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STELLINGEN

. Als twee algebraische groepen schema’sG en G’ over een perfect lichaam k
quasi-algebraisch equivalent zijn, dan geldt:

Ext(G,S, ) ~ Ext(G',S, )
voor elk constant algebraisch groepenschema S, Dit maakt het mogelijk de

stelling (5.4.D) uit dit proefschrift te bewijzen zonder quasi-algebraische
groepen in te voeren.

M. Hazewinkel. Crops de classes local. Appendix in: M, Demazure,
P, Gabriel. Groupes Algebriques. North Holland Publ. Cy., verschijnt
binnenkort.

. Zij K een lokaal lichaam met perfect restklassen lichaam k; zij L een eindige
separabele uitbreiding van K met restklassenlichaam 1. Laat U het pro-
algebraisch groepenschema over 1 van eenheden van L zijn. Als er een on-
vertakte uitbreiding Kn/K is zodat L.Kn/Kn galois is, dan bestaat er een
pro-algebraisch groepenschema U over k zodat (U); >~ U, .

. Zij K een lokaal lichaam met een eindig restklassen lichaam, bestaande uit
q elementen;laat A(K) de ring van gehelen van K zijn en 7 een uniformise-
rende. ¥, = {fe A(K)[[X]] | f=1X mod.X?, £=X% mod.n} Zij £™) de
m® geitereerde van f; X een wortel van £m) dan is K(A) een totaal vertakte
abelse uitbreiding van K (cf. §11 van dit proefschrift). Omgekeerd geldt:
voor elke uniformiserende A" van K(A) is er een geCJ\"JTr zodat g(m) \')=o0.

. Zij G een eindige groep; A een G-moduul zodat A = {aeA | pa= O} eindig
is voor alle priemgetallen p (die #G delen). Stel dat de groepen HY(G,A)
en HY"1(G,A) eindig zijn voor een zekere q€Z, dan is H(G,A) eindig voor
alle neZ.

. Zij B™ de n-dimensionale bal; d B" zijn rand.
a) Als f: B™ — B™ een differentieerbare afbeelding is zodat £13B™ = id., dan
is er een inwendig dekpunt van f in de gevallen:
1° det(df) > 1 op 3B™;
2° det(df) < 1 op dB™ en f is injectief.
b) Zij f: B® > B" een continue functie zonder inwendige dekpunten zodat

£19B™ = id.. Dan is er voor elke & > 0 en elke P in het inwendige van B” een

punt x op afstand <e van dB”, zodat de lijn door x en f(x) door P gaat.
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le o< 7\1<7\2<...<)\n, PiGR, i= 1,.
Stel datul,...,].l

..,n, zodat 2 P, > 0 voor alle k=1,
=1
.1 de (n—1) nulpunten zijn van | de functie

‘ l‘. Pk

2) =

(2)= r—‘l z-7\k

Dan geldt 0;(Ay,. 0 A ) <O(Ryseensbly 1) waarbij 0, ... , de eerste

(n—1) elementair symmetrische functies zijn.

. Een algebra A = k[X]/(f) is dan en slechts dan star (rigid) als de tweede

Hochschild cohomologie groep H2(A,A) = 0. Dit is dan en slechts dan het

geval als alle nulpunten van f in een algebraische afsluiting'f( vank ge“isoleerd
liggen.

A, Nijenhuis. Graded Lie Algebras and their applications. Univ. of A’dam
1963/1964. Lecture notes.

Zij C een kleine categorie; A de functor die aan een object XeC de verza-
meling van zeven boven X toevoegt. Een deelfunctor J CA die voldoet aan
de hieronder genoemde axiomas definieert een topologie op C.

H1. AlsR' D Re€J(X), dan R’ € J(X),

H2. Als R€J(X), dan is R% J€J(X).
(Hierbij is R}"\] het inverse beeld van J onder het, volgens het lemma van

Yoneda, als functormorphisme R: hy=>A geinterpreteerde element
R €J(X) CA (X).)

F. Oort. Schoven en topologieén. Interuniversitair colloquim *64/°65.
M. Hazewinkel, Enkele opmerkingen over schoven en topologien. Ibid.

Zij G een commutatieve eindige groep (multiplicatief geschreven) van ex-
ponent d; Z[G] de groep ring van G. Dan geldt:

Ta g8 is een eenheid in Z[G) desda ¢(Z agg) een eenheid is in Z[{ 4] voor
BlepeHom agZIC), Z[5d)).

(§4 = een primitieve d®-machts eenheidswortel).
De hypothese ‘God’, als basis voor een wereldverklaring, voldoet niet aan
‘Occam’s razor’ (‘entia non sunt multiplicanda praeter necessitatem’).

J. Hospers. An introduction to philosophical analysis p. 287.
Routledge & Kegan Paul, 1956.



11. Spellingsvereenvoudigingen verlagen de ‘redundancy’ van een gegeven tekst;
een tekst met zeer lage ‘redundancy’ is echter moeilijk leesbaar. Het is dus
wenselijk dat men eerst meet bij welk percentage ‘redundancy’ het efficiéntst
gelezen wordt alvorens over te gaan tot het invoeren van een nieuwe spelling,

P. Guiraud. Language et la théorie de la communication. Encyclopédie de
la Pleidde. Language.

12. De ontwikkeling van een theorie kan eerder belemmerd dan bevorderd wor-

den door het verzamelen van zeer grote aantallen feiten (bijv. metingen of
losse stellingen)

M. Beckner. The biological way of thought. Univ. of Calif. Press, 1968. p.1.
A.N. Whitehead. Modes of thought. Capricorn Books, 1958.

13.‘De dwerg Monkel-Oor was een zeer belezen iemand die reeds jaren doende
was de dikke Van Dale uit het hoofd te leren. Dit had zijn denkraam welis-
waar niet verruimd, maar toch kwam zijn kennis soms handig van pas, zoals
we zullen zien.’

M. Toonder. Heer Bommel en de wisselschat. 5567

‘Kweetal: ‘Tk wilde wel dat ik een groter denkraam had. Monkel-Oor heeft
het helemaal volgepraat en nu het ik geen uitzicht meer.”

ibid. 5568

Bovenstaande twee citaten geven een goed beeld van &én van de moeilijk-
heden, waarmee student(e) en wetenschapsman dagelijks te maken hebben.

Stellingen behorende bij
het proefschrift van
M. Hazewinkel
Amsterdam, 1969
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O. INTRODUCTION. NOTATIONS AND CONVENTIONS.

(0.1) Introduction

Let K be a local field, i.e. a field with a discrete nonarchimedean absolute
value, complete in the metric induced by this absolute value; suppose that the
residue field k of K is perfect. The object of this study is a description of the
abelian galois extensions L/K of K. (A galois extension is called abelian if its
galois group is abelian.) Chapter [ (= sections 1-4) contains the preparations
for chapters II and III.

Suppose first'that k is algebraically closed. One can give the group U(K) of
units of K the structure of a pro-algebraic group over k (cf. (4.3)). Serre has
shown in [CAC] that to every abelian finite extension of K there corresponds
an isogeny of U(K) (i.e. an epimorphic map of pro-algebraic groups f:

Ug = U(K) with finite kernel); and that esentially all isogenies of U (K) are
obtained in this way. A generalisation of this theorem to the case that k is
perfect but no longer necessarily algebraically closed is the subject matter of
chapter I1. The proof is an adaptation of Serre’s proof in [CAC].

As to chapter III: suppose that k is a finite field. Exactly as in [LT] we start
off by constructing some totally ramified extensions L /K of K; then we prove
that they are abelian (without using formal groups; cf. (11.2)); next we more
or less reverse the procedure of [LT] by proving first that the set of the L /K
contains suficiently many totally ramified extensions (11.3), by means of a
theorem on the norm map U(L_ ) = U(K) (11.1.B), and then using this result
to construct a reciprocity isomorphism (of which we prove that it is identical
with the (‘classical’) reciprocity law isomorphism, given by the norm residue
symbol, although we neither need nor use this fact).

The advantage of this approach (in the authors opinion) is that one can dispense
with the rather involved machinery of local class field theory centring round
the existence of a fundamental 2-cocycle. This method of obtaining the reci-
procity isomorphism was suggested by Serre in [17] section 7; it is implicit in
Dwork’s description of the reciprocity isomorphism in [4] (cf. also [CL]

Ch. XIII § 5), and of course in the results obtained by Lubin and Tate in [LT].
In fact the machinery needed for chapter I1I is rather modest. From the coho-
mology of groups and galois cohomology we only need that there exist such
theories and a description of the cohomology groups in terms of cycles and
boundaries. (Section 1 deals with this topic and some consequences bound up




with it.) As to local field theory: the first three chapters of Weiss’s book [22]
cover much more than we require in section 2 to prove some lemmas and pro-
positions needed further down.

For chapter II we need in addition some general nonsense (treated in section 3)
and some algebraic geometry connected with the definition of the homotopy
groups of a pro-algebraic group (cf. [GP] and (4.5)) and with the Greenberg
constructions ([CAC] §1, [6] §1, (4.2), (4.3)). (Section 4 deals with these
matters.) ‘

As indicated in (0.2) (interdependence of sections and chapters), chapter Il is
independant of chapter II and sections 3,4 of chapter I (except lemma (3.1)),
although the considerations of sections 10, 11 were originally suggested by the
results of chapter II. Cf. section 9 for further details on this point.

For a more detailed description of what happens in each chapter and section,

the reader is referred to the brief introductory paragraphs heading each chapter
and section.

Acknowledgements. From the introduction it has become clear that I am in-
debted to a large number of people. In particular, however, I have incurred a
steadily increasing debt to Prof.Dr. F. Oort, who was the first to maintain that
there ought to be a theorem like (5. 4. D), and without whose continuous in-
terest and help this thesis would not have been written. Gratefull acknowled-
gement must be made to Prof. Dr. N.H. Kuiper who arranged my various
duties in such a way that there was time enough to work on this thesis, as well
as to Dr. A. Menalda who perused the manuscript carefully, which resulted in
many suggestions for improvements.
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(0.4) Notations and conventions.

Convention. A commutative diagram will be called exact if all its rows and
columns are exact.

Standard notations

: = integers.

: = natural numbers.
rational numbers.
real numbers.

b : = field of p-adic numbers.
: = ring of p-adic integers.

NO RO ZN
o
n

Z/pZ : = group of p elements.

Notations associated with a local field K.
[ : = absolute value on K (and also its extension to an absolute
value on an algebraic closure  of K).

Vi : = normalized exponential valuation of K.

K* :=K\{0}.

A(K) : =ring of integers of K : = {x €K lvg(x) >0}.
m(K) = maximal ideal of A(K) : = {x €K lvg(x)>0}.

k = residue field of K (always assumed perfect; k : = A(K)/m(K)).

Ty = uniformizing element of K (i.e. vg (Mg ) = 1).

U(K) :=U°(K) : = group of units of A(K) = {x €K lvg(x) =0}.

U™(K) = 1+ % AK). n>1.

P : = characteristic of k.

e : = ey : = vg(p) = : absolute index of ramification of K.

e i=e/(p—1).

Notations associated with extensions of a local field K.

Q : = fixed algebraic closure of K. All algebraic extensions of K
are assumed to be contained in .

Ko, : = maximal unramified extension of K in 2.

f(n : = completion of K, _ (in a fixed completion ) of Q).

K2> : = maximal abelian unramified extension of K.

Let L/K be an extension of K.

G(K,L > Q) :=set of K-isomorphisms of L into .

G(L/K) : = set of K-automorphisms of L (= galois group of L/K when
L/K is a galois extension).

10



ag 1= G(Kab/foI;) = G(Kab /K);am = inertia subgroup of the galois-
group of the maximal abelian extension of K.

[L:K] : = degree of L/K = dimension of L as a vectorspace over K.
Ky : = maximal unramified extension of K contained in L.
G(L/K) ym :=G(L/Ky) = : G(L/K), = inertia subgroup of G(L/K).
G(L/K); : = the i-th ramification subgroup of G(L/K).

Ny x : = the norm map L - K.

Try g : = the trace map L > K.

eL/K : = ramification index of L/K (= [L: K ]).

fLx : = residue class degree of L/K (= [K : K]).

K, : = unramified extension of degree n of K.

F : = Frobenius automorphism in G(K,,/K) of an unramified ex-

tension K, /K defined when the residue field of K is finite
(or quasifinite).

Notations associated with abstract groups and the cohomology of groups.

#G : = number of elements of G

<H,G> : = subgroup of G generated by the elements of the form h™!g " hg,
g€G, heH, where H is a subgroup of G.

<G,G> : = commutator subgroup of G.

G* = G/<G,G>

Z(G) = center of the group G.

Z[G] : = group ring of G.

Ig : = augmentation ideal of Z[G] (= kemel of the map Z[G] ~> Z,
g~ 1 =set of all elements of Z[G] of the type Z n_(g—1),
nge€eZ). geG ®

Let G act on an abelian group A as a group of automorphisms (i.e. Aisa G-

module).

AS ={aeA]g(a)=af0rallgeG}

N =thenormmap A—~>A,a~> I g(a).

g€G
ﬁi(G, A) = the i-th cohomology group of G with coefficientsin A, i€ Z.

Notations having to do with algebraic group schemes and pro-algebraic groups.

CGy : = the category of commutative algebraic group schemes over k.

Pro(CGy) : = the procategory of CGy.

CQGy : = category of commutative quasi-algebraic groups over k.

Pro(CQGy) : = procategory of CQGy,.

CCQGy : = the category of commutative, constant, quasi-algebraic groups
over k.

11




FCQGy,
XO

To(X)
m (X)
Q(X)

n(X)
Lie X

Xred

inf

12

: = the category of finite, commutative, quasi-algebraic groups
over k.

: = the connected component of the identity of X, X € CQG,,
Pro(CQGy ).

1= X/X°, Xe CQGy, Pro(CQGy).

: = first homotopy group of X; (m; : = first derived functor of
T(o).

: = maximal constant quotient of a (pro-)finite commutative
quasi-algebraic group X.

: = Q(m1 (X)), X €CQGy, Pro(CQGy, ).

: = tangent Lie-algebra at the identity of X, X € CGy.

: = maximal reduced subgroup scheme of X, X € CGy.

= X/X, g, X€CG, .

: = the constant algebraic group scheme over k of an abstract
group S.




CHAPTER I

PRELIMINARY CONSIDERATIONS IN LOCAL FIELD THEORY,
GALOIS COHOMOLOGY AND ALGEBRAIC GEOMETRY

1. SOME GALOIS COHOMOLOGY

This section deals with what is needed in the sequel of the cohomology of
groups and galois cohomology. The definition of the cohomology groups is
given in (1.1). In (1.2)—(1.5) one finds some elementary properties and calcu-
lations. Section (1.6) contains the construction and proof of part of the low
term exact sequence of the homology spectral sequence associated with a
change of groups G = G/H (where H is a normal subgroup of G). Thisis done
explicitly by constructing some cochains (i.e. without using spectral sequences).
“Hilbert 90" is treated in (1.7). In (1.8) we use (1.6) to establish the nullity of
H™2 and H ! in some cases. Instead of sections (1.6), (1.8) one could use
Tate’s theorem: .

Let G be a finite group and A a G-module. Then, if HY(G, A)

is zero for two consecutive values of q, it is zero for all q€Z.
(Cf. for a proof e.g. [CL] Ch. IX § 5 Th. 8). We have preferred to use the
treatment as discussed in (1.6) and (1.8), even though it yields less, because of
its more elementary nature.

(1.1) Cohomology of groups
(1.1.A) FINITE GROUPS

Let G be a finite group; a (left) G-module A is an abelian group A on which G
acts (on the left) as a group of automorphisms. One can define cohomology
groups I:Iq(G,A) which form a cohomology theory (cf. [CL] Ch. VII, VIII for
instance; an explicit description is given immediately below). In particular this
means that if

(1.1.A.1) 0>A >A->A">0
is an exact sequence of G-modules, then there exists a long exact sequence:

(1.1.A.2) ..H"1(G,A") ~H(G,A") > HY(G,A) > HI(G,A") > HI'(G,A")~> ...

