 ➔ A by x(e, e) : = f(e), x(g, g') := 0 if (g, g') =I= (e, e). Then 

dx = fas is easily checked. 
q.e.d. 

( 1.6.C) Lemma 

Let f: G ➔ Abe a (-2)-chain; let g1 ¢Hand suppose that L f(g1 h)eIHA. 
- heH 

Then there exists a boundary dx such that dx = f on g1 H and dx = 0 

on G\H\g1H. 

Proof. Let k f(g, h) = Lh-1a(h) - La(h). We define x: G2 ➔ A by the for-
h eH 

mulas: 

x(h, g1) := a(h) if he H. 

x(g1, h) : = -a(h') if heH, where h' = g1 hg1 1 . 

x(g1h,h- 1) :=f(g1 h)ifheH\{e}. 

x (g, g1
) : = 0 in all other cases. 

Then we have 

and for h-::/= e 

dx(g1h)= Lg-1x(g,g1h)- Lx(gihg,g-1) + kx(g1h,g) 

= 0 - (a(g1hg1 1) - a(g1hg11)) + f(g1h) = f(g1h). 

For g' e G \ H \ g1 H one sees in the same way by direct calculation that dx (g1)=0. 

q.e.d. 

( 1.6.D) PROOF OF THE EXACTNESS OF THE SEQUENCE ( 1.6.1) 

(i) surjectivity ofb. Let f: G/H ➔ A/I8 A be a cycle. We can assume f(e) = 0 

( 1.6.B). Choose a system of representants R of G/H \{ e} in G. Define x': 

G ➔ A by x' (g) : = any lift off(g) if g e R; x' (g) : = 0 everywhere else. (as usual 

g denotes the image of ge Gunder the natural homomorphism G ➔ G/H). We 

have for x' that Lg-1x'(g) - I: x 1(g) e IHA because f is a cycle. Let L g-1 x' (g)-
g 
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Lx 1(g)= -Lh-1a(h)+ L a(h);definex:G ➔ Abyx:=x'onG\Hand 
g h€H heH 

x(h) = a (h) if h € H. Then xis a cycle and b (x) is equal to f except possibly in 

e. A second application of ( 1.6.B) concludes this part of the proof. 

(ii). The image of a cycle under the composed map b a' is concentrated in e 

and hence represents zero (1.6.B). Therefore b a= 0. 

(iii) Kerb C Im a. Let f: G ➔ Abe cycle such that b (f) is a boundary dy. By 

lifting y we can change fby a boundary in such a way that b (f) = 0 after this 

change; i.e. for all geG we then have L f(gh) eIHA. Applying (1.6.C) re-
h€H 

peatedly we can now change fin a cycle concentrated on H; i.e. in a cycle of 

type a'(z) for some cycle z: H ➔ A. 

q.e.d. 

( 1. 7) "Hilbert 90". 

Let L/K be a finite galois extension with the galois group G : = G( L/K). The 

group G acts on the group L * of non-zero elements of L. 

( 1.7 .A) Proposition. 

Proof. Let s I-+ as be a 1-cocycle. For all c € L consider the element b : =Lass( c). 
s 

There exists an element c € L such that bi= 0 (linear independence of auto­

morphisms of L/K; cf. [ 11] Ch. 1 Th. 3). Take such a c, then we have 

t(b) = L t(as) ts(c) = L a;1at 5 ts(c) = a;- 1b. 
s€G 

(t (a5 ) = a;- 1ats is the cocycle condition). One has at = 6/t (b), i.e. t t-+ at is a 

co boundary. 

(1.7.B) Remark. 

According to ( 1.3) this means also that H-1 (G, L *) = 0 in the case 

that G is cyclic, which is the classical form of "Hilbert 90". For a 

direct proof of this fact cf. e.g. [9] § 13 Satz 114. 
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! 1.8) Nullity of A- 1 and A-2 if the norm map is surjective. 

Consider all finite galois extensions of a fi.xed field K. Suppose that the follow­

ing condition is satisfied. 

\ 1.8.1) For all finite galois extensions E, F such that F CE is the norm map 

NEiF: E ➔ F surjective. 

11.8.A) Proposition. 

Under condition (1.8.1) H-1(G, L*) = 0 for all finite abelian exten­

sions L/K. 

Proof. In view of (1.7.B) we kno:v that H-1(G, L*) = 0 for cyclic extensions 

L/K. According to its definition H-1 (G, L *) : = Ker N/IGL * ( 1.2). We proceed 

by induction on the number of elements ofG := G(L/K). The case #G = 1 is 

trivial. Let H be a cyclic subgroup of G; L' the invariant field of H. Let N' and 

N" be the norm maps 

N' N" 
L-L'- K, N". N 1 =N. 

Suppose ac Land a€ Ker N, then N11 (N1(a)) = 1. It follows from the induction 
hypothesis that there are Ys such that: 

s running through G(L 1/K). 

Lets be lift of s; Ys = Yi; choose XS such that N1(xs) = Ys· Then 

, sy5 sN'(x5) , ( sx5 ) , 
N(a)=Il-=Il-,-=N TT- =N(b); 

Ys N (xs) xs 

i.e. N' (a/b) = 1. According to the proposition in the cyclic case there exist zt € L 
fort€ H, such that 

i.e. 

q.e.d. 

(1.8.B) Lemma 

Let L/K be a finite abelian extension and suppose that ( 1.8.1) is sa tis-
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fied. Let M be a subextension of L: H CG the corresponding subgroup. 

Then M* ~ L*/IHL* as G/H-modules. 

Proof. NL/M :L*➔ M* is a surjective map of G-modules; the kernel is equal to 
IH L * ( 1.8.A). Therefore M* += L * /IH L * as G-modules and also as G/H-mo­
dules for H acts trivially on M*, whence on both. 

q.e.d. 

( 1.8.C) Proposition. 

i-I-2(G, L *) = 0 for all abelian finite L/K if the hypothesis ( 1.8.1) is 
fulfilled. 

Proof. For the cyclic case this follows from ( 1.3). The general case results from 
this by induction by means of the exact sequence (1.6.1). 

q.e.d. 

(1.8.D) Remarks. 

1. Propositions (1.8.A) and (1.8.C) are stated only for abelian L/K. 
The same proofs, however, work for solvable L/K. 

2. One can also conclude directly from H 1 ( G, L *) = O = H0 ( G, L *) 
that Hq(G, L *) is zero for all q (by using the theorem, due to Tate, 

that all these cohomology groups are zero if two consecutive 

groups are zero; see e.g. [CL] Ch. IX § 6 Th. 8.) 
3. The hypothesis ( 1.8.1) is satisfied in the case that K is a local field 

with algebraically closed residue field; cf. section (2.6). 

2. SOME LOCAL FIELD THEORY. 

Notation: From now on K denotes a local field with perfect residue field k; 

Knr is the maximal unramified extension ofK (in a fixed algebraic closure n 

of K), with residue field k5 , which is an algebraic closure of k; Knr is a com­

pletion of Knr; the symbol I I denotes the absolute value on K, and also its ex­

tension ton. We use v or vK to denote the normalized exponential valuation 

on K; finally TTK is a uniformizing element of K (i.e. vK(TTK) = 1). 
If L/K is a finite extension, K1 denotes the maximal unramified extension of 

K contained in L; eL/K is the ramification index of L/K (thus e1 /K = [L: Kd ). 
In this section we define some assorted notions associated with local fields and 
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prove son_1e propositions concerning them. In (2.1) we look at finite exten­

sions of Km and show by means of Krasner's lemma that every such extension 

comes from an extension of some Kn, which is a finite unramified extension of 

K. !n 2.2) we prove a fundamental lemma due to Lubin and Tate [LT], and 

apply this to deduce a result on the p-th roots of unity (p = char(k)), which 

could also have been obtained as a corollary to the study of the map x ~ xP 

carried out in ( 2.3). Section ( 2.4) gives a characterization of tamely ramified 

extensions which are also totally ramified. In (2.5) we define ramification 

groups. with the help of which the norm map is studied in ( 2.6). These two 

sections are simply a condensed and abbreviated version of the parts of chap­

ters IV and V of [CL], which are needed further down. In ( 2.7) we establish 

a f'undamental exact sequence, which occurs again and again in some form or 

another throughout this thesis. The section closes with ( 2.8) where in fact we 

prove that the ramified part of any abelian extension of K "comes from" some 

totally ramified abelian extension; in other words we prove that there are suf­

ficiently many totally ramified abelian extensions (2.8.F). 

,. 
( 2.1) Extensions of Knr-

(2.1.A) Kramer's lemma. 

Let adl; r := min ls(a) -a I where s runs through the set G(K, K(a) ➔ 
fl) \{1} of all K-isomorphisms K(a) ➔ fl not equal to the identity. 

Suppose (Je fl is such that I a -{31 < r. Then G(K({J), K(a,{3) ➔ fl)= 
{1} and, ifo is separable over K, we have K(a) C K({J). 

See e.g. [ 22] lemma 3-2-5 for a proof of this lemma. 

" ( 2. l.B) EXTENSIONS OF Knr. 

There is only one way to extend the valuation of Knr to a finite extension E 

of Knr· Hence if L/K is finite galois the injective restriction homomorphism 

is an isomorphis,m. 

Inversely let E/Knr be a finite extension. Then using the continuity of the roots 

of a polynomial as the coefficients vary, we see from Krasner's lemma ( 2. I.A) 

that there exists a finite extension L/K for some finite unramified extension • • n 
Kn IK. such that E = Lnr = LKnr and we can take L/K separable if E is separable ,. 
over Knr. 
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(2.1.C) Corollary 

Let L, L' be two finite s:parable extensions of K, such that LK.nr CL1Knr 
(in a fixed completion n of the algebraic closure n of K), then LKnr C 

L1Knr. 

Proof. Let x € L be a generating element of L. According to Krasner's lemma 

one can find an x' e L1Km ( for some finite unramified extension Km of K) such 
h I I 

t at LKm = Km(x) C Km(x) C KmL. 
q.e.d. 

(2.1.D) Lemma. 

For every finite abelian extension E/Knr there exists a galois exten­

sion M/K such that: 

(i) G (M/_K)ram is abelian 

(ii) E C~r· 

Proof. Let L be as in (2.1.B), and let L1 be an arbitrary finite galois extension 
which contains L; let G := G(L'/K); H := G(L/Kd; H1 := G(L1/KL1); H11 := 

G (L1 /Kd; cf. the figure below. 

K 

<H', H'> is a normal subgroup of G (for g-1 h11 hz1hl h2g = h31 h41h3h4, 
where h3 = g-1h1g, h4 = g-1h2geH', for geG, h1 , h2 eH'). 

Let M be the fixed field of<H1,H1>, then G(M/K) '.:::'. G/<H1,H1> and 
G(M/K\am ~ H1/<H1, H'> is abelian; moreover for s, t eH", which contains H1, 
we have s-1t-1 st (x) = x if x € L (the extension L/KL is abelian). Therefore 

LCM. 
q.e.d. 
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(2.2) The basic Lubin-Tate lemma. 

Let K be a local field with finite residue field k; let q be the number of elements 

of k; let 'ITK be a uniformizing element of K. The symbol F'ITK denotes the set 

of all formal power series over A(K) (= { x € K I vK (x) ;;;i, 0} = ring of integers 

of K) such that 

(2.2.A) Lemma([LT] lemma 1). 

Let f, g € F'ITK be arbitrary. Then for every a€ A( K) there exists exact­

ly one power series [a] f, g with coeffi.:ients in A(K) such that 

Proof. We define inductively polynomials Fr of degree r such that 

and F = F d xr+ 1 r - r+l mo · · 

Take F1 = aX; suppose that we have found Fr, r ;;;i, 1; put Fr+l :=Fr+ ar+l xr+l 

where ar+l is yet to be determined. 

f(Fr+l) = f(Fr) + 'ITK ~+l xr+l mod. xr+2 

F (g)=F (g) +1rr+la xr+l mod xr+2 
r+l r K r+l · 

These equations show that ar+l must satisfy 

xr+l = f(Fr)- F/g) 
ar+l - r+l ' 

1TK - 1TK 

which proves (inductively) that Fr+l is unique mod. xr+2 for all r, whence that 

[a] f,g is unique. It remains to show that ~+l eA(K), which follows from 

f(Fr) - Fr(g) = Fr(X) 4 - Fr(X4) = 0 mod. trK 

[a] f, g is the limit of the Fr. 
q.e.d. 

(2.2.B) Lemma. 

If a local field K (no restriction of the residue field) contains a prim­

itive p-th root of unity~ P' then vK (t p-1) = e/(p-1) : = e 1 , ( and e1 is 
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therefore an integer). (e := vK(P) and p := char(k)). 

Proof. Lett P be a primitive p-th root of unity; tp is then a root of the irredu­
cible polynomial xP- 1 + XP- 2 + ... + X + 1 and tp-1 is a root of (X+l)P- 1 + 

(X+l)P- 2 + ... + (X+l) + 1, which is a polynomial of the type XP- 1 + p( ... ) + p. 

A root of such a polynomial has necessarily a vK -value equal to vK (p )/ (p-1 ). 

q.e.d. 

(2.2.C) Application. 

Let K be a local field with algebraically closed residue field k of 
characteristic p #= 0. Then the following are equivalent: 

(i) e is divisible by p-1, 
(ii) K contains a primitive p-th root of unity. 

(e = 00 is by definition not divisible by p-1). 

Proof. Lemma ( 2.2.B) proves (ii) => (i). Suppose conversely that e is divisible 
by p-1; then there exists an element ue K with vK(u) = 0 and such that XP-puX 

has a non-zero root. Let a be a (p-1)-th root of u (exists by Hensel's lemma 
because k is algebraically closed); then putting Y : = a-1 X we have a nonzero 

solution ofYP - pY = 0. By (2.2.A) above there exists a power series h with 
coefficients in ZP (= ring of p-adic integers) such that 

h = Y + a2 Y2 + ... and h • g = f • h, 

where f: = (Y+l)P - 1 and g := YP - pY. Then if b is a non-zero solution of 

YP - p Y = 0, it follows that 1 + h (b) is a primitive p-th root of unity. 

q.e.d. 

( 2.3) The map x t-+ xP. 

We suppose p : = char(k) #= 0 for the purpose of this section. Let un(K) := 

l+1T~A(K);U°(K) :=U(K):=A(K)*={xeK lvK(x) =O}.Weconsiderthe 

map u: xH- xP ofU(K) into itself. 

(2.3.A) Proposition 

u maps un(K) into um(K) and un+l(K) into um+l(K), where m := 

np if n ~ e1 ; m : = n + e if n > e1 . For the induced maps un: 
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un(K)/un+1(K) ➔ um(K)/um+l(K) we have: ker Un= 0 if n-.:/=- e1 and 

ker ue 1 = Z/pZ or o depending on whether K contains all the p-th roots 

of unity or only the trivial one. 

Proof. n = 0 is evident. Let n;;;., 1 and x = 1 + t71'K, t € A(K) then u (x) -1 = 

pt77K + ... + tPirJt, where the vK-value of any of the middle terms in the sum 

on the right is strictly larger than either v(pt 1r\U = v(t) + n + e or v(tP7l'ft) = 
pv (t) + np. This proves the first assertion of the proposition. If 1 ~ n < e 1 

then u(x) = 1 + tP7l'~P mod Upn+l(K). Under the isomorphisms ur(K)/Ur+1(K)'.::: 

k(r;;;;, 1) the map un then becomes t ➔ tP, which has zero kernel (char(k) = p). 

If n > e1 then u(x) = 1 + pt 71'~ mod. un+e+\K). With the same identifica­

tions as above un now becomes t ➔ at where a is some nonzero element ofk. 

If n = e1 we know that t € Ue1( K) if ns a p-th root of.unity ( 2. 2.B ). Suppose 

on the other hand that x€Ue1(K), xP = 1 mod. uPe1+1(K); write x = 1 + m~l. 

The monic equation 

then has a solution mod. 7l'K and it has simple roots mod. 1TK (the derivative of 

the left hand side is equal to 7l'j?elprr~ 't= 0 mod. 1TK)· Hence every element of 

the kernel of Uq can be refined to a p-th root of unity. 

( 2.4) Tamely ramified extensions. 

A finite extension L/K is said to be tamely ramified if the residue extension 1/k 

is separable and p J' eL/K. 

( 2.4.A) Proposition 

Suppose that L/K is both tamely and totally ramified. Let [ L : K] = e. 

Then Lis of the form L = K(x) where xis a root of an equation xe = 

7l'K for some uniformizing elements 7TK ofK. 

See e.g. [ 22] Prop. 3-4-3 for a proof of this proposition. 

(2.4.B) Corollary. 
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( 2.5) Ramification. 

(2.5.A) DEFINITION OF THE RAMIFICATION GROUPS. 

Let L/K be a finite galois extension with galois group G. We define the ramifi­

cation subgroups Gi, i = -1, 0, 1, 2, ... as follows: 

Gi:={seGlvi(s(a)-a)~i+l forall aeA(L)}. 

One proves easily that the Gi are normal subgroups of G, and that Gi = { 1} if 
i is large enough. ( [CL] Ch. IV Prop. 1). One has 

(2.5.A.1) 
SU . 
-€U1(L) if s€Gi-l• ueU(L); 
u 

G_1 = G; G0 is the inertia subgroup of G and its invariant field is the maximal 
unramified extension KL of K contained in L. 

(2.5.B) THE TOTALLY RAMIFIED CASE. 

We now suppose L/K to be totally ramified. Then a uniformizing element '/TL of 
L generates A(L) as an A(K)-algebra; therefore we have in this case: 

(2.5.B.1) 

Define a map G ➔ U(L) by the assignment si-+ s'/TL . This map induces injections 
'/TL 

'Pi: G/Gi+l ➔ ui(L)/ui+l(L), 

which do not depend on the choice of '/TL· (This follows from (2.5.A.1)). It 

follows that the 'Pi are group homomorphisms. 

IPi(st) := - = - . - =-. - = IPi(s) · 'Pi(t) . ( 
st'/TL st'/TL t'/TL - S'/TL t'/TL ) 

'/TL t'/TL '/TL '/TL '/TL 

The results (2.5.B.2) - (2.5.B.5) below derive from this fact with the help of 
the isomorphisms U (L)/U1 (L)-;, k* = 1 *, ur (L)/ur+1 ( L) ~ k = 1 (r ~ 1). 

(2.5.B.2) If char(k) = 0, then G 1 = 0, and every totally ramified extension of 

K is cyclic. 

27 



(k has no finite additive subgroups if char(k) = 0; fmite subgroups of k* are 

cyclic). 

( 2.5.B.3) If char(k) == p > 0, then Go /G1 is cyclic of order prime to p and G1 
is a p-group. (I.e. #G1 is a power of p.) 

(2.5.B.4) The galois group of a totally ramified galois extension of a local field 
K (no restrictions on the residue field) is solvable. 

Proof. There is a normal subgroup G1 C Go == G_1 == G. The group G/G1 is 
cyclic by the above, hence solvable; G1 is a p-group and therefore solvable. The 

solvabiHty of G itself follows. 

q.e.d. 

(2.5.B.5) The galois group of every finite galois extension of a local field with 
finite residue field is solvable. 

Proof. The group G/G0 is the galois group of an unramified extension, whence 
cyclic and therefore solvable. The group Go is solvable by (2.5.B.4). 

q.e.d. 

(2.5.C) Proposition, 

Let L/K be a totally ramified abelian extension; char(k) == p -4= 0. 

Then G(L/K) is the direct product of a cyclic group of order prime 

top and an abelian p-group. 

Proof. There is an exact sequence 0 ➔ G1 ➔ G ➔ G/G1 ➔ 0. The group G/G1 

is cyclic of order n prime top. Lets be a generator of G/G 1 ; choose a lifts of 
s; the element sn is in G1 , so there exists a power q of p such that ( sn) q == 1; 

the element sq is also a generator of G/G1 ; the homomorphism defined by 
sq ➔ s4 is a section of the exact sequence above. 

q.e.d. 

(2.6) The norm map. 

In this ~ction L/K is a totally ramified cyclic extension of prime degree l, (un­
less otherwise stated). 
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(2.6.A) THE DIFFERENT (cf. (CL] Ch. III§ 3) 

Any uniformizing element 7TL of Lis a generator of A(L) over A(K). Let fbe 
the minimal polynomial of 7TL. Then the different of L/K is per defmitionem 
equal to the ideal: 

This different is characterized by the property: 

(2.6.A.1) 6 C om-1 <a> Tr(6) Cot. 

(oi.an ideal ofK, 6 an ideal of L). 

Lett be the number t := vL(s7TL -7Td - 1 (s a generator of G = G(L/K)). The 

number tis the largest integer such that Gt= G (cf. (2.5)). Now f'(1rd = 

II (7TL -S1Tt), hence vL<f'(1rd) = (l-1) (t+l), and we find that 
s*l 

(2.6.A.2) D = (1rr) with m = (l-1) (t+l). 

(2.6.B) Lemma. 

. [(t+l) (l-1) + n J-
w1th r = ----- (n;;;,, 0). 

1 

This follows immediately from the characterizini property of the different 

given above (2.6.A.1). 

(2.6.C) Lemma. 

If x e7T1 A(L), then N(l +x) = 1 + Tr(x) + N(x) mod. Tr(7T£n A(L)). 

Proof. Define xa : = I1 s(x) for all finite subsets a of G. Then N ( l+x) = ~ xa. 
sea a CG 

Defme n(a) =#a.The terms ofN (l+x) with n(a) = 0, 1, 1 are respectively 1, 

Tr(x), N(x). If n(a) -:I= 0, 1,1,then sa-:#=aforall s * 1 ofG (for G is cyclic of 
prime order). Hence there exist a1, ... , 3r with n (ai) ;;;,, 2 for i = 1, ... , r and 

such that 
r sa· 

N(l+x) = 1 + Tr(x) + N(x) + :E :Ex 1• 
i=l s 

But :E xsa = Tr(xa) eTr(7T£n A(L)) if n(a);;;,, 2 and x e1rtA(L). 
s q.e.d. 
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Let i/1 be the function defined by: 

i/l(x) =x ifx._;;t, 

i/l(x) = t + l(x-t) ifx ;;;i. t. 

( 2.6.D) Proposition. 

For all n ;;;i. 0 one has: 

(i) N(Ui/l(n'(L)) C Un(k) and N(Ui/l(n)+l(L)) C un+l(K). 

Let Nn be the induced map uljt(n)(L)/U¥'(n)+l(L) ➔ un(K)/un+\K) 

and identify these quotients with k* if n = 0 and with k if n > 0. Then 
we have for the maps Nn: 
(ii) No:k* ➔ k*isgivenby~>-+t 
(iii) If 1..;; n < t; Nn is given by Nn(~) = O!n~l for certain O!n ek*. 
(iv) If 1..;; n = t; Nn: k ➔ k is given by Nn W = a~P + /3~ for certain 
aek*, {3ek. 

(v) If n> t; Nn: k ➔ k is given by Nn(~) = '3n~ for certain '3n ek*. 

Proof. Let n = 0. It is clear that (i) is true in this case. As L/K is totally rami­
fied, it follows that N0 is given by~ i-+ ~ 1• 

1..;; n < t. One has IJ,(n) = n. Let xe~ A(L), then N(x) err~A(K) because 
vK • N = v1 . According to (2.6.B) one has Tr(x) e1fKA(K) with 

[ (t+l) (l-1) + n] [(n+l) (l-1) + n + 1] 
r = ----- ;.;i. ------- = n + 1. 