13




The functors I:Iq(G,——) are zero on all so-called induced modules (= relatively
projective = relatively injective). A module A is called induced if there exists a

subgroup X of Asuch that A= Z gX, the sum being direct. One obtains an
g€G

explicit description of the groups He (G, A) by taking the homology of the
complex

N ) d_; do ¢ d, ,
.= Z[G]?®A —% Z[G]®A "3 A — A — Hom(Z[G],A) = Hom(Z [G]?A) > ...
-3 -2 -1 0 1 2

(Both Hom and ® in this complex are taken over Z). The map do = N is given
by ab Z ga (the norm map); d, is given by the formula:
g

n—1
dnf(gl 9---,gn) = glf(gz l"‘ign) + Z (—’l)J f(g 1 >~")gj_1,gj gj+13gj+21"'1gn)
j=1
+ (_1)!\ f(gl 1"',gn_1)

for n 2> 1. Because G is finite, one can view the elements of Z[G]"®A also as
functions x: G? > A, The formula for d_, (n = 1) then becomes:

(d—nx) (gl""ign-—l) = ? g_lx(g’ gl""fgn~1) +

n—-1
+ T (-1 Ex(gl,...,gj_l,gjg,g—l,gj+1,...,gn_l)+
=1

+ (_1)!’1 E x(gl seenr8 n_]_)g)'

(1.1.B) PROFINITE GROUPS

Let G be a profinite group, i.e. an abstract group which can be written as a
directed projective limit of finite groups (with the induced topology) and A a
G-module. We suppose that the action of G on A is continuous (discrete topo-

logy on A). Thatis: forall a€ A, {s€ G| s(a) = a} must be an open subgroup of
G. One can then define

HY(G, A) := lim HY(G/H, AH)
—

where AH := fa€Alh(a) =aforallheH} ; H runs through all open subgroups
of G (which are of finite index in G); and the maps in the above inductive
limit are induced by the natural inclusions AH c AP if H' C H, which com-

14




mute with the actions of H and H'.

These cohomology groups define a cohomology theory for modules over a
profinite group G on which G acts continuously. In particular, given a short
exact sequence like (1.1.A.1), there results a long exact sequence like (1.1.A.2).

(1.2) The chomology groups in dimensions —1,0

The map dp : A > A is the norm map N. To an element g ®a of Z[G] @A
corresponds the function x on G given by x(g) = a and x(g') = 0if g#g". One
hasd_;(x) := g~ 1x(g) — x(g) = g~ 1a — a. Let I be the ideal of Z[G] con.
sisting of all elements of the form En(g) (g—1), n(g) € Z. (The ideal I; is the

socalled augmentation ideal, i.e. the kernel of the homomorphism Z[G] ~> Z
given by Zn(g) G Zn(g)). Then, one has according to the definition in (1.1):

(1.2.1) H-1(G, A) = Ker N/IgA
and
(1.2.2) H°(G,A) = AG/Im N

where ACG := {ae Al ga=aforallgeG}.
(1.3) The case: G is cyclic

Suppose that the group G is cyclic;let s be a generator of G. We define the
following complex C(A) for all G-modules A:
s—1 N s-1 N
C(A): > A—> A3A —> A—>A> .
-2 -1 0 1 2

One can also construct a cohomology theory by taking the homology of these
complexes. This cohomology theory coincides with the one defined in (1.1)

in dimensions 0, —1 (cf. also (1.2)), and is also zero on induced modules (of
which there are sufficiently many). Therefore the two cohomology theories are
isomorphic, and there results:

(1.3.A) Proposition

If G is a finite cyclic group, then the sequence of cohomology groups
AY(G, A) is periodic of order two for every G-module A.

15



(1.4) Interpretation of H? (G, A) as a group of extensions.

Let {1} >A->E->G~ {1} be an extension of groups (not necessarily com-
mutative); let s: G = E be a system of representants of G in E. One can define
an action of G on A by g(a) := s(g) . a. s(g)~L. This definition does not depend
on the choice of s, as A is commutative.

The elements s(g) . s(g') and s(gg’) are in the same class of E mod. A, therefore
there exists an f(g, g') in A such that

(1.4.1) s(g) - s(g)) = f(g. &) - s(gg)-

Using the associativity of the multiplication in E one now proves by direct cal-
culation that for every triple g, g’, g" €G,

(1.4.2) gf(g.8") — f(gghg") +f(ggg) —f(gg)=0,

ie. that f is a cocycle.

Inversely given such a cocycle, one uses the formula (1.4.1) to define a multi-
plication in the set E := A X G (with s the natural section). The relation (1.4.2)
then guarantees the associativity of this multiplication; and we obtain an ex-
tension {1} >A—>E~>G~ {1} of groups. It turns out that two extensions are
isomorphic if and only if the corresponding cocycles are homologous. This
means that we have found for every G-module A an isomorphism

(1.4.3) Ext(G,A)™ H(G,A)

where the group on the left consists of only those extensions of G by A such

that the induced action of G on A (as described above) is precisely the action
of G on A as a G-module.

An extension {1} >A->E->G~> {1} is called central if A C Z(E) (= centre
of E). Such extensions correspond by the above to elements of the group
H?(G, A), where the action of G on A is trivial.

(1.5) Calculation of ﬁ‘z(G, Z).
Let G operate trivially on Z. We have an exact sequence of G-modules

€
(1.5.1) 0->15~>2Z[G]>Z~0

where I is the kernel of the map ¢: Z[G] — Z given by g P 1 for all geG.
(Le. I is the collection of all elements of the form Zn(g)(g—1),n(g) € Z). The
g
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G-module Z[G] is free, hence induced. Using the long exact sequence asso-
ciated with (1.5.1) there results an isomorphism

H2(G,Z)3 H1(G, Ig).

Now H™1(G, 15) = Ker N/l .Ig = 1/13 (cf. (1.2)).
Furthermore the homomorphism defined by s+ 5—1 € I5/I2 induces an
isomorphism

GI<G,G> = 15/1%

as is easily checked. (<G, G> := commutator subgroup of G). Composing these
isomorphisms yields:

(1.5.2) H2(G,Z) S G/<G,G>=: G
We shall usually identify these two groups in the following.

(1.6) An exact sequence for A2,

Let A be a G-module; H a normal subgroup of G. Consider the sequence

N a - b -
(1.6.1) H—2(H, A) > H™2(G, A) > H™2(G/H, A/I4A) > 0,

where a is the homomorphism induced by the homomorphism a’, which as-
signs to a (—2)-chain f: H = A the chain f': G A given by f [H= f, f IG\H :=0;
b isinduced by the map b which assigns to a (—2)-chain f: G - A the chain f:
G/H~> A/l A given by f(gH) := h?H f(gh).

(1.6.A) Proposition

The sequence (1.6.1) is exact.

We proof this by means of several lemmas below.

Remark: (1.6.1) is in fact part of the low term exact sequence of the homology
spectral sequence associated with the change of groups G = G/H, cf.
[2] Ch. XVI § 6 (4a).

(1.6.B) Lemma

A (—2)-chain f: G > A such that (f IG\{e}) = 0 is a boundary.
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Proof. Define x: G > A by x(e, €) : = f(e), x(g, g) := 0if (g, g') # (e, €). Then
dx = f asis easily checked.
q.e.d.

(1.6.C) Lemma

Let f: G > A be a (—2)-chain;let g; ¢ H and suppose that hZHf(gl h)elA.
€

Then there exists a boundary dx such that dx =fon g;Handdx =0

on G\H\g, H.

Proof. Let T f(g,h) = Th~la(h) — Za(h). We define x: G* = A by the for-
heH

mulas:
x(h,g ) :=a(h)if he H.
x(g1,h) := —a(h') if heH, where h' = g hgi*.
x(gih,h™1) :=f(g, h) if heH\ {e}.
x(g,g) := 0 in all other cases.
Then we have

d = T g lx(g, - 2 x ,'1+E ,g) =
x(g1) gecg (g g1) A (B18:87") geGX(gx g)

= —la(h) - X f - a(h') = N
h?Hh (B heH\{e} (81h) h?ﬂ (h) =£(e)

and forh#e
dx(gih)=Zg 7 x(g, g h) — Zx(g1hg,g7) + Zx(g1 h,g)
=0 — (a(gihgr?) — a(gihgi!)) + f(g1h) = £(g1 h).

For g'€ G\H\g; H one sees in the same way by direct calculation that dx(g)=0.

q.e.d.

(1.6.D) PROOF OF THE EXACTNESS OF THE SEQUENCE (1.6.1)

(i) surjectivity of b. Let f: G/H = A/IA be a cycle. We can assume f(e) = 0

(1.6.B). Choose a system of representants R of G/H \{e} in G. Define x:

G~ Aby x'(g) : = any lift of f(g) if g€ R; x'(g) : = 0 everywhere else. (as usual

g denotes the image of ge G under the natural homomorphism G = G/H). We

have for x' that g~ 1x'(g) — £x/(g) €IyA because fis acycle. Let Zg~1x'(g)—
g
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Zx'(g) = =2 h~la(h)+ = a(h);define x: G>Abyx :=x" on G\Hand
g héeH heH

x(h) =a(h) if heH. Then x is a cycle and b(x) is equal to f except possibly in
e. A second application of (1.6.B) concludes this part of the proof.

(ii). The image of a cycle under the composed map b a’ is concentrated in e
and hence represents zero (1.6.B). Therefore b a = 0.

(ili) Kerb C Im a. Let f: G = A be cycle such that b(f) is a boundary dy. By
lifting y we can change f by a boundary in such a way that b(f) = 0 after this
change;i.e. for all ge G we then have h?l—l f(gh) eIy A. Applying (1.6.C) re-

peatedly we can now change f in a cycle concentrated on H;i.e. in a cycle of
type a'(z) for some cycle z: H—> A.

q.e.d.

(1.7) “Hilbert 90”.

Let L/K be a finite galois extension with the galois group G := G(L/K). The
group G acts on the group L* of non-zero elements of L.

(1.7.A) Proposition.
H'(G,L*) =0
Proof. Let sk a  be a 1-cocycle. For all c € L consider the element b :=Zags(c).
S

There exists an element c € L such that b # 0 (linear independence of auto-
morphisms of L/K; cf. [11] Ch. 1 Th. 3). Take such a ¢, then we have

t(b)= T t(ag)ts(c) = Za ta ts(c) =a; 'b.
sEG

(t(ag) = at'lats is the cocycle condition). One has a, = b/t(b), i.e. t a isa
coboundary.
(1.7.B) Remark.

According to (1.3) this means also that I:{"I(G, L*) = 0 in the case
that G is cyclic, which is the classical form of “Hilbert 90”. For a
direct proof of this fact cf. e.g. [9] § 13 Satz 114,
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(1.8) Nullity of A" and A2 if the norm map is surjective.

Consider all finite galois extensions of a fixed field K. Suppose that the follow-
ing condition is satisfied.

(1.8.1) For all finite galois extensions E, F such that F CE is the norm map
Ng/e: E = F surjective.

(1.8.A) Proposition.

Under condition (1.8.1) é“l(G, L*) = 0 for all finite abelian exten-
sions L/K.

Proof. In view of (1.7.B) we know that I:{“’l(G, L*) = 0 for cyclic extensions
L/K. According to its definition H=1(G, L*) := Ker N/IgL* (1.2). We proceed
by induction on the number of elements of G := G(L/K). The case #G = 11is
trivial. Let H be a cyclic subgroup of G;L' the invariant field of H. Let N" and
N” be the norm maps

N’ IN" " r
L—~L'—K, N.N'=N

Suppose a€ L and a€Ker N, then N"(N'(a)) = 1. It follows from the induction
hypothesis that there are y; such that:

N'(a) = s(ys) - . '
(a) = =, s running through G(L'/K).
s y; .

Let s be lift of 5;y, = yg; choose x, such that N'(x,) = y,. Then

N'(a) - Hi?i: 1 SN'(xs) =N' (nﬁ) - N'(b);
Vs N'(x) X

s

i.e. N'(a/b) = 1. According to the proposition in the cyclic case there exist z, €L
for te H, such that

a 1z tz sX
—-=1—, ie. a=n——t-.n——SGIGL*
b 2, tz, s X

-

q.e.d.
(1.8.B) Lemma

Let L/K be a finite abelian extension and suppose that (1.8.1) is satis-
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fied. Let M be a subextension of L: H C G the corresponding subgroup.
Then M* 2 L*/IyL* as G/H-modules.

Proof. N p:L*> M* isa surjective map of G-modules; the kernel is equal to
I;L* (1.8.A). Therefore M* < L*/I;L* as G-modules and also as G/H-mo-
dules for H acts trivially on M*, whence on both.

q.e.d.
(1.8.C) Proposition.

I:I"Z(G, L*) = 0 for all abelian finite L/K if the hypothesis (1.8.1) is
fulfilled.

Proof. For the cyclic case this follows from (1.3). The general case results from
this by induction by means of the exact sequence (1.6.1).

q.e.d.

(1.8.D) Remarks.

1. Propositions (1.8.A) and (1.8.C) are stated only for abelian L/K.
The same proofs, however, work for solvable L/K.

2. One can also conclude directly from H! (G,L*)=0= ﬁo(G, L*)
that HY(G,L¥) is zero for all q (by using the theorem, due to Tate,
that all these cohomology groups are zero if two consecutive
groups are zero; see e.g. [CL] Ch.IX § 6 Th. 8))

3. The hypothesis (1.8.1) is satisfied in the case that K is a local field
with algebraically closed residue field; cf. section (2.6).

2. SOME LOCAL FIELD THEORY.

Notation: From now on K denotes a local field with perfect residue field k;
K, is the maximal unramified extension of K (in a fixed algebraic closure 2
of K), with residue field k,, which is an algebraic closure of k; K is a com-
pletion of K ; the symbol | | denotes the absolute value on K, and also its ex-
tension to £2. We use v or vi to denote the normalized exponential valuation
on K; finally my is a uniformizing element of K (i.e. vg (mg) = 1).

If L/K is a finite extension, K| denotes the maximal unramified extension of
K contained in L; ey jx is the ramification index of L/K (thusey x = [L:K]).
In this section we define some assorted notions associated with local fields and
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prove some propositions concerning them. In (2.1) we look at finite exten-
sions of K, and show by means of Krasner’s lemma that every such extension
comes from an extension of some K, which is a finite unramified extension of
K. In2.2) we prove a fundamental lemma due to Lubin and Tate [LT], and
apply this to deduce a result on the p-th roots of unity (p = char(k)), which
could also have been obtained as a corollary to the study of the map x+> xP
carried out in (2.3). Section (2.4) gives a characterization of tamely ramified
extensions which are also totally ramified. In (2.5) we define ramification
groups, with the help of which the norm map is studied in (2.6). These two
sections are simply a condensed and abbreviated version of the parts of chap-
ters1V and V of [CL], which are needed further down. In (2.7) we establish

a fundamental exact sequence, which occurs again and again in some form or
another throughout this thesis. The section closes with (2.8) where in fact we
prove that the ramified part of any abelian extension of K “comes from’ some
totally ramified abelian extension;in other words we prove that there are suf-
ficiently many totally ramified abelian extensions (2.8.F).

(2.1) Extensions of K.

(2.1.A) Krasner's lemma,

Letae Q;r :=min |s(@) —alwhere s runs through the set G(K, K(a)~
Q) \{1} of all K-isomorphisms K (@) = §2 not equal to the identity.
Suppose f€ Q2 is such that |a—~f |<r. Then G(K(B),K(a,f) > Q) =
{1} and, if & is separable over K, we have K (a) C K (8).

See e.g. [22] lemma 3—2-5 for a proof of this lemma.

(2.1.B) EXTENSIONS OF K.

There is only one way to extend the valuation of K . to a finite extension E

of K,,. Hence if L/K is finite galois the injective restriction homomorphism
G(Ln/Kpy) > G (L /Kpy) ¥ G(LIK ) = G(L/K)

is an isomorphism.

Inversely let E/K ) be a finite extension. Then using the continuity of the roots
of a polynomial as the coefficients vary, we see from Krasner’s lemma (2.1.A)
that there exists a finite extension L/K, for some finite unramified extension
K,/K suchthat E=L_ =LK and we can take L/K separable if E is separable
over ltim.

[35]
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(2.1.C) Corollary

Let L,L' be two finite separable extensions of K, such that Lkm CL'}A(nr

(in a fixed completion 2 of the algebraic closure £ of K), then LK C
L'K
nr*

Proof. Let x € L be a generating element of L. According to Krasner’s lemma
one can find an x'e L'K | (for some finite unramified extension K of K) such
that LK =K_(x)CK_(x)CK,L"

q.e.d.

(2.1.D) Lemma.

For every finite abelian extension E/IA(nr there exists a galois exten-
sion M/K such that:

(1) GM/K)p,pm is abelian

(i) ECM,,.

Proof. Let L be as in (2.1.B), and let L be an arbitrary finite galois extension

which contains L;let G := G(L'/K); H := G(L/Ky ); H' := G(L'/K/);H" :=
G(L'/Ky); cf. the figure below.

/LI

L / H'
1|
—_ K

&

<H',H"> is a normal subgroup of G (for g'lhl—lhz—lhlhzg = h;l h21h3h4,
where h3 = g_lhlg, h4 = g‘lhzgeH', for geG, hl,h2 eH').

Let M be the fixed field of <H',H™>, then G(M/K) ~ G/<H',H"> and
GM/K) o =~ H'/<H' ,H"> is abelian; moreover for s, t €H', which contains H',
we have s—1t=1st(x) = x if x € L (the extension L/K is abelian). Therefore
LCM.

q.e.d.
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(2.2) The basic Lubin-Tate lemma.

Let K be a local field with finite residue field k; let q be the number of elements
of k;let i be a uniformizing element of K. The symbol Fy, denotes the set

of all formal power series over A(K) (={x€K | vg (x) > 0} = ring of integers
of K) such that

f=meXmod. X* and f=X%mod.mg.

(2.2.A) Lemma([LT] lemma 1).

Let f,ge Fp, be arbitrary. Then for every ae A(K) there exists exact-
ly one power series [a] ¢ o with coefficients in A (K) such that

felalfg=lalgg-8 and [a]f; = aX mod. X2,

Proof. We define inductively polynomials F_ of degree r such that
f-F,=F,.gmod. X*™*1 and F =F,; mod. X**1

Take F = aX; suppose that we have found F,,r >1;put F_ | := F, +a_ ,X*1
where a_,, is yet to be determined.

f.(Fl‘+1) = f(Fr) + nK ar+1xr+1 mod. Xr+2
Foo1(g) =F (g) +m la ;X1 mod. Xr+2

These equations show that a_,; must satisfy

f(F,)—F (g)
il

ar+1Xr+1 =
which proves (inductively) that F,,; is unique mod. X**2 for all r, whence that
[a] £, g is unique. It remains to show that a 4 € A(K), which follows from
f(F,) — F.(g) =F(X)? - F(X%) =0mod. my

(alf,g is the limit of the F,.
q.e.d.

(2.2.B) Lemma.

If alocal field K (no restriction of the residue field) contains a prim-
itive p-th root of unity {, then vg(§p—1) =el(p-1) :=ey, (and eq is
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therefore an integer). (e := v (p) and p : = char(k)).

Proof. Let {,, be a primitive p-th root of unity; {; is then a root of the irredu-
cible polynomial XP~1 + XP—2 + .+ X+ 1 and §{p—1 isaroot of (X+1)P~ 1y
(X+1)P~2 + ...+ (X+1) + 1, which is a polynomial of the type XP~1 + p(...) + p.
A root of such a polynomial has necessarily a vy -value equal to v (p)/(p—1).

g.e.d.

(2.2.C) Application.

Let K be a local field with algebraically closed residue field k of
characteristic p # 0. Then the following are equivalent:

(i) e is divisible by p—1,

(i) K contains a primitive p-th root of unity.
(e = %0 is by definition not divisible by p—1).

Proof. Lemma (2.2.B) proves (ii) = (i). Suppose conversely that e is divisible

by p—1; then there exists an element u €K with v (u) = 0 and such that XP—puX
has a non-zero root. Let a be a (p—1)-th root of u (exists by Hensel’s lemma
because k is algebraically closed); then putting Y := a~1X we have a nonzero
solution of YP — pY = 0. By (2.2.A) above there exists a power series h with
coefficients in Z, (= ring of p-adic integers) such that

h=Y+a,Y2+.. and heg=f-h,

where f := (Y+1)P — 1 and g := YP — pY. Then if b is a non-zero solution of
YP —pY =0, it follows that 1 + h(b) is a primitive p-th root of unity.
q.e.d.

(2.3) Themap x*> xP.

We suppose p := char(k) # 0 for the purpose of this section. Let Un(K) :=
1+mR A(K); UP(K) := U(K):= A(K)*={x €K | vy (x) = 0}. We consider the
map u: x> xP of U(K) into itself.

(2.3.A) Proposition

u maps U"(K) into U™ (K) and Un*1(K) into Um*1(K), where m :=
npifn<e;;m:=n+eif n>ey. For the induced maps u,:
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UR(K)/UM*1(K) > U™ (K)/U™*1(K) we have: keru, = 0if n# e; and
keru,, =Z/pZoro depending on whether K contains all the p-th roots
of unity or only the trivial one.

Proof.n =0 isevident. Letn=>1 and x = 1+ tmg, te A(K) thenu(x) -1 =
ptmy +..+ tPmR", where the vi-value of any of the middle terms in the sum
on the right is strictly larger than either v(pt g ) = v(t) + n + e or v(tPng") =
pv (t) + np. This proves the first assertion of the proposition. If 1 <n < e1
then u(x) =1+ PP mod UP™1(K). Under the isomorphisms U (K)/U™! (K)~
k (r > 1) the map u, then becomes t = tP, which has zero kernel (char(k) = p).
If n> e; thenu(x) =1+ ptny mod. U"**1(K). With the same identifica-
tions as above u, now becomes t = at where a is some nonzero element of k.
If n =e; we know that{e UL(K) if {isa p-th root of unity (2.2.B). Suppose
on the other hand that x € U*1(K), xP =1 mod. Upelﬂ(K); write x =1+ tﬂil.
The monic equation

m e [(mtX+1)P —1] =0

then has a solution mod. Tk and it has simple roots mod. Ty (the derivative of
the left hand side is equal to ﬂipelpﬂ'f{l # 0 mod. My ). Hence every element of
the kernel of Ug; Can be refined to a p-th root of unity.

(2.4)  Tamely ramified extensions.

A finite extension L/K is said to be tamely ramified if the residue extension l/k
is separable and p £ e .

(2.4.A) Proposition

Suppose that L/K is both tamely and totally ramified. Let [L : K] =e.
Then L is of the form L = K(x) where x is a root of an equation X¢=
g for some uniformizing elements my of K.

See e.g. [22] Prop. 3—4-3 for a proof of this proposition.

(2.4.B) Corollary.

A tamely and totally ramified extension L/K of degree e is galois iff
K contains all the e-th roots of unity.
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(2.5) Ramification.
(2.5.A) DEFINITION OF THE RAMIFICATION GROUPS.

Let L/K be a finite galois extension with galois group G. We define the ramifi-
cation subgroups G;,i=—1,0, 1, 2, ... as follows:

G;:= {seG lv; (s(a) —a)=i+1 forall aeA(L)}‘
One proves easily that the G; are normal subgroups of G, and that G; = {1} if
iis large enough. ([CL] Ch. IV Prop. 1). One has

su .
(2.5.A.1) —eUHL) if seGyy ueU(L);

G_; = G; Gy is the inertia subgroup of G and its invariant field is the maximal
unramified extension K; of K contained in L.

(2.5.B) THE TOTALLY RAMIFIED CASE.

We now suppose L/K to be totally ramified. Then a uniformizing element 7 of
L generates A(L) as an A(K)-algebra; therefore we have in this case:

SﬂL .
(2.5.B.1) ZLeUiL)  seG.
L
. STy
Define a map G > U(L) by the assignment s> — " This map induces injections
o

¢; 1 Gi/Gyyy > UHL)/UM(L),

which do not depend on the choice of my . (This follows from (2.5.A.1)). It
follows that the ; are group homomorphisms.

The results (2.5.B.2) — (2.5.B.5) below derive from this fact with the help of
the isomorphisms U(L)/UNL) ~k* =1*, UY(L)/UF (L) k=1 (r > 1).

(2.5.B.2) If char(k) = 0, then G; = 0, and every totally ramified extension of
K is cyclic.
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(k has no finite additive subgroups if char(k) = 0; finite subgroups of k* are
cyclic).

(2.5.B.3) If char(k) = p> 0, then Go /G, is cyclic of order prime to p and G,
is a p-group. (L.e. #G; is a power of p.)

(2.5.B.4) The galois group of a totally ramified galois extension of a local field
K (no restrictions on the residue field) is solvable.

Proof. There is a normal subgroup G; € Go = G_; = G. The group G/G; is
cyclic by the above, hence solvable; G, is a p-group and therefore solvable.The
solvability of G itself follows.

q.e.d.

(2.5.B.5) The galois group of every finite galois extension of a local field with
finite residue field is solvable.

Proof. The group G/Go is the galois group of an unramified extension, whence
cyclic and therefore solvable. The group Gy is solvable by (2.5.B.4).
q.e.d.

(2.5.C) Proposition,

Let L/K be a totally ramified abelian extension; char(k) = p # 0.
Then G(L/K) is the direct product of a cyclic group of order prime
to p and an abelian p-group.

Proof. There is an exact sequence 0 > G; = G = G/G; = 0. The group G/G,
is cyclic of order n prime to p. Let § be a generator of G/G; ; choose a lift s of
§;the element s” is in Gy, so there exists a power q of p such that (s")4 = 1;
the element 59 is also a generator of G/G; ; the homomorphism defined by

§9 - 59 is a section of the exact sequence above.

q.e.d.

(2.6) The norm map.

In this section L/K is a totally ramified cyclic extension of prime degree 1, (un-
less otherwise stated).
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(2.6.A) THE DIFFERENT (cf. [CL] Ch. III § 3)

Any uniformizing element 7, of L is a generator of A(L) over A(K). Let f be

the minimal polynomial of 7y . Then the different of L/K is per definitionem
equal to the ideal:

D = (f(my)).
This different is characterized by the property:
(2.6.A.1) §caDp-l & Tr(§)Car.

(avan ideal of K, & an ideal of L).

Let t be the number t := v (sm — ) — 1 (s a generator of G = G(L/K)). The
number t is the largest integer such that G, = G (cf. (2.5)). Now f'(m) =

qlz (m—smy ), hence vy (f'(my)) = (1-1) (t+1), and we find that
s7+1

(2.6.A.2) D=(m") with m=(I-1) (t+1).

(2.6.B) Lemma.

(t+1) (I-1) +n |
Tr(nf A(L)) = M A(K) with 1= ——T——J (n>0).

This follows immediately from the characterizing property of the different
given above (2.6.A.1).

(2.6.C) Lemma.

If xe 7™ A(L), then N(1+x) = 1+ Tr(x) + N(x) mod. Tr(n"A(L)).

Proof. Define x® := [I s(x) for all finite subsets a of G. Then N(1+x) = % x2.
s€a aCG

Define n(a) = #a. The terms of N(1+x) with n(a) = 0, 1,1 are respectively 1,
Tr(x), N(x). If n(a) # 0,1,],thensa#aforall s#1 of G (for Gis cyclic of
prime order). Hence there exist ay,...,a with n(a;) =2 fori=1,...,rand
such that
I .
N(1+x) =1+Tr(x) +N(x) + £ Zx*i,

i=1 s

But T x% = Tr(x?) e Tr(n2"A(L)) if n(a) > 2 and x em  A(L).
S

29



Let ¢ be the function defined by:

N

Y(x)=x if x<t,

Y(x)=t+1l(x—t) ifx>t.

(2.6.D) Proposition.

For all n 2 0 one has:

(i) N(UY®)(L)) C UP(k) and N(UYOIHL(L)) C Un*L(k).

Let N, be the induced map U¥®)(L)/u¥ W*1(1) » Un (k) U (k)
and identify these quotients with k* if n = 0 and with k if n> 0. Then
we have for the maps N, :

(ii) No: k* > k* is given by £~ El.

(i) If 1<n <t;N, is given by N, (§) = o, £! for certain & €k*.

(iv) f1<n=1t;N_: k >k is given by N (§) = aEP + £ for certain
aeck* fek.

(v) Ifn>t; N : k> kis given by N, (§) = 8 £ for certain B ek*.

Proof. Let n = 0. It is clear that (i) is true in this case. As L/K is totally rami-
fied, it follows that Ny is given by & = 2

1<n<t. One has Y(n) =n. Let xeﬂ’iA(L), then N(x) en;A(K) because
vg *N = vy . According to (2.6.B) one has Tr(x) e T A(K) with

. [(t+1) (11—1) +n] S I:(n+1) (1_11)+n+ 1] a1

Analogously one proves that Tr(ﬂi“A(L)) - n’l‘{ﬂA(K). By virtue of (2.6.C)
one then has N(1+x) = 1 + N(x) mod. ﬂﬁﬂA(K), which entails (i) in this case.
Let x =um, ueU(L), then N(x) = u'N(ﬂ’i) = u"7r';( for certain u” in U(K).
This implies (iii) because N (u) = ul mod. U}(K) (which was also used in the
case n=0).

1<n =t Then y(t) =t. The same kind of calculations as in the previous case
now yield N(1+x) =1 + Tr(x) + N(x) mod. nglA(K) ifxe niA(L). Whence
(i) in this case and (iv).

n>t, Now Y (n) =t+1(n—t). In this case one finds that N(1+x) =1 + Tr(x)
mod. WITIA(K), if xen] A(L), which proves (i) in this case and (v) except that
possibly B, could be zero. But if §,, were zero we would have Tr(w%(“)A(L)) C
NQHA(K) which would contradict (2.6.B).
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(This same argument can be used to prove that § % 0 in case (iv).)

q.e.d.

(2.6.E) Corollary.
If k is algebraically closed, N(U¥(®)(L)) = U (K) and N(UY®*1(1)) =
U™1(K) foralln >0.

Proof. The second statement follows from the first because Y(n+1) = Y(n) + 1.
The maps N, are surjective for all n 2 0 (2.6.D). Filtering U(L) by means of
the U¢(n)(L) and U(K) by means of the U"(K) we obtain the desired result as
a consequence of the purely algebraic and elementary lemma (3.1) below.

q.e.d.

(2.6.F) Corollary.

N(L*) = K*, if k is algebraically closed.

(2.6.G) Corollary.
For all (totally ramified ((abelian) galois)) extensions L/K we have
N(U(L)) = U(K) and N(L*) = K* if k is algebraically closed.

This follows from the transitivity of the norm maps and the solvability of the
group G(L/K). (CE. (2.5.B.4)).

(2.6.H) Proposition.

If L/K is any unramified galois extension, then

(I/k is the residue field extension).
Proof. Because L/K is unramified one has Ny ; (U?(L)) € U?(K) for all n.
The induced maps U(L)/U™1(L) > Un(K)/UM1(K) are the homomorphisms
Njg: I* > k* forn=0 and Trjp : 1>k forn>0. The first of these statements

follows from the fact that the reduction of the minimal polynomial of an
element x € A(L) is the minimal polynomial of the reduction x of x; the
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second is due to this same fact coupled with the formula

N(1+7x) = 1;1(1 +rys(x) = L4l Tr(x) +ag () (n>1).

An application of lemma (3.1) concludes the proof.

(2.6.J) Corollary.

Let K be a local field with finite (or quasi-finite) residue field. Then
Np x(U(L)) = U(K) for unramified extensions L/K, (and this is the
case for unramified extensions only, cf. (10.2)).

(2.7) The fundamental exact sequence.

(2.7.A) Let K be alocal field with algebraically closed residue field k. If E/F/K
are finite galois extensions of K, we know that Ng g is surjective (2.6.G); i.e.
the hypothesis (1.8.1) is fulfilled, which entails:

(2.7.A.1) H1(G,L*) = 0 = H2(G, L*). ((1.8.A), (1.8.C))

v
L . .
The exact sequence o > U(L) = L*—-, Z - 0 gives rise to a long exact sequence

of cohomology groups

. f{—Z(G, L¥) > ﬁ"Z(G,Z) - I:I_I(G,U(L)) ->n-! (G, L*) > -
In (1.5) we showed that I:I”Z(G, Z) ~ G/<G,G>.Now write down the defini-
tion of H"}(G, U(L)) and use (2.7.A.1). The result is:

(2.7.A.2) If L/K is galois (k algebraically closed), the following sequence is
is exact
ab i N
0~ G(L/K)® > U(L)/V(L)> UK) = 0

where, writing G for G(L/K), by definition, V(L) :=I5U(L). The map iis
given by:

sy
(2.7.A.3) i:s>—

s

which can be verified by tracing the various homomorphisms involved. This
definition of i does not depend on the choice of my .
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(2.7.B) THE GROUP V(L) IN A SPECIAL CASE.

Let L/K be totally ramified cyclic of prime orderl. Let t be the largest integer
such that G, = G (cf. (2.5)). Then the group V(L) is equal to

(2.7.B.1) V(L) = Ker N g N U™(L).