1 1 

Analogously one proves that Tr(rrf1 A(L)) C 7T~+l A(K). By virtue of (2.6.C) 

one then has N(l+x) = 1 + N(x) mod. 7T~+l A(K), which entails (i) in this case. 

Letx=urr~,ueU(L),thenN(x) =u1N(rr~) =u"rri forcertainu" in U(K). 
This implies (iii) because N(u) = u1 mod. U1(K) (which was also used in the 
case n = 0). 

1 ..;; n = t. Then I), ( t) = t. The same kind of calculations as in the previous case 

now yield N (l+x) = 1 + Tr(x) + N(x) mod. rr~1 A(K) if x e 1T~ A(L). Whence 
(i) in this case and (iv). 

n>t. Now\),(n) = t+l(n-t). In this case one finds that N(l+x) = 1 +Tr(x) 
mod. 1rt1 A(K), if xe1rt A(L), which proves (i) in this case and (v) except that 
possibly/3n could be zero. But ift3n were zero we would have Tr(1Tt(n)A(L)) C 
1rt1 A(K) which would contradict (2.6.B). 
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(This same argument can be used to prove that {3 =I= 0 in case (iv).) 

q.e.d. 

( 2.6.E) Corollary. 

Ifk is algebraically closed, N(Ul/l(n)cL)) = Un(K) and N(Ui/l(nJ+\L))= 
un+l(K) for all n;;;,, 0. 

Proof. The second statement follows from the first because i/l(n+l);;, 1/l(n) + 1. 

The maps Nn are surjective for all n;;;,. 0 (2.6.D). Filtering U(L) by means of 
the ul/l(n)cL) and U (K) by means of the Un(K) we obtain the desired result as 

a consequence of the purely algebraic and elementary lemma (3.1) below. 
q.e.d. 

(2.6.F) Corollary. 

N (L *) = K*, if k is algebraically closed. 

( 2.6.G) Corollary. 

For all (totally ramified ((abelian) galois)) extensions L/K we have 

N(U(L)) = U(K) and N(L*) = K* ifk is algebraically closed. 

This follows from the transitivity of the norm maps and the solvability of the 

group G(L/K). (Cf. (2.5.B.4)). 

( 2.6.H) Proposition. 

If L/K is any unramified galois extension, then 

(1/k is the residue field extension). 

Proof. Because L/K is unramified one has NL;K(Un(L)) C un(K) for all n. 
The induced maps un(L)/un+l(L) ➔ un(K)/un+l(K) are the homomorphisms 

N1/k: l* ➔ k* for n = 0 and Tr1/k: 1 ➔ k for n > 0. The first of these statements 

follows from the fact that the reduction of the minimal polynomial of an 

element x e A(L) is the minimal polynomial of the reduction-; of x; the 
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second is due to this same fact coupled with the formula 

N(l + 7T~x) = TT(l + 7T~s(x) = 1 + 1T~ Tr(x) + 1r:+1( ... ) (n ~ 1). 
s 

An application of lemma (3.1) concludes the proof. 

q.e.d. 

(2.6.J) Corollary. 

Let K be a local field with finite ( or quasi-finite) residue field. Then 

N L/K ( U ( L)) = U ( K) for unramified extensions L/K, ( and this is the 
case for unramified extensions only, cf. (10.2)). 

(2.7) The fundamental exact sequence. 

(2.7.A) Let K be a local field with algebraically closed residue field k. If E/F/K 

are finite galois extensions of K, we know that N E/F is surjective (2.6.G); i.e. 
the hypothesis (1.8.1) is fulfilled, which entails: 

(2.7.A.1) ((1.8.A), (1.8.C)) 

The exact sequence o ➔ U t L) ➔ L * ~. Z ➔ 0 gives rise to a long exact sequence 

of cohomology groups 

... ➔ H-2(G, L*) ➔ ic2(G,Z) ➔ il-1 (G, U(L)) ➔ il-1 (G, L*) ➔ ••• 

In (1.5) we showed that il-2(G, Z) -::::. Gl<G, G>. Now write down the defini­
tion ofH-1(G, U(L)) and use (2.7.A.1). The result is: 

(2.7.A.2) If L/K is galois (k algebraically closed), the following sequence is 
is exact 

i N 
O ➔ G(L/K)ab ➔ U(L)/V(L) ➔ U(K) ➔ 0 

where, writing G for G(L/K), by defmition, V (L) : = le U(L). The map i is 
given by: 

(2.7.A.3) 

which can be verified by tracing the various homomorphisms involved. This 
definition of i does not depend on the choice of 1r1 . 
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(2.7.B) THE GROUP V(L) IN A SPECIAL CASE. 

Let L/K be totally ramified cyclic of prime order I. Let t be the largest integer 

such that Gt= G (cf. (2.5)). Then the group V(L) is equal to 

(2.7.B.l) 

Proof. It is clear that V(L) C Ker N and V(L) C ut+1(L) (2.5.A.1). By defini-

s1TL 
tion oft we have - e ut(L) \ ut+1 (L) for every s :::/= 1 of G(L/K), as G = G(L/K) 

1TL 
is cyclic of prime order. It follows from (2.7.A.2) that Ker N = i(G) • V(L), 

where i is given by (2.7.A.3). Now s1TL V(L) C U1(L) \ ut+1(L) for s :::/= 1, 
s1TL 1TL 

owing to the fact that-¢ ut+1(L) while V(L) C ut+l(L). Therefore uc+l(L)n 
1TL 

Ker N = V(L). 

q.e.d. 

( 2. 7 .C) REMARK ON THE NON ALGEBRAICALLY CLOSED CASE. 

If k is not algebraically closed H-1(G, L *) is not necessarily zero. For example 

take K : = Q2 ; let ~s be a primitive 8-th root of unity; take L : = Q2 (~s); then 
G(L/K)::::. V 4 • One calculates that H-1(G, L*)-:::. Z/(2). By the Tate theorem 

on group cohomology (cf. (1.8.D) Remark 2 or the introduction to section 2) 

this also shows that N L/K is not surjective in this case. 

( 2.8) The pull-back theorem. 

The symbol Z(G) denotes the centre of a group G. 

(2.8.A) Lemma. 

Let L/K be a finite galois extension; KL the maximal unramified ex­

tension of K contained in L. Suppose that G(L/Kd C Z(G(L/K)). 

Let Km/K be any unramified galois extension containing KL, then 

also G(L · Km/Km) C Z(G(L · Km/K.)). 

Proof. Lets e G(L • Km/Km) and t eG(L • Km)· For ye Km we have ts(y) = t(y) 
and st (y) = t(y) since also t(y) e Km. If z e L then st (z) = ts(z) because of 
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G (L/KL) C Z(G (L/K)). The field L · Km is generated by Land Km. 

L -----L·Km 

q.e.d. 

(2.8.B) Lemma. 

H9(G(L/K), L) = 0 for every galois extension L/K. 

Proof. As a G-module Lis induced on account of the normal basis theorem. 

q.e.d. 

(2.8.C) Lemma. 

Let G be a finite abelian p-group and k a perfect field of characteristic 

p. Then 

H9(G(ksfk), G) = 0 for all q € Z, 

(trivial operation of G(k 5/k) on G). 

Proof. By induction on the number of elements of G. Let first G ~ Z/pZ. There 

is an exact sequence ofG-modules 

where the last map is given by x 1-+ xP - x. Writing down the long exact se­

quence of this and applying (2.8.B) above gives the desired result in this case. 

For arbitrary G let H be a cyclic subgroup of order p; using induction and the 

long exact sequence belonging to O ➔ H ➔ G ➔ G/H ➔ 0 one now proves the 

general case. 
q.e.d. 

(2.8.D) Lemma. 

j 
Let {1} ➔ H ➔ G ➔ G/H ➔ { 1} be an exact sequence of (not neces-
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sarily commutative) groups. Suppose that there exists a sections of j, 
and that H C Z(G). Then s(G/H) is a normal subgroup of G. 

Proof. Let g € G be arbitrary; write g = s(b) h where h € H and b = j (g). Then 

g-1s(a)g = h-1 s(b)-1 s(a) s(b)h = h- 1s(b-1 ab)h = s(b-1 ab)Es(G/H). 

q.e.d. 

(2.8.E) Proposition. 

Let L/K be a finite galois extension. Then there exists a totally rami­

fied extension L' /K such that L · Knr = L' · Knr· 

Proof. Let K.1 be the maximal unramified extension of K contained in L. 

Because G(L/KLJ is solvable (2.5.B.4), it suffices to prove the proposition for 

the case that G(L/Kd is cyclic. 

a) Let q = #G(L/KLJ i=- p = char(k). Then L = KL(x) where xis a root of an 

equation Xq = 7r for some uniformizing element 7r € K1 (2.4.A). As X9 = u 

defines an unramified extension ofK1 for ;my ueU(KLJ, we can take L1 = 

K(x 1
) where x' is a root ofX9 = 1TK, 1TK eK. 

b) Let #G(L/Kd = p. Consider the canonical exact sequence 

0 ➔ G(L/Klram ➔ G(L/K) ➔,G(K1/K) ➔ 0 

According to (~.8.C) we have !im,ii2 (G(Kn/K), G(L/K\am) = ii2 (G(Knr/K), 

G (L/K\am) = H2 (G(kjk),G(L/K)rarn) = 0 where Kn/K runs through the un­

ramified galois extensions of K. Hence for sufficiently large n there is a section 

s of 

0 ➔ G(L/K)ram ➔ G(L · Kn/K) ➔ G(Kn/K) ➔ 0 

Then G(L • Kn/K) = G(L/Klram · s(G(Kn/K)) (semidirect product). We can take 

L1 := invariant field of s(G(Kn/K)). 
q.e.d. 

(2.8.F) Corollary. (Pull-back theorem). 

Let L/K be a finite galois extension; K1 the maximal unramified ex­

tension of K contained in L, and suppose that G(L/Kd C Z(G(L/K), 

then there exists an abelian totally ramified extension L1 /K such that 
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Proof. Let L' be as in (2.8.E), (2.8.A) and (2.8.D) now imply that L' /K is 

galois and hence abelian (because G(L' /K) is isomorphic to G(L/K t). 

(2.8.G) Corollary. 

For every two totally ramified abelian extensions L/K, L' /K there 

exists a totally ramified extension M/K such that M · Knr = L · L'· Knr. 

(2.8.H) THE GROUP O\.K· 

Consider the projective system { G(L/K)rarn I L/K € T} indexed by the family 

T of all finite abelian extensions L/K of K (which are contained in some fixed 

algebraic closure D. of K), with the ordening L/K > L 1/K iff L · Knr ::, L'· Knr' 

and the maps 

if L/K > L' /K. (Where the isomorphisms are the natural ones, and the middle 

map is the natural restriction.) This projective system is directed. Corollaries 

(2.8.G) and (2.8.F) show that 

(2.8.H.l) 

where the projective limit is taken, either, over the above described projective 

system, or, over the directed subsystem ( 2.8.G) consisting of the totally 

ramified abelian L/K. 

( 2.8.J) Corollary. 

For any local field with perfect residue field k we have 

G(Kab/K) ~G(K~~/K) X 0tK ~G(kab/k) X otK 

This follows from (2.8.F). To determine the galois group G(Kab /K) we must 

therefore determine G (kab /k), which may perhaps be con side red an easier prob­

lem - especially when k is finite, quasi-finite of algebraically closed - and we 

must determine OtK. It is with another description of oi.K chat chapter II is 

concerned. 

( 2.8.K) Example. 

It is not true that every abelian extension L/K is the compositum of a totally 

ramified abelian extension L 1 /Kand an unramified extension KL/K.(According 
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to corollax:y ( 2.8.F) there is for every L/K an Kn/K such that this is true for 

the extension L • Kn/K). To construct a counterexample it suffices to find an 

abelian L/K.such that G(L/Kd is not a direct summand. 

L'--------------- M=L1-K4 

~,)nHI 
L L•K4 

7 I 
K=Qs 

Take K = Qs ; K4 : = unramified extension of degree 4 of Qs ; L' : = K (~ 5 ), 

where~ s is a primitive 5-th root of unity; let M : = L' • K4 ; then G : = G (M/K) ~ 

Z/42 X Z/42. Let G(M/K4 ) be the second factor;let H be the subgroup of 

order 4 generated by the element (2,1) of G(M/K). Let L be the invariant field 

of H. One now shows easily that G(L/K)-:::::. Z/42 and that G(L/Kd-:::::. Z/22, 
which is not a direct summand. 

(2.8.L) Remarks. 

1. The requirement G(L/Kd C Z(G(L/K)) means that G(L/K) is 
abelian in the case that the residue field of K is finite or quasi­
finite ( or algebraically closed). 

2. In the case that the residue field k is finite ( or quasi-finite) there is 

a much easier proof of ( 2.8.F) and ( 2.8.E) as follows. Let F be a 

generator ofG(KL/K), take any lifts ofF in G(L/K). The order 
n of sis a multiple of the order of F. Let Kn/K be the unramified 
extension of degree n ofK. Then Kn:) K1 . We also use F to de­

note a generator ofG(¾/K) which restricts to the previous Fon 

K1 . There is exactly one element t of G (Kn · L/K) which restricts 
to s on L and to F on Kn. The order oft is n. The homomorphism 
defined by F ~ t gives a section of the exact sequence 

0 ➔ G(L · Kn/K)ram ➔ G(L · Kn/K) ➔ G(Kn/K) ➔ 0 

(G(L · Kn/K)ram = G(L · Kn/Kn)). 
q.e.d. 
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3. SOME CATEGORY THEORY. 

In this section, included mostly for completeness sake, we have collected some 

well-known algebraic and categorical facts used elsewhere. Section (3.1) con­

tains a lemma on filtered abelian groups, which has already been used twice in 

section (2.6). In (3.2) we discuss procategories, and prove once more that the 

procategory of an abelian category is abelian (3.2.E). In (3.3) lastly we apply 

the results found to projective systems of finite abelian groups. 

(3.1) Lemma on filtered abelian groups ([CL] Ch. V § 1 lemma 2). 

Let A (resp. B) be an abelian group filtered by subgroups A= A 0 :J 

A1 :J ... (resp. B = Bo :J B1 :J ... ) such that A = ~ A/ An and n Bn = 

{ 0} (e.g. B = ~ B/Bn)- Let u: A ➔ B be a morphism of filtered 

groups (i.e. a homomorphism such that u(An) C Bn) and let un: 

An/An+l ➔ Bn/Bn+l be the induced homomorphism. Then: 

(i) un surjective for all n => u is surjective 

(ii) un injective for all n => u is injective. 

Proof. From the fact that un is injective we deduce that Ker u n An = 

Ker u n An+l• hence inductively Ker u C An for all n, which proves (ii). Let 

beB be arbitrary; u0 is surjective, hence there is an a0 € A such that (u(a0 )-

b) = b1 € B1 ; u 1 is surjective, hence there is an a1 € A 1 such that ( u (a 1 ) + b1 ) = 

b2 €B2, i.e. (u(ao+ai)-b) €B2; in this way one constructs a series ao +a1 + ... ; 

this series converges to an element a€ A; we have ( u ( a)-b) € Bn for all n, hence 

u(a) = b. 
q.e.d. 

( 3. 2) Procategories. 

(3.2.A) DEFINITIONS. 

Let C be an arbitrary category. We consider the procategory Pro(C) ofC, of 

which the objects are all directed projective systems of C, and which has as 

morphisms from (XalaeA to (YblbeB the set 

HomPro(C) ((Xa), (Yb)) :=~~Hom (Xa, Yb). 
b a 

Such a morphism is determined by giving for every b €Ban a(b) € A and a 
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morphism fa(b): Xa(b) ➔ Yb (which represents fb) such that ifb' > b, there 
exists an a> a(b ), a(b 1

) such that 

(Xa ➔ Xa(b') ➔ Yb' ➔ Yb)= (Xa ➔ Xa(b) ➔ Yb) 

A directed partially ordered set A will be called almost finite if for every a e A 
there are only finitely many elements smaller than a. An object of Pro(C) will 
be called almost finite if its index set enjoys this property. 

(3.2.B) THE AXIOMS OF ABELIANNESS IN A SPECIAL CASE. 

We consider morphisms of a special type (E) in Pro(C). A morphism fis of 

type (E) if: 
fis a morphism between objects of Pro(C) indexed by the same index 

set A: f: (Xa) ➔ (Ya) where f is given by morphisms fa: Xa ➔ Ya 

such that 
(E) 

whenever a' > a. 

Lemma. Let fbe a morphism of type (E). Then: 

(i) If all the fa are monomorphic, so is f. 

(ii) If all the fa are epimorphic so is f. 
Suppose in addition that C has a zero object and that the kernels Ka 

and cokernels Ca of fa exist for all a e A. 

(iii) (Ka) is a kernel off. 
(iv) (Ca) is a cokernel off. 

Proof. (ii). Let g = (gb), g' = (gj,): (Ya) ➔ (21,) be two morphisms such that 
I I , d 

g• f = g. f. Let ga'(b): Y a'(b) ➔ Zb represent gb an Sa(b): Y a(b) ➔ Zb repre-
sent gb. By hypothesis there exists an a> a(b'), a> a(b) such that the follow­

ing diagram commutes. 

The dotted arrows exist by the hypothesis of the lemma. The morphism Xa ➔Ya 
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is epimorphic, hence (Ya ➔ Ya'(b) ➔ Zb) =(Ya ➔ Ya(b) ➔ Zb); i.e. gb = gi, • 
(i) is proved analogously. 

(iv). By (ii) (Ya) ➔ (Ca) is an epimorphism. Let g: (Ya) ➔ (Zb) be a morphis 

such that g 0 f= 0. Let ga(b): Y a(b) ➔ Zb represent gb. By hypothesis there 

exists an a€ A such that (Xa ➔ Ya ➔ Y a(b) ➔ Zb) = (Xa ➔ Xa(b) ➔ Y a(b) ➔ 
0, hence Ya ➔ Zb factorizes through Ca. The morphisms Ca ➔ Zb so obtaine 
define the desired factorization of g. ( iii) is proved analogously. 

q.e. 

(3.2.C) Lemma. 

Every object of Pro(C) is isomorphic with an almost finite object. 

Proof. Let (XalaeA be any object of Pro(C). Consider the set S of all finite 
directed subsets of A. Each s€ S has a largest element a(s). We partially orde 
S by (s < s') ~ (s Cs'). It is clear that Sis an almost finite partially ordered 

directed set. Define Xs := Xa(s) for all seS; and (X5 , ➔ X5) := (Xa(s') ➔ Xa( 
ifs'> s (which implies a(s1

) > a(s)). Now define morphisms f: (X5) ➔ (Xa), 

g: (Xa) ➔ (X5) as follows: for each s e S let a (s) be the above defined elemen 

of A and define ~( s) : Xa( s) ➔ Xs as the identity; for each a e A, let s ( a) : = { 
and define fs(a): Xs(a) ➔ Xa as the identity. The maps f and g are inverses oJ 
each other. 

(3.2.D) MORPHISMS INTO AN ALMOST FINITE OBJECT. 

Let f: (Xa) ➔ (Yb) be a morphism into the almost finite object (Y b)b eB· Le 
Bn := {b € B I there are exactly n elements of B strictly smaller than b}. We 

are going to determine inductively for every be B an a(b) e A and a morphi 

fa(b) which represents fb such that: 

(3.2.D.1) Whenever b'> b, then a(b 1
) > a(b) and 

(Xa(b') ➔ Yb, ➔ Yb)= (Xa(b') ➔ Xa(b) ➔ Yb). 

Ifb €Bo, choose a(b) arbitrary such that there exists a representant fa(b) of 
fb. Let b € Bn, n ;;;a,, 1; let b1, ... , bn be then elements of B smaller than b. Le 

a'(b) be such there exists a representant fa'(b) of fb. For every i;:: 1, ... , n 
there exists an~ larger than a'(b) and a(bi), such that 
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and there exists an a(b) larger than all the~ such that all the fa(b) := (Xa(b) ➔ 

Xai ➔ Xa'(b) ➔ Yb) (which all represent fb) are equal. These a(b) and fa(b) 
satisfy the requirements of (3.2.D.1) by their definition. 

Let A'= {a€ A I H b € B such that a> a(b)}. A' is cofinal in A, which implies 

that ( Xa)a €A, is naturally isomorphic to (Xa)a €A. Let T be the set T : = 
{ (a, b) e AX B I a> a(b)} order T by ((a', b1

) > (a, b)) ¢>(a'> a and b'> b). 

Define the pro-objects ( Xt) t €T, ( Y t lt €T as follows: Xt : = Xa and Y t : == Yb 

if t = (a, b); the morphisms are the natural ones. If we now define ft: Xt ➔ Y t 

as ft := (Xa ➔ Xa(b) ➔ Yb) (t = (a, b)), we have found, in view of the construc­

tions above, a morphism of type ( E) "isomorphic" to the original f. More 

precisely, taking account of (3.2.C), we have proved: 

(3.2.D.2) Lemma. 

For every morphism f: (Xa) ➔ (Yb) of Pro(C) there are objects (Xt), 

(Y tl and a morphism of type ( E) ( Xt) ➔ ( Y tl, together with iso­

morphisms (Xa) ➔ (Xt), (Yb) ➔ (Yt) such that the following diagram 

commutes. 

This means that we can replace isomorphically every morphism of Pro(C) by 

one of the special type discussed in (3.2.B). 

(3.2.E) Proposition. 

(i) If C is additive, so is Pro(C). 

(ii) If Chas enough kernels, so has Pro(C). 

(iii) If Chas enough cokernels, so has Pro(C). 

(iv) If C is abelian, so is Pro (C). 

Proof. (i) is clear; (ii) and (iii) follow from (3.2.B) and (3.2.D.2). To prove (iv) 

we have to show that finite products and sums exist in Pro(C), which is easy, 

and that the image and coimage of a morphism of type (E) are isomorphic. Let 

Ia : = Ker (Ya ➔ Ca), J a : = Coker ( Ka ➔ Xa). The category C is abelian, the 

natural induced morphism J a ➔ Ia is therefore an isomorphism. It is clear that 
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these isomorphisms define an isomorphism of the pro-objects (J a) and (la)· 

q.e.d. 

(3.2.F) PROLONGATION OF FUNCTORS ON C. 

Let C be an abelian category; and F: C ➔ Ab (the category of abelian groups) 
a functor which has only finite groups as values. We can extend F to a functor 

Pro(F): Pro(C) ➔ Abby means of the definition 

Lemma. If F is right exact on C, Pro ( F) is right exact on Pro ( C). 

Proof. Let (Xa) ➔ (Yb) ➔ (Zc) ➔ 0 be a right exact sequence of Pro(C). By ap­

plying the procedure of (3.2.D) to the morphism (Xa) ➔ (Yb) and then taking 
the cokernel as in (3.2.B) we can change this sequence into an isomorphic 

sequence (Xt) ➔ (Yt) ➔ (Zc) ➔ 0 such that the diagram 

~,---~~,---~~,----o 
! ! 1 

is exact whenever t' > t. Now apply F to this diagram and use (3.3.A) below. 

The required result follows. 
q.e.d. 

(3.2.G) PROJECTIVE LIMITS INPRO(C). 

An object X = (Xa)aeA of Pro(C) is called strict if the morphisms Xa ➔ Xa, 

are epimorphic for all a> a'. 