Proof. It is clear that V(L) C Ker N and V(L) C U**1(L) (2.5.A.1). By defini-
tion of t we have ;—L—e UY(L) \U*1(L) for every s # 1 of G(L/K), as G = G(L/K)
is cyclic of prime o:der. It follows from (2.7.A.2) that Ker N =i(G) - V(L),
where i is given by (2.7.A.3). Now ?;TTT—L V(L) CU{L)\U*YL) for s # 1,

owing to the fact that iL-;; u1(L) I:;vhile V(L) C U*1(L). Therefore U™ (L)N

L
Ker N = V(L).

q.e.d.
(2.7.C) REMARK ON THE NON ALGEBRAICALLY CLOSED CASE.

If k is not algebraically closed Itl—l(G, L*) is not necessarily zero. For example
take K := Qg ; let &g be a primitive 8-th root of unity; take L := Q; ({g ); then
G(L/K) ~ V4. One calculates that l:I_l(G, L*) ~Z/(2). By the Tate theorem
on group cohomology (cf. (1.8.D) Remark 2 or the introduction to section 2)
this also shows that Ny j is not surjective in this case.

(2.8) The pull-back theorem.

The symbol Z(G) denotes the centre of a group G.

(2.8.A) Lemma.

Let L/K be a finite galois extension; K the maximal unramified ex-
tension of K contained in L. Suppose that G(L/K; ) C Z(G(L/K)).
Let K /K be any unramified galois extension containing K , then
also G(L K, /K ) C Z(G(L-K,,/K)).

Proof. Let se G(L - K, /K ) and te G(L-K_ ). For ye K we have ts(y) = t(y)
and st(y) = t(y) since also t(y) €K . If ze L then st(z) = ts(z) because of

33




G(L/K ) C Z(G(L/K)). The field L -K, is generated by L and K.

L-K

L m

(2.8.B) Lemma.

I:Iq(G(L/K), L) = 0 for every galois extension L/K.

Proof. As a G-module L is induced on account of the normal basis theorem.

q.e.d.

(2.8.C) Lemma.

Let G be a finite abelian p-group and k a perfect field of characteristic
p. Then

HY(G(kJk),G)=0 forall qeZ,
(trivial operation of G(ky/k) on G).
Proof. By induction on the number of elements of G. Let first G ~ Z/pZ. There
is an exact sequence of G-modules
0—~>Z/pZL->k, >k, >0

where the last map is given by x> xP — x. Writing down the long exact se-
quence of this and applying (2.8.B) above gives the desired result in this case.
For arbitrary G let H be a cyclic subgroup of order p; using induction and the
long exact sequence belonging to 0> H G = G/H > 0 one now proves the
general case.

q-e.d.

(2.8.D) Lemma.

j
Let {1} -H->G~>G/H~> {1} be an exact sequence of (not neces-
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sarily commutative) groups. Suppose that there exists a section s of j,
and that HC Z(G). Then s(G/H) is a normal subgroup of G.

Proof. Let g€ G be arbitrary; write g = s(b)h where heH and b = j(g). Then
g 1s(a)g=h"1s(b)"1s(a)s(b)h = h—1s(b—lab)h = s(b~lab)es(G/H).

q.e.d.

(2.8.E) Proposition.

Let L/K be a finite galois extension. Then there exists a totally rami-
fied extension L'/K such that L - K, = L. K.,

Proof. Let K| be the maximal unramified extension of K contained in L.
Because G(L/K| ) is solvable (2.5.B.4), it suffices to prove the proposition for
the case that G(L/K; ) is cyclic.

a)Let q=#G(L/K) # p = char(k). Then L = K| (x) where x is a root of an
equation X9 = 7 for some uniformizing element T€K| (2.4.A). As X3 =u
defines an unramified extension of K| for any ueU(K ), we can take L' =

K (x') where x" is a root of X4 = Tk, T €K.

b) Let #G(L/K; ) = p. Consider the canonical exact sequence

0-> G(L/K),,, = G(L/K) %G (K /K)~> 0

According to (2.8.C) we have Liﬂx'I:F(G(Kn/K), G(L/K);am) = H? (G(K,,/K),
G(L/K) ym) = H? (G(k /k),G(L/K),_, ) = 0 where K_ /K runs through the un-
ramified galois extensions of K. Hence for sufficiently large n there is a section
s of

0~ G(L/K) = G(L-K,/K) > G(K,/K) = 0

Then G(L-K,/K) =G (L/K)ar, - s(G(K,/K)) (semidirect product). We can take
L' := invariant field of s(G (K, /K)).
q.e.d.

(2.8.F) Corollary. (Pull-back theorem).

Let L/K be a finite galois extension; K| the maximal unramified ex-
tension of K contained in L, and suppose that G(L/K| ) C Z(G(L/K),
then there exists an abelian totally ramified extension L'/K such that

L'-K, =L-K_.
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Proof. Let L' be as in (2.8.E), (2.8.A) and (2.8.D) now imply that L'/K is
galois and hence abelian (because G(L'/K) is isomorphic to G(L/Kp).

(2.8.G) Corollary.
For every two totally ramified abelian extensions L/K, L'/K there
exists a totally ramified extension M/K such that M-K_ =L-L"K_ .

(2.8.H) THE GROUP aty.

Consider the projective system {G(L/K),, | L/K€ T }indexed by the family
T of all finite abelian extensions L/K of K (which are contained in some fixed
algebraic closure Q of K), with the ordening L/K > L'/KiffL-K,  DL"“K,
and the maps

G(L/}Qram: G(Ly/Kyy) > G(L;lr/Knr) > G(L,/K)ram

if L/K > L'/K. (Where the isomorphisms are the natural ones, and the middle
map is the natural restriction.) This projective system is directed. Corollaries
(2.8.G) and (2.8.F) show that

(2.8.H.1) oy = GK®/K) = lim G(L/K)

where the projective limit is taken, either, over the above described projective
system, or, over the directed subsystem (2.8.G) consisting of the totally
ramified abelian L/K.

(2.8.J) Corollary.
For any local field with perfect residue field k we have

G(K/K) ~ G(K2/K) X oty ~ G(k®/k) X ay

This follows from (2.8.F). To determine the galois group G(K2P/K) we must
therefore determine G (k2/k), which may perhaps be considered an easier prob-
lem — especially when k is finite, quasi-finite of algebraically closed — and we
must determine aty . It is with another description of gty that chapter Il is
concerned.

(2.8.K) Example.

It is not true that every abelian extension L/K is the compositum of a totally
ramified abelian extension L'/K and an unramified extension K| /K.(According
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to corollary (2.8.F) there is for every L/K an K, /K such that this is true for
the extension L - K_/K). To construct a counterexample it suffices to find an
abelian L/K such that G(L/K} ) is not a direct summand.

L M=L"-K,
H
G(M/K4)NH I
L L-Kq G(M/Ky)
G/H ‘
K=Qs—— K Ka

Take K = Qs ; K4 := unramified extension of degree 4 of Qs ;L = K(&s),
where {5 is a primitive 5-th root of unity;let M : = L'-Kg;then G := G(M/K)~
Z/AZ X Z/4Z. Let G(M/K4) be the second factor;let H be the subgroup of
order 4 generated by the element (2,1) of G(M/K). Let L be the invariant field
of H. One now shows easily that G(L/K) ~ Z/4Z and that G(L/K{) ~ Z/2Z,
which is not a direct summand.

(2.8.L) Remarks.

1. The requirement G(L/K; ) C Z(G(L/K)) means that G(L/K) is
abelian in the case that the residue field of K is finite or quasi-
finite (or algebraically closed).

2. In the case that the residue field k is finite (or quasi-finite) there is
a much easier proof of (2.8.F) and (2.8.E) as follows. Let F be a
generator of G(K| /K), take any lift s of F in G(L/K). The order
n of s is a multiple of the order of F. Let K /K be the unramified
extension of degree n of K. Then K, D K; . We also use F to de-
note a generator of G(K /K) which restricts to the previous F on
K . There is exactly one element t of G(K_, - L/K) which restricts
to son L and to F on K. The order of t is n. The homomorphism
defined by F > t gives a section of the exact sequence

0~ G(L-K,/K),. > G(L-K,/K)~>G(K,/K) >0

(G(L-K_ /K) . =G(L-K_ /K_)).
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3. SOME CATEGORY THEORY.

In this section, included mostly for completeness sake, we have collected some
well-known algebraic and categorical facts used elsewhere. Section (3.1) con-
tains a lemma on filtered abelian groups, which has already been used twice in
section (2.6). In (3.2) we discuss procategories, and prove once more that the
procategory of an abelian category is abelian (3.2.E). In (3.3) lastly we apply
the results found to projective systems of finite abelian groups.

(3.1) Lemma on filtered abelian groups ([CL] Ch. V § 1 lemma 2).

LetA (resp. B) be an abelian group filtered by subgroups A=A, D
A; D .. (resp.B=Bg D B; D ..)such that A = P_rg A/A  andNB =
{0} (e.g-B=1im B/B ). Let u: A > B be a morphism of filtered

-
groups (i.e. a homomorphism such that u(A_ ) C B ) and let u:
A, /Ap+1 = Bo/B 4y be the induced homomorphism. Then:
(i) u, surjective for all n = u is surjective
(i) u, injective for all n = u is injective.

Proof. From the fact that u, is injective we deduce that KeruN A =
Ker u M A, ,1, hence inductively Ker u C A | for all n, which proves (ii). Let
beB be arbitrary; ug is surjective, hence there is an ag € A such that (u(ao)—
b) =b; €B;;u, issurjective, hence there is an a; € A; such that (u(a;)+b;) =
b, €By,i.e. (u(ap +a;)—b) €B2 ;in this way one constructs a series ag +a; +...;
this series converges to an element a € A; we have (u(a)—b) € B, for all n, hence
u(a) =b.

q.e.d.

(3.2) Procategories.
(3.2.A) DEFINITIONS.
Let C be an arbitrary category. We consider the procategory Pro(C) of C, of

which the objects are all directed projective systems of C, and which has as
morphisms from (X,),¢a to (Yy)p ep the set

Homp, () ((X,),(Yyp)) = lim lim Hom (X, Yy).

Such a morphism is determined by giving for every beB an a(b)e A and a
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morphism fa(b): xa(b) = Yy, (which represents f,) such that if b’ > b, there
exists an a > a(b), a(b’) such that

(X = Xyb) ™ Yo' = Yp) = (X, > X (p) > Yp)

A directed partially ordered set A will be called almost finite if for every ae A
there are only finitely many elements smaller than a. An object of Pro(C) will
be called almost finite if its index set enjoys this property.

(3.2.B) THE AXIOMS OF ABELIANNESS IN A SPECIAL CASE.

We consider morphisms of a special type (E) in Pro(C). A morphism f is of
type (E) if:
f is a morphism between objects of Pro(C) indexed by the same index
set A: f: (X,) = (Y,) where { is given by morphisms f,: X, > Y,
such that
(E)
Ky > Y2 ¥, ) = (X > X, 2 Y,)

!
whenever a > a.

Lemma. Let { be a morphism of type (E). Then:
(i) If all the f, are monomorphic, so is f.
(ii) If all the f, are epimorphic so is f.
Suppose in addition that C has a zero object and that the kernels K,
and cokernels C, of f, exist for allae A.
(iii) (K,) is a kernel of f.
(iv) (C,) is a cokernel of f.

Proof. (ii). Let g = (gp), & = (g{)): (Y,) = (Zy) be two morphisms such that
gef=glf Let g’a’(b)’ Yap) ™ Z,, represent gp, and 8a(b)® Ya(b) ~ Zp repre-

sent g . By hypothesis there exists an a > a(b'), a> a(b) such that the follow-
ing diagram commutes.

The dotted arrows exist by the hypothesis of the lemma. The morphism X, Y,
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is epimorphic, hence (Y, = Ya’(b) > Zy)= (Y, Ya(b) >Zy)ie. gy = g,'__, .
(i) is proved analogously.

(iv). By (ii) (Y,) = (C,) is an epimorphism. Let g: (Y,) > (Zy) be a morphis:
such that gof=0. Let Ba(b)® Ya(b) ~ Zp represent gy,. By hypothesis there
exists an a € A such that (X, > Y, > Y, p) > Zp) = (X, > X4y > Yop) >
0, hence Y, = Z factorizes through C,. The morphisms C, = Z so obtaine
define the desired factorization of g. (iii) is proved analogously.

q.€.

(3.2.C) Lemma.
Every object of Pro(C) is isomorphic with an almost finite object.

Proof. Let (X,), ¢a be any object of Pro(C). Consider the set S of all finite
directed subsets of A. Each s €S has a largest element a(s). We partially orde
Sby (s<s') ® (sCs'). It is clear that S is an almost finite partially ordered
dirtlzcted set. Define X := X () forallseS;and (X, > X) := (Xa(s) ™ Xy
if s'> s (which implies a(s) > a(s)). Now define morphisms f: (X) = (X,),
g (X,) = (X,) as follows: for each s€ S let a(s) be the above defined elemen
of A and define Ba(s)" Xa(s) ~ Xs as the identity; for each a€ A, let s(a) := {
and define f5(a): X (a) > X, as the identity. The maps f and g are inverses o}
each other.

(3.2.D) MORPHISMS INTO AN ALMOST FINITE OBJECT.

Let f: (X,) = (Y},) be a morphism into the almost finite object (Yy,)p ¢p- Le
B, := {beB |there are exactly n elements of B strictly smaller than b}. We
are going to determine inductively for every be B an a(b) € A and a morphi
fa(b) which represents f, such that:

(3.2D.1) Whenever b'> b, then a(b’) > a(b) and

Ka(py = Ypr > Yp) = (Xypry) > Xy (b) = Yo)-

If beBo, choose a(b) arbitrary such that there exists a representant f, 1, of
fy. LetbeB,n>1;letby,...,b, be the n elements of B smaller than b. L«
a'(b) be such there exists a representant fa'(b) of fy. Foreveryi=1,...,n
there exists an a; larger than a'(b) and a(b;), such that

(Xg; > Xarp) > ¥p) = (Xgy > Ky ™ Yoy

1
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and there exists an a(b) larger than all the a; such that all the faby = (Xap) ™
Xa; ™ Xarb) > Yo (which all represent f,) are equal. These a(b) and fa(b)
satisfy the requirements of (3.2.D.1) by their definition.

Let A' = {aeA | 2beB such that a> a(b)} . A'is cofinal in A, which implies
that (X, ), ¢ o is naturally isomorphic to (X,), ¢a- Let T be the set T :=
{(a,b)e AXB |a>a(b)} order Thy ((a',b’) > (a,b)) # (a'>aand b'>b).
Define the pro-objects (X,),e1, (Y;)ieT 2s follows: X, :=X_ and Y, := Y,
if t = (a, b); the morphisms are the natural ones. If we now define f.: X >V,
asf, :=(X, > Xa(b) > Yo) (£=(a, b)), we have found, in view of the construc-
tions above, a morphism of type (E) “isomorphic” to the original f. More
precisely, taking account of (3.2.C), we have proved:

(3.2.D.2) Lemma.

For every morphism f: (X,) = (Y}) of Pro(C) there are objects (X,),
(Y,) and a morphism of type (E) (X,) > (Y,), together with iso-
morphisms (X, ) 3 (X,), (Yp) > (Y,) such that the following diagram
commutes.

(X)) = (Yp)

I 4

(Xy) ————— (Yy)

This means that we can replace isomorphically every morphism of Pro(C) by
one of the special type discussed in (3.2.B).

(3.2.E) Proposition.

(i) If Cis additive, so is Pro(C).

(i) If C has enough kernels, so has Pro(C).
(iii) If C has enough cokemels, so has Pro(C).
(iv) If Cis abelian, so is Pro(C).

Proof. (i) is clear; (ii) and (iii) follow from (3.2.B) and (3.2.D.2). To prove (iv)
we have to show that finite products and sums exist in Pro(C), which is easy,
and that the image and coimage of a morphism of type (E) are isomorphic. Let
I, :=Ker (Y, >C,),J, :=Coker (K, > X,). The category C is abelian, the
natural induced morphism J, = I, is therefore an isomorphism. It is clear that
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these isomorphisms define an isomorphism of the pro-objects (J,) and (1,).

q.e.d.
(3.2.F) PROLONGATION OF FUNCTORS ON C.

Let C be an abelian category;and F: C = Ab (the category of abelian groups)
a functor which has only finite groups as values. We can extend F to a functor
Pro(F): Pro(C) = Ab by means of the definition

Pro(F) ((X,)aen) = Ll_rz F(X,)-
Lemma. If F is right exact on C, Pro(F) is right exact on Pro(C).