Proposition. (i) Projective limits of projective systems consisting of strict pro­
objects exist in Pro(C). 
(ii) Arbitrary products exist in Pro(C) if finite products exist in C. 

Proof. (ii) follows from (i), once one has proved that finite products exist in 
Pro(C),.which is easy. As to (i), let('½, fj)) be a projective system consisting 

of strict pro-objects; write Xi=(~ )i eT .. Let S be the disjoint union of the 
t t 1 
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sets Ti, i e I. We define an ordening > on Sas follows: 

i > j and there exists a map Xit ➔ ~t' which 

represents (fj\,. 

(when i = j this means t > t' in Ti)• 

The maps ~t ➔ ~ t' mentioned above define a projective system ( Xit)itE S· 

(One needs the strictness hypothesis to show that (X- ➔ X. ➔ Xk ) = 
It -1t 1 t" 

(~t ➔ Xkt,,) if it> jt, > kt,,)· This projective system is the projective limit of 
(Xi). 

Remark. If we had taken a weaker ordening >' on S, such that 
1°. (s>' s') ~(s>s') 

2°. (s > s') ~ (s" > s such thats">' s' and s" > s') 
then we would have obtained an isomorphic object (X5 ) 5 es· 

(3.2.H) THE PROCATEGORY OF AN ARTINIAN ABELIAN CATEGORY. 

q.e.d. 

In this section we suppose that C is abelian and that every object of C is artinian. 

(3.2.H.1) Every object of Pro(C) is isomorphic to a strict object. (Under the 
conditions stated above). 

t 1 • t' Proof. Let (Xt, ft, T) be an obJect of Pro(C). Let Yt := n ft (Xt,)i on ac-
t'>t 

count of the fact that Xt is artinian, there is an s (t) such that X5( t) ➔ Xt fac­
torizes through Y t• then so does Xt, ➔ Xt fort'> s(t), the induced map 

X5( t) ➔ Y t is epimorphic, and so is Xt, ➔ Y t for every t' > s (t); it follows that 
the system ( Y t) is strict. The inclusions Y t ➔ Xt and the epimorphisms 

X5( t) ➔ Y t show that the systems (Yt) and (Xt) are isomorphic. 

q.e.d. 

(3.2.H.2) Projective limits are exact in Pro(C). (Still under the conditions 

stated at the beginning of this subsection (3.2.H)). 

Proof. Let O --- Ai' --- Bi' --- Ci, ---0 

l l ! 
0 --- Ai ---~ Bi ---- Ci ---~ 0 
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be an exact diagram for every i' > i of a partially ordered directed index set I. 

We can assume that all the objects Ai, Bi, Ci are strict. We can furthermore as­

sume that each O ➔ Ai ➔ Bi ➔ Ci ➔ 0 is given by exact sequences O ➔ A;_t ➔ 

Bit ➔ Cit ➔ 0 (apply the procedure of(3.2.D) to Bi ➔ Ci and take the kernel 

as in (3.2.B and then take the cokernel of (Ker(Bi ➔ Ci) ➔ Bi) again as in (3.2.B). 

Because of strictness we have an exact diagram 

0 

f' 
B, C. 

f ft (*) 

-----,► 0 

0 A.it, Bfr St, -----'► O 

whenever all these maps exist. As to their existence: 

( * *) for every jt, and i > j there is an it e Ti such that all these maps exist. 

As in (3.2.G) let S be the disjoint union of the Ti. We now define a some -

what weaker ordening on S (than in (3.2.G)) as follows: 

it> jt, ~ i > j and all the maps of the diagram ( *) above exist. 

The sequence of pro-objects O ➔ (A5) ➔ (B5 ) ➔ (Cs) ➔ 0 obtained by taking 

this ordening on Sis exact((*) and (3.2.B)), while property(**) and the 

remark below (3.2.G) together insure that (As)~~ Ai, (B5) ~~Bi and 
(C5) ~ lim Ci. i i -i ¥~ 

( 3.3) Projective limits of finite abelian groups. 

(3.3.A) Lemma. 
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Let T be a directed partially ordered set and (At), (Bt), (Ct) projec­

tive systems of finite abelian groups indexed by T. Suppose that the 
diagram 

is exact for every t' > t. Then the induced sequence of abelian groups 



is exact. 

Proof. That g • f = 0 is trivial. Let g( ( bt)) = 0. Let Xt = ; 1 ( bt) for all t. If we 

can show that there exists a point (at) e~ A. such that¾ e Xt for all t we 

are through. Let S be the set of all families (Y t) t ET, Y t a sub set of Xi and 
such that r~' (Y t') C Y t for all t' > t. Order S by inclusion. The set S is not 

empty and every decreasing sequence of elements of S has a minimal element 

(finiteness of the Xt!). Let (Zt) be a minimal element of S (Zorn's lemma)). 

Owing to the minimality of (Zt) it follows first that { (Zt,) = Zt for all t' > t, 
and then that each Zt consists of only one element zt. The element (zt) is the 
required element oflim A_. 

~ 

q.e.d. 

Remark. Suppose that the abelian groups At, Bt, Ct are no longer necessarily 
finite, but that we have given instead for every t a set St of subsets of 

1 t' At such that ; (b) e St for every be Bt and rt (E) e St for every Ee St'' 
t' ;;.i: t, and such that the sets St, partially ordered by inclusion, enjo} 
the descending chain property. Also in this case it follows that the 

sequenc.e of abelian groups 

lim At ➔ lim Bt ➔ lim Ct - - -
is exact. The proofis exactly the same except that all the Yt must be 
in St. The situation described above occurs for instance in the case 

that the At (resp. Bt, Ct) are the groups of ks-points of quasi-algebraic 

groups Ft (resp. Gt, Ht) over a base field k and the ft, gt derive from 

morphisms of quasi-algebraic groups. For the set St we can then take 

the set of all subsets of the form x + F' (ks) of At = F t(k5), where x e At 
and F~ is a quasi-algebraic subgroup of Ft. The partially ordered set 
St satisfies the descending chain condition because Ft is artinian (i.e. 
satisfies the descending chain condition for quasi-algebraic subgroups.) 

(3.3.B) Lemma. 

Let f (Xa) ➔ (Yb) be a map of projective systems of finite abelian 

groups. Suppose that: 

1 °. For every be B there is an fa(b): Xa(b) ➔ Yb representing fb which 
is surjective. 

2°. The system ( Xa) is strict. 
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Then the induced homomorphism of abelian groups lim Xa ➔ lim Yb 
. . . ~ --
lS sugecuve. 

Proof. Apply the procedure of (3.2.D) to the morphism of projective systems 
f. Because of 1°) and 2°) we so obtain an isomorphic morphism of projective 

systems (Xt) ➔ (Yt) such that~ ➔ Yt is surjective for all t; now apply lemma 

(3.3.A). 
q.e.d. 

4. SOME ALGEBRAIC GEOMETRY 

Notation. CGk is the category of commutative abelian group schemes over a 

perfect base field k; CQGk the category of commutative quasi-algebraic groups 
over k. In the following we shall mainly work in the category CQGk and its 

pro-category; i.e. we shall consider commutative algebraic group schemes up to 

purely inseparable isogenies. There is a natural (forgetful) functor CGk ➔ CQGk 

( or, if one prefers, CQGk is the quotient category of CGk obtained by equating 

all infinitesimal groups with the zero group.) 
Let Ge CQGk, G1 E CGk an object which represents G; we define the points of 

G with values in an algebraic extension I of the base field k as: G (1) : = G' (1). 
Because I is perfect it does not matter which G 1 is chosen. Section ( 4.1) lists 

some properties of the category Pro(CQGk). In section ( 4.2) we summarize 

the Greenberg constructions, which are applied to the group U ( K) of units of 

a local field Kin ( 4.3). In ( 4.4) we construct the maximal constant quotient 

of a (pro~) finite commutative quasi-algebraic group. ( 4.5) contains the defini­

tion of the homotopy functors 1To, 7f1, "fl,, of which some properties are given 

in (4.6). 
It is possible to develop the theory of chapter II (for whicp this section con­
tains some preliminary material) without mentioning quasi-algebraic groups 
(i.e. one then works exclusively in the categories CGk and Pro(CGk)). This 

is done in (10]. 

( 4.1) Some properties of CQGk and its pro-category. 

The category C~ has finite (fibre) products, it is abelian and all its objects are 
artinian. (Cf. [SGAD] Exp. V Th. p. 29). It follows that the same holds for 
the category CQGk. The pro-category Pro(CQGk) is therefore abelian (3.2.E), 
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has arbitrary products, projective limits exist and they are exact ((3.2.G) and 
(3.2.H)). It follows that Pro(CQGk) satisfies Grothendieck's axiom ABS* (cf. 

[ 8] ( 1.5) ). (Let B be a subobject of G,Ai' i e I a decreasing family of subobjects 

of G; let f: G ➔ G/B be the natural projection. Consider the map of projective 
systems~ ➔ f(A;); it follows from the exactness of the projective limits that 
f(()~) = ()f(Ai) and that B + ()~ = ()(B + Ai), which is ABS* (cf. [GP] p.19).) 

Moreover we can select from the objects of CQGk a set e of cogenerators (i.e. 

every object of Pro(CQ~) is isomorphic to a subobject of a product of ob­
jects of C). It follows that the category Pro(CQGk) has enough projectives 

([8] Th. (1.10.1)). 
A sequence O ➔ G' ➔ G ➔ G" ➔ 0 in Pro(CQGk) is exact iff its sequence of 
ks-points O ➔ G1(ks) ➔ G(k5 ) ➔ G"(k5) ➔ 0 is exact (cf. [GP] § 1 and (3.3.A) 
Remark).(If X: = (Xa), then X(k5 ) : = lim Xa(k5 ), in conformity with the -general definition of morphisms between pro-objects (cf. (3.2.A)). 

( 4.2) The Greenberg construction. (Cf. [ 6]; [CAC] ). 

In this section no proofs are given; they can be found in either of the two re­

ferences given above. 

Let Wn be the ringscheme over k defined by W n : = Spec(k[Xo, ... ,Xn-l]) with 
the addition and the multiplication defined by the maps ~ H- Si and Xi H- Pi 
respectively, where Si and Pi are the polynomials (in Xo, ... , ~;Yo, ... , Yi) 
which define the Witt addition and multiplication. (Cf. [CL] Ch. II § 6; the 

Si (resp. Pi) satisfy the relations wi(So, ... , Si) = wi(X) + wi(Y) (resp. ~i(Po, . 1 
• 1 pl:-

... ,Pi)= wi(X). wi(Y)), where wi(X) 1s short for wj(Xo, ...• ~) := xg +pX1 + 

... + pi Xi; it follows from these relations that the Si and Pi have integer co­

efficients.) Then Wn(B), the set of points of the scheme Wn with values in B, 
is the ring of Witt-vectors of length n over B for any k-algebra B. Let Ebe a 
finitely generated module over Wn(k), then Eis isomorphic to a direct product 

E::::: Wn 1 (k) X Wn 2(k) X ..• X Wnr(k) for some n1, n2, ... , nr.,;;; n. (For, ask 
is perfect, W n (k) is a principal ideal domain, and its possible quotients are the 

Wm(k), m...; n). 

Now assign to E the scheme 

We then have: 

(4.2.1) Sch(E) (k)::::: E 
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Moreover to every W n (k)-multilinear map f: E1 X ... X Et ➔ E one can assign 

a morphism of schemes Sch ( f) such that 

(4.2.2) Sch(£) (k):::: f 

The functor Sch is, up to purely inseparable isogenies, uniquely determined 

by these requirements. It has in addition the following property: 

(4.2.3) If f: E1 ➔ Eis surjective, then Sch(£) is epimorphic. 

Now let A be an artinian local ring with k as residue field, then A is a finitely 

generated Wn(k)-module for some n, and is also a Wn(k)-algebra. Addition 

and multiplication are bilinear, hence we get a structure of ringscheme on Sch(A). 

The reduction maps: A ➔ k induces a morphisms: Sch(A) ➔ Ga= Sch(k) 

(= the additive group over k). Also the canonical lifting map r: k ➔ A (defined 

by the requirements: r is a homomorphism such that s • r = id. in the case 

char(k) = O; and bys• r =id.and r(xP) = r(x)P for all x e kin the case char(k)==p) 

defines a morphism of the corresponding schemes, which is an embedding of Ga 

onto a closed subscheme of Sch(A). 

Let Ube the subscheme of units of Sch (A) ( cf. [7] section 6 ). Then we have for 
U: 

( 4.2.4) U is an open multiplicative group sub scheme of Sch (A). 

U(k) = units of A, 

The morphism r: Ga ➔ Sch(A) embeds Gm homomorphically into U. We have 

(4.2.5) U::::Gm X U1 (asgroupschemes;U1 :=Ker(s: U ➔ Gm) 

U1 is a unipotent group scheme. 

( 4.2.6) U is connected and reduced. 

Lastly, we remark that: 

( 4.2.7) If A is free over W n(k), then Sch(A) represents the functor: 

(Bak-algebra). 

(Because, as a module over Wn(k), A'.:::'. Wn (k)t, therefore Sch(A) :::: W~, 

Hom(Sp;c(B), W~):::: (Hom(Spec(B),WnW '.:::'Wn(B)t::::: (Wn(k) ®wn(k) Wn(B)?::::­

::::Wn(k) ®wn(k)Wn(B) -::=A ®wn(k)Wn(B).) 
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(4.3) Pro-algebraic structure on U(K). 

As in section (4.2) almost no proofs are given; they can be found in [CAC] 

§ 1. We shall use the same symbol to denote an object ofCGk and the object 
of CQGk which it represents. 

Let K be a local field with perfect residue field k. The ring An : == A(K)/m n(K) 

is a local artin ring with residue field k. (mn(K) == 1 + rrKA(K)). By applying 
the constructions of ( 4.2) one obtains a group scheme Un€ CGic such that: 

(4.3.1) 
~ ~ 

Un(k5) ~ U(¾r)/Un(Knr) ~ U(Knr)/Un(Knr)· 

If n > m, the natural map An ➔ Am is surjective, and it is W t(k)-linear for some 
large t. Applying(4.2) again we obtain epimorphisms Sch(An) ➔ Sch(Am) and 
Un ➔ Um, which on k-points and k5-points are the usual reductions. Let 

UK ePro(CGk) be the pro-algebraic group scheme Uk:== (Un)n€N then we 
have: 

( 4.3.2) 

UK has a filtration by sub-group schemes UK :::> uk :::> ••• :::> UK :) ... which 
is separated (UK : = Ker (UK ➔ Un)), and we have: 

(4.3.3) UK(k) ~ 1 + ~A(K) = un(K), 

UK(ks) ~ 1 + ~A(Knrl = un(K.nrl• 

From (4.2.5) results that: 

(4.3.4) 

The morphism Ga ➔ UK/Kt1 defined by xi-+ 1 + 1TK x (n ;;:i, 1) is a purely in­
separable isogeny (of degree [~]).It follows that: 

( 4.3.5) un ;un+l ~G 
K K - a in Pro(CQ~), n ;;:i, 1. 

where the isomorphism on k 5-points is the usual one (1 + 1TK xi-+ x). Define an 

object of Pro(CQGk) to be connected ifit is given by a projective system con­

sisting of connected quasi-algebraic groups. Then we have: 

( 4.3.6) The pro-quasi-algebraic groups UK are absolutely connected; i.e. 
1TK. ®k k5 ~ unK~ is connected. 

nr 
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( 4.4) Maximal constant quotients. 

( 4.4.A) CONSTANT ALGEBRAIC GROUP SCHEMES. 

Let S be an abstract finite group. Consider the ring Map(S,k) of all maps of S 

into k (pointwise multiplication and addition). The multiplication of the 

group S X S ➔ S induces a co-multiplication Map (S,k) ➔ Map(S,k) ® Map(S,k). 

We define the constant algebraic group scheme over k belonging to S as the 
group scheme Sk := Spec(Map(S,k)), with the multiplication induced by the 

co-multiplication described above. If B is any k-algebra without zero divisors, 

then we have Sk(B) '.:::' HomAig(Map(S,k),B) '.:::' S (whence the name constant 
group scheme). 
The correspondences S >-+ Sk, G >-+ G (ks) define an equivalence of categories 
between the constant algebraic group schemes and the finite abstract groups. 

(4.4.B) Lemma. 

A finite reduced algebraic group scheme over k is constant iffG(k) = 

G(ksJ· (k is assumed to be perfect). 

Proof. It is clear that G(k) = G (k5) for a constant group scheme G. Conversely, 
the algebra A of a finite reduced algebraic group scheme G is a reduced artin 

algebra and therefore A'.:::' I:J ki, where the ki are finite (separable, ask is per-
1 

p· a 
feet), extensions of k. The ks-points of Gare the maps A _:...ki -ks where Pi 
is the projection on the i-th factor and a e G (k, ki ➔ ks). Such a point is in 

G(k) iff it factorizes through k; i.e. iff ki = k for the index i in question. 
Therefore G(k) = G(k5) implies ki = k for all i, and G is constant. 

q.e.d. 

( 4.4.C) Lemma. 

Let G be a finite commutative quasi-algebraic group ( or a reduced 
finite algebraic group scheme), and suppose that H1 and H2 are two 
constant quotients of G. Then there exists a constant quotient Hof 
G larger than both H1 and H2. 

Proof. Let K1 and K2 be the kernels of G ➔ H1 and G ➔ H2 respectively. Let 
H: = G/K1 (') K2. As His reduced if G is, we only have to show that H(k5) is 
invariant under the action of the galoisgroup G(ks/k), i.e. that every coset of 
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(K1 n Kz) (k5) in G(k5) is mapped in itself under G(k 5/k). We know that this 

is the case for the cosets of K1 (ks) and K2 (ks)· Now x(K1 (k5) n K 2(k5)) = 
xK1(kJ n xK2 (k5 ) and we are through. 

q.e.d. 

( 4.4.D) CONSTRUCTION OF THE FUNCTOR Q. 

It results from lemma ( 4.4.C) above and the fact that an abelian finite quasi- ' 

algebraic group is artinian (i.e. satisfies the descending chain condition on sub­

groups) that there exists a maximal constant quotient Q(G) of a finite abelian 
quasi-algebraic group G. Every homomorphism ofG into a constant quasi­
algebraic group factorizes uniquely through Q(G). It follows that the functor 
Q is left adjoint to the inclusion functor I of the category CCQGk of commu­
tative constant quasi-algebraic groups into the category FCQGk of finite com­
mutative quasi-algebraic groups, 

CCQGk(Q(G),C) ~ FCQ~(G, I(C)), 

it follows that Q is rightexact ( cf. [5] Prop. 7 Ch. 1). The category CCQ~ is 

equivalent to the category FAb of finite abelian groups. Therefore we can ex­
tend Q to a functor from the category Pro(C~) into the category of pro­
algebraic constant groups, and this extension is also right exact, as is the com­
posed functor G.,. Q(G) i-+ Q(G) (k 5) (3.2.F). 

(4.5) The functors 1r0 , 1r1 and 1l 

( 4.5.A) DEFINITION OF THE FUNCTORS 7To, 7T1, "11-· 

Let U € CQGk be a quasi-algebraic group; U0 the connected component of the 

identity ofU. We define the functor 7To: CQGk ➔ FCQGk as 

(4.5.A.1) 7To (U) : = U/UO 

7To also denotes the canonical extension of this functor to a functor between 
the pro-categories Pro(CQ~) and Pro(FCQGk) (i.e. 7To((Ua)) := (7ro(Ua)). 
The functors 7Ti are the left derived functors of tro. The properties of Pro ( CQGk) 
mentioned in ( 4.1) ensure the existence of the '11i- If O ➔ U' ➔ U ➔ U" ➔ 0 is 

an exact sequence in Pro(CQGk), we have a long exact sequence 

(4.5.A.2) 
... ➔ 1r 1 (U 1

) ➔ 111 (U) ➔ 1r 1 (U") ➔ ?To (U 1
) ➔ 7To(U) ➔ 7To(U") ➔ 0. 
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There is also an explicit description of 11'1 (U) for a connected (pro-)quasi-alge-
f 

braic group U. Consider all isogenies O ➔ Nf➔ Uc-,. U ➔ 0 ofU. Another isogeny 

0 ➔ Ng ➔ u8 ~ U ➔ 0 is said to be larger than f, if there exists a morphism h: 

u8 ➔ Uf such that f • h = g. Such an h induces a morphism N8 ➔ N f· The finite 

quasi-algebraic groups N f with these morphisms form a projective system. It 

turns out t~at (cf. [GP] (6.4)): 

(4.5.A.3) 

If we take instead of all isogenies of U only those which have a constant kernel 

(i.e. Nc(k5) = Nc(k); cf. (4.4)) we obtain another functor 

(4.5.A.4) jt(U) = (Nc)c, Ne constant. 

( 4.5.B) Remarks. 

1. For both 11'1 (U) and 'Jl.(U) of a connected quasi-algebraic group U we need 
sider only those isogenies O ➔ Nf ➔ U f ➔ U ➔ 0 for which Uf is connected. 

Then the factorizing maps Ult ➔ Uf are all epimorphic, and we find that 
11'1 (U) and 'J',(U) can be given as strict projective systems. 

2. It follows immediately from the definition of the functor Q in ( 4.4.B) that 

for a connected quasi-algebraic group U .€ Pro ( CQGk) 

( 4.5.B.1) 

One can of course use this formula to define 'Jl.(U) also for not necessarily 

connected quasi-algebraic groups U. 
3. If O ➔ tJ' ➔ U ➔ U" ➔ 0 is an·exact sequence in Pro(CQGk), and U' is con­

nected we have an exact sequence 

11'1 (U') ➔ 11'1 (U) ➔ 11'1 (U") ➔ 0 

and therefore because Q is right exact ( 4.4.B) exact sequences: 

-p.(U') ➔ 'P-(U) ➔ TL(U") ➔ 0, 

ll-(U') (k5 ) ➔ TL(U) (ks) ➔ 11-(U") (ks) ➔ 0. 

( 4.5.C) Lemma. 
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Let Xe Pro(CGk) be a projective pro-algebraic group scheme over k. 
Its extension Xk5 e Pro(CGks) is then also projective. 



Proof. We need only prove that if we have an exact diagram 

where Y, Z are algebraic group schemes over ks, and h is epimorphic, then there 
exists a morphism g: Xk ➔ Y such that f = h• g. (Cf. (3.2) or [GP] (3.1) Prop. 

s 
2). The group schemes Y, Z are algebraic and therefore already defined over a 
finite extension I of k, which we can assume to be galois. Let G : = G ( 1/k) be 
the galois group. It suffices to prove that the map Pro ( CG1) (X 1, Y) ➔ 

Pro (CG1) (X1, Z), induced by his surjective. Quite generally if 1/k is a finite 
extension there exists a functor WR: CG1 ➔ CGk, the Weil restriction functor, 

which is right adjoint to the base change functor, i.e. there is a bi-functor iso­
morphism 

CG1(A1, B) ➔ CGk(A, WR(B)). 

When 1/k is galois, one can describe WR as follows. Let B € CG1, take the 

product B1 = Il Bt of all the conjugates ofB, where Bt has the structural 
t€G 

morphism Bt ~ B ➔ Spec(l) .!. Spec(!). There is a natural action of G on B1 

given on C-points (Can I-algebra) by the formula 

bt = sa 1 . s· t 

This action commutes with the structural morphism B1 ➔ Spec(l). Therefore 

there exists a unique scheme WR(B) over k such that B1 ==: WR(B) ®k land 

such that the action t H> WR(B) ®t t of G on B' is exactly the above described 
action. Note that WR(B) ➔ WR(A) is epimorphic if B ➔ A is epimorphic. We 
have a commutative diagram: 

Pro(CG1) (X1, Y) ➔ 

?I 
Pro(CGk) (X, WR(Y)) ➔ 

Pro(CG1) (X1, Z) 

11 
Pro(C~) (X, WR(Z)) 

The bottom map is surjective because WR(Y) ➔ WR(Z) is epimorphic and Xis 
projective. It follows that the top map is also surjective. 

q.e.d. 
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Remarks. 

1. It is not necessary for the lemma above to suppose that k is perfect. 

2. The Weil restriction functor exists more generally as a functor WR: Sch/l ➔ 

Sch /k. Cf. [ 21] ; see also [ 15] p. 3, 4 for some more remarks on the existence 

of adjoint functors to the base change functor. 
3. For some more information about the conditions under which the image 

S(P) of a projective object P in an adjoint situation S, T is again projective, 

cf. [13] Ch. VTh. (7.2). 

(4.5.D) Proposition. 

The functors ?Ti commute with the base change k- ks. 

Proof. The functor tr0 commutes with the base change ( [ SGAD] Exp. VIA 
p. 10). Let U e Pro(CQ~) be a pro-quasi-algebraic group over k; X ➔ U a pro­
jective resolution ofU over k. We then have: 

because of the reasons: 

(1) the base change functor k - ks is exact. 

(2) 1To commutes with the base change k - ks. 

(3) Xks is a projective resolution of Uks• because the (Xi.)k5 are projective ( 4.5.C) 
and because the base change functor k - ks is exact. 

q.e.d. 

( 4.6) Some properties of 1r I and 'f\. 

If Mis a finite abelian group, M1 = { x e M I order(x) is a power ofl} denotes 

the I-primary part of M for every prime number I. We have M '.::::: n M1. If M = 

lim (Ma) we defme M1 : = lim (Mali; we still have M :::- n M1. 1 

- - l 

( 4.6.A) Proposition. 

Ifl '4= char(k), then -p.(U) (ks)= 0:::; 1r 1 (U) (k5) for unipotent pro-quasi­
algebraic groups U over k. 

I 
Proof. Multiplication with I is an isomorphism U ➔ U; therefore 1r 1 (U) (k5) ➔ 
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1T1 ( U) (k5) is also an isomorphism, which proves that 1T1 (U) (ks) = 0. The pro­
quasi-algebraic group -yi.(U) is a quotient of7r1 (U). 

q.e.d. 

( 4.6.B) Proposition. 

1'-(Gm)(k5 ) = 'f\-(Gm)(k) ~ µ(K) := group of all roots ofunity ofk. 

n 
Proof. We know that over ks the maps Gm - Gm are cofinal in the system of 
all isogenies of Gm (cf. [GP] § 6 Prop. 9). Now let O ➔ N ➔ E -4 Gm ➔ 0 be 

an isogeny with constant kernel. According to the above there exist a natural 

number n and a morphism g: Gm ➔ E defined over k5 which factorizes n through 

f. Let seG(ks/k), then f(s- 1gs-g) = s- 1ns-n = O; i.e. s-1gs-g factorizes through 

N. But Gm is connected and N is finite, so we have s-1gs-g = O; i.e. g is defined 

over k. Taking the image of Gm under gin Ewe obtain an isogeny of type 
Gm ~ Gm with constant kernel, which is larger than the f we started with. 

An isogeny Gm~ Gm has constant kernel iff k contains the r-th roots of unity. 

q.e.d. 

(4.6.C) Proposition. 

Let Ge CQGk be a connected commutative quasi-algebraic group. Then 

Hom(ll-(G), (Z/pZ)k) ~ Ext(G, (Z/pZ)k)· 

Proof. Let G := (Gf), where Gf,iG runs through all connected isogenies ofG. 
Then we have by definition of tr 1 an exact sequence 

0 ➔ 1r1(G) ➔ G ➔ G ➔ 0. 

Now Ext(N, G) = 0 if N is a finite group. For let O ➔ N ➔ X ➔ G➔ 0 be an 

extension of G; then there is an Gf such that this extension is obtained from 
an extension O ➔ N ➔ Xf ➔ Gf ➔ 0 ( because N is finite; cf. [GP] ( 3.4) Prop. 7). 

But ~ ➔ Gf ➔ G is an isogeny of G, hence G ➔ G factorizes through Xf. The 
morphism G ➔ ~ defines a section of the extension O ➔ N ➔ X ➔ G ➔ 0. 

Consider part of the long exact sequence of the Hom and Ext groups 

Now Hom(G,(Z/pZ)k) = 0 because G is connected and (Z/pZ)k is finite; by the 
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above Ext(G,(Z/pZ)k) = 0; therefore we have an isomorphism 

But (Z/pZ)k is constant. By the definition of the functor Q every homomor­

phism tr1 (G) ➔ (Z/pZ)k factors uniquely through Q7T 1 (G) ~-p.(G) (cf. (4.4.D), 

(4.5.B)). 

q.e.d. 

(4.6.D) ISOGENITIES OF G OVER K . 
a s 

Suppose char(k) = p =I=- 0. All non-trivial isogenies of Ga with kernel (Z/pZ)k 
over k5 are of the type 

where f is multiplication with an element c € ks, and g is given by g(x) = axP + bx, 

where a, b, c € ks are such that ab =I= 0, acP + be = 0. Two of these extensions 

are isomorphic/fthenumbersa·1c·P are equal. ([GP] § 8 Prop. 3). The map 

(0 ➔ (Z/pZ)k-+Ga ~Ga ➔ 0) ,_.,. a·1cP defines an isomorphism 

( 4.6.E) FORMS OF AN ALGEBRAIC GROUP. 

Let Ube an algebraic group over k, and 1/k a (galois) extension of k. An alge­

braic group u' over k is called an l/k-form ofU iffU1 ~ u1. The group G(l/k) = 

G acts on the automorphism group A(U1) ofl-automorphisms ofU1 as s(..p) = 

s,ps·1 , seG, 1j7€A(U1), 

Proposition. There is a 1-1 correspondence between the set Elfk(U) of 1/k-forms 

of an algebraic group U, and the cohomology group H 1 (G (l/k), 

A(U1)) (k is assumed to be perfect). 

For a proof cf. [18] Ch. III § 1. 

( 4.6.F) Application. 
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Proof. An automorphism (Ga)i ➔ (Ga)i is given by an algebra homomorphism 

l[X] ➔ l[X], Xi-+ f(X); there must be an inverse automorphism; this shows that 

degree f(X)) = 1. The morphism (Ga)l ➔ (Ga)! must be additive, which implies 
that for f(X) we must have f(l ®X + X® 1) = 1 ®f(X) + f(X) ® 1 which shows 

that f(X) = uX for some non zero constant u e I. The action of G 'l/k) on 

A((Ga)1) becomes the galois action under this identification. But H1 (G(l/k),l*)=O 

by (1.7) ("Hilbert 90"). An application of ( 4.6.E) concludes the proof. 

q.e.d. 

Remark. ( 4.6.F) is no longer necessarily true if l/k is non-separable. 

( 4.6.G) Proposition. 

If char(k) = p, then Homk('l"-(Ga), (Z/pZ)k) ~ k. 

Proof. The algebraic group Ga has no other ksfk-forms than itself. (k is perfect!). 
Therefore according to ( 4.6.D) above, if we have a nontrivial extension O ➔ 

(Z/pZ)k ➔ X f Ga ➔ 0 then X::::,: Ga and we have an extension of the type 
0 ➔ (Z/pZ)k-+ Ga -!Ga ➔ 0 where f is given by 1 H- c, g by xi➔ axP + bx, 
with the relations ab -:/= 0 and acP + be = 0 between a, b, c e k5 • The morphism 
f is defined over k iff c e k, and g is defined over k iff a, b e k. Therefore we 

have an isomorphism Ext(Ga,(Z/pZ)k) ~ k ( 4.6.D), and we are through in view 
of (4.6.C). 

q.e.d. 

( 4. 7) Lemma on short exact sequences. 

Let b ➔ N ➔ X ➔ U ➔ 0 and o ➔ N' ➔ X' ➔ U ➔ 0 be two short exact sequences 

(in Pro(C~) or in Pro(CQGk}) with X,X' connected and N,N' pro-finite. 

Suppose that there exists a morphism f': Xks ➔ Xic5 with an exact diagram 

o ➔ Nic5 ➔ Xk5 ➔ Uk5 ➔ 0 

then there exists a morphism f: X ➔ X' with an exact diagram 
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o ➔ N' ➔ X' ➔ U ➔ 0 

such that fic 5 = f'. The morphism f is an isomorphism iff f' is an isomorphism. 

Proof. We only have to show that f' commutes with the action of G(k5/k) on 

Xk5 and X1t5 • Lets E G(k,fk); composing s·1f' s-f' with X1t5 ➔ Uks gives zero, 

accordingly s·1f' s-f factorizes through N1t ; but Xk5 is connected (because X 

is) and N1t5 is pro-finite; it follows that s·1rs - f' = O. 

q.e.d. 
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CHAPTER II 

MAXIMAL ABELIAN EXTENSIONS OF LOCAL FIELDS 

This chapter delas with a description of the galois group otK ( defined in (2.8.H), 

cf. also (2.8.J)) in terms of isogenies of the pro-quasi-algebraic group UK ('of 
units of K'; K is a local field with perfect residue field k). In (CAC] Serre proved 

that 7T1 (UK)'.::'. OLK when k is algebraically closed. In this chapter we generalize 

Serre's theorem to -p.(UK) (k) '.::'. OLK where -P.(UK) is the maximal constant quo­
tient of 1T1 (UK)· (Cf. (4.5.B) and (4.4.D)). 
Let L/K be a galois extension. The galoisgroup G(Lnr/K) acts continuously on 
Lnr, hence we can extend this action by continuity to an action on inr. (Note 
that the K-automorphisms of tnr so obtained are exactly the continuous K-auto­
morphisms of Lnr)· 

5. STATEMENT OF THE THEOREM (5.4.D). 

In this section we define a surjective homomorphism(}: 'f\(UK)(ks) ➔ OLK, 

which will be proved to be an isomorphism in section 6, and again in section 7. 
Section (5.1) contains some lemmas on the action of G(ks/k) on UK(k5). 

In (5.2) we encounter the algebraic geometric version of the fundamental exact 
sequence ( 2. 7 .A. 2); ( 5.3) is a lemma on the functoriality of this sequence. 
Section 5 closes with (5.4) wherein we define the homomorphism-&: 

'f\(UK) (ks) ➔ OtK and show that it is surjective. 

Let K be a local field with perfect residue field k; K.nr denotes the completion 
of the maximal unramified extension Knr of K. According to ( 4.3) there exists 

a pro-quasi-algebraic group UK such that UK (k) ::::'. U(K) and UK (k5) ::::'. U(Knr)· 
There are two natural actions of G(ksfk) on UK (ks): 

1 ° the action defined by the pro-quasi-algebraic group structure of UK over 

k. 
2° let i.p be the canonical homomorphism which lifts G(ksfk) to G(Knr/l{) 

(see e.g. [ 22] Prop 3-5...1) and define s(u) := i.p(s) (u) for s E G(k5/k), 

ueU(K.nr) C Knr. 
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(5.1.A) Lemma 

These two actions coincide. 

Proof. Both actions can be extended to an action on A(Knr) as a group of con­
tinuous ring automorphisms which leave A(K) pointwise invariant and both 
reduce mod. 11l(Knr) to the galois action of G(k5/k) on k5 • There is only one 

such action of G(ksfk) on A(Knr) C A(Knr)· (Again according to [ 22] Prop 
3-,5-1). The lemma follows by continuity. 

q.e.d. 

( 5.1.B) TOTALLY RAMIFIED GALOIS EXTENSIONS. 

Let L/K be a totally ramified galois extension. By (2.7.A) we have an exact 

sequence ( 2. 7 .A. 2): 

(5.1.B.1) 

The induced action of G(k5/k) on G(L/K?b = G(Lnr/Knr?b is the action by 
inner automorphisms ((5.1.A) and (2.7.A.3)); i.e. ifs€ G(k5/k) and t eG(L/K) 
represents t € G(L/Ktb, and s € G(Lnr/K) is any lift of s, then s(t) = sts-1 (as 

s ( t11'1) = sts-1(s11't) = sts-1(11't) ). 

11'1 s'll'L 11'1 

(5.1.C) Lemma 

G(L/K)ab is invariant under the action of G(k5/k) (when L/K is totally 
ramified galois). 

Proof. This follows from the fact that L/K and Knr/K are linearly disjoint and 
from (5.1.B) above. 

q.e.d. 

(5.2) The fundamental exact sequence. 

Let L/K be any finite totally ramified extension. A homomorphism s € G(K, L➔U) 
induces a linear morphisms: A(L) ➔ A(sL), and hence gives rise to a morphism 
of pro-algebraic schemes s: U1 ➔ U sL. We now define the morphism N1/K: 
UL ➔ UK to be the composite 
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UL ----+ n U mult.) U 
sL K• 

s 

X i-------+ ( Sl X, ••• , Sn X) t----+ n SX. 
s 

(5.2.A) Lemma. 

Let L/K be a totally ramified galois extension, and let C be the kernel 

of the morphism NL/K: UL ➔ UK. We then have C~ed = JG UL, (and 
hence C<b IG UL in the category Pro(CQGk)· (Where G = G(L/K), and 
C~ denotes the maximal reduced subscheme of the connected com­

ponent of the identity C0 of C; C~ed is a pro-algebraic group sub-scheme 
ofC (cf. [16] Lemma (1.11))). 

Proof. The pro-algebraic group scheme JG UL is the sum of the group schemes 
(s-l)UL (s e G) which are all connected and reduced; their intersection is non­
empty; therefore IG UL is connected and reduced; hence IG UL CC~. On the 
other hand C(k5)/ IG UL (k5 ) ~ G(L/Ktb is a finite group (5.1.B.1). 

q.e.d. 

Remark. 

The pro-algebraic group scheme C is in general not reduced. Cf. § 8. 

(5.2.B) THE FUNDAMENTAL EXACT SEQUENCE 

·Let VL denote the connected component of the identity of the kernel of 

NL/K: UL ➔ UK, where again L/K is supposed to be totally ramified galois. 
We see then from (5.2.A) that the exact sequence (2. 7.A.2) is nothing else but 
the sequence of k5-points of the exact sequence of pro-quasi-algebraic groups 

( or pro-algebraic group schemes) 

(5.2.B.1) 

where G(L/Ktb is some form of (G(L/Ktb)k· But (5.1.C) now shows that: 

(5.2.B.2) 

(cf. (4.4.B)). The symbol EL/K will denote the element of Ext(UK,G(L/Ktb) 
determined by the exact sequence (5.2.B.1). 
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( 5. 2.C) DEFINITION OF THE HOMOMORPHISMS t!L/K. 

From (5.2.A) we see that G(L/K)ab::::: 1To (Ker NLJK); writing down the long 
exact sequence of O ➔ C ➔ UL ➔ UK ➔ 0 now gives an exact sequence 

tr1 (UL) ➔ tr 1 (UL) ➔ G(L/K/b ➔ 0 

(for UL is connected (4.3.6)). The quasi-algebraic group G(L/Ktb is constant; 
therefore, taking maximal constant quotients (which is a right exact functor 

(4.4.D)) we obtain exact sequences 

(5.2.C.1) 

11L/K. b (5.2.C.2) 1'-(Ut)(k5) ---+"Jl(UK)(k5) ~G(L/Kt ---+0 

The morphism 'Jl(UK) ➔ G(L/Ktb in the sequence (5.2.C.1) above is the same 
as the morphism defined 1iy the isogeny (5.2.B.1). 

(5.2.D) Lemma 

Let L/K be any finite totally ramified extension. Then there exists 
a finite abelian totally ramified extension M/K such that 

Proof. Let L' be any finite galois extension of K which contains L. Let G := 

= G(L' /K); let Kn be the maximal unramified extension of K contained in L', 
let H := _9(L' /Kn)· Let M' be the invariant field of the normal subgroup <H,G> 
of G; as His normal in G, <H, G> C H. The group H/<H, G> is central in 
G/<H,G>, therefore, according to (2.8), we can suppose, by enlarging Kn if 
necessary, that: 
1° there exists a totally ramified abelian extension M/K such that MC L' and 

M.Kn=M', (2.8.F), 
2° there exists a totally ramified extension P such that M C P C L' and P. Kn= 

= L', (2.8.E), 
3° there exists a totally ramified extension P1 such that LC P' CL' and P'.Kn = 

= L', (2.8.E). 
We have: 

(5.2.D.1) G(M/K) '.:::! H/<H,G>. 
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p' 

p ------I 
L M 

\/ 
K 

Now let Vp be the connected component of the identity of the kernel of the 

morphism NP/K from Up to UK. This give an exact sequence 

(5.2.D.2) NP/K 
0--+ D -.Up/Vp -"-+UK ---+0, 

where Dis finite, which after base extension k - kn (where kn is the residue 
field of Kn) becomes isomorphic to the exact sequence 

0 ➔ G(L' /Kntb ➔ UL' /VL' ➔ UK ➔ 0. 
n 

It follows that D(k5 ) ~ Hab = G(L' /Kn?b. The action of G(ksfk) on D(k5) is, 

however, not trivial in general; in fact the maximal constant quotient ofD is 
(H/<H,G>)k· (Because the action of G(k5/k) on Hab ~ D(k5) is by inner auto­
morphisms, (5.1.B).) 

The sequence (5.2.D.2) yields an exact sequerfee 

1T1 (Up/Vp) ➔ rr1 (UK) ➔ D ➔ 0 

and hence an exact sequence (the functor Q is right exact!) 

which composed with the epimorphism 

gives an exact sequence 

The morphism 'Jl.(Up) ➔ fL(UK) factorizes through TL(UM) (simply because 
MC P), and there is also an exact sequence (5.2.C.1) 
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where G(M/K)::: (G/<G,H>)k· (5.2.D.1). Hence 

(5.2.D.3) 

The exact sequence O ➔ D ➔ Up/Vp ➔ UK ➔ 0 and the analogous sequence 

0 ➔ D' ➔ Up1/Vp1 ➔ UK ➔ 0 become isomorphic after base extension k - ~ 

because P.Kn = P'.Kn = L'. This yields an exact diagram (4.7) 

It follows that NP/K1'(Up/Vp) = Np'{K ii(Up'/Vp'), and, as the natural morphisms 
Tl(Up) ➔ 'f\(Up/Vp ), Tl(Up') ➔ ll(Up' /Vp') are epimorphic, that 

(5.2.D.4) 

Now Np'/K1'(Up') C NL/Kl'(KL) because LC P'. Combining this with (5.2.D.3) 
and (5.2.D.4) yields: 

q.e.d. 

( 5.3) Functoriality. 

Let L/K and M/K be two totally ramified galois extensions such that L C M, 
then the following diagrams are commutative 

N 
Tl-(UL) ~ 1'1-(UK) --+ G(L/K)ab ~ 0, 
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where q is the natural projection. The commutativity of the left hand square 

in the first diagram follows from (2.7.A.3) and the fact that NM/L(11'M) is a 
uniformizing element of L if 11'M is a uniformizing element of M; the commu­
tativity of the second diagram follows from that of the first. (Cf. ( 5. 2.C) ). 

( 5.4) Statement of the theorem. 

Let otK := G(Kab /K)ram := the ramified part of the galois group of the maximal 

abelian extension of K (cf. (2.8.H)). 

(5.4.A) Lemma 

Let L/K and L' /K be two abelian totally ramified extensions such 

that L.Knr = L'.Knr, then also L.K: = L'.K:. 

Proof. Let Kn be the maximal unramified extension of K contained in L.L'; 

then L.Kn = L' .Kn, and Kn/K is abelian because L.L' /K is abelian. 

q.e.d. 

( 5.4.B) Lemma 

Let L,L' be two abelian totally ramified.stensions such that L.Knr = 
= L'.Knr then UL/VL °" UL'/VL' and EL/K. = EL'/K· 

Proof. This follows from (4.7) because ofL.Knr= L'.Knr. 

(5.4.C) DEFINITION OF THE HOMOMORPHISM {}. 

According to (5.2.B) we have for every totally ramified abelian L/K an isogeny 
with constant kernel 

O ➔ G(L/K) ➔ UL/VL ➔ UK ➔ 0. 

This defines a homomorphism {}L/K: ii(UK)(k5) ➔ G(L/K), cf. (5.2.C). 
If L' /K is another totally ramified extension, then there exists by lemma 

(5.4.A), the corollary to the pull-back theorem (2.8.G) and lemma (5.4.B) an 
isogeny 

O ➔ G(M/K) .-+- KM/VM ➔ UK ➔ 0, 

which is larger than both UL'/VL' ➔ UK and UL/VL ➔ UK, (cf. also (5.3)). 
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Letting L run through all totally ramified abelian extension and taking projec­
tive limits we obtain a homomorphism (cf. (5.3) and (2.8.H)): 

(5.4.C.1) 

This homomorphism is surjective for the following reasons. 
1° u1 is connected; -yi(UK) is given by a strict system ( cf. ( 4.5.B)). 
2° For every finite quotient G of ot there exist a totally ramified abelian L/K 

such that G '.::::" G(L/K) (2.8.H). 
3° The lemma (3.3.B) on projective limits of finite abelian groups. 

(5.4.D) Theorem 

The surjective homomorphism iJ above (5.4.D.1) is an isomorphism. 

This theorem will be proved in the following section ( § 6 ). 

6. PROOF OF THE THEOREM (5.4.D). 

In this section we prove theorem (5.4.D), which states that the homomorphism 
{} is an isomorphism. The proof given here is an adaptation of the proof given 
by Serre in [CAC] for the algebraically closed case (k = ks)· 
A brief outline of the proof follows here. We decompose both OLK and 
-p.(UK)(k5) in their I-primary parts (cf. (4.6)), as well as the homomorphism 
{} between these groups. It is not difficult to prove that the homomorphisms 
{}l are isomorphisms when I "F p = char(k). This is done in (6.1). After studying 
some properties of extensions of degree pin (6.2), and after proving some 
lemmas in (6.3), we give in (6.4) and (6.5) a number of examples of extensions 
of degree p (all totally ramified). It turns out these consitute sufficiently many 
extensions of degree p; in the sense that these extensions suffice to show that 
the dual homomorphism&*: Hom(Ot K,Z/pZ) ➔ Hom(ii(UK) (ks),Z/pZ) is 
surjective (6.6). This fact and lemma (5.2.D) are used to complete the proof 
of the theorem (5.4.D) in (6.7), except for lemma (6.4) which is only proved 
fork= k5 in (6.4). Section (6.8) contains the proof of lemma (6.4) when k is 
not necessarily algebraically closed. 

UK, UK1, ... etc. are in this section always taken as objects of the category 
Pro(CQGk) of pro-quasi-algebraic groups over the base field k. 
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(6.1) The case l "f p = char(k). 