Proof. Let (X,) > (Yp) = (Z.) = O be a right exact sequence of Pro(C). By ap-
plying the procedure of (3.2.D) to the morphism (X,) = (Yy,) and then taking
the cokernel as in (3.2.B) we can change this sequence into an isomorphic
sequence (X,) > (Y,) =~ (Z,) = 0 such that the diagram

)f’ # It, r It, K
X, > Y, > Z, > 0

is exact whenever t' > t. Now apply F to this diagram and use (3.3.A) below.
The required result follows.
q.e.d.

(3.2.G) PROJECTIVE LIMITS IN PRO(C).

An object X =(X,), ¢ of Pro(C) is called strict if the morphisms X, > X,
are epimorphic for all 2> a.

Proposition. (i) Projective limits of projective systems consisting of strict pro-
objects exist in Pro(C).
(ii) Arbitrary products exist in Pro(C) if finite products exist in C.

Proof. (ii) follows from (i), once one has proved that finite products exist in

Pro(C), which is easy. As to (i), let (X;, f},l) be a projective system consisting
of strict pro-objects; write X; = (X4 )i, eT;- Let S be the disjoint union of the

42



sets T;, i€ 1. We define an ordening > on S as follows:

i, >3, i> j and there exists a map X;, = X;,, which

represents (f})t,.

(when i =j this means t > t"in T;).
The maps Xj, ™ Xj,, mentioned above define a projective system (X Jies
(One needs the strictness hypothesis to show that (Xi, > X5, > Xy ) =
(X, = Xie) if i, > j,s > k¢u). This projective system is the projective limit of
(X3)-

g.e.d.

Remark. If we had taken a weaker ordening >'on S, such that
1°. (s>'s") = (s>5)
2°.(s>5s") =(s" >ssuchthats">'s and s" > s)
then we would have obtained an isomorphic object (X); ¢ .

(3.2.H) THE PROCATEGORY OF AN ARTINIAN ABELIAN CATEGORY.
In this section we suppose that C is abelian and that every object of C is artinian.

(3.2.H.1) Every object of Pro(C) is isomorphic to a strict object. (Under the
conditions stated above).

Proof. Let (X, fg', T) be an object of Pro(C). Let Y, := N f:'(Xt,); on ac-
t>t

count of the fact that X, is artinian, there is an s(t) such that Xy(¢) = X, fac-

torizes through Y, then so does X, = X, for t' > s(t), the induced map

Xq(t) > Y¢ is epimorphic, and so is X, = Y, for every t' > s(t); it follows that

the system (Y,) is strict. The inclusions Y = X and the epimorphisms

Xy(¢) > Y show that thesystems (Y;) and (X;) are isomorphic.

q.e.d.

(3.2.H.2) Projective limits are exact in Pro(C). (Still under the conditions
stated at the beginning of this subsection (3.2.H)).

Pl’OOf. Let 0 > Al' > Bl' > Cl’ >0
0 > A B: > C > 0
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be an exact diagram for every i’ > i of a partially ordered directed index set I.

We can assume that all the objects A;, By, C; are strict. We can furthermore as-
sume that each 0> A; > B; > C; >0 is given by exact sequences 0~ Ay~
B; ~ C;, > 0 (apply the procedure of (3.2.D) to B; = C; and take the kernel

as in (3.2.B and then take the cokernel of (Ker(B; = C;) = B;) again asin (3.2.B).
Because of strictness we have an exact diagram

0 > Ait > Bit -> Cit >0
0 > Ay > By, > Gy >0

whenever all these maps exist. As to their existence:
(**)  foreveryj, and i> j there isan i, € T; such that all these maps exist.

As in (3.2.G) let S be the disjoint union of the T;. We now define a some —
what weaker ordening on S (than in (3.2.G)) as follows:

i, >j.r ®1>j and all the maps of the diagram (*) above exist.

The sequence of pro-objects 0 = (Ag) = (B) > (C,) = 0 obtained by taking
this ordening on S is exact ((*) and (3.2.B)), while property (**) and the
remark below (3.2.G) together insure that (Ag) ~ lE A, (B;) ~ lﬂ B, and
(Cq) =~ LIE C. i i

i q.e.d.

(3.3) Projective limits of finite abelian groups.

(3.3.A) Lemma.

Let T be a directed partially ordered set and (A,), (B,), (C,) projec-
tive systems of finite abelian groups indexed by T. Suppose that the

diagram
f ! !
tl
ft l f l l
t gt
A, > B, > C,

is exact for every t' > t. Then the induced sequence of abelian groups

EE‘A:"LiLnBt"EEC:



is exact.

Proof. That g-f = 0 is trivial. Let g((b,)) = 0. Let X, = £, 1(b,) for all t. If we
can show that there exists a point (a,) € lim A, such that a € X, forall t we
are through. Let S be the set of all families (Y,), e, Y, a subset of X, and
such that rE'(Yt,) C Y, forall t' > t. Order S by inclusion. The set S is not
empty and every decreasing sequence of elements of S has a minimal element
(finiteness of the X !). Let (Z,) be a minimal element of S (Zorn’s lemma)).
Owing to the minimality of (Z,) it follows first that ril(Zt,) =Z, forallt' >,
and then that each Z, consists of only one element z,. The element (z,) is the
required element of l(__nn A,.

q.e.d.

Remark. Suppose that the abelian groups A, B, C, are no longer necessarily

(3.3.B)

finite, but that we have given instead for every t a set S, of subsets of
A, such that ft_l(b) €S, for every be B, and rEI(E) €S, forevery E€ S,
t' > t, and such that the sets Ses partially ordered by inclusion, enjoy
the descending chain property. Also in this case it follows that the
sequence of abelian groups

lim A, = lim B, = lim C,
P -— a—

is exact. The proof is exactly the same except that all the Y, must be
in S,. The situation described above occurs for instance in the case
that the A, (resp. B, C,) are the groups of kypoints of quasi-algebraic
groups F, (resp. G, H,) over a base field k and the f, g, derive from
morphisms of quasi-algebraic groups. For the set S, we can then take
the set of all subsets of the form x + F'(k,) of A, = F(k,), where x€ A,
and F| is a quasi-algebraic subgroup of F. The partially ordered set

S, satisfies the descending chain condition because F, is artinian (i.e.
satisfies the descending chain condition for quasi-algebraic subgroups.)

Lemma.

Let f (X,) = (Y},) be a map of projective systems of finite abelian

groups. Suppose that:

1°. For every b € B there is an fa(b): X,(b) = Yp representing fy, which
is surjective.

2°. The system (X,) is strict.

45




Then the induced homomorphism of abelian groups lim X, = lim Yy
(——

1s surjective.

Proof. Apply the procedure of (3.2.D) to the morphism of projective systems
f. Because of 1°) and 2°) we so obtain an isomorphic morphism of projective

systems (X,) = (Y,) such that X = Y, is surjective for all t; now apply lemma
(3.3.A).

g.e.d.

4. SOME ALGEBRAIC GEOMETRY

Notation. CGy is the category of commutative abelian group schemes over a
perfect base field k; CQGy the category of commutative quasi-algebraic groups
over k. In the following we shall mainly work in the category CQGy and its
pro-category; i.e. we shall consider commutative algebraic group schemes up to
purely inseparable isogenies. There is a natural (forgetful) functor CG, = CQGy
(or, if one prefers, CQGy, is the quotient category of CGy. obtained by equating
all infinitesimal groups with the zero group.)

Let G€CQGy, G €CGy an object which represents G; we define the points of
G with values in an algebraic extension 1 of the base field k as: G(1) :=G'(1).
Because | is perfect it does not matter which G' is chosen. Section (4.1) lists
some properties of the category Pro(CQGy ). In section (4.2) we summarize

the Greenberg constructions, which are applied to the group U(K) of units of
alocal field K in (4.3). In (4.4) we construct the maximal constant quotient

of a (pro-)finite commutative quasi-algebraic group. (4.5) contains the defini-
tion of the homotopy functors 7g, 7y, T, of which some properties are given

in (4.6).

It is possible to develop the theory of chapter II (for which this section con-
tains some preliminary material) without mentioning quasi-algebraic groups
(i.e. one then works exclusively in the categories CGy and Pro(CG,)). This

is done in [10].

(4.1) Some properties of CQG, and its pro-category.
The category CGy has finite (fibre) products, it is abelian and all its objects are

artinian. (Cf. [SGAD] Exp. V Th. p. 29). It follows that the same holds for
the category CQGy. The pro-category Pro(CQGy) is therefore abelian (3.2.E),
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has arbitrary products, projective limits exist and they are exact ((3.2.G) and
(3.2.H)). It follows that Pro(CQGy) satisfies Grothendieck’s axiom AB5* (cf.
(8] (1.5)). (Let B be a subobject of G,A,, i€1 a decreasing family of subobjects
of G;let f: G = G/B be the natural projection. Consider the map of projective
systems A; = £(A;); it follows from the exactness of the projective limits that
£(NA;) = Nf(A,) and that B+ NA, = \(B + A,), which is AB5* (cf. [GP] p.19).)
Moreover we can select from the objects of CQGy, a set € of cogenerators (i.e.
every object of Pro(CQG, ) is isomorphic to a subobject of a product of ob-
jects of C). It follows that the category Pro(CQGy) has enough projectives

([8] Th. (1.10.1)).

A sequence 0> G' = G = G" = 0 in Pro(CQGy,) is exact iff its sequence of
kg-points 0~ G'(k,) = G(kg) > G"(k,) ~ 0 is exact (cf. [GP] §1 and (3.3.A)
Remark). (If X := (X, ), then X(k,) : = lﬂ X, (kg), in conformity with the
general definition of morphisms between pro-objects (cf. (3.2.A)).

(4.2) The Greenberg construction. (Cf. [6]; [CAC]).

In this section no proofs are given; they can be found in either of the two re-
ferences given above.

Let W, be the ringscheme over k defined by W, :=Spec(k[X,,...,X _;]) with
the addition and the multiplication defined by the maps X; > S; and X;~ P,
respectively, where S; and P; are the polynomials (in Xo,...,X;; Yo,...,Y})
which define the Witt addition and multiplication. (Cf. [CL] Ch. Il § 6; the
S; (resp. P;) satisfy the relations w;(So, .- ., S;) = wj(X) + w;(Y) (resp. w;(Po,
., Py) = wy(X) . wy(Y)), where wy(X) is short for w;(Xo,...,X;) : = Xgl +pX11’l—
...+ piX;; it follows from these relations that the S; and P; have integer co-
efficients.) Then W (B), the set of points of the scheme W, with valuesin B,
is the ring of Witt-vectors of length n over B for any k-algebra B. Let E be a
finitely generated module over W, (k), then E is isomorphic to a direct product
E > Wy, (k) X Wny(k) X ... X W, (k) for some ny,nz,...,ny <n.(For, as k
is perfect, W, (k) is a principal ideal domain, and its possible quotients are the
W, (k), m<n).
Now assign to E the scheme

Sch(E) := Wny X ... X Wy
We then have:

(4.2.1)  Sch(E) (k) ~E Sch(E) (ky) = E®y_ )Wy (ky)-
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Moreover to every W, (k)-multilinear map f: E; X ... X E; > E one can assign
a morphism of schemes Sch(f) such that

(4.2.2) Sch(f) (k) ~f Sch(f) (k) ~ fswn(k)wn(ks).

The functor Sch is, up to purely inseparable isogenies, uniquely determined
by these requirements. It has in addition the following property:

(4.2.3) If f: E; — E is surjective, then Sch(f) is epimorphic.

Now let A be an artinian local ring with k as residue field, then A is a finitely
generated W, (k)-module for some n, and is also a W, (k)-algebra. Addition

and multiplication are bilinear, hence we get a structure of ringscheme on Sch(4A).
The reduction map s: A = k induces a morphism s: Sch(A) = G, = Sch (k)

(= the additive group over k). Also the canonical lifting map r: k = A (defined

by the requirements: r is a homomorphism such that s-r = id. in the case

char(k) = 0;and by ser = id. and r(xP) = r(x)P for all x €k in the case char(k)=p)
defines a morphism of the corresponding schemes, which is an embedding of G,
onto a closed subscheme of Sch(A).

Let U be the subscheme of units of Sch(A) (cf. [7] section 6). Then we have for
U:

(4.2.4) U is an open multiplicative group subscheme of Sch(A).
U(k) = units of A, U(ky) = units of A ® W (k).
The morphism r: G, > Sch(A) embeds G_, homomorphically into U. We have

(4.2.5)  U=x~Gp, X Ul (as group schemes; Ul := Ker (s: U=>G)

Ul is a unipotent group scheme.
(4.2.6) U is connected and reduced.
Lastly, we remark that:
(4.2.7) If Ais free over W (k), then Sch(A) represents the functor:
B Aoy (k) Wn(B) (B a k-algebra).

(Because, as a module over W, (k), A ~ W, (k), therefore Sch(A) ~ W,
Hom(Spec(B), Wy) ~ (Hom (Spec (B),Wn)t =W, (B)t ~ (W, (k) ®Wn<k)Wn(B))t‘—‘—’
=Wn(k)"®y (k)Wa(B) = A &y (1 W, (B).)
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(4.3) Pro-algebraic structure on U(K).

As in section (4.2) almost no proofs are given; they can be found in [CAC]
§ 1. We shall use the same symbol to denote an object of CGy, and the object
of CQGy which it represents.

Let K be a local field with perfect residue field k. The ring A, := A(K)/m?(K)
is a local artin ring with residue field k. (M7 (K) = 1 + n} A(K)). By applying
the constructions of (4.2) one obtains a group scheme U, € CGy such that:
(4.3.1) U, (k) = U(A(K)MP(K)) ~ U(K)/U(K)
Up(ky) > U(K,,)/UM(K,,) = UK, )/UR(K

nr)’

If n> m, the natural map A > A is surjective, and it is W (k)-linear for some
large t. Applying (4.2) again we obtain epimorphisms Sch(A ) = Sch (Ap,) and
U, = U,,,, which on k-points and kg-points are the usual reductions. Let

Uy €Pro(CGy) be the pro-algebraic group scheme Uy := (U, ), ¢y then we
have:

(4.3.2) Uy (k) = U(K), Ug (k) ~ U(K,,,).

Uy has a filtration by sub-group schemes Uy D Ull( D...DUg D...which
is separated (U := Ker (Ug > U, )), and we have:

(4.3.3) Uk (k) ~ 1+ mg A(K) = Un(K),

Uk (ky) =1+ m} A(Ky,) = UP(Ky,,).
From (4.2.5) results that:
(4.3.4) Ug ~G,, X Uk

The morphism G, - U%/K?(ﬂ defined by x> 1 + g x (n > 1) is a purely in-
separable isogeny (of degree [%] ). It follows that:

(4.3.5) UR /U1 ~G, inPro(CQGy), n>1.

where the isomorphism on kg-points is the usual one (1 + g x+ ). Define an
object of Pro(CQGy) to be connected if it is given by a projective system con-
sisting of connected quasi-algebraic groups. Then we have:

(4.3.6) The pro-quasi-algebraic groups Ug are absolutely connected; i.e.
TR ®p kg =~ U’f‘(m is connected.
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(4.4) Maximal constant quotients.
(4.4.A) CONSTANT ALGEBRAIC GROUP SCHEMES.

Let S be an abstract finite group. Consider the ring Map(S,k) of all maps of §
into k (pointwise multiplication and addition). The multiplication of the

group S X S = S induces a co-multiplication Map (S,k) - Map(S,k) ® Map(S,k).
We define the constant algebraic group scheme over k belonging to S as the
group scheme Sy := Spec(Map (S,k)), with the multiplication induced by the
co-multiplication described above. If B is any k-algebra without zero divisors,
then we have S (B) = Hom 1,(Map(8,k),B) =~ S (whence the name constant
group scheme).

The correspondences S+ Sy, G = G (k,) define an equivalence of categories
between the constant algebraic group schemes and the finite abstract groups.

(4.4B) Lemma.

A finite reduced algebraic group scheme over k is constant iff G (k)
G(k,). (k is assumed to be perfect).

Proof. It is clear that G(k) = G (k) for a constant group scheme G. Conversely,
the algebra A of a finite reduced algebraic group scheme G is a reduced artin
algebra and therefore A ~ [T k;, where the k; are finite (separable, ask is per-

1

fect), extensions of k. The ky-points of G are the maps Af-i»ki iks where p;
is the projection on the i-th factor and 0 € G(k, k; > k). Such a point is in
G (k) iff it factorizes through k; i.e. iff k; =k for the index i in question.
Therefore G(k) = G(k,) impliesk; = k for all i, and G is constant.

q.e.d.

(4.4.C) Lemma.