Both 11-(UK) (k5) and OtK are pro-finite groups, and therefore they decompose 
as the product of their I-primary parts (I a prime number; cf. (4.6)) 

-P.(UK}(ks) ~ Il("f\(UKHks))1 • 01.K ~ Il(OtK)I, 
1 1 

where I runs through all prime numbers. The homomorphism {} likewise decom­

poses as the product of the induced homomorphisms {}1: ,i(UK) (k8)i ➔ (OlKh 
thus it suffices to prove that {}1 are isomorphisms. 

(6.1.A) Lemma 

Ifl "f p := char(k), then·{}l is an isomorphism. 

The pro-quasi-algebraic group UK decomposes as UK~ UK1 X Gm (4.3.4); 
whence l\(UK) ~ TL(Ui) X l\(Gm);the group UK 1 is unipotent (cf. (4.3.5)), 
therefore l\(Ufc)(k5)i = 0 (4.6.A). Furthermore 11-(Gmh = µ1-(k) := group of 
all Ill-th roots of unity ink for all n (4.6.B). The homomorphism {}l is surjec­
tive (5.4.C). If there exist ln-th roots of unity ink, then they also exist in K 
(Hensel's lemma), and the extension of K defined by xln _7TK is totally ramified 
abelian and yields an isogeny which is multiplication with In on Gm. This con­
cludes the proof in view of ( 4.6.B) 

q.e.d. 

The only thing left to prove is that {JP is an isomorphism in the case p = char(k) 
'f 0. We therefore assume from now on in this section that char(k) 'f 0. 

(6.1.B) DEFINITION OF H(UK) AND H(OlK). 

Let Ube a pro-quasi-algebraic group over k. We define H(U) := Ext(U, Z/pZ)k) 
~ Pro(CQGk)(11-(U), (Z/pZ)k) ~ Hom(-ri(U) (k5), Z/pZ) (4.6.C). If f:U ➔ Vis 

a morphism of pro-quasi-algebraic groups, let f"' be the induced homomorphism 
H(V) ➔ H(U). In addition we define H(OlK) := Hom( OtK, Z/pZ) and{}*= {ti:= 
the homomorphism defined by {}: 

(6.2) Extensions of degree p. 

(6.2.A) Let~: Ot,K ➔ Z/pZ be an element ofH(OtK)· This element defines a 
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, 

totally ramified abelian extension L/K of degree p (2.8) and a choice of an iso­
morphism Z/pZ ~ G(L/K) (i.e. a choice of a generator). Then-&*(~) is the ele­

ment of H(UK) ~ Ext(UK, (Z/pZ)k) represented by the sequence 

N 
0 --+ (Z/pZ)k --+ UdVL ~ UK --4- 0 

( ( 5. 2.B.1); same choice of isomorphism Z/ pZ ~ G(L/K) ). 

Lett be the largest integer such that Gt= G (where G := G(L/K); cf. (2.5)); 

• S7TL 
the image of Gunder the homomorphism G -2..+ UL(k5) (s i----+- ) is then 

7TL 

contained in UL \k5) by the definition oft. We have according to (2.7.B) 

(6.2.A.1) 

The norm morphism N: UL ➔ UK induces a sequence 

N' 
(6.2.A.2) 0 ~ G --+ uL1ut1 ~ UK/Uft1 --+ 0 

because i/l(t) = t (cf. (2.6)); where G := G(L/K) ~ (G(L/K))k. 
This sequence (6.2.A.2) is exact, which is proved by some diagram chasing and 
an application of (2.6:E) in the diagram (6.2.A.3) below. 

0-+ G --4 UL (ks)/V L (ks) -14. UK(ks) ~o 

(6.2.A.3) !q l 
i . N' 

·O---+ G---+ UL(ks)/Ufl(J,,s) ~ UK(ks)/Uftl(ks) --+ 0 

(We have i(G) n UL t+l(k5) = {1} (definition oft.; G is cyclic ,,f prime order!), 

and the homomorphism N' is clearly surjective. Let x E UL (lc5) be such that 
N'(x) = 0; then N(x) eUKt+l(k5). The homomorphism N: lJL t+l(k5 ) 

UK t+l (k5) is surjective ( (2.6.E); i/J(t) = tf. Let ye UL t+l (k5) be 
such that N(x) = N(y), then q(y-1x) = q(x) an1. .'11(y- x) = 0, therefore 
x = y-1x E i(G) mod.UL t+l (k5) which proves the exactness of the lower se­

quence in the middle.) 

(6.2.B) The right hand square in the diagram (6.2.A.3) is cartesian according 

to (6.2.A.1); i.e. the element ofH(UK) ~ Ext(UK,G) represented by the upper 

row is the image of the element of H(UK/UK t+l) ~ Ext(UK/U~1, G) represented 
by the lower row under the homomorphism induced by the natural projection 
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(6.2.C) Taking the image of~*(~)€ H(UK/UK t+l) in H(Uk/Uft1) we obtain 
the element represented by the exact sequence 

0 --+ (Z/pZ)k -2..+, UiJUi+l ~ Ui/Ut1 ---+ O 

where Nt is induced by the norm morphism (cf. (2.6)) and 'Y is given by 

S7TL 
1 i---+ s ,-+ - ( s the chosen generator of G ). 

7TL 

(6.2.D) Proposition 

Let L/K be a totally ramified abelian extension of degree p, and let 

~ € H(OtK) be a corresponding element. Lett be the largest integer 

such that G = Gt (where G is the galois group). Then ~*W lies in the 
subgroup H(UK/UK t+l) of H(UK) and has non zero image in 
H(UKt/uKt+l). 

This is proved by (6.2.B) and (6.2.C) above; cf. also (2.6.D) (iv) and (4.6.D); 
the element represented by the exact sequence of ( 6.2.C) is nonzero because 
UL t/UL t+l is connected; cf. (6.3.C) for the fact that H(UK/UK t+l) can be 

considered as a subgroup of H(UK)· 

(6.3) Some lemmas. 

(6.3.A) Lemma 

Let O ➔ N ➔ G' 4 G ➔ 0 be an exact sequence of pro-quasi-algebraic 
groups, and suppose that G,G' are connected and that 7T0 (N)(k5) is 
finite of order h. Then the kernel off* is finite of order a factor of h. 

Proof. The long exact sequence of Hom and Ext groups yields an exact diagram 

f* 
--+ H(G') 

q.e.d. 
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' B T' 1 . • • . L' n ., ., n+ 1 U 'U n+ 1 d fi ;6 .• ,. : nec,momc;.um1ect1on1n: ·K lvK --+ 'Kl K emesa 

homomorphism i~: H(UKiUKn+l) ~ H(UKn/uKn+l). Let e:= vK(p): e 1 := 

e1:p-1 ·. 

Lemm,1 (i) lf n < pe 1 and pl n, then Im i~ = 0. 

,ii': If n > pe 1 , then Im i~ = 0. 

(iii1 If n = pe 1 , then #(Im i~) = 1,p 

Proof. Let m be the number m:= n/p in case (i) and m:= n-e in cases (ii) and 

(iii). Let u: UK ➔ UK be the morphism x.._xP. Then u maps uKm into uKn 

and uKm+l into uKn+l and induces epimorphic morphisms Um: uKm1uKm+t 

--+ uKnruKn+l of which the kernel is zero is cases (i) and (ii) and a form 

of (2/pZh: in case (iii). Cf. (2.3). Consider the commutative diagram 

um,um+l um Un /Un+l 
Kl K K K 

.; \ 
~ ' 

Um/Un+l UK/U~+l 
u U /Un+l 

K K K K 

(o:ft the natural morphisms; u' induced by u(x ...__:x:P) Applying the functor 

H yields a commutative diagram 

f-
(u')* 

Multiplication with pis zero on (Z/pZ)k, therefore (u1)* = 0, i.e. o:*uiri iri = O; 

o:* is injective because U~+l tut1 is connected (cf. lemma (6.3.C) below); 

therefore u~ ~ = 0. Applying lemma (6.3.A) to um we see that Ker u~ = 0 in 

cases (i) and (ii) and #(Ker u~) = l,p in case (iii). The same is then true for 

Im i~ , because Im iri C Ker u~ . 

q.e.d. 
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( 6.3.C) Lemma 

Proof. This follows from the exact sequence of Hom and Ext groups because 

UK t is connected. 

q.e.d. 

(6.4) Extensions defined by xP - 1Tk· 

Lemma. If n = pe1 , and if there exists an element of H(UK/UKn+l) with non 

zero image in H(UKn/UKn+l), then there exists an element ~eH(OtK) 

such that f = t>*(~) lies in H(UK/UK n+l) C H(UK) and has non zero 
image in H(UKn/UKn+l). 

Proof in the case that k = k5• The general case will be treated in ( 6.8). The 

number e1 is an integer, therefore there are primitive p-th roots of unity in K 
(2.2.C). The equation xP = 1TK defines a totally ramified abelian extension 

with galois group isomorphic to Z/pZ. A generators of this group maps x onto 
tx (where Xis some (fixed) root of the equation above and r is a primitive p-th 

root of unity). According to (2.2.B) one has vL(i: -1) == vL(t-1) = pvK (t-1) == 

pe1 ; therefore t = pe 1 = n (2.5.B). An application of (6.2.D) concludes the proof. 

q.e.d. 

( 6. 5) Artin-Schreier extensions. 

Let n be a positive integer< pe 1 and ( n, p) = 1; let A be an element of K 

with vK (;\) = -n. Then .;,e have: 
(i) The equation XP - X = A defines a cyclic extension L/K of degree 

p, which is totally ramified. 
(ii) If tis the largest integer such that G = Gt (where G := G(L/K)) then 

t == n. 

(iii) The element'l7X ofH(UKn/UKn+l) associated to L/K (cf.(6.2)) is 

different from zero. And for every '17 € H(UK./Ujt1) there exists a 

A e K such that 77 = '17~ • 

Proof. Let x be a root of xP - iC == A. Take L := K(x). One of the hypotheses 
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above is that vK(A) < 0, therefore also vL(x) < 0, and we find that vL(x) = 

p·1vL(A) = - p·1[L:K] n; but (n,p) = 1, therefore (L:K] = p; i.e. the equation 

XP - X = A is irreducible, and vL (x) = - n. 

The equation (x + Y)P - (x + Y) - A= yP - y - pF(x,Y) = 0 reduces to 
yP - Y = O mod. -m{K). (Because F has integral coefficients; the highest power of 

x occurring in F( x, Y) is xp- l and vL (xP-1) = - (p-1) n, therefore we have 

that the vL-value of each coefficient of the polynomial pF(x, Y) in Y is larger 

than vL(p) - (p-l)n = pe - (p-l)n > pe - (p-l)pe 1 = 0.) The reduced equa­
tion yP - Y = 0 hasp different solutions 0,1, ... ,(p-1). By Hensel's lemma 
there exists p solutions YO• ... , Yp-1 of (x+Y)P - (x+Y) - A= 0, which have 
the property Yi= i mod. m(L). This shows that L/K is galois and cyclic. Choose 

as a generator the element s e G which satisfies sx = x + y 1 • 

(ii) Let 1T L be a uniformizing element of L. Put x = 7TJn u, u e U ( L). One has 

s1TL/1TL = 1 + z, with vL(z) = t and su/u = 1 mod. (7TL 1) by the definition of 

the integer t (cf. (2.5.A.1) and (2.5.B.1)). From this one obtains~= 1-nz 

mod. (rrt1 ). On the other hand sx = x + 1 mod(1rL), therefore al:o sx = 1 + x-1 
X 

mod.(rrt 1) Comparing these two expressions for sx/x yields t = n > O (which 

shows incidentally that L/K is totally ramified (cf. (2.5.B.1)) and that - nz = 
-1 t+l 

x mod. (1TL ). 

(iii) By (6.2.C), T/~ is represented by the sequence 

'Y N 
0 ----+(Z/pZ)k ~ U£/U£+1 ~ UK/UK+l--"? 0 

where 'Y and Nn are as in (6.2.C). Identify UL n/UL n+l with Ga by means of 
the morphism 1 - ax-1 ~ a ( 4.3.5); let f be the composition of 'Y with this 

isomorphism; then f( 1) = n-l; i.e. f is multiplication with n-l. The image of 

1 - ax-1 under N is N(l - ax-1) = N(a-x)/N(-x) = (aP - a - A)/(-A) = 

1 - A- 1(aP-a). Let x_-l = rr~µ, µ e U(K). Let {3: UK n/UK n+l ➔ Gabe given 

by 1 + a11T~ -a' then Nn becomes g: Ga ➔ Ga, g(a) = -j'.i(aP-a), {i.e k*. 
The element of H(Ga) '.:::: k ( 4.6.G) corresponding to 

0 ➔ (Z/pZ)k ➔ Ga ➔ Ga ➔ 0 

is -1/(jln-1 ) = -n/µ. (4.6.G), which is different from zero. Moreover any 

element v e k* can be obtained in this way by a suitable choice oO, (If vis 

any lift ofii, take e.g. A = -1TK.n/v.) 

q.e.d. 
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(6.6) Proposition. 

The homomorphism 11*: H(OtK) ➔ H(UK) is a bijection. 

Proof. The homomorphism 11 is surjective, so 11* is injective. The pro-quasi­
algebraic group "Jl.(UK) is the projective limit of the pro-quasi-algebraic groups 
Tt(UK/U~), therefore H(UK) is the union of the H(UK/UK n) (6.3.C). We prove 
by induction that Im 11* contains all the H(UK/UK n). This is true for n = 0. 
Suppose that Im 11* contains H(UK/UK n), we have the exact sequence ( 6.3.C) 

0 ➔ H(UK/UKn) ➔ H(UK/UKn+l) ➔ H(UKn/UKn+l) 

It suffices to prove that H(Ut/uKn+l) and Iml1* n H(UK/UK n+l) have the 
same image in H(UKn/uKn+ ) 
If n < pe1 and (n, p) = p this is true by ( 6.3.B) (i). 
If n > pe1, this is true by (6.3.B) (ii). 
If n = pe1, then Im H(UK/UK n+l) has at most p elements by (6.3.B) (iii), and 
if it has more than one element, then Im (Im 11* n H(UK/UKn+l) has at least 
p elements by ( 6.4) 
If n < pe1 and (n, p) = 1, we have that Im( Im 11* n H(UK/UK n+l) = H(UK n/UK n+l) 
by (6.5). 

q.e.d. 

(6. 7.) Proof of the theorem. 

11' 
0---+- DK/DKn Pl'(UK)(k5)----+ 1'-(UK)(k5)/p'f\,(UK)(k5) ---+ OlK/p 01.K -+ O 

is exact. All groups in this sequence are killed by multiplication with p. The 

dual groups of1'-(UK)(k5)/p"J1.(UK)(k5) and O\.K/p OtK are therefore respectively 
H(UK) and H(OtK)- The homomorphism 11* is an isomorphism (6.6), hence so 
is{}'; and we have that DK= DK n pl\(UK)(k5), i.e. DK C pl\(UK)(k5). By 
(5.2.C) and the definition of 11 we known that (cf. especially (5.2.C.1)) 

DK = n NL/K1'-(UL)(k8), 
L/K 

where L runs through all totally ramified abelian extensions of K. 
Hence we have, in virtue of (5.2.D) and because NL/K commutes with inter­
sections (AB 5* in Pro(CQGk); cf. (4.1)) 
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where M runs through all abelian totally ramified extensions of L. Hence 

DK is a pro-p-group (= projective limit of finite p-groups) (6.1) and DK C pDK, 

this shows that DK = O. 

q.e.d. 

We have now proved the theorem in the case that k = k5, and when k is not 
necessarily algebraically closed we have proved the theorem up to lemma (6.4) 

(6.8) Proof of lemma (6.4). 

Let 

(*) 

represent an element ofH(UK/UKn+l) which is not in H(UK/UKn), then Y is 
connected, hence absolutely connected. We now that Im(H(UK/UKn+l) C 

H(UK n/UK n+l has exactly p elements. For by the hypothesis of (6.4) there 
are at least p elements in Im(H(UK/UKn+l) and at most there are p according 
to (6.3.B). We also know that there are exactly p elements in Im H((UK/UKn+l)k) 
and that a generator of this subgroup of p elements is any of the elements asso- s 

dated with the extension Knr(x)/Knr where x is a root of the polynomial 
XP - 1TK. By the theorem in the algebraically closed case therefore there must be 

an isomorphism IP 

0 ➔ (Z/ Z) ➔ U~ /Un+l ➔ U~ /U~+l ➔ O 
p ks Lnr tnr Knr Knr 

1 1· 
0 ➔ (Z/pZ)k ➔ Yk' 

s s 

between the upper exact sequence, where Lnr := K.nr(x), and the lower exact 
sequence, which represents the image of(*) in H((UK n /UK n+l )k ) (after base 
change k - k5). Lemma (4.7) shows that IP commutes with the !ction of 
G(k/k). The images of Z/pZ in un(Lnr)/Un+l(Lnr) come from the p-th roots 
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of unity, which are contained in Knr because e1 is an inte~er (2. 2.C). Therefore 
the p-th roots of unity in U(Knr) are invariant mod. Ue 1 + (Knr) under the 

action of G(ksfk) ~ G(Knr/K) (as(*) has a constant kernel); i.e. they can be 
written in the form 1 + 1T~l a+ 1T~1 +lb with a€ A(K). In fact we can certainly 

· h h f . . U(K" ) ei ' ei+lb' · h 'b' ,., wnte t e p-t roots o umty m nr as 1 + 1TK a + 1TK wit a, € A(Knrl• 
Let a' be the image of a' in ks, from the fact that the p-th roots of unity are 
invariant mod. Ue 1 +l (Knr) we see that s(a') = a' for all s € G(ksfk) hence that 

a' ek; let a be lift ofa', aeA(K), then a'= a+ 1TKY· The polynomial 

1rjr 1 ( 1 + 1T~l X)P - 1 

is monic, has all its coefficients in A(K), and has what was shown above p 
different roots mod.(1rK). Hence by Hensel's lemma there are roots in A(K). 
We have proved that the p-th roots of unity are in K. The extension K(x)/K 

where xis any root of XP - 1TK defines the desired element of H(Ot K)· In fact 
the largest integer t such that Gt= G (where G := G(K(x)/K)) is equal to pe 1 = 
n ((2.2.B) and (2.5.B.1)). It now suffices to apply (6.2.D) (exactly as in the 
last few lines of (6.4)). 

q.e.d. 

7. SECOND PROOF OF THE THEOREM. RAMIFICATION. 

Assume that theorem (5.4.D) is proved when k = ks (cf. § 6 or (CAC]). From 
this it is possible, by means of the same kind of considerations as those we 
earlier met with in (6.8) ('descent'), to deduce a second proof of theorem 

(5.4.D). In (7.4) we describe the ramification subgroups of ot.K. 

(7.1) Action of G(ksfk). 

Let L/K be a finite galois extension of K. ((2.1) shows that for every finite 

abelian extension E of Knr there exists a finite galois L/K such that EC Lnrl• 
The pro-quasi-algebraic groups UL and VL are not a priori defined over k but 
only over the residue field 1 of L. However there still exists a natural action of 

G(k5/k) on UL/VL(k5 ) ~ U(Lnr)/V(Lnr)· Lets€ G(k5/k) ands' €G(Lnr/K) any 
lift of s. Define s(ii) := s' (u), where u represents ii€ U(Lnr)/V-(Lnrl• (As usual, 
v>+ vis the canonical homomorphism onto a quotient). This definition does 

not depend on the choice of s'; for let ts' be any other lift of s (where 
t€G(L/K)ram) then ts'(u) ~s:(u). s'(u) = s'(u) mod. V(Lnr). 

s (u) 

75 



Remark. 

This action of G(k5/k) is analogous to the second action of G(k5/k) on 
UK (k5) defined in section (5.1.A). In fact it is not difficult to 'descend' 

u1 /V L · Let L' /K be finite totally ramified extension such that L' .Knr = L.Knr 
(2.8.E). Let VL' be the connected component of the identity of the kernel of 

the norm morphism NL'/K : UL, ➔ UK. Then (U1•/V1•)1 ::::'. UL/V1 (4.7) and 
the action of G(k5/k) on UL/VL(k5 ) ::::'. UL,/VL'(ks) as described above is iden­
tical with the natural action induced by the k-pro-quasi-algebraic structure of 

UL'/VL'. (5.1.A). 

(7.2) Lemma 

Let L/K be a finite galois extension. The homomorphism N: U(Lnr)/V(Lnr) 
➔ U(Knr) commutes with the action of G(ksfk). 

q.e.d. 

(7.3) Proof of the theorem. 

According to (5.4.C) (surjectivity of~) we only have to prove that there are 
sufficiently many totally ramified abelian extensions; we have to prove that if 

f 
0--+ Kf --+ Uf ~ UK ---+ 0 

is an isogeny with constant kernel, then there exists a totally ramified abelian 

extension M/K such that the norm morphism NM/K: UM/VM ➔ UK factors 
through f. We now, from the theorem when k = ks, that there exists an abelian 

extension P/Kw such that Up/Vp ➔ Uinr factors through f ®ic k 5• Enlarging P 
if necessary we can assume by ( 2.1.D) that P is of the form P = L' nr for a certain 
finite galois extension L' /K (which has the property that G(L' /K)ram is abelian}. 
Let L"/K be a totally ramified extension such that L".Knr = L'.Knr (2.8.E); 

V111 the connected component of the identity of the kernel of NL"/K: UL" ➔ UK. 

We have that (Uv,/V111)k5 ~ (Uv/VL,)k5 and that u1,,/VL" ➔ UK factors through 
f ((4. 7), cf. also (5.4.B)). Let U' be the image of u1,,JV1 ,, in Uf, We have a 
commutative diagram 
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0--+- G(L'/K)ram--+- UL11/VL" 
NL"/!} 

UK --+0 

l l 
u' 

t 
0 --+ G UK-+0 

l I 
f 

0~ Kc Uc UK--+0 

Kc(ks) is left pointwise fixed under the action of G(ksfk), hence the kernel H 
of the induced homomorphism G(L' /K)ram ~ G(L' /K\am (k5 ) ➔ G(k5) is stable 
under this action (which is the action by inner automorphisms (5.1.B)). This 

proves that His a normal subgroup not only of G(L' /K)ram but also of G(L1 /K) 
itself. Let L be the invariant field of H. Then (U')k ~ (UL/Vdk and t becomes 

s s 
the norm map under this isomorphism. One can descend UL/VL, cf. Remark 
(7.1), accordingly the injection UL/VL(k5)<-+ Uc(k5) commutes with the action 

of G(ksfk) ( or apply ( 4. 7) once more). This shows that G(L/K)ram C G(k8) is 
left pointwise fixed under the action of G(k5/k). i.e. that G(L/K)ram C Z(G(L/K)). 
By the pullback theorem (2.8.G) there exists an abelian totally ramified extension 

M/K such that Mnr = Lnr. By (5.4.B) we have (~1,1K)ks = (~/K)k = Eks if E denotes 
the element represented by the middle extension in the diagram above. Hence 

(4.7) EM/K = E and we are through. 

q.e.d. 

(7.4) Ramification. 

(7.4.A) THE lb-FUNCTION AND HERBRAND'S THEOREM. 

Let L/K be a finite galois extension with galois group G and ramification sub­
groups Gi (seGi <a> (vL(sa - a);;;,,, i+l for all aeA(L))). It is clear that 

(7.4.A.1) G(L/M)i = G(L/M) n G(L/K)i if Mis a sub-extension of L. 

We define 'PLJK(x) =x -l~x~0 
'PLJK(x) =i, (g1 + ... +&n+(x-m)gm+l) m~x ~ m+l,m+leN 

where & := #Gi. The function 'PL!K : [-1,00) ➔ [-1, 00) is monotonically in-
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creasing. Let VIL/K be the inverse function of 'PL/K· Note that this function 
coincides with the one defined in ( 2. 6) when L/K is totally ramified galois of 

prime degree. 

(7.4.A.2) Lemma 

If L :) M are both galois extensions of K, then 

VIL/K = VILfM • VIM/K. 

For a proof cf. [CL] Ch.IV§ 3 Prop. 15. 

We now define ramification groups with upper indices Gi by means of the 

formula 

Note that ,J;(i) is an integer if i is an integer. 

These ramification groups behave nicely with respect to quotients in the sense 

of: 

(7.4.A.3) (Herbrand's theorem) 

If M/K and L/K are both galois extensions and MC L, then the 

natural projection G(L/K) ➔ G(M/K) maps G(L/K;i onto G(M!Kf 

For a proof cf. [CL] Ch. IV § 3 Prop. 14 and Lemma 5. 

Herbrand's theorem makes it possible to define G(L/K)i also for infinite galois 

extensions L/K by means of the formula 

where M runs through all finite galois sub-extensions of L. In particular we can 

define otk for i;;.. 0 

Remark that ,J;KnfK(x) = x if Kn/K is unramified; it follows that ((7.4.A.1) and 

(7.4.A.2)): 

where K1 is the maximal unramified extension of K contained in L. 
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(7.4.B) SOME EXACT SEQUENCES. 

Let L/K be a totally ramified abelian extension. Then we have a sequence 

It is clear that in is monomorphic, and that NL/K is epimorphic ((5.2.B.l), 

(2.6.D) and (7.4.A.2)). 

(7.4.B.2) Lemma 

The sequence (7.4.B.1) is exact ifL/K is of prime degree. 

Proof. Lett be the largest integer such that Gt= G (where G = G(L/K)). For 
n..;;; t, the exactness of (7.4.B.1) follows from (5.2.B.1) (cf. also (2.7.A.3) and 

(2.5.B.1)). If n > t, then en= Gl/l(n) = t 1}. Let x € UL 1/l(n)(k5) be such that 

S7TL 
NL/K(x) = 1. Then x e- VL(k5) for a certain s€G (5.2.B.1). Supposes:/= 1, 

S1TL 1TL1 s1TL l 
then- e UL\k5) \ uLt+ (k ), and hence also-. V1 (k) C u 1 t(k ) \ u1 t+- (kJ 

1T s 1T s s 
L L mL 

because VL(k) C uLt+1(k) (cf. (2.5.A.1)). Therefore, as n > t, - Vt(k5) n 
s s 1TL 

ut (n) (k5 ) = </J ifs -:/=1. This shows that x € Vt(k5). 

q.e.d. 

(7.4.B.3) Lemma 

UL 1/l(n) n VL is the connected component of the identity of the 

kernel of NL/K if L/K is of prime degree. (n=0, 1, ... ). 

Proof. It is clear that UL 1/l(n) n VL contains (Ker(NL/K)) 0 because the quotient 
(Ker NL/K)/UL 1/J(n) n VL is a subgroup of (G(L/K))k and hence finite (5.2.B.1). 
(This holds also for not necessarily cyclic L/K). If n..;;; t, then 1/J(n) = n and 
UL n n V L = UL n n UL t+l n Ker NL/K = UL t+l [) Ker NL/K = V L is connected 
(2.7.B.1). Let n > t. It is clear that the kernel of the induced morphism 

-n 
U tµ(n) /U tµ(n+l) NL/K U n /U n+l is Ker Nn /Ker Nn+l As N n is zero 

L L K K L/K L/K' L/K 
on U 1/l(n)+l/U tµ(n+l) and the induced morphism U 1/l(n) /U tµ(n)+l ~ 

L L L L 
U~/Ug:n+l is an isomorphism (2.6.D) (v), it follows that Ker N{'/K/Ker N,ttl. ~ 
UL tµ(nJ-t-l /UL tµ(n+l) is connected. Therefore Ker NWK itself is also connected 
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q.e.d. 

i7 Propositio11 

a) The sequence {7.4.B.1) is exact for all totally ramified abelian 

extensions L/K. 
b) UL i,\-1/K(n) n V L/K is th~ connected component of the identity of 

h k I f N n U ll't/K(n) ➔ un 
t e . erne o L/K: L K. 

(We here write V P/P' for the connected component of the identity of the 

morphism of pro-quasi-algebraic groups NP/P': Up ➔ Up,; i.e. VL/K = V1 ). 

Proof. We prove a) and b) simultaneously by induction on [ L: K]. Lemmas 

,7.4.B.2) and (7.4.B.3) prove the proposition when L/K is of prime degree. 

If L/K is not of prime deg:ee, let M be a sub-extension of L. We have a commu­

tative diagram 

).4.B.5) 0 0 

l l 
= 

l 1 
O ~(G(L/K).1, ) --,),.U h1K(n) /V nu 1/111K(n) N WK u n 0 

'l'L/K(n) k L L/K L ~ K ---+ 

l l 
0 0 
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The first column is exact according to (7.4.A.1) - (7.4.A.3). By the induction 
hypothesis we know that the third row of the diagram is exact and that the 
sequence 

0 ➔ (G(L/M).1, ) ➔ U !JJL/K(n) /U !J)L/K(n) n V ➔ U tJ,M/K(n) ➔ 0 
""L/K(n) k L L L/M M 

is exact. Hence N:;/K(n) induces an epimorphism Ker NL/K ➔ Ker N~/K and 
· · t/JL/K(n) tJ,M/K(n) tJ,L/K(n) 

an epunorph1sm V L/K n UL ➔ V M/K n UM because V L/K n UL 
contains the connected component of the identity of Ker Nl/K and is mapped 

into VM/K n u!M/K(n), which is the connected component of the identity of 

Ker N~/K by the induction hypothesis. An application of the snake lemma 
([2] § 1 Prop. 2) yields that the third row in the diagram below (which is the 
second column in the diagram (7.4.B.5)) is exact. 

l 

l 

I 
Ul/,M/K(n) 

M 

0 ➔ (G(L/M) ) ➔ u VIL/K(n) /V nu VIL/K(n) ➔ u VIM/K(n) /V nu VIM/K(n) ➔ 0 
!JJL/K(n) k L L/K L M M/K M 

It then follows that a is an isomorphism. This implies that VL/K. n utL/K(n) is 
1/1 I (n) tJ,M/Kln) 

connected because both V L/M n UL L K and V M/K n UM are connected 
by the induction hypothesis. This takes care of b ). An application of the snake 
lemma in diagram (7.4.B.5) (in which the second column is now also exact) 
proves that the second row is exact. 

q.e.d. 
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I' 

(7.4.C) THE RAMIFICATION GROUPS OF OlK. 

The diagram 

II I f 
O ➔ (G(L/K))k ➔ UL/VL ➔ UK ➔ 0 

has a cartesian righthand square because uf(n) ➔ UKn is epimorphic. 

(We write 1/l(n) for 1/IL/K (n)). The pro-quasi-algebraic group UL 1/l(n). Ker NL/K/V L 

is not necessarily connected. Its connected component of the identity is 

UL 1/l(n) .VL/VL ::::- UL 1/l(n) /V L n UL 1//(n). We have an exact diagram (7.4.B.4) 

0 ➔ (G(L/Kt)k ➔ u/(n);vL n u/(n) ➔ U~ ➔ 0 

I I I 
0 ➔ (G(L/K))k ➔ 

As UL 1//(n) /V L n UL l/l(n) is connected, it follows that (G(L/Kt)k is a quotient 

of-p.(UKn). We have found the theorem: 

(7.4.C.1) Theorem 

The image ofTL(UK n )(k5) in -p.(UK)(k5 ) corresponds to 01. Kn under 

the isomorphism ri(UK)(k 5) ::::- OlK. 

We know that rr 1 (UK n)(k5) ➔ rr1 (UK)(k5) is injective because rr 1 is left exact. 

Therefore 

(7.4.C.2) Corollary ([CAC] Th.1). 
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8. INFINITESIMAL CONSIDERATIONS. 

Let L/K be a totally ramified galois extension. In this section we study the 

infinitesimal part of the kernel of the morphism NL/K between the pro-algebraic 

group schemes UL and UK. We work in the category Pro(CGk). The pro-alge­

braic group schemes UL and UK are reduced ( 4.3.6 ). In characteristic zero all 
algebraic group schemes are reduced (Theorem of Cartier, see e.g. [ 14] ), hence 

we shall assume in this section that the characteristic of the residue field k is 
different from zero. It turns out that a totally ramifie·d galois extension L/K is 

tamely ramified iff Ker NL/K is reduced. 

The propositions ( 8.3.C) and ( 8.5.C) are stated for all totally ramified galois 

extension L/K and proved only for cyclic L/K of prime order. One deduces 

the propositions for not necessarily prime order, totally ramified, galois L/K 

from this by considering towers K == K0 C K1 C ... C Km == L of cyclic extensions. 

(One can find such a tower for each L/K because G(L/K) is solvable (2.5.B.4)). 

For (8.3.C) (ii) and (8.5.C) this procedure yields the propositions immediately; 

for (8.3.C) (i) one needs in addition (cf. (7.4.A)) 
1 ° a iJ.,-function defined for all galois L/K 

2° the transitivity of these functions. (I.e. i/lM/K • iJ.,L/K when KC LCM). 
Acknowledgements must be made to Prof. P. Gabriel for this section. 

If U is an algebraic group scheme, Lie U den~ the tangent Lie-algebra of U. 

By definition Lie U :== Ker (U(k[ e]) ➔ U(k)), where k[ e] is short for k[X] /(X2) ; 
i.e. e2 == 0. 

As to the contents of this section: we first list some facts about the trace and 

norm maps in ( 8.1 ). Then we show in ( 8.2) that the kernel of the norm morphism 

U1 ➔ UK is not reduced for wildly ramified extensions. After having devoted 

some space to what W n (k[ el) looks like in (8.4) we then look more closely at 

the equal characteristic case (char(K) = p) in (8.3), and at the unequal charac­

teristic case (char(K) == 0) in (8.5). 

(8.1) Some facts about trace and norm. 

Let L/K be a totally ramified galois extension of prime degree l; let t be the 

largest integer such that G == Gt ( cf. ( 2. 5)) Then 

(8.1.1) 
r = [ (t+l)(~-1) + n] . 
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If L/K is tamely ramified (<'>(t = 0) <'> ((l,p) = 1)), then Tr I A(K) is multipli­

cation by 1, so we have 

(8.1.2) Tr(A(L)) = Tr(A(K)) = A(K) if L/K is tamely ramified. 

From (2.6.E) follows that 

(8.1.3) N(U/(n)) = U~, 

where 1/; is the function 1/;(x) = x if x ¾ t, 1/;(x) = t + l (x-t) if x;;.,, t. From 

this it is not difficult to see that for sufficiently large n 

(8.1.4) 
t+l 

where z = [ ne + t + 1 - - ] • 
l 

If l/;(r-1) + 1 ¾ s ¾ 1/;(r) we have by (8.1.1) 

(8.1.5) if r-1 ~ t. 

Combining (8.1.3) and (8.1.5) we obtain that 

for large enough r,s. 

(8.2) Wildly ramified extensions. 

Let L/K be a wildly and totally ramified galois extension. Its degree (L:K] is then 

divisible by p. We have UL ""'Gm X UL 1, UK ~ Gm X UK 1. The norm morphism 
maps the factor Gm into the factor Gm. One easily sees that the induced 
morphism is multiplication with (L : K]; i.e. xi-+ xn when n = [L : K]. The 

kernel of this morphism is not reduced. We have found that 

(8.2.1) Xinf := X/Xred =f= 0, for wildly and totally ramified galois L/K, 

where X denotes the kernel ofN: UL ➔ UK. 

(8.3) The equal characteristic case. 

In this section we assume that char(k) = char(K) = p * 0. 

(8.3.A) Lemma 

Lie UL/UL5 ~ A(L)/1TL5A(L) (as a vector space) 
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Proof. Lie·uL,uLs := Ker(UdUL5(k[e]) ➔ UL/UL5(k)) 
= Ker (units((A(L)/1rL5A(L) ®k k[e]) ➔ units (A(L)/1TL5A(L)) 

= (A(L)/1TL5A(L)).(Cf. (4.2.7)). 
NL/K(l +€a)= (1 + € si(a)) •.. (1 + € s1 (a))= 1 + Tr(a) e. 

q.e.d. 

Let Tr(A(L)) = 1Ti._ro A(K), then r0 ;;;, 0 and (r0 > 0) ~ (L/K is wildly ramified). 

Lets and r > ro be such that NL/K (UL5 ) = uKr; let X5 := Ker(UL/UL5 ➔ uK,uKr ) 
Then we have: 

(8.3.B) Lemma 

Proof. The sequence o ➔ X8 ➔ UL/UL8 ➔ UK/UKr ➔ 0 is exact, from which we 
obtain an exact sequence 

0 ➔ LieX5 ➔ A(L)/1rj_ A(L) ➔ A(K)/~KA(K) 

(8.3.A); dim X5 = s-r; dim Lie X5 = dim(A(L)/1rj_ A(L)) - dim (lm(A(L)/1rj_ A(L))) = 
= s - (r-r0 ) = s-r+r0 • Hence dim(Lie (X5)inf) = r0 • 

q.e.d. 

(8.3.C) Proposition 

Let L/K be a totally ramified galois extension; let X := Ker (UL-UK). 
Then we have 

(i) dim (Lie Xinf) = r0 is finite (r0 as above) 
(ii) (Xinf = o) ~ (L/K is tamely ramified). 

r 
Proof. (ii) follows from (i), for r0 is determined by Tr(A(L)) = 1r.;, A(K) and 
Tr(A(L)) = A(K} iff L/K is tamely ramified. Let (s', r') and (s, r) be two pairs 

h h ,! r' U s) r ' > d ' > sue t at N(UL ) = UK , N( L = UK , s s an r r. 
We have an exact diagram 
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0 0 

Tr: rri, A(L)/rr(A(L) ~ rr~A(K)/11{A(K) is surjective for large enough r ( 8.1.6 ). 

Therefore dim(Lie(Xs ,s\nf) = 0 ifs' ,s are large enough. Using ( 8.3. B) and 

dimension counting we obtain Xinf = (X5)inf for larges and hence (i). 

q.e.d. 

(8.4) W/k[e]). 

To find the dimension of Lie Xinf in the unequal characteristic case, we need 

to know what W n (k[ €]) looks like. 

The addition and multiplication on W n (A) ( for any commutative ring A) are 

g:t'venbypolynomialsS ,s1,····s l;P , ... ,P leZ(X , ... ,x l;Y , ... Y ] o n- o n- o n- o ' n-1 
which satisfy 

(8.4.1) 
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S =X +Y 
0 0 0 

W/S0 , ... ,Si)= W/X) + W/YJ, 
Wi(P 0 , ... ,Pi)= W/X).Wi(Y), 

Wj(X) +Wi(Y) -Wi-1(Sg_ ... ,SJ\) 
Si=-:.'-----=---._:__-'"-'--"'---'-"-'-, 
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(8.4.2) P =X .Y 
0 0 0 

Let €j (j = O, ... ,n-1) be the element (0, ... ,0, €, 0, ... ,0) ofW n(k[e]) (€ on the 

j-th place). Using (8.4.2) one easily finds that in Wn(k[e]) 

(8.4.3) 

where (a0 , ••• ,an_1 ) eW n (k) for any ring k. And thus especially 

(8.4.4) €/a0 , •• ,an_l) = (O, ... ,o,a/ €,0, .. ,0) when char(k) = p. 

In the same way one finds that 

(8.4.5) €-€- = 0 
1 J 

for all i,j = 0, 1, .. ,n-1. 

From (8.4.4) and (8.4.5) one now sees that, when char(k) = p 

n-1 
(8.4.6) W (k[ e)) = W (k) + !: k €., the sum being direct. 

n n i=O 1 

( 8. 5) The unequal characteristic case. 

We assume in this section that char(K) = 0, char(k) = p * 0. Let e be the abso­
lute index oframification of K (i.e. e = eK = vK (p)) eL = [L : K] e when L/K 
is totally ramified of degree l. The module A(K)/trKne A(K) is free of rank n 

overWn(k). 

(8.5.A) Lemma 
n-1 

Lie (UL/ULnel) -:::: !: (A(L )/pA(L)) e. 
i=O 1 

Proof. Lie (UL/ULnel) := Ker(Units((A(L)/trLnelA(L)) ®wn(k) Wn(k[e])) ➔ 
n-1 

Units (A(L)/trLnelA(L))) = !: (A(L)/pA(L))e. (cf.(4.2.7), (8.4.6)). 
i=O 1 

~.e.d. 
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(8.5.B) Lemma 

Let n,n' be such that N(UL nel) = UK n'e_ The induced map Lie N: 

Lie UL/UL nd ➔ Lie UK/UK n'e is then the trace map on each of the 

summands (A(L)/pA(L))ei. 

( 8.5.C) Proposition 

(L/K tamely ramified)-¢> Xinf = 0 (where again X := Ker (UL-.UK)). 

Proof. From (8.1.4) we see (t=0) that N(U L ne) = UK ne, when L/K is tamely 

ramified. We have an exact sequence 

0 ➔ xn ➔ U /U nel ➔ U iU ne ➔ 0 
L L K K 

On A(K)/pA(K), the trace map is given by multiplication with I, which is 

prime top; hence Tr: A(L)/pA(L) ➔ A(K)/pA(K) is surjective, and we find 

(Xn)inf= 0 for all n. The opposite implication is proved by (8.2). 

q.e.d. 

(8.5.D) Proposition 

Suppose that K contains the p-th roots of unity. Let L = K(x) where 

Xis a root of xP - 1TK. Then dim (Lie xinf) = 00• 

pe 
Proof. In this case we have t = p-l (2.2.B) and (2.5.B.1). From (8.1.4) we 
obtain N(U1 pne) = UK ne+e. There is an exact sequence 

0 ➔ xn ➔ U /U pne ➔ U /U ne+e ➔ 0 
L L K K 

A(L)/pA(L) has a basis 1,x, ... ,xP-1 over A(K)/pA(K). But Tr(xi) = 0 for 
i = 1, ... ,(p-1) and Tr(A(K)/pA(K)) = 0. The map Lie N: Lie UL/UL nep ➔ 
Lie UK/UKe(n+l) is therefore the zero map. (one can also use (8.1.1) to show 

directly that Tr(A(L)) C pA(K)). We find dim xn = pne - (n+l)e; dim( Lie Xn) = 

pne; hence dim( Lie (Xn)inf) = (n+l)e. If n' > n we have an exact diagram 
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0 0 0 

l l l 
I I N I 

0 ~ xn ,n --+ upne /UPn e--+ Unete /Un e+e ~ 0 
L L K K 

l l l 
0---,.. xn' 

I N 
---+ UL/Uee---,.. UK/Uie+e --+0 

l l l 
N 

U ;une+e ---+ 0 0---+ xn UL/Uee--+ K K 

l l l 
0 0 0 

Lie N = 0 in all three rows. Therefore dim( Lie (Xn',n)inf = (n' -n)e. The sequence 
I I 

O ➔ Lie xn ,n ➔ Lie xn ➔ Lie xn ➔ 0 is always left exact; by counting dimensions 

we see that it is also right exact. It follows that Lie (Xn' )inf ➔ Lie (Xn )inf is 
surjective for all n' > n. 

Whence dim Lie(Xinf) ~ dim Lie (Xn)inf = (n+l)e for all n. 

q.e.d. 
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CHAPTER III 

MAXIMAL ABELIAN EXTENSIONS OF LOCAL FIELDS WITH FINITE 
RESIDUE FIELD 

(LOCAL CLASS FIELD THEORY) 

The first section ( § 9) of this chapter sketches the relation between Ch. II and 
Ch. III. Except for this paragraph, of which nothing is needed in the sequel, 
this chapter is independant of Ch. II and of§ 3, 4 of Ch. I (Lemma (3.1) ex­

cluded). 
In§ 10 an isomorphism U(K)/NL/K U(L) ➔ G(L/K) is constructed for each 
totally ramified abelian L/K, and some properties of these isomorphisms are 
proved. Next, in § 11, we construct (for a given choice of 1TK) for each n e N 
a totally ramified abelian extension Ln /K ( the so-called Lubin-Tate extensions, 
cf. (11.2)) and prove that (U Ln .Knr) = Kab. We then use this to construct an 

isomorphism 

K.* = U(K) X Z ~ G(Kab /K) 

such that the kernel of 

K*'-+ K* ~ U(K) X Z ~ G(Kab /K) ➔ G(L/K) 

is exactly NL/KL* for e:;ch abelian L/K. (Because K * ~ U(K) X Z, there is a 
natural inclusion K*'-+ K*). This isomorphism, then, looks remarkably like the 
'classical' reciprocity isomorphism, defined by the norm residue symbol, and 
in fact it is identical with the latter ( cf. ( 11.4.B) Remark 2; this fact is not used 
further on). As a corollary we then obtain for instance the existence theorem 
oflocal class field theory (11.4.D). All this is done without anywhere using the 
norm residue symbol (cf. [LT] and [19] ). 

9. THE LANG ISOMORPHISM. 

This section serves to point out the link between the considerations of Ch. II 
and the following two sections ( § 10, 11 ). 

Let Ube a (pro-) algebraic group scheme over a field k consisting of q elements. 
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For each k-algebra A we have a k-algebra homomorphism F: A ➔ A, a~ aq; 

these induce maps U(A) ➔ U(A), which define an endomorphism FU: U ➔ U, 

the Frobenius endomorphhm of U. (We shall usely simply write F instead of 

FU). The endomorphisms Fare endomorphisms of (pro-) algebraic group 

schemes and they commute with every homomorphism of group schemes (cf. 
the remark below). 

The F become automorphisms in the category Pro(CQGk)· 

We also use F to denote the canonical generator of the galois group G(k 5 /k) 

(given by x H- xq, x e k5) and its lift in G(Knr/K), the canonical genera tor of 

G(Knr/K), characterized by F(x) = xq mod. 'lTt.(Knr), for x e A(Knr) ). Note that 

the homomorphism F: U(k 5) ➔ U(k 5 ), derived from the Frobenius endomor­

phism of U, is identical with the homomorphism F: U(k5 ) ➔ U(k 5) induced by 

the action of the galois group G(k 5 /k) on U(k 5). It follows from (5. l.A) that 

both these homomorphisms F: U(k5 ) ➔ U(k5 ) are identical with the homo­

morphism F: UK (ks)::: U(Knr) ➔ U(Knr)::: UK (k 5 ), obtained restricting 

Fe G(Knr/K) to U(Knr), when U = UK is the pro-algebraic group scheme of 

units of a local field K with residue field k. 

Remark. 

The existence of endomorphisms FU for all (pro-)algebraic group schemes U 

over k, with the commutation properties mentioned above, is an instance of 

a much more general situation. Let C be any category; and let F be a functor 

endomorphism of the identity functor. The morphism F induces a functor en­

domorphism FT: T ➔ T for each functor T: C ➔ Ens. (Defined by pT (A) : = 
T T T' T(F(A)),AeC).TheF havethepropertythatr.p°F =F 0 r.pforevery 

functor morphism r.p: T ➔ T'. In particular, as pTX T = pT X pT, this implies 

that pT is an endomorphism of group functors when Tis a group functor (and 

that the F commute with homomorphisms of group functors). If we take 

C = Alk (= the category of k-algebras) and for T the functor A~ U(A), where 

U is a (pro-) algebraic group scheme, we obtain the situation described above. 