Let G be a finite commutative quasi-algebraic group (or a reduced
finite algebraic group scheme), and suppose that H; and H, are two
constant quotients of G. Then there exists a constant quotient H of
G larger than both H; and H,.

Proof. Let K; and K, be the kernels of G > H; and G~ Hj, respectively. Let

H:=G/K,; NK,.As Hisreduced if G is, we only have to show that H(k) is
invariant under the action of the galoisgroup G(ky/k), i.e. that every coset of
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(K1 NKy) (k) in G(k,) is mapped in itself under G(k /k). We know that this
is the case for the cosets of K4 (k) and K, (k). Now x (K, (ky) N K, (k) =
xKq(kg) M xKy (k) and we are through.

q.ed.

(4.4.D) CONSTRUCTION OF THE FUNCTOR Q.

It results from lemma (4.4.C) above and the fact that an abelian finite quasi- *
algebraic group is artinian (i.e. satisfies the descending chain condition on sub-
groups) that there exists a maximal constant quotient Q(G) of a finite abelian
quasi-algebraic group G. Every homomorphism of G into a constant quasi-
algebraic group factorizes uniquely through Q(G). It follows that the functor
Qisleft adjoint to the inclusion functor I of the category CCQGy of commu-
tative constant quasi-algebraic groups into the category FCQGy of finite com-
mutative quasi-algebraic groups,

CCQGK(Q(G), €) ~ FCQG (G, I(C)),

it follows that Q is rightexact (cf. [5] Prop. 7 Ch. 1). The category CCQG;, is
equivalent to the category FAD of finite abelian groups. Therefore we can ex-
tend Qto a functor from the category Pro(CQGy ) into the category of pro-

algebraic constant groups, and this extension is also right exact, as is the com-

posed functor G+ Q(G) = Q(G) (k) (3.2.F).
(4.5) The functors my, m; and n
(4.5.A) DEFINITION OF THE FUNCTORS T, 7, T.

Let U e CQGy, be a quasi-algebraic group; U° the connected component of the
identity of U. We define the functor m : CQGy = FCQGy as

(4.5.A.1) 7o (U) := U/U°

Ty also denotes the canonical extension of this functor to a functor between
the pro-categories Pro(CQGy ) and Pro(FCQGy ) (i.e. Mo ((Ua)) := (Mo (Ua))-
The functors m; are the left derived functors of 7g. The properties of Pro(CQGy)
mentioned in (4.1) ensure the existence of the mj. If 0~ U->U-U"->0is
an exact sequence in Pro(CQGy ), we have a long exact sequence

(4.5.A.2)
vy (U') > 1y (U) > 71y (U") > 0 (U) = mo(U) > mo(U”) > 0.
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There is also an explicit description of m; (U) for a connected (pro-)quasi-alge-
braic group U. Consider all isogenies 0> N¢—> Ug=> U= 0 of U. Another isogeny
0~ Ng - Ug & U~ 0 is said to be larger than f, if there exists a morphism h:

Ug > Ug such that foh = g. Such an h induces a morphism Ny = N¢. The finite
quasi-algebraic groups N¢ with these morphisms form a projective system. It
turns out that (cf. [GP] (6.4)):

(4.5.A.3) m (U) =~ (Ng)¢

If we take instead of all isogenies of U only those which have a constant kernel
(ie. Ng(k) = Ng(k); cf. (4.4)) we obtain another functor

(4.5.A.4) T(U)=(Ng)e,  Ngconstant.

(4.5.B) Remarks.

1. For both m; (U) and n(U) of a connected quasi-algebraic group U we need
sider only those isogenies 0 > N¢ = U, = U > 0 for which U is connected.
Then the factorizing maps U « = Ug are all epimorphic, and we find that
7y (U) and 1(U) can be given as strict projective systems.

2. It follows immediately from the definition of the functor Q in (4.4.B) that
for a connected quasi-algebraic group U € Pro(CQGy,)

(4.5.B.1) Qmy (U) ~n(U)

One can of course use this formula to define n(U) also for not necessarily
connected quasi-algebraic groups U.

3.1f0~> U' > U~>U" > 0 is anexact sequence in Pro(CQGy ), and U’ is con-
nected we have an exact sequence

m (U') > my (U) = 7y (U") > 0
and therefore because Q is right exact (4.4.B) exact sequences:
™U') > (V) > n(U") >0,

n(U') (k) > 1(U) (kg) > n(U") (k) = O.

(4.5.C) Lemma.

Let X€Pro(CGy ) be a projective pro-algebraic group scheme over k.
Its extension Xy € Pro(CGy ) is then also projective. '
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Proof. We need only prove that if we have an exact diagram

R
g 7
-t
¥
Y > Z
h

where Y, Z are algebraic group schemes over kg, and h is epimorphic, then there
exists a morphism g: e, Y such that f = h«g. (Cf. (3.2) or [GP] (3.1) Prop.
2). The group schemes Y, Z are algebraic and therefore already defined over a
finite extension 1 of k, which we can assume to be galois. Let G : = G (I/k) be
the galois group. It suffices to prove that the map Pro(CG,;) (X}, Y) >
Pro(CGy) (X1, Z), induced by h is surjective. Quite generally if l/k is a finite
extension there exists a functor WR: CG| = CGy, the Weil restriction functor,
which is right adjoint to the base change functor, i.e. there is a bi-functor iso-
morphism

>0

CG)(A},B) 5 CGy (A, WR(B)).

When l/k is galois, one can describe WR as follows. Let B € CGy, take the

product B’ = II B, of all the conjugates of B, where B, has the structural
teG

-1 '
morphism B, SB- Spec(l) 5 Spec(l). There is a natural action of G on B
given on C-points (C an l-algebra) by the formula

s((@)rec) = (brregr  be = S 1,0

This action commutes with the structural morphism B’ ~ Spec(l). Therefore
there exists a unique scheme WR (B) over k such that B’ ~ WR(B) ®, 1 and
such that the action t*=> WR(B) ®,t of G on B’ is exactly the above described
action. Note that WR(B) - WR(A) is epimorphic if B = A is epimorphic. We
have a commutative diagram:

Pro(CG)) (X}, Y) > Pro(CGy) (X, Z)

A A
Pro(CG, ) (X, WR(Y)) = Pro(CGy) (X,WR(Z))

The bottom map is surjective because WR(Y) > WR (Z) is epimorphic and X is
projective. It follows that the top map is also surjective.
q.e.d.
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Remarks.

1. It is not necessary for the lemma above to suppose that k is perfect.

2. The Weil restriction functor exists more generally as a functor WR: Schy; >
Schyy. Cf. [21] ;see also [15] p. 3,4 for some more remarks on the existence
of adjoint functors to the base change functor.

3. For some more information about the conditions under which the image
S(P) of a projective object P in an adjoint situation S, T is again projective,
¢f. [13] Ch. V Th. (7.2).

(4.5.D) Proposition.

The functors m; commute with the base change k — k.

Proof. The functor T, commutes with the base change ([SGAD] Exp. VI,
p. 10). Let U € Pro(CQG; ) be a pro-quasi-algebraic group over k; X U a pro-
jective resolution of U over k. We then have:

(3)
) =

1 2
(mi(U))xg += (Hi(mo (X)) )i g Hj (7o (X)) 2 Hi(mo (Xky)) = mi(Uky),

because of the reasons:

(1) the base change functor k — kg is exact.

(2) mo commutes with the base change k — k.

(3) X, is a projective resolution of Uy, because the (Xj)kg are projective (4.5.C)
and because the base change functor k — kg is exact.

q.e.d.
(4.6) Some properties of 7; andm.
IfM s a finite abelian group, M; = {x €M | order(x) is a power of | } denotes

the l-primary part of M for every prime number l. We have M ~ [T M. If M =
lim (M,) we define M; : = lim (M, );; we still have M ~ II M;.
-~ - 1

(4.6.A) Proposition.

If1# char(k), then n(U) (ky) = 0 = m, (U) (k) for unipotent pro-quasi-
algebraic groups U over k.

Proof. Multiplication with 1is an isomorphism U = U; therefore m, (U) (ky) =
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71 (U) (ks) is also an isomorphism, which proves that m; (U) (kg) = 0. The pro-
quasi-algebraic group n(U) is a quotient of 7, (U).
q.e.d.

(4.6.B) Proposition.

™G ) (k) =1(Gp) (k) = u(K) := group of all roots of unity of k.

Proof. We know that over k, the maps G, -i G, are cofinal in the system of
all isogenies of G| (cf. [GP] § 6 Prop. 9). Now let 0> N—=>E > G, >0 be

an isogeny with constant kernel. According to the above there exist a natural
number n and a morphism g: G, = E defined over kg which factorizes n through
f. Let s€ G(ky/k), then f(s'1gs—g) = s'Ins—n = 0;i.e. s 1gs—g factorizes through
N. But G, is connected and N is finite, so we have s‘lgs—-g = 0; i.e. gis defined
over k. Taking the image of G, under gin E we obtain an isogeny of type

G, L m With constant kernel, which is larger than the f we started with.

An isogeny Gm—r> G, has constant kernel iff k contains the r-th roots of unity.

q.e.d.

(4.6.C) Proposition.
Let GeCQGy be a connected commutative quasi-algebraic group. Then
Hom(n(G), (Z/pZ)y) ~ Ext(G, (Z/pZ)y).

Proof. Let G := (Gg¢), where G¢ —f>G runs through all connected isogenies of G.
Then we have by definition of m; an exact sequence

0-~>m(G)~>G~>G~0.

Now Ext(N, G) = 0 if N is a finite group. Forlet 0> N> X—> G~ O be an
extension of G; then there is an Gy such that this extension is obtained from
an extension 0 > N = X~ G¢ > 0 (because N is finite; cf. [GP] (3.4) Prop. 7).
But X;— G¢ — G is an isogeny of G, hence G = G factorizes through X;. The
morphism G = X defines a section of the extension 0 > N> X >G ~ 0.
Consider part of the long exact sequence of the Hom and Ext groups

Hom (G,(Z/pZ)y) = Hom(m,(G),(Z/pZ),) > Ext(G,(Z/pZ);) > Ext(G,(Z/pZ)y )

Now Hom(a,(Z/pZ)k) = 0 because G is connected and (Z/pZ)y is finite; by the
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above Ext(G,(Z/pZ);) = 0; therefore we have an isomorphism
Hom(m1(G), (Z/pZ)y ) 5 Ext(G, (Z/pZ)y)

But (Z/pZ)y is constant. By the definition of the functor Q every homomor-
phism 7 (G) = (Z/pZ)) factors uniquely through Qm; (G) ~1(G) (cf. (4.4.D),
(4.5.B)).

q.e.d.

(4.6.D) ISOGENITIES OF G, OVER Ks‘

Suppose char(k) = p # 0. All non-trivial isogenies of G, with kernel (Z/pZ)
over kg are of the type

f 8
0-(Z/pZ)y,—>G,—G,~>0

where f is multiplication with an element c €k, and g is given by g(x) = axP + bx,
where a, b, cek; are such that ab # 0, acP + bc = 0. Two of these extensions

are isomorphicfiffthe numbersalcP are equal. ([GP] § 8 Prop. 3). The map
(0~ (Z/pZ), -G, iGa = 0) = a'lcP defines an isomorphism

Ext(G,, (Z/pZ)y) >k,
(4.6.E) FORMS OF AN ALGEBRAIC GROUP.

Let U be an algebraic group over k, and 1/k a (galois) extension of k. An alge-
braic group U’ over k is called an 1/k-form of U iff U; ~ Uj. The group G(I/k) =
G acts on the automorphism group A(U;) of l-automorphisms of Uy as s(9) =
spsl seG,peA(U)).

Proposition. There is a 1—1 correspondence between the set Ejy (U) of I/k-forms
of an algebraic group U, and the cohomology group H' (G (I/k),
A(Up)) (k is assumed to be perfect).

For a proof cf. [18]) Ch.III § 1.
(4.6.F) Application.

The algebraic group G, has no other I/k-forms than itself for all galois
extensions l/k.
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Proof. An automorphism (G,); > (G,); is given by an algebra homomorphism
1[X] = 1[X], X {(X); there must be an inverse automorphism; this shows that
degree f(X)) = 1. The morphism (G, ); = (G,); must be additive, which implies
that for f(X) we must have f(18X+X®1) = 1 ®£(X) + f(X)® 1 which shows
that f(X) = uX for some non zero constant u €l. The action of G'1/k) on
A((G,);) becomes the galois action under this identification. But A (G(I/k),1*)=0
by (1.7) (“Hilbert 90”). An application of (4.6.E) concludes the proof.

q.e.d.

Remark. (4.6.F) is no longer necessarily true if 1/k is non-separable.

(4.6.G) Proposition.
If char (k) = p, then Homy (1(G,), (Z/pZ)y ) ~ k.

Proof. The algebraic group G, has no other k /k-forms than itself. (k is perfect!).
Therefore according to (4.6.D) above, if we have a nontrivial extension 0>
(Z/pZ), > X G, = 0 then X ~ G, and we have an extension of the type

0> (Z/pZ), —G, —g;Ga = 0 where f is given by 1+ ¢, g by x> axP + bx,

with the relations ab # 0 and acP + bc = 0 between a, b, ¢ € k. The morphism

f is defined over k iff cek, and g is defined over k iff a, b € k. Therefore we

have an isomorphism Ext(G,,(Z/pZ)y) =~k (4.6.D), and we are through in view
of (4.6.C).

q.ed.

(4.7) Lemma on short exact sequences.

Leto>N->X->U—=>0and o >N = X = U~ 0 be two short exact sefuences
(in Pro(CGy ) or in Pro(CQGy)) with X, X' connected and N, N’ pro-finite.
Suppose that there exists a morphism f': Xk, ™ Xi(s with an exact diagram

0o > Ng, > Xgg > Ugg > 0

Lol

o = Nk, > Xi, = U, > 0

then there exists a morphism f: X = X' with an exact diagram
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o>N ->X >U=->0

el |

o> N->X >U=>0

such that fi = f'. The morphism f is an isomorphism iff f' is an isomorphism.

Proof. We only have to show that f commutes with the action of G (k/k) on
Xk, and Xi(s. Let s€ G(k,/k); composing s 1f's—f with Xi‘s = Uy, gives zero,
accordingly s"1f's—f factorizes through Nj_; but Xy is connected (because X
is) and Nk s is pro-finite; it follows that sifs_f'=0.

q.e.d.
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CHAPTERII
MAXIMAL ABELIAN EXTENSIONS OF LOCAL FIELDS

This chapter delas with a description of the galois group Oty (defined in (2.8.H),
cf. also (2.8.])) in terms of isogenies of the pro-quasi-algebraic group Uy (‘of
units of K’; K isalocal field with perfect residue field k). In [CAC] Serre proved
that T3 (Ug) = Olg when k is algebraically closed. In this chapter we generalize
Serre’s theorem to (Ug ) (k) =~ Ol where 2(Ug) is the maximal constant quo-
tient of m; (Ug ). (Cf. (4.5.B) and (4.4.D)).

Let L/K be a galois extension. The galoisgroup G(L,./K) acts continuously on
L., hence we can extend this action by continuity to an action on im,. (Note
that the K-automorphisms of L so obtained are exactly the continuous K-auto-
morphisms of L ).

5. STATEMENT OF THE THEOREM (5.4.D).

In this section we define a surjective homomorphism &: n(Ug) (kg) = Oly,
which will be proved to be anisomorphism in section 6, and again in section 7.
Section (5.1) contains some lemmas on the action of G(k/k) on Uy (k).

In (5.2) we encounter the algebraic geometric version of the fundamental exact
sequence (2.7.A.2); (5.3) is a lemma on the functoriality of this sequence.
Section 5 closes with (5.4) wherein we define the homomorphism §:

1™ (Ug) (kg) = Olg and show that it is surjective.

(5.1) The action of G(k/k) on Uy (k).

Let K be a local field with perfect residue field k; K, denotes the completion
of the maximal unramified extension K of K. According to (4.3) there exists
a pro-quasi-algebraic group Uy such that Ug (k) ~ U(K) and Ug (k) ~ U(K
There are two natural actions of G(kg/k) on Ug (k,):
1° the action defined by the pro-quasi-algebraic group structure of Uy over
k.
2° let ¢ be the canonical homomorphism which lifts G(ky/k) to G(K,/K)
(see e.g. [22] Prop 3-5-1) and define s(u) := ¢(s)(u) for se G(kg/k),
weURK,,) CR,,.

nr)-
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(5.1.A) Lemma

These two actions coincide.