( 9 .1) Isogenies with constant kernel. 

Let f: Uf ➔ Ube an isogeny of algebraic group schemes over k with constant 

kernel Kf (where the field k is supposed to be finite). For x e U(k), let x' e Uf(k 5 ) 

be a lift ofx; then f(F(x')-x') = fF(x')-f(x') = F(x)-x = 0 because xeU(k). The 

element F(x') -x' does not depend on the choice of x'. For, let x11 be any other 
l'f II , k d h f ,, I II I h 1tofx,thenx -xeKf(k 5)=Kf( )ant ereoreF(x -x)=x -x.We ave 
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so defined a homomorphism U(k) ➔ Kr(k). The image of x € U(k) in Kr(k) is 
zero iffwe can find a lift x' eU{{k5) such that F(x') = x'; i.e. such that x' eU{{k). 

We have: 

Proposition (Lang) 

If f: Ur ➔ U is an isogeny of connected algebraic group schemes over 

k with constant kernel Kr, then the homomorphism U(k) ➔ Kr(k) 

described above, induces an isomorphism 

(This is proved by the above, except for the surjectivity of U(k) ➔ Kr(k), 
which follows from the fact that F-1: Uf(k5 ) ➔ Uc(k5 ) is surjective for con­

nected algebraic group schemes Uf.) 

Remark. 

We have in fact applied the snake lemma to the exact diagram 

0 ~ Ki(k5 ) ~ Uc(k5 ) _ ___,. U(k5 ) ~ 0 

j (F-1 )_:~ ____ I ,!':..I--····-· 1F~~ ,. 
---- * • 

0 ~-K;k5) __ .,. Uc(k5) --~ U(k5) --➔ ,,. 
I 

I 
I 
I 
I 

' \ 
' '----► Kc(ks) 

(9.2) The group 'fl(UK) (k5 ) when the residue field is finite. 

0 

Let O ➔ N ➔ X ➔ UK ➔ 0 be an isogeny with constant kernel of the pro-alge­
braic group scheme UK of units of the local field K with finite residue field k 

( # k = q). Consider the exact diagram 
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0 

l 
U(K)k 

l 
0 N X UK 0 

l F-1 l F~:}/1 F-1 

0 N x• u 0 K 

0 

(For the fact that F-1: UK ➔ UK is epimorphic cf. (10.1.A)). The constant 

group scheme (U(K))k is pro--6.n:ite (because k is finite). The morphism F-1 is 
zero on N because N is constant, therefore N ➔ X £=l X is zero; it follows that 

there exists a morphism gas indicated in the diagram which factorizes F-1: 

UK ➔ UK through X. The isogeny F-1: UK ➔ UK is hence larger than all iso­

genies with constant kernel of UK. It follows that 

(9.2.1) 

and by applying theorem (5.4.D) that 

(9.2.2) 

This last isomorphism will be established again in § 10, 11, but then without 

using algebraic geometry. 

(9.3) Description of the isomorphism (9.2.2). 

It was Serre in section 7 of r11] who remarked that the Lang isomorphism 

( 9.1) ( or rather its pro-algebraic analogue) should be the think between the 
theory of chapter II and the 'classical' class field theory oflocal fields with 

fmite residue field. 
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Let L/K be a totally ramified abelian extension of the local field K with finite 

residue field k. We have an isogeny with constant kernel over k (cf. (5.2.B)). 

From this we obtain an isomorphism (9.1) 

(9.3.1) 

One now proves that NL/K(UL/Vdk)) = NL/K (U(L)) (cf. (10.2); we know 
that U(K)-:::: UK(k)), and we find an isomorphism 

(9.3.2) i.p: U(K)/NL/K (U(L)) ➔ G(L/K) 

(cf. also (10.2), where this isomorphism is constructed again) 

We showed in (5.1.A) that the action of G(k5 /k) on Uk (k 5)-:::: U(Knrl is the 

same as the action of G(k5 /k) -:::: G(Knr/K) on U(Knr) as a subset of A(I<-or)· 
Let F be the Frobenius automorphism in G(Knr/K), then u e UK (k) :::- U(K) iff 

(F-l)(u) = 0. The recipe for the isomorphism i.p of (9.3.2) now becomes: 

take u E U(K), let u' e U(Lnr) be any lift of u; then there is exactly one 
i.p(u) e G(L/K) such that 

i.p(u) (7Td _ Fu ,., 
---=-, mod. V(Lnrl 

7TL k 

the isomorphism i.p is induced by the homomorphism 

ui-+ i.p(u) 

If we had taken instead of u 1-+ i.p(u), the homomorphism u 1-+ lj?(u-1 ), we would 

have obtained exactly the description of the reciprocity isomorphism for 
totally ramified abelian extensions given by Dworkin [4] (cf. also [CL] 

Ch. XIII§ 5 (especially the Cor. to Th. 2 and p. 210) and (11.4.B) Remark 2). 

10. 'ALMOST' THE RECIPROCITY ISOMORPIDSM. 

In this and the following section K will be a local field with a finite residue 

field consisting of q elements. We use the symbol F for the Frobenius auto­

morphism of G(ki/k) and for the canonical lift of this automorphism in G(Knr/K). 
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Let L/K be a totally ramified abelian extension ofK. In (10.1) we prove some 
lemmas necessary to define an isomorphism 

I{): U(K)/NL/K U(L) :::::' G(L/K) 

in (10.2) for abelian totally ramified extensions L/K. The isomorphism'{) (or 
more precisely the isomorphism u1-+ 1fJ(u· 1)) will play an important part in the 
definition of the reciprocity isomorphism in (11.4.B). In (10.3) we note a func­
torial property of this isomorphism. 

(10.1) Some lemmas. 

(10.1.A) Lemma 

The homomorphisms F-1: U(Lnr) ➔ U(Lnr) and F-1: V(Lnr) ➔ 
V(Lnr) are surjective. ((F-l)(u) :=~if we write the groups U(Lnrl 

A U 
and V(Lnr) multiplicatively). 

Proof. Use the filtration by the un(Lnr) of U(Lnrl• The induced homomor• 
phisms are U(Lnr)/U1(Lnr) :::::' k; ➔ k; -::::.·U(Lnr)/U1 (Lnr), x 1-+ xq-l and for 
i ~ 1 Ui(Lnr)/Ui+·l (Lnr) -::::. k ➔ k :::-Ui(LnJ/Ur+-1(Lnr), x ➔ x4-x (Note that k5 is 
written additively). These homomorphisms are all surjective (as k5 is algebraic­
ally closed). An application oflemma (3.1) ¥ields the first part of the lemma. 

tx " ,.. .,.. 
Let -e V(Lnr) t e G(L/K) (these elements generate V(Lnr)); choose ye U(Lnr) 

X 

such that (F-1) (y) = x; then we have 

( ty) _ Fty/ ty _ tFy/ Fy _ (Fy )/Fy _ tx (F-1) - -- --- --t - ---
y Fy y ty y y y x 

because F and t commute, as L/K is totally ramified. 
q.e.d. 

( 10. 1.B) Lemma. 

Suppose Fx = x for x e Knr, then x e K. 

Proof. Write x = ~u, ue U(Knrl• 1TK eK; Fx = x yields Fu= u; write u = u~ + 
1TKw~ with u~ eKnr; Fu= u yields Fu~= u~ mod. 1TK; hence we can write u = 
u0 + 1TKw1 with uo € K; then Fu= u yields Fw1 = w1 ; repeating this proces 
with w1 we obtain u = uo + 1TK u1 + n"k W2, uo, u, e K. Continuing in this way 
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we see that u e K mod. 11'~ for all n, and hence that u e K and x e K because K 

is complete. 

q.e.d. 

(10.1.C) Remark. 

Let fl. be a completion of an algebraic closure n of K. The galois group 
G(S1/K) acts on il (extend the action of G(S1/K) on S1 by continuity). 

In this case also we have for all X en 
(sx = x for all seG(il/K)) <> x e K. 

The proof of this (cf. [20] (3.3) Th. 1) is much more difficult because 
the valuation on n is no longer discrete. 

(10.2) 'Almost' the reciprocity isomorphism. 

Let L/K be a totally ramified abelian extension. Consider the following exact 

diagram (cf. (2.7.A.2) and (9.1) Remark) 

X, Y, C and D are the respective kernels and cokernels of the vertical maps in 
the middle. 
(i) By the snake lemma ([2] § 1.4 Prop. 2) there exists a homomorphism g: 
Y ➔ C such that the sequence X ➔ Y ➔ C ➔ D is exact. 

(") Th h h' . . . h' F F (S1TL) Ps11'L sF11'1 - s11'L n e omomorp ism J 1s an 1somorp 1sm. or - = -- = --= -
11'L F11'1 FrrL 11'L 
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mod. V(Lnr) which proves that F-1 is zero on G(L/K) (cf. also (2.7.A.3) and 

(5.1.C)). 
(iii) Y = U(K) according to Lemma (10.1.B). 

A, .,. 

(iv) The homomorphism bis zero. For F-1: U(Lnr) ➔ U(Lnr) is surjective 
(10.1.A); i.e. D = 0. 
(v) a(X) = NL/K U(L). It is clear that NL/K U(L) C a(X); let x e X be represented 
by x e U(Lnr), then Fx/x is in V(Lnr), by lemma (10.1.A) there exists an yeV(Lnr) 
such that F(y)/y = F(x)/x, then F(xy-1 ) = xy-1 , hence xy-1 e U(L) (10.1.B); and 

NL/K (xf1 ) = N(x) = N(x) = a(x). 
(i)-(v) imply that the homomorphism 

r.p: U(K)/NL/K(U(L)) ➔ G(L/K) 

induced by g is an isomorphism. 

Remarks. 

1. Dwork has shown in [4] that the isomorphism ui--+ r.p(u-1) is in fact the 
'classical' reciprocity isomorphism. (Cf. the last few lines of§ 9). 

2. Also when the residue field k of K is quasi-finite (instead of finite) one can 
prove that the homomorphism r.p is an isomorphism. The proof has to be 

changed slightly because in this case F-1: U(Lnr> ➔ U(Lnr) is not necessarily 
surjective. We have instead: 

(x = root of unity mod. U1 (Lnr)) ::;> (x e Im(F-1)). 

This suffices to prove that b = 0. 
3. If we take an arbitrary finite abelian extension L/K and for F in the middle 

column of the diagram any lift F1 in G(Lnr/K) of the canonical generator of 
G(k5 /k), then we obtain in exactly the same way 

G(L/K)ram-.::::: U(K)/NL'/K. U(L1
) 

(replace G(L/K) by G(L/K)ram in the diagram), where L1 is the invariant field 
of F'. Therefore, because N M'/M (U(M)) = U(M) if the extension M' /Mis un­
ramified (2.6.J), we see that 

G(L/K\am-.::::: U(K)/NL/K U(L) 

also in this case. 
4. Let L/K be a not necessarily abelian totally ramified galois extension, then 

we obtain an isomorphism 
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G(L/K/b ::- U(K)/NL/K U(L) 

The proof is exactly the same, except that we must replace G(L/K) by 
G(L/K/b in the diagram above (cf. (2.7.A.2)). 

5. Let L/K be any galois extension. Let H := G(L/Klram. Then we can con­
struct exactly the same diagram as above with Hab instead of G(L/K). (For 

Fin the middle column take any lift in G(Lnr/K) of F € G(Knr/K)), cf. Re­
mark 3 above). The homomorphism F-1: Hab ➔ Hab is then not necessarily 

zero. Its cokernel is the quotient H/<G,H> ofHab := H/<H,H> (where 

G = G(L/K)) Cf. (5.2.D). We find an isomorphism 

H/<G,H> +:'. U(K)/NL/K U(L). 

(Again with the help of(2.6.J) as in Remark 3. Cf. also (5.2.D).) 

( 10.3) Functoriality 

The isomorphism'{) described above is functorial in L. I.e. if M/K is a larger 
totally ramified extension than L/K (in the sense that M :J L; or even in the 

sense ofMnr :J Lnr,.cf. (2.8.H)) then the following diagram is commutative. 

(Both the vertical homomorphisms are the natural projections). The commuta­

tivity follows from the functoriality of the fundamental exact sequence ( 2.7 .A.2: 

(cf. also (5.3)) and the functoriality of the snake lemma. 

11. LOCAL CLASS FIELD THEORY. 

In this section as in the preceding one K is a local field with a finite residue 
field consisting of q elements. We here use rr (instead of rrK) to denote a uni­

formizing element of K. 
Let f€ F1T be a Lubin-Tate power series (cf. (2.2)); i.e. 

f= rrX mod. X2 and f= X4 mod. rr 
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Let \n be a root of f<m) but not of f{m-l) (we denote with f{m) them-th iterate 
off; i.e. f{m) := f(m-l) o f, f(l) := f). Define Lm : = K(Am) and L'IT = U Lm. When 

K = Qp, forinstance, we might take f := (l+X)P-1, then f{m) = (l+X)Pm-1, 

and Lm = K(tpm) where tpm is a primitive pm-th root of unity. It is well known 

that in this case Q;b = Lp.(Qp)nr' The first three sections ((11.1)-(11.3)) esta­
blish the analogous fact (that L'IT.Knr = Kab) when K is any local field with a 

finite residue field (consisting of q elements) and fis a Lubin-Tate polynomial 

of degree q. To this end we show in section (11.1) that the extensions Lm/K 

have small norm groups (in fact that N1 m/K U(Lm) C um(K)), and in (11.2) 
that the Lm /K are normal abelian totally ramified extensions. (This is done 

without using formal groups). In section (11.3) we calculate OtK = G(Kab /K)ram 
and show that indeed Kab = ~-Knr· We then use this in (11.4) to define a re­

ciprocity homomorphism (injective) 

r: K* ➔ G(Kab /K) 

such that the kernel of 

K* ➔ G(Kab /K) ➔ G(L/K) 

is precisely NL/K (L *) CK* for every abelian L/K. 
One can also base the construction of the reciprocity isomorphism in (11.4) 
on (9.2) instead of on (11.3.A). 

( 11.1) Construction of extensions with small nonn groups. 

(11.1.A) Lemma 

Let k be an arbitrary field, g = xn + an-l xn-l + ... + a0 a polynomial 

over k such that (n, char(k)) = 1 if char(k) ;/: 0. Then there exists an 

r > 0 and a polynomial g of degree :E;; r-1 such that the polynomial 

h : = xr g + g is separable (i.e. has only simple roots). 

Before proving this lemma we want to state a corollary (which is equivalent 

with the lemma). Give the multiplicative group Mk : = 1 + X k [ [X]] of power 
series in X over k with constant term equal to 1 the topology induced by the 

system of open subgroups 1 + xn k [ [X]]. 

Corollary. The separable polynomials 1 + a1 X + ... + an xn are dense in the 

topological group Mk. 
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PROOF OF THE LEMMA. 

If k has infinitely many elements, we can choose r = 1 and g equal to some 

suitable constant c € k. (For~ (Xg + c) is independant of c and has only finite-
dX d 

ly many roots). Suppose now that #k = q then~ °'F O (because (n, char(k)) = 1). 
d dX 

Let x 1 , ... , xn-l be the set of roots of i. The X1, ... , xn-l are all contained 

in some finite extension k' of k. Let #k' = qS, we can assume that q5 > degree(g). 

Leth be the polynomial (r = qs+l; g: = -Xqg(X) + 1) 

dh s+l dg 
-=(Xq -Xq)-. 
dX dX 

s+l 
h : = X4 g(X) - X4g(X) + 1, 

dh ~1 
If a is a root of - , then we have either that a is a root of Xq - Xq and then 

dX . d I s 
h(a) = 1, or we have that a 1s a root of~, then aek, hence a4 = a, and also 

dX 
h(a) = 1 d q.e .. 

Let f be a polynomial over A(K) of type (Lubin-Tate polynomial) 

We use f(m) to denote them-th iterate off, i.e. f(m)- := f(f(m-l)), f(l) = f. As X 

divides f, it follows that f(m-l) divides f{m)_ One sees directly from the shape of 

f that f{m);f(m-l} is an Eisenstein polynomial. Let Am be a root of this Eisen-

stein polynomial and let Lm : = K(~). The extension Lm /K is totally ramified 

of degree ( q-l)qm•l. We can choose the Am inductively in such a way that f(-Xm )= 

Am-l• then Lm-l C Lm and we can form Lrr: = ~ Lm. 

(11.1.B) Theorem 

Proof. Every element ofU(Lm) can be written as u u' with u' a (q-1)-th root 
of unity in Kand u € U 1 (Lm ). Now N(u') = (u') (q-l)qm•l = 1. Hence it suffices 

to show that N(U 1(Lm)) C Um(K). This is clearly true form= 1, we therefore 

assume m > 2. Every element ofU1 (Lm) can be written as a sum 

with n = m(q-l)qm-l _ 1 and v(x) > v(1Tm ), so that (n, char(k)) = 1 (as m > 2; 

v denotes the normalized exponential valuation on K). Consider the polynomial 

d(X) = xn + a1 xn-l + ... + ~ (same ai as in the sum above). Let g be the re­

duction of d to a polynomial over k. Choose r and gas in the lemma ( 11.1.A), 

100 



let g be a lift of g of the same degree as g. Let h : = xr d + g. Then the reduc­

tion of h in k[X] has no multiple roots, hence all roots of hare in Knr· We can 
choose the constant term ofh equal to 1, which implies that the product of the 

roots z1 , ... , zt of h is equal to± 1, and that therefore the roots of h are all 

units ( of Knr)- Then ( 1-z1 A) ... ( 1-ztA) = 1 + a1 A+ ... + a0 A n + x' with v(x');;;. 
v(7Tm) and u = 1 + a1 X + ... +¾An + x = ( 1-z1 X) ... ( 1-ztA) ( 1 +y) with v(y);;;. 
v(1rm). Now N(l+y) eUm(K). We have left to show that 

t 
N( TI (1-ZjA)) € Um(K) 

i=l 

It suffices to show that NL K /K (IT(l-ziX)) is in Um(KnrJ· This follows m• nr nr 
from the commutativity of th~ diagram below and the fact that um ( K0 r) n 
U(K) = um (K) (because Knr/K is unramified). 

Lm ._c ___ ,..,1> Lm. Knr 

(11.1.B.1) N •lNLm/K l NLm.Km/Km 

K Knr 

(The commutativity is proved as follows. Let x € Lm, then x has the same 

minimum polynomial over K as over Knr because Knr/K is unramified and Lm/K 

is totally ramified, q.e.d.) 
In particular we have that the minimum polynomial ofXeLm.Knr is f(m)1f{m-l) 

eKnr[X]. This yields 

( 11.1.B.2) 

(Thanks to the commutativity of the diagram (11.1.B.1) above we can and 

shall use N for both NL /K and NL K /K indiscriminatedly). 
m m· nr nr 

Puttingyi := zi-l we obtain from (11.1.B.2) 

t t m 1 t f(m)(y·) 
N ( IT ( 1-ZjA)) = ( n zi/q-l)q - . n r(m-1) 1 

i=l i"'l i"'l (yj) 

-- nc f(m)(Yi) 
(because Ozi = ±1 and m;;;. 2) 

i= 1 f(m-l)c Yi) 

BlBLlOTHEEY­
_p.:,,;,S,,.:·1J.::' 

101 



t t 
11 f{m)(y·) _ 11 f{m-l)(y•) 

i=l 1 i=l 1 

=l+---------
t 

Il f{m-l)(y•) 
i=l 1 

The zi are units, therefore the Yi too and also the f(m-l\yi) as is easily seen 
from the shape of f{m-l). It follows that it suffies to prove that 

The automorphism Fe G( Knr/K), the Frobenius automorphism, permutes the 

roots zi of h, hence F also permutes the Yi• The homomorphism F reduces to 
x 1-+ x4 mod. (11'). Therefore there exists a permutation a of 1, ..• , t such that 

f(yi) = Yo(ij mod. (11'} 

because also x 1-+ f(x) reduces td x 1-+ x4 mod. (11'). 
For any two elements a, be A(Knr), if a= b mod.(~) with r ~ 1 then a4 = b4 

mod. (1f'°1) and 1ra5 = 1rbs mod. (~1) (s = 1, ... , q-1) hence also f(a) =f(b) 
mod. ( 1Tr+-l). 

Applying this to the relation 

we obtain 

f(m)(Yi) 5:f{m-l)Yo(ij mod. (1Tm) 

Taking the product over i we find 

Remark. Note that the first part of the proof above shows that: 

q.e.d. 

The unramified polynomials 1 + a1 X + ... + an xn are dense in the 

topological group 1 + X A(K) [(X]]. 
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(11.2) The Lubin-Tate extensions. 

Consider the polynomial f := Xq + 1rX; fis of the type discussed in the preceding 

section. By the fundamental Lubin-Tate lemma (2.2.A) there exists for every 

a€ A(K) exactly one power series [a] f such that 

(a] f = aX mod. x2 and 

As in the preceding section let Lm = K(Xm,) where Am is a root of f(m) but not 
a root of f(m-l). For every u € U(K) we obtain (possibly) another root ( u] t{t..m) € Lm 
of f(m) which is not a root of f{m-l). It is our aim to prove in this section that 

Lm/K is an abelian totally ramified extension for every m;;;,, 1. This is done by 

showing that one finds enough different roo~i (u]f(Am) € Lm when u runs 
through U(K). To do this we need to know somewhat more about the power 

series [u] f· This can be found by direct calculation as in (11.2.A) and (11.2.B) 
or by a more elegant method ( 11.2.C) and ( 11.2.D) for the suggestion of which 

I am indebted to A. Menalda. 

( 11.2.A) Lemma. 

Let f: = Xq + trX. If u =- 1 + ~x, x e U(K), then we have for the power 

series [ u] f = u 1 X + u 2X2 + ... 

v(u1 ) = O; v(ui) ~ n 

v(uq) = n-1; v(ui) ~ n-1 

v(uq2) = n-2;v(~) ~ n-2 

v(uqn) = 0 

i:::2, ... ,q-1 

i = q+l, ... , q2-1 

. - 2 1 3 1 1-q + , ... ,q -

Proof. u(Xq + trX) = (uX)q + truX mod. Xq. Therefore u1 = u and v(u1) = 0 

and u2 = u3 = ... = uq-l = 0. The coefficient u4 must be equal to ( u4-u)/(rr4-1r) 
hence v(uq) = n-1 if n ~ 1. Suppose we have proved the lemma for i..;; qm, 
1..;; m < n. Consider the coefficient of~!Il.ij for 1.s;;;j..;; (q-l)qm in the rela­

tion 

[u] f(Xq + rrX) = [u]r + tr[u]f 

The coefficient of Xqm+ j on the left side is 

, (n'-(q-1)) '-q (n'-2(q-1)) ,_24 (n'-t(q-1)) k 
u ,,,fl + u '-( l)~ + u , Z( l)~ + ... uk+trr 

n 1 n q- 2 n - q- t 

103 



h k m , [ m-1 j ] , m . w ere : = q + J - tq, t : = q + q , n : = q + J· 

One has k = 0 if ( q,j) = q and k > 0 elsewhere. Assume the lemma proved for 

indices smaller than n'. Then we know that 

[u](=uX+tr1-m (something) mod. (Xn') 

therefore 

[u)[ =u4X4 +tr1•rn+l (something) mod. (Xn'+l) 

We therefore have the relation 

( 11.2.A. I) un .,,n' + ( n'-(:-1) "n'{ q-l) ,r"'-4 + ... + ("·t; q-I)) uk+< ,-k a 

= 7Tn-m+ly + rrun, 

If k > 0, we obtain v(un,) ~ min(n-m+l, v(uk+t) + 1) - 1 ~ n-m. 

If k = 0 and 1 ~j < (q-1) qm we obtain v(un,) ~ min(n-m+l, v(ut))-1 ~ n-m. 

If k = 0 andj = (q-1) qm we have t = qm and v(ut) = n-m; the coefficient of ut 

in the relation above 0is then 1, the term ut has in this case strictly smaller value 

than all the others on the left, therefore we have exactly v( un') = v( ut) = n-m-1. 

q.e.d. 

(11.2.B) Lemma. 

Let f: = X4 + rrX and~ as above. If[ u] f(Arn) = [ u'j r(Am) then 
u = u' mod. um (K). 

Proof. Composing with [u"1]fwe obtain [u·1u'] f(Arn) = Am and we have to 

prove u·1u' eUm(K) (cf. the remark below). Suppose then that (u]f(Am) = Am. 

We proceed by induction. The case m = 1 is clear. As [ u lf(Am_1) = [ u] r(f (Am))= 

f([ u lf(Am)) = f(Am) = Am-1 we know by the induction hypothesis that u e um-l(K), 
i.e. u = 1 + rrm•lx. Suppose v(x) = o (i.e. u eum•\K) \ Um(K)) then v(u m-1) = 0 

by the preceding lemma. The value of all terms of [ u] f(Am) - Am, excep£ u 4m-1 A~m-l, is 
~ (qm-l + 1) v(Am), because v(rr) = (q-l)qm•lv(Am)· This gives a contradiction, 

hence v(x) > 0 and u e um(K). 

q.e.d. 
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Remark. 

The fact that [ u] £([ u'] f) = [ uu'] fused in ( 11.2.B) and ( 11.2.E) further on, 
follows from the uniqueness property of the series [ ] f; both right hand and 
left hand side start off with uu'X + ... and both commute with f, therefore they 

are equal (2.2.A). 

(11.2.C) Proposition. 

Let fbe a power series over A(K) (no hypothesis on the residue field 
of K). Suppose AeL (where L/K is a finite extension) is a root of 
positive value off (i.e. v(A) > 0). Then there exists a power series g 
with coefficients in A(L) such that f = (X-A) g. 

Proof. Write f= (X-A) &_ + 1n mod. (Xn), with hn e A(L) (division with re­
mainder in A(L) [X] ). Now f(A) = 0, therefore v(hn) ;;.i, n v(A) which goes to 
infinity as n ➔ 00 because v(A) > 0. Also we have f= (X-A) &.+l + hn+l mod. xn+l, 
therefore (X-A) (gn+r&.) = 0 mod. (A0 ,Xn). We write &_+i ·&. = an:xr.1 + ~-lxn-l 
+ ... + a0 , and we obtain 

from which 

It follows that the sequence&_ has a limit gas n ➔ 00• Then f= (X-A)g mod. 
(An, X0 ) for all n, i.e. f= (X-A)g. 

q.e.d. 

(11.2.D) SECOND PROOF OF (11.2.B). 

As in (11.2.B) we have to prove that [u] f(Am) = Am implies u = 1 mod. 7Tm. 
Let seG(K, L ➔ 0), then also sXm is a root of [u]{(X)-X because of the con­
tinuity of the action of s. Also f(r) (Am) is a root of [ u] f( X) - X because [ u Jr 
commutes with f and f(O) = 0. Therefore all the roots of f<m) are roots of 
[u]r(X)-X. By repeated application of (11.2.C) we obtain a factorisation 

But f(m) = 1Tm X + ... ; comparing the coefficients of X left and right we find 
(u-1) = 7Tma for some a with non negative value. 

q.e.d. 
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Remarks. 

1. For this second proof of ( 11.2.B) we did not need to suppose that f= Xq +1rX 

but only that f is of the shape 

f = X4 + 1r(a4_ 1 xq-l + ... + a2X2) + 1rX 

2. One can also give a proof of (11.2.B) analogous to (11.2.D) in the case that 

f is a Lubin-Tate power series. 

(11.2.E) Theorem. 

The extensions Lm /K are galois extensions with galois group isomor­

phic to U(K)/Um(K). 

Proof. #U(K)/Um(K) = (q-l)qm-l = [Lm: K]. With Am also [u]f(Am) elm 
and these elements are all roots of f(m) and not of f(m-l) if u e Uf,J{). In this 

way we obtain in virtue of (11.2.B) at least #(U(K)/Um(K)) = (q-l)qm-l 

different roots of f(m) /f!.m-l) in Lm. This proves that Lm /K is ~ormal. The ex­

tension Lm/K is separable as it is a composite of extensions Lm :J Lm-l :::> ••• 

:::> L1 :::> K, defined by polynomials X 4 +?TX-Aro, xq-l + 7T. (Or, Lm/K is de­

fined by a polynomial of degree (q-l)qm-l with no multiple roots). The as­

signment st-+ (class of any u such that s(Am) = [u]r(Am)) defines'the desired 

isomorphism G(Lm/K) ➔ U(K)/Um(K). That this map is an homomorphism 
follows from (2.2.A)·. Cf. the remark below (11.2.B). 

q.e.d. 

(11.2.F) Corollary 

NLm,fK(U(Lm)) = Um(K). 

Proof. We now from (11.1.B) that NLm/K. (U(Lm)) C Um(K). As both groups 
have index qm-l(q-1) in U(K), the corollary follows (10.2). 

q.e.d. 

(11.2.G) Remark. 

The element 1T€ K is a norm from every Lm/K. 

Pro9f. We defined Lm as Lm = K(Aro) where Am is a root of f{m) /f(m-l). This 

polynomial is of the shape :x(q-l)qm-l + 7T( ••• ) + 1T. It follows that NLmfK(-Am) 

= 1T for all Lm /K with m ;;.i, 1. 
q.e.d. 
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tH)Remark. 

can use (11.2.A) to calculate the ramification groups of G(Lm/K) and the 

nc:ion ofLm/K. It turns out that G(Lm/K)iµ(i) = G(Lm/K)i corresponds 
U1(K)/Um(K) under the isomorphism G(L /K) ➔ U(K)/Um(K) for 

. m 
i E;;; m; and that G1 = 0 when i ;;;ii, m. For the iµ-function we find 

iµ(i)=qi-1 iE;;;m 

iµ(i) = (qm- 1) + (i-m)(qm-qm-l) i ;;;ii, m 

3) Calculation of~. Description of Kab. 

3.A) Theorem 

OlK:::::: U(K) 

if. For every totally rammed abelian extension L/K we have an isomorphism 
2), which is functorial 

r.p: U(K)/NL/K U(L) ➔ G(L/K) 

every finite quotient G of ar.K there exists a totally ramified extension with 

is group G ((2.8.H); ozK is a galois group; (2.8.F)). Hence taking the pro­
ive limit of the isomorphisms above, we find an isomorphism 

3.A.1) r.p: e U(K)/NL/K U(L):;: otK 
L/K. 

also the definition of the projective system defining otK (2.8.H) and ( 2.1.B)) 
f(L) is compact, NL/K is continuous, hence NL{K(U(L)) is also compact and 
~erefore closed in U(K); it is also of finite index in U(K) (10.2) and there­
ore also open in U(K); i.e. there exists an n such that Un(K) C NL/K(U(L)). 
ly (11.1.B) and (11.2.E) there exists for every n a totally ramified abelian 
xtension Ln such that NLnfK(U(Ln)) cun(K). 
nd b) together imply that 

.3.A.2) 

mulas (11.3.A.1) and (11.3.A.2) together prove the theorem. 
q.e.d. 

L17 : = U Lm, where Lm := K(Xm), Am a root of f{m);f{m-l), f := X4 + 1rX 
m 
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( or any other Lubin-Tate power series in Frr; cf. (2.2.A) and ( 11.2.D) Remark 

2). Section (10.2) implies that G(Ln/K)::: lim U(K)/Un(K)::: U(K) (cf. also -(11.2.F)). 

( 11.3.B) Corollary (Description of Kab ). 

Every abelian extension L/K (in U) is contained in the abelian exten­

sion L1r.Knr-

Proof. There exists a totally ramified abelian extension L' /K such that L. Knr = 

L1 .Knr for every abelian extension L/K (2.8.F). There is an n such that 
N1 ,(K(U(L 1)j :J Un(K). It follows that L' .Knr C Ln .Knr (( 10.3) or ( 11.3.A); cf. 

also (11.2.F)) and hence that L.Knr = L'.Knr C Ln.Knr ((2.1.C); cf. also the 
definition of the projective system defining ot.K in (2.8.H) ). 

q.e.d. 

(11.3.C) Corollary 

G(Kab /K)::::: U(K) X Z 

This follows from ( 11.3.A) together with ( 2.8.H); or from ( 11.3.B) directly, 

as Knr and L7T are linearly disjoint. 

( 11.3.D) Remarks. 

1. The group U(K) X Z is the completion of K* ::: U(K) X Z with respect to 

the topology of open subgroups of finite index. (Open in the sense of the 

topology on K* induced by the valuation on K). When regarded as this com­

pletion we shall write K* for U(K) X Z, and K*'-+ K* will be the natural in­
clusion. 

,.,, ,. ab 
2. One can of course choose many isomorphisms K*::::: U(K) X Z::: G(K /K). 

It is the aim of the next section to show that we can choose this isomorphism 
in such a way that the kernel of 

K*<-+ K.* ➔ G(Kab/K) ➔ G(L/K) 

is precisely N1(K(L*) CK* for every abelian L/K (where the last map is the 
natural projection). 
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(11.4) The reciprocity isomorphism and the existence theorem. 

(11.4.A) PRELIMINARY DEFINITION. 

Let L' /K be a totally ramified abelian extension; 1TK a uniformizing element of 
K which is a norm from L'; and Kn/K an unramified (abelian) extension of K. 
We define a homomorphism r: K* ➔ G(L'.Kn/K) as follows. (Strictly we should 

write rL' ,Kn or something similar). 

U(K) 3u H- r(u) :=i,o(u-1)eG(L1/K) =G(L'.Kn/Kn) 

1TK I-+ F 

where Fis the Frobenius automorphism of G(L'.Kn/K) and ui-+- i,o(u) is the 
homomorphism defined in (10.2). 

(11.4.A.1) Lemma 

Let L/K be an abelian extension. The index ofNLfK(L*) in K* is 
equal to the number# G(L/K). 

Proof. Let KL be the maximal unramified extension of K contained in L. We 
have [L: KL] = #(U(K)/NL/K(U(L))) (cf. (10.2) and (10.2) Remark 3). There 

is an exact diagram 

where f := fL/K : = [KL: K]. Hence #(K*/NLJK(L*)) = #(U(K)/NL/K (U(L))). 

f = [L: KLJ [KL: K] = #G(L/K). 
q.e.d. 

(11.4.A.2) Lemma 

Let L" C L'. ~ be any other totally ramified abelian extension such 
" ' · [L' K) [L" K] . . . h that L .Kn= L .Kn (1.e. : = : ; same s1tuat1on as int e 

definition of r above). Then 
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Proof. ( 11.4.A.1) implies that it suffice to show that NL" /K (L11 *) C Ker( ... ). 

For this it suffices to show that NL" /K (1r11
) e Ker( ... ) when 1T11 is a uniformizing 

element of L11
• (Because NL"{K(U(L11

)) C Ker(r) (10.2), or because the uni­
formizing elements of L" generate L"*). Let L" be the invariant field of r(u)F. 

Write 1r" = xrr' where 1r1 e L' is such that NL'/K (1r') = 1TK. We have 

1TK = NL'.Kn/Kn (1r') =N1'.Kn/Kn (x-l).N1'.KnfKn(1r") =N1'.Kn/Kn (x-1).N1"JK(1r"), 

hence NL'.Kn/Kn(x) € U(K). Now r(u)F(1r") = 1T11
, it follows that we have in the 

group U(L~r) 

<.p(u- 1)(1r1
) r(u)(1r') x r(u)F(x-1) r(u)F(x-1) F(x-1) F(x-1 ) 

= -1T,- = r(u)F(x) = x-1 = F(x-1) · ~= ~ I 
1T 

mod. V(L~r)· 

Hence by the definition of the isomorphism <{) in ( 10.2) N L'.Kn/Kn (x) = u 

mod. NL'/K(U(L')). And we find 

r(N1"/K (1r 11
)) = r(utrK) = r(u)F 

which is the identity on L". 

(11.4.A.3) Corollary 

q.e.d. 

Ifwe had defined r: K* ➔ G(L'.Kn/Kn) using L" instead ofL', i.e. if 
we had taken 

U(K) 3 u » r(u) := lj?(u-1 ) 

N111/K(1r1) ~ F' 

where F' is the Frobenius automorphism of G(L". Kn /L"), we would 

have obtained the same homomorphism r. 

( 11.4.A.4) Remark 

It is clear from the definition of r in (11.4.A) that 

and that 
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because 

NL'.KnfK((L'.Knr)*) = NKnfK(Ki'.i) n NL'/K(L1*), 

as L1/K is totally ramified and Kn/K is unramified (cf. (2.6.H)). 

(11.4.B) DEFINITION OF 1HE RECIPROCITY ISOMORPHISM. 

Choose a uniformizing element 11' of K. Let Lrr = U Lm be the union of the Lu­
bin-Tate extensions Ln. Then Kah = Knr-Lrr (11.3.B). Now define 

r: K* -- G(Kab /K) 

U(K) 3 u 1---+- r(u) = 'P(u-1) e G(Lrr/K) = G(Kab /¾r) 

rr i--- FeG(Kab/Lrr) 

where Fis the Frobenius automorphism of Kah /L1T. 

Remarks. 

1. This definition checks out with the one given in ( 11.4.A), because 1T is a 
norm from every Ln/K (11.2.G) (cf. (11.4.A.3)). 

2. It follows also from ( 11.4.A.3) that r does not depend on the choice of 11' 

in K. 

3. Exactly as in the corollary to theorem 3 of (LT] one can prove from re­

mark 2 that r: K* ➔ G(Kab /K) is identical with the 'classical' reciprocity 
isomorphism, given by the norm residue symbol . 
In fact, lets: K* ➔ G(Kab /K) be the reciprocity law isomorphism; i.e. s(a) = 
(a, Kab/K). Let 1T be any uniformizing element ofK. We know that Kab = 

Knr.Lrr (11 3.B). The element 1T is a norm from every Ln C L1T (11.2.G), 
hence s(rr) := (rr, Kah /K) is the identity on Lrr. Furthermore s(rr) is the Fro­
benius automorphism on Knr. ~y the definition of r above ( using 1T and L1T) 

the same is true for r( rr). Since the prime elements of K generate K *, this 
shows thats= r. ,.., ,. 

4. The homomorphism r is the restriction to K* CK* :::: U(K) X Z ( cf. ( 11.3.D) 
Remark 1) of an isomorphism 

K* :::: U(K) X z ~ G(Kab /K) 

viz. the isomorphism given by· 

(cf. (11.3.D) Remark 2 and (11.3.C)). 



( 11.4.C) Theorem 

Let L/K be an abelian extension, then we have 

Ker(K* ➔ G(Kab /K) ➔ G(L/K)) = NL/K (L *). 

Proof. It suffices to prove that NL/K (L) is contained in this kernel ( 11.4.A. l ). 

Let Kn be the maximal unramified extension of K contained in L; let rn: 

K~ ➔ G(Knab /Kn) be the analogous homomorphism (for Kn) tor: K* ➔ 
G(Kab /K). Then we have a commutative diagram 

K* 
NK /K 

K* n 
n 

(11.4.C.1) l ,. l 
G(L/KnJC • G(L/K) 

To see this, let L' /K be a totally ramified abelian extension such that 1 1.Km = 
L.Km for some unramified extension Km/K of degree m, where mis a multi­

ple of the degree n == [Kn: K]. Then Km ::> Kn. 

Let F eG(L' .Km/L1
) be the Frobenius automorphism. Then Fn is the Frobenius 

automorphism of G(L'. Km /L'. Kn)· Let 7T be a uniformizing element of K, 

which is in NL'/K (L'* ). Then 

(cf. (11.4.A.3)). It remains to check that 

rn(u) = r(NK /K (u)) for u € U(KnJ· 
n 

Let u' EU(L~r) = U(Lnrl be any lift of u. The element u" : = (1 +F+ ... +Fn-l) (u') 
is then a lift of NK /K (u) = (1 +F+ ... +Fn-l) (u). 

The element rn(u) ~G(L'.Km/Km) corresponding to u is, according to (10.2) 
and ( 11.4.A), characterized by 

mod. V(L~r) 
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where 1T11 is a uniformizing element of L'. Hence 

rn(u) (rrL') _ (l+F+ ... +Fn-l) (u') 
,, 

u 

1T11 = F(l+F+ ... +Fn-l) (u') - F-(-u-") 

But r( u) € G( L'. Km /Km) is characterized by 

This shows that rn (u) == r(NK /K (u)) for u € U(Kn)· We have shown that the 
d. n 

1agram 

NK /K 
K~----"--~K* 

(11.4.C.2) 

is commutative. It follows that the diagram (11.4.C.2) is also commutative. We 

know from ( 11.4.A.2) that the kernel of rn in diagram (11.4.C.1) is equal to 
N L/K (L *); it follows that 

n 

because of the commutativity of (11.4.C.1). 

q.e.d. 

(11.4.D) Corollary (The existence theorem) ( [CL] Ch. XIV§ 6 Th. 1) 

The norm subgroups of K* (i.e. the subgroups of the NL/K (L *)CK* 
where L/K is a finite extension of K) are precisely the open subgroups 

of finite index of K*. 

( 11.4.E) Corollary 

For every open subgroup R of finite index of K *, there is precisely 
one abelian extension L/K such that the kernel of r: K * ➔ G(Kab /K) ➔ 
G(L/K) is exactly R. 

A norm subgroup of K is necessarily open and of finite index ( cf. ( 11.4.A.1)). 

The other half of Cor. ( 11.4.D) and ( 11.4.E) then follow both from the fact 

that r is the restriction to K* of some isomorphism 
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K* ➔ G(Kab /K) 

(cf. (11.4.C), (11.3.C), (11.3.D) Remark 1 and (11.4.B) Remark 4). 

( 11. 5) Remarks. 

( 11.5.A) A FUNCTORIAL PROPERTY OF THE RECIPROCITY ISOMORPHIS~. 

The reciprocity homomorphisms rK: K* ➔ G(Kab /K) satisfy a functorial prop­

erty. In fact if L/K is any finite galois extension of K, then the following dia­

gram is commutative 

The commutativity of the diagram ( 11.4.C.2) proves this for the case that L/K 

is unramified. It suffices to prove in addition that the diagram above is com-

. mutative when L/K is cyclic totally ramified (because G(L/K) is solvable). To 

this end let M' /K be a totally ramified abelian extension, Kn/Kan unramified 

extension. By means of the same kind t>f argument as used in ( 2.8.J) Remark 2 

we can find a totally ramified extension M" /K such that L C M" and M". Km = 
M'. L.Km for some unramified extension Km /K of degree m, where mis a 

multiple of n, the degree of K /K. 
n 

L M' K = L M" = K M" · · m m· m· 

Now use M" /Land Lm = L.Km to define rL: L* ➔ G(Lm.M" /L) and M11 /K 
and KmiK to define rK: K* ➔ G(Km .M" /K) (cf. (11.4.A)), It is clear from 

( 10.2) that rdu):;::: rK (NL/K (u)) for u e U(L). And if 1r 11 is a uniformizing element 
fM,, h ,, ,, ,, ,, ,, . 

o ,we avert(NM"td1T ))=FeG(Lm.M /M )=G(Km.M /M ),and1f 
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1TL e Lis the uniformizing element 1r1 := NM"/t(tr") then rK (NL/K (trLJ) = 

rK(NM"fK.(1r11
)) = FeG(Km.~1"/M"). 

q.e.d. 

(11.5.B) Problem 

Lubin and Tate show in [LT] that the homomorphism r: K* ➔ G(Kab /K) 

defined by 

U(K) 3U I-+- [u-1]r on L7r, and identity onKnr 

1T 1-+- identity on ~. and Frobenius on Knr 

is independant of the choice of 11', It follows that this homomorphism is identi­

cal with the homomorphism r (and with the homomorphism defined by the 
norm residue symbol; cf. (11.4.B) Remark 3). Specifically this means that if , ,.. 
u e U( Lm. Knr) is such that 

that then NLm.KnrfKnr(u') e U(K) (this follows from (10.1.B)) and 

N1 ~ /K. (u') =u mod. Um(K). 
m· -'llr nr 

I do not know a direct proof of this fact, (One can use (11.2.A), especially 
(11.2.A.1), to show thats and r both map um(K) into G(L7r/K)m and that 
the induced maps r,s: um (K)/Um+l (K) ➔ G(L1r/K)m /G(L7r/K)m+l are iden­

tical.) 
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Samenvatting 

Zij K een lokaal lichaam, d. w.z. een discreet niet-archimedisch gevalueerd 

lichaam, dat compleet is in de metriek, die door deze valuatie geinduceerd 

wordt. 

Veronderstel dat het restklassenlichaam k van K algebraisch gesloten is. Men 

kan de groep van eenheden U(K) van K de structuur van een pr<ralgebraische 

groep over k geven. Serre bewees in [CAC] dater bij elke eindige abelse 

lichaamsuitbreiding L/K een isogenie van U(K) hoort, en dat in zekere zin 

alle isogeniee"n van U(K) zo verkregen worden. Hoofdstuk II van dit proef­

schrift behandelt een generalisatie van deze stelling voor het geval dat k perfect, 

maar niet noodzakelijk algebraisch gesloten is. Het bewijs sluit nauw aan bij 

het oorspronkelijke bewijs van Serre. 

Veronderstel nu dat het restklassenlichaam k eindig is. Hoofdstuk III begint 

net als [LT] met de constructie van zekere totaal vertakte abelse uitbreidingen 

Lm/K. Een stelling over het beeld van de norm-afbeelding NLm/K stelt ons 

dan in staat te bewijzen dat de lichaamsuitbreiding (ULm)·Knr de maximale 

abelse uitbreiding van K is (Knr = de maximale onvertakte uitbreiding van K). 

Met behulp hiervan construeren we een reciprociteits isomorphisme dat iden­

tiek blijkt te zijn met het 'klassieke' reciproC\t.Qts isomorphisme dat gedefi­

nieerd wordt door het norm rest symbool. 

Het voordeel van deze methode (naar de mening van de schrijver) is dat men 

de nogal ingewikkelde machinerie kan vermijden die te maken heeft met het 

bestaan van de zg. fundamentele 2-cocykel (van K). 

De mogelijkheid het reciprociteits isomorphisme zo te defmieren volgt uit 

Dwork's beschrijving van dit isomorphisme in [4], en vooral uit de resultaten 

van Lubin en Tate in [LT]; ze werd trouwens al in 1959 door Serre aangeduid 

in[17]§7. 
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