Proof. Both actions can be extended to an action on A(K,,) as a group of con-
tinuous ring automorphisms which leave A(K) pointwise invariant and both
reduce mod. ‘m(ﬁm) to the galois action of G(ky/k) on k. There is only one
such action of G(ky/k) on A(K,) C A(K,,). (Again according to [22] Prop
3-5-1). The lemma follows by continuity.

g-e.d.
(5.1.B) TOTALLY RAMIFIED GALOIS EXTENSIONS.

Let L/K be a totally ramified galois extension. By (2.7.A) we have an exact
sequence (2.7.A.2):

(5.1.B.1) 0~ G(L/K)®® > UL, )/ V(L) > URp) = 0.

The induced action of G(k/k) on G(L/K)élb = G('I\,‘.lr/f{m,)ab is the action by

inner automorphisms ((5.1.A) and (2.7.A.3)); i.e. if s€ G(ky/k) and t e G(L/K)

represents t eG(L/K)ab, and s€ G(L/K) is any lift of 5, then 3(%) = stst (as
( tﬂL> sts‘l(sﬂ'L) _ sts’ (my) )

s{—] = = .

TYL S 1TL 1TL

(5.1.C) Lemma

G(L/K)ab is invariant under the action of G(k/k) (when L/K is totally
ramified galois).

Proof. This follows from the fact that L/K and K /K are linearly disjoint and
from (5.1.B) above.

q.e.d.
(5.2) The fundamental exact sequence.
Let L/K be any finite totally ramified extension. A homomorphism s € G(K, L~>Q)
induces a linear morphism s: A(L) > A(sL), and hence gives rise to a morphism

of pro-algebraic schemes s: Uy > Ug . We now define the morphism Ny :
Uy = Uk to be the composite
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Uy —— MU _mult. Uy,
s

X —3 (s1%,...,5,%) —— Ilsx.
s

(5.2.A) Lemma.

Let L/K be a totally ramified galois extension, and let C be the kernel
of the morphism N jg: Uy = Ug. We then have Cp 4 = Ig Uy, (and
hence C%= 15Uy in the category Pro(CQGy ). (Where G = G(L/K), and
C?.4 denotes the maximal reduced subscheme of the connected com-
ponent of the identity C® of C; C34 is a pro-algebraic group sub-scheme
of C (cf. [16] Lemma (1.11))).

Proof. The pro-algebraic group scheme IgUy is the sum of the group schemes
(s—1)Uy, (s€ G) which are all connected and reduced; their intersection is non-
empty; therefore IgUp is connected and reduced; hence IgUy C C&q. On the
other hand C(k,) /15Uy (k) = G(L/K)?® is a finite group (5.1.B.1).

q.e.d.

Remark.

The pro-algebraic group scheme C is in general not reduced. Cf. § 8.
(5.2.B) THE FUNDAMENTAL EXACT SEQUENCE

Let Vy denote the connected component of the identity of the kernel of
Npjk: Up = Uy, where again L/K is supposed to be totally ramified galois.
We see then from (5.2.A) that the exact sequence (2.7.A.2) is nothing else but
the sequence of k-points of the exact sequence of pro-quasi-algebraic groups
(or pro-algebraic group schemes)

(5.2.B.1) 0~ G(L/K)® > Uy [V, = Ug > 0,
where G(L/K)ab is some form of (G(L/K)ab)k. But (5.1.C) now shows that:
(5.2.B.2)  G(L/K)? is constant; i.e. G(L/K)?®® =~ (G(L/K)?®),.

(cf. (4.4.B)). The symbol Ey ;i will denote the element of Ext(UK,G(L/K)ab)
determined by the exact sequence (5.2.B.1).
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(5.2.C) DEFINITION OF THE HOMOMORPHISMS "9L /K-

From (5.2.A) we see that G(L/K)ab = mo (Ker N g ); writing down the long
exact sequence of 0> C = U = Ug = 0 now gives an exact sequence

1 (Ug) = 1 (Ug) > G(L/K)?P > 0

(for Uy, is connected (4.3.6)). The quasi-algebraic group G(L/ K)a‘b is constant;
therefore, taking maximal constant quotients (which is a right exact functor
(4.4.D)) we obtain exact sequences

(5.2.C.1) (Ug) = M(Ug) ~> G(L/K)*® - 0

Ik b
(5.2.C.2) MUy ) (k) —p(Ug) (k;) —>G(L/K)® ——0

The morphism WUy ) = G(L/ K)ab in the sequence (5.2.C.1) above is the same
as the morphism defined by the isogeny (5.2.B.1).

(5.2.D) Lemma

Let L/K be any finite totally ramified extension. Then there exists
a finite abelian totally ramified extension M/K such that

Nmyk ((Upm)) © Npjx ((Ur)) © n(Uk)-

Proof. Let L' be any finite galois extension of K which contains L. Let G :=

= G(L'/K); let K, be the maximal unramified extension of K contained in L',

letH := _G(L'/Kn). Let M’ be the invariant field of the normal subgroup <H,G>

of G; as H is normal in G, <H,G> C H. The group H/<H,G> is central in

G/<H,G>, therefore, according to (2.8), we can suppose, by enlarging K_ if

necessary, that:

1° there exists a totally ramified abelian extension M/K such that M C L' and
M.X, =M/ (28.F),

2° there exists a totally ramified extension P such that M CP C L' and P. K, =
=L', (2.8.E),

3° there exists a totally ramified extension P’ such that L C P’ C L' and P'.Kn -
=L, (2.8.E).

We have:

(5.2.D.1) G(M/K) ~ H/<H,G>.
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Now let Vp be the connected component of the identity of the kernel of the
morphism Np/x from Up to Ug. This give an exact sequence

N
(5.2D.2) 0 > D > Up/Vp —21K, Uy >0,

where D is finite, which after base extension k — k| (where k is the residue
field of K ) becomes isomorphic to the exact sequence

0 G(L'/K, )% > Uy /vy~ Ug_ = 0.

It follows that D(k) = H*® = G(L'/K,)®". The action of G(k/k) on D(k,) i,
however, not trivial in general; in fact the maximal constant quotient of D is
(H/<H,G>)y. (Because the action of G(k/k) on H2b ~ D(k,) is by inner auto-
morphisms, (5.1.B).)

The sequence (5.2.D.2) yields an exact sequertce

™ (Up/Vp) > m (Ug) >D >0
and hence an exact sequence (the functor Q is right exact!)
T(Up/Vp) > n(Ug) = (H/<H,G>)y = 0,
which composed with the epimorphism
T(Up) > 1(Up/Vp),
gives an exact sequence
n(Up) » 1(Ug) > (HIG,H>), = 0.

The morphism n(Up) = n(Uyg ) factorizes through n(Uyy) (simply because
M CP), and there is also an exact sequence (5.2.C.1)

™(Um) > 1(Ux) > G(M/K) = 0
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where G(M/K) =~ (G/<G,H>),. (5.2.D.1). Hence

(5.2.D.3) Nm/k (MUnm)) = Npjx (0(Up))

The exact sequence 0 = D = Up/Vp > Ug = 0 and the analogous sequence
0~ D’ = Up'/Vp' = Ug —> 0 become isomorphic after base extension k — k,
because P.K_ = P".K_ =L'. This yields an exact diagram (4.7)

bl

0~>D' > Up!/Vp! = Uy = 0.

It follows that Np/x W(Up/Vp) = Np/jx 7(Up'/Vp'), and, as the natural morphisms
n(Up) = n(Up/Vp), MUp’) = n(Up'/ V') are epimorphic, that

(5.2.D.4) NPIKT\(UP) = NP'/K ‘\‘(Up'}.

Now Npg n(Up') C Ny g 7(Ky ) because L C P'. Combining this with (5.2.D.3)
and (5.2.D.4) yields:

Ny M(Upm) = Npjg ™(Up) = Np’g M(Up’) € Ny jx n(Ug ).

(5.3) Functoriality.

Let L/K and M/K be two totally ramified galois extensions such that L C M,
then the following diagrams are commutative

N
0 — GMK)® — 5 Uy/vy Ky — o0

lq lNMrL

N
0 — GL/K® — Uy 2B vy — o,

N
rUy) —K nUg) —> GMK)® —5 0

N
n(UD) —5 nUR) — GIL/K)?® — o,




where q is the natural projection. The commutativity of the left hand square
in the first diagram follows from (2.7.A.3) and the fact that Ny (my) is a
uniformizing element of L if myis a uniformizing element of M; the commu-
tativity of the second diagram follows from that of the first. (Cf. (5.2.€)).

(5.4) Statement of the theorem.

Let Oty := G(Kab/K)ram := the ramified part of the galois group of the maximal
abelian extension of K (cf. (2.8.H)).

(5.4.A) Lemma
Let L/K and L'/K be two abelian totally ramified extensions such

that LK = L'.Km., then also L.K:? = L'.Kla": .

Proof. Let K be the maximal unramified extension of K contained in L.L';
then LK = L'.Kn, and K /K is abelian because L.L'/K is abelian.

q.e.d.

(5.4.B) Lemma
Let L,L' be two abelian totally ramified.extensions such that LK =

=LK, then Uy /Vy ~Up'/Vy’and Epx = Evk.

Proof. This follows from (4.7) because of L.K, = L".K

nr
(5.4.C) DEFINITION OF THE HOMOMORPHISM §.

According to (5.2.B) we have for every totally ramified abelian L/K an isogeny
with constant kernel

0 G(L/K) > U /Vy, = Ug > 0.

This defines a homomorphism 9y : n(Ug) (kg) > G(L/K), cf. (5.2.C).
If L'/K is another totally ramified extension, then there exists by lemma

(5.4.A), the corollary to the pull-back theorem (2.8.G) and lemma (5.4.B) an
isogeny

0- G(M/K) ~ Kpy/Viy = Ug > 0,

which is larger than both Up'/Vy’ = Uy and Up /Vy = Uy, (cf. also (5.3)).
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Letting L run through all totally ramified abelian extension and taking projec-
tive limits we obtain a homomorphism (cf. (5.3) and (2.8.H)):

(5.4.C.1) 9: 1(Ug ) (k) = w(Ug) (kg) > Otg.

This homomorphism is surjective for the following reasons.

1° Uy is connected; n(Ug) is given by a strict system (cf. (4.5.B)).

2° For every finite quotient G of Ol there exist a totally ramified abelian L/K
such that G ~ G(L/K) (2.8.H).

3° The lemma (3.3.B) on projective limits of finite abelian groups.

(5.4.D) Theorem

The surjective homomorphism & above (5.4.D.1) is an isomorphism.

This theorem will be proved in the following section (§ 6).

6. PROOF OF THE THEOREM (5.4.D).

In this section we prove theorem (5.4.D), which states that the homomorphism
¥ is an isomorphism. The proof given here is an adaptation of the proof given
by Serre in [CAC] for the algebraically closed case (k = k).

A brief outline of the proof follows here. We decompose both Oly and
1(Ug ) (k) in their l-primary parts (cf. (4.6)), as well as the homomorphism

¥ between these groups. It is not difficult to prove that the homomorphisms
8 are isomorphisms when 1 # p = char(k). This is done in (6.1). After studying
some properties of extensions of degree p in (6.2), and after proving some
lemmas in (6.3), we give in (6.4) and (6.5) a number of examples of extensions
of degree p (all totally ramified). It turns out these consitute sufficiently many
extensions of degree p; in the sense that these extensions suffice to show that
the dual homomorphism §*: Hom(Ct ¢, Z/pZ) - Hom (n(Uy ) (k),Z/pZ) is
surjective (6.6). This fact and lemma (5.2.D) are used to complete the proof
of the theorem (5.4.D) in (6.7), except for lemma (6.4) which is only proved
for k =k in (6.4). Section (6.8) contains the proof of lemma (6.4) when k is
not necessarily algebraically closed.

Uk, UKI, ... etc. are in this section always taken as objects of the category
Pro(CQGy,) of pro-quasi-algebraic groups over the base field k.
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(6.1) The case 1 # p = char(k).

Both Uy ) (kg) and Oty are pro-finite groups, and therefore they decompose
as the product of their I-primary parts (I a prime number; cf. (4.6))

™(Ug) (k) =~ III(P(UK) (ks)h » Olg = 111(011()1’

where | runs through all prime numbers. The homomorphism & likewise decom-
poses as the product of the induced homomorphisms 9y: n(Uyk ) (k¢); = (Ot g )y
thus it suffices to prove that ¥y are isomorphisms.

(6.1.A) Lemma

If1# p := char(k), then ¥, is an isomorphism.

The pro-quasi-algebraic group Ug decomposes as Ug ~ Ug! X G, (4.3.4);
whence n(Ug ) =~ 11(UJI‘{) X 1(Gp)sthe group Ug ! is unipotent (cf. (4.3.5)),
therefore n(U%()(ks)l =0 (4.6.A). Furthermore n(G, ); = my=(k) := group of
all I*-th roots of unity in k for all n (4.6.B). The homomorphism ¥ is surjec-
tive (5.4.C). If there exist 1"-th roots of unity in k, then they also exist in K
(Hensel’s lemma), and the extension of K defined by Xln-ﬂK is totally ramified
abelian and yields an isogeny which is multiplication with I* on G_,. This con-
cludes the proof in view of (4.6.B)

q.e.d.

The only thing left to prove is that 9 is an isomorphism in the case p = char(k)
# 0. We therefore assume from now on in this section that char(k) # 0.

(6.1.B) DEFINITION OF H(Ug) AND H(Oly).

Let U be a pro-quasi-algebraic group over k. We define H(U) := Ext(U, Z/pZ), )
= Pro(CQGy ) (1(U), (Z/pZ)y) = Hom(n(U) (k,), Z/pZ) (4.6.C). If £:U~ V is

a morphism of pro-quasi-algebraic groups, let f* be the induced homomorphism
H(V) = H(U). In addition we define H(Olg ) := Hom(Olg, Z/pZ) and $* = 83F =
the homomorphism defined by ¥:

9*: Hom(Oty, Z/pZ) > Hom(1(U) (k), Z/pZ) =~ Ext(U,(Z/pZ)y).
(6.2) Extensions of degree p.

(6.2.A) Let £ : Olg = Z/pZ be an element of H(Ol ). This element defines a
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totally ramified abelian extension L/K of degree p (2.8) and a choice of an iso-
morphism Z/pZ =~ G(L/K) (i.e. a choice of a generator). Then 3*(§) is the ele-
ment of H(Ug ) = Ext(Ug, (Z/pZ);) represented by the sequence

N

((5.2.B.1);same choice of isomorphism Z/pZ =~ G(L/K)).
Let t be the largest integer such that G, = G (where G := G(L/K); cf. (2.5));

i ST
the image of G under the homomorphism G RN Uy (k) (s N ) is then
s
contained in Uy *(k,) by the definition of t. We have according to (2.7.B)
(6.2.A.1) (KerN) (ko) N UF (k) = vy (k)

The norm morphism N: Uy, > Uy induces a sequence

!

N
(6.2A.2) 0 —> G —» UL /US — Up/uft — 0

because Y(t) =t (cf. (2.6)); where G := G(L/K) =~ (G(L/K))y.
This sequence (6.2.A.2) is exact, which is proved by some diagram chasing and
an application of (2.6.E) in the diagram (6.2.A.3) below.

0 —> G > Up(k/Vy (k) N> Ug(k) —> 0

P

’

(6.2.A.3)

S .
0 —> G —> Up (k)/UFI(r) —> Ug(k)/UE (k) —> 0

(We have i(G) N ULHl(ks) = {1} (definition of t; G is cyclic \f prime order!),
and the homomorphism N’ is clearly surjective. Let x € Uy (k) be such that
N'(x) = 0; then N(x) eUKt+1(ks). The homomorphism N: UL"+1(ks)
—— Ug™1(k,) is surjective ((2.6.E); ¥(t) = t). Let y e Uy ** 1 (k) be
such that N(x) = N(y), then q(y"1x) = q(x) an« ~¥'(y"1x) = 0, therefore

x =y lx€i(G) mod.Up *+1(k,) which proves the exactness of the lower se-
quence in the middle.)

(6.2.B) The right hand square in the diagram (6.2.A.3) is cartesian according

to (6.2.A.1); i.e. the element of H{Ug ) = Ext(Uyg,G) represented by the upper
row is the image of the element of H(Uy /Uy 1) = Ext(UK/Ugl, G) represented
by the lower row under the homomorphism induced by the natural projection
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UK — UK/UKt+1.

(6.2.C) Taking the image of 9*(£)€ H(Ug /U **1) in H(U% /UY ) we obtain
the element represented by the exact sequence
Z/oZ Y Ut juttl N t it
0 — (Z/pZ)y — UL/Up~ —— Ug/UFt — o
where N, is induced by the norm morphism (cf. (2.6)) and v is given by

ST
L s> —2 (s the chosen generator of G).
T
L

(6.2.D) Proposition

Let L/K be a totally ramified abelian extension of degree p, and let
£eH(Olg ) be a corresponding element. Let t be the largest integer
such that G = G, (where G is the galois group). Then 9*(§) lies in the
subgroup H(UK/UKH'l) of H(Ug) and has non zero image in
H(UKt/UKt+ 1)_

This is proved by (6.2.B) and (6.2.C) above; cf. also (2.6.D) (iv) and (4.6.D);
the element represented by the exact sequence of (6.2.C) is nonzero because
UL':/ULt+1 is connected; cf. (6.3.C) for the fact that H(Ug /U **1) can be
considered as a subgroup of H(Ug).

(6.3) Some lemmas.

(6.3.A) Lemma

Let 0> N—>G'* G = 0 be an exact sequence of pro-quasi-algebraic
groups, and suppose that G,G’ are connected and that 7 (N) (k) is
finite of order h. Then the kernel of £* is finite of order a factor of h.

Proof. The long exact sequence of Hom and Ext groups yields an exact diagram

Hom(N, (2/pZ)y)—> Ext(G,(Z/pZ)y) —» Ext(G',(Z/pZ), )

Hom(m,(N),(Z/pZ)y) —>H(G) —=»  H(G)
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{6.3.B) The canonical injection iy : Ug "/Ug ™! —— Ug/Ug ™! defines a
homomorphism i : H{UKIUK"+1} — H(UK"/UK“+1). Lete:=vg(pliey:=
ellp-11.

Lemma (i) 1f n<pe; and pln, then Im i} = 0.
(i) Hf n> pey, thenIm i} =0.
(iii) If n = pey, then #{Im i) = 1,p

Proof. Let m be the number m:= n/p in case (i) and m:= n-e in cases (ii) and
(iii). Let u: Ug = Ug be the morphism x + xP. Then u maps Ug ™ into Ug "
and Ug™* 1 into Ug™* ! and induces epimorphic morphisms u, : Ug™/ug™*1
—_— UK“/UK"’L1 of which the kernel is zero is cases (i) and (ii) and a form
of (Z/pZ)y in case (iii). Cf. (2.3). Consider the commutative diagram

u
U?{‘/U?{ﬁ- 1 m U%/Ug'-l

/o

’

8 u
URIVK™ —— Ug/URT —— /U
(@8 the natural morphisms; u’ induced by u(x —xP) Applying the functor
H yields a commutative diagram

u*
HUR/UE ™) «—— HUR/UK™)

* Sk
o \ln

* "y %
HURUEY) P H(Ug /U™ L H(Ug/UR?)

Multiplication with p is zero on (Z/pZ)y, therefore (u')* = 0, i.e. a*uX i* = 0;
a* is injective because U';{IH/U{F is connected (cf. lemma (6.3.C) below);
therefore u} i* = 0. Applying lemma (6.3.A) to u,, we see that Keru} = 0in
cases (i) and (ii) and #(Ker u¥ ) = 1,p in case (iii). The same is then true for

sk Tk *
Im i} , because Im i} C Keruf .

q.e.d.
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(6.3.C) Lemma

The sequence 0> H(UKt /UKt)' - I—I(LIKt ) > H(Ug") induced by the
exact sequence 0~ UKt - UKt - UKt /UKt = 0 is exact (t > t').

Proof. This follows from the exact sequence of Hom and Ext groups because
UKt is connected.

q.e.d.

(6.4) Extensions defined by XP - Tk-

Lemma. If n = pey, and if there exists an element of H(UK/UKn+1) with non

zero image in H(UKn/UKn+1), then there exists an element £ e H(Oly)
such that &' = 9*(£) lies in H(UK/UKn+1) C H(Ug) and has non zero
image in H(U™ /U™ ).

Proof in the case that k = ky. The general case will be treated in (6.8). The
number e, is an integer, therefore there are primitive p-th roots of unity in K
(2.2.C). The equation XP = 1y defines a totally ramified abelian extension

with galois group isomorphic to Z/pZ. A generator s of this group maps x onto

¢ x (where x is some (fixed) root of the equation above and { is a primitive p-th
root of unity). According to (2.2.B) one has VL(% 1) =vy ({~1) =pwg({-1)=
pe; ; therefore t = pe; = n (2.5.B). An application of (6.2.D) concludes the proof.

g.e.d.

(6.5) Artin-Schreier extensions.

Let n be a positive integer < pe; and (n,p) = 1;let A be an element of K 0

with v (A) = -n. Then we have: !

(i) The equation XP — X =X defines a cyclic extension L/K of degree
p, which is totally ramified.

(i) If tis the largest integer such that G = G, (where G := G(L/K)) then
t=n.

(iii) The element 7 of H(UKn/UKn+1) associated to L/K (cf.(6.2)) is
different from zero. And for every 1€ H(U%/U?gl) there exists a
XeK such thatn = 17')\ .

Proof. Let x be a root of XP — X = A. Take L := K(x). One of the hypotheses
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above is that vg (X) <0, therefore also vy (x) <0, and we find that v (x) =
p'le (\) = — p[L:K] n;but (n,p) = 1, therefore [L:K] = p; i.e. the equation
XP — X = A is irreducible, and vi (x) = —n.

The equation (x +Y)P — (x + Y) —A=YP —y — pF(x,Y) = O reduces to

YP — Y = 0 mod. m(K). (Because F has integral coefficients; the highest power of
x occurring in F(x,Y) is xP~1 and VL (xp_l) = — (p—1) n, therefore we have
that the vy -value of each coefficient of the polynomial pF(x,Y) in Y is larger
than vy (p) — (p—1)n = pe — (p—1)n > pe — (p—1)pe; = 0.) The reduced equa-
tion YP — Y = 0 has p different solutions 0,1,...,(p—1). By Hensel’s lemma
there exists p solutions yg,-+»¥p—1 of (x+Y)P — (x+Y) — A = 0, which have

the property y; =imod. m(L). This shows that L/K is galois and cyclic. Choose
as a generator the element s € G which satisfies sx =x + y,.

(ii) Let my, be a uniformizing element of L. Put x = "u, u€ U(L). One has
sy /M =1+ 2z, with v (z) = t and su/u =1 mod. (7, 1) by the definition of

the integer t (cf. (2.5.A.1) and (2.5.B.1)). From this one obtains—s—;( =1l-nz
mod. (TT?I). On the other hand sx = x + 1 mod (), therefore also -S;(}E =1+x"1
mOd-(nf"l) Comparing these two expressions for sx/x yields t = n > 0 (which
shows incidentally that L/K is totally ramified (cf. (2.5.B.1)) and that — nz =
x~1 mod. (1r£+1).

(iii) By (6.2.C), "?’)\ is represented by the sequence

0% N

0 —> (Z/pZ) — UR/UR*1 2, uBjuRtt 0
where v and N are as in (6.2.C). Identify UL“/ULM'1 with G, by means of
the morphism 1 — ax "1+ 3 (4.3.5); let f be the composition of y with this
isomorphism; then f(1) = nLiie. fis multiplication with n~ 1. The image of
1 — ax~! under Nis N(1 — ax~1) = N(a—x)/N(—x) = (aP —a — A)/(=}) =
1 — X"1(aP—a). Let X1 = 72, pe U(K). Let f: Ug /U ™! > G, be given
by 1+ a'ﬂ'l'(b—r‘é' then N, becomes g: G, > G, g(a) = ~fi(aP—a), L e k*.
The element of H(G, ) = k (4.6.G) corresponding to

0~ (Z/pZ) > G, > G, > 0

is —1/(fin~1) = —n/[I (4.6.G), which is different from zero. Moreover any
element Pek* can be obtained in this way by a suitable choice of A (If v is
any lift of 7, take e.g. A = —mgn/v.)

q.e.d.
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(6.6) Proposition.

The homomorphism 9*: H(Olg ) > H(Ug ) is a bijection.

Proof. The homomorphism @ is surjective, so 9* is injective. The pro-quasi-
algebraic group n(Uyg ) is the projective limit of the pro-quasi-algebraic groups
Uk /Ug), therefore H(Uy ) is the union of the H(Ug /Ug") (6.3.C). We prove
by induction that Im 9* contains all the H(Ug /Ug"). This is true for n = 0.
Suppose that Im * contains H(Ug /Ug"), we have the exact sequence (6.3.C)

0~ H(Ug/Ug™) = H(Ug /U™ ) > HUE /U™

It suffices to prove that H(Ull{/UKn+1) and Imd* N H(UK/UKn+1) have the
same image in H(UKn/UKn+ )

If n<pe; and (n,p) = p this is true by (6.3.B) (i).

If n> pe,, this is true by (6.3.B) (ii).

If n = pe;, then Im H(UK/UKn+1) has at most p elements by (6.3.B) (iii), and
if it has more than one element, then Im (Im 9* N H(UK/UKn+1)
p elements by (6.4)

If n < pe; and (n,p) = 1, we have that Im( Im & * N H(Ug /U™ 1) = H(UE" /U™ )
by (6.5).

has at least

q.e.d.
(6.7.) Proof of the theorem.

Let Dy be the kernel of &: n(Uy)(k,) > Oty . The sequence

!

0 — Dy /Dg N p(Ug )(kg) —> n(Ug )(ky)/p Uk )(kg) — Otg/p Ot — 0

is exact. All groups in this sequence are killed by multiplication with p. The
dual groups of (Ug ) (k,)/pn(Ug )(kg) and Oty /p Oty are therefore respectively
H(Uyg) and H(Olg ). The homomorphism ¢* is an isomorphism (6.6), hence so
is 8'; and we have that Dg = Dy N p(Uyg )(k,), i.e. Dy C p(Ug)(k,). By
(5.2.C) and the definition of ¢ we known that (cf. especially (5.2.C.1))

Dy= N N Uy )(k,),
K=k Lx™(Up)(ky)

where L runs through all totally ramified abelian extensions of K.
Hence we have, in virtue of (5.2.D) and because Ny x commutes with inter-
sections (AB 5* in Pro(CQGy); cf. (4.1))
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Dy)=N N N Up)tky) = NN (Upm)k) DD
Npx(@r) L/K(MIL ML THUM )(Ks) M MK (Um)(ks) 2 Dx
where M runs through all abelian totally ramified extensions of L. Hence

Dy C N N D;)C N pN (U )k)Cp N Nyuen(Up )k.)=pD
LAY 1x(DL) < [P k(UL P Nux™(UL)tks) =pDy
Dy is a pro-p-group (= projective limit of finite p-groups) (6.1) and Dy C pDy,
this shows that Dy = 0.

q.e.d.

We have now proved the theorem in the case that k =k, and when k is not
necessarily algebraically closed we have proved the theorem up to lemma (6.4)

(6.8) Proof of lemma (6.4).

Let

n+1

f
(*) 0 —> (Z/pZ)y —> ¥ —— Ug/Ug™" —— 0

represent an element of H(UK/UKM-I) which is not in H{Ug /Ug"), then Y is
connected, hence absolutely connected. We now that Im(H(Ug /UK“+1) -
H(UK"/UKM'1 has exactly p elements. For by the hypothesis of (6.4) there

are at least p elements in Im(H(UK/UKn+1) and at most there are p according

to (6.3.B). We also know that there are exactly p elements in Im H((UK/UKnH)k )
and that a generator of this subgroup of p elements is any of the elements asso- °
ciated with the extension f{m.(x)/ f(m. where x is a root of the polynomial

XP — 7. By the theorem in the algebraically closed case therefore there must be
an isomorphism ¢

o—>(Z/pZ)ks—>U§m/U§+1 - Ui /UI%'H -0
nr nr nr

lor

0> (Z/pZy >  Yi (UM U™

—_
S, 0
between the upper exact sequence, where L := f(m.(x), and the lower exact
sequence, which represents the image of (*) in H((Ug" /UKn+1)k ) (after base
s
change k — k). Lemma (4.7) shows that ¢ commutes with the action of
G(kg/k). The images of Z/pZ in Un(im)/U"+1(im) come from the p-th roots
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of unity, which are contained in ﬁ because e; is an integer (2.2.C). Therefore
the p-th roots of unity in UK nr) are invariant mod. U®? 1 (IZ ) under the
action of G(k/k) ~ G(K_./K) (as (*) has a constant kernel); i.e. they can be
written in the form 1+ n¢la+ 7TK b witha e A(K). In fact we can certamly
write the p-th roots of unity in U(f( Jas1l+mgla "+ ne1+ b’ with a',b" e A(K
Let ' be the image of a' in kg, from the fact that the p- th roots of unity are
invariant mod. Uel+1( K, ;) we see that s( ') =13’ for all se G(k/k) hence that
i ek;letabeliftof 3, ae A(K),thena =a+ T y- The polynomial

TN 1+ X)P — 1

is monic, has all its coefficients in A(K), and has what was shown above p
different roots mod.(mg ). Hence by Hensel’s lemma there are roots in A(K).
We have proved that the p-th roots of unity are in K. The extension K(x)/K
where x is any root of XP — 7y defines the desired element of H(Ot ). In fact
the largest integer t such that G, = G (where G := G(K(x)/K)) is equal to pe; =
n ((2.2.B) and (2.5.B.1)). It now suffices to apply (6.2.D) (exactly as in the
last few lines of (6.4)).

q.e.d.

7. SECOND PROOF OF THE THEOREM. RAMIFICATION.

Assume that theorem (5.4.D) is proved when k = kg (cf. § 6 or [CAC]). From
this it is possible, by means of the same kind of considerations as those we
earlier met with in (6.8) (‘descent’), to deduce a second proof of theorem
(5.4.D). In (7.4) we describe the ramification subgroups of Ot .

(7.1) Action of G(k/k).

Let L/K be a finite galois extension of K. ((2.1) shows that for every finite
abelian extension E of f(m there exists a finite galois L/K such that E C im)
The pro-quasi-algebraic groups Up, and Vi are not a priori defined over k but
only over the residue field 1 of L. However there still exists a natural action of
G(ky/k) on Uy /Vy (kg) = UL )/V(L,,). Let se G(k, /k) and s € G(Ly/K) any
lift of s. Define () := s (u), where u represents i€ U(L m)/V(L ). (As usual,
v+ ¥ is the canonical homomorphism onto a quotient). This definition does
not depend on the choice of s'; for let ts’ be any other hft of s (where
teG(L/K),, ) then ts'(u) J-S—(El .s'(u) =¢'(w) mod. V(L ).
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Remark.

This action of G(k/k) is analogous to the second action of G(k,/k) on

Uk (k) defined in section (5.1.A). In fact it is not difficult to ‘descend’
Up/Vy. Let L'/K be finite totally ramified extension such that L'K, =LK,
(2.8.E). Let Vi be the connected component of the identity of the kernel of
the norm morphism Ny g : Upr > Ug. Then (Up//Vy )y = Uy /Vy, (4.7) and
the action of G(ky/k) on Up /Vy (k) = U/ Vi (k) as described above is iden-
tical with the natural action induced by the k-pro-quasi-algebraic structure of
Up//Vyr. (5.1.A).

(7.2) Lemma

Let L/K be a finite galois extension. The homomorphism N: U(im)/V(f,
- U(K,,) commutes with the action of G(k/k)-

nr)

Proof. Let s e G(k,/k) and let ' €G(L,,/K), s" € G(K,,/K) be lifts of s then
SR, =s" Let GIL/K)ym = {t1,..ste} , ueU(Ly,), thens"(tju. ... .tou) =
$'(tgu. ... teu) = tys'u. ... .tes'u for G(L/K) = G(im/f(m) is normal in
G(L,/K).

q.e.d.
(7.3) Proof of the theorem.

According to (5.4.C) (surjectivity of &) we only have to prove that there are
sufficiently many totally ramified abelian extensions; we have to prove that if

f
0 > K¢ > Ue » Uy > 0

is an isogeny with constant kernel, then there exists a totally ramified abelian
extension M/K such that the norm morphism Ny g : Upp/Vyy > Uy factors
through f. We now, from the theorem when k = k, that there exists an abelian
extension P/ f(m such that Up/Vp = Uﬁm factors through f ®, k_. Enlarging P

if necessary we can assume by (2.1.D) that P is of the form P = L'  _ for a certain
finite galois extension L'/K (which has the property that G(L'/K),, . is abelian).
Let L"/K be a totally ramified extension such that L".K_ = L".K__(2.8.E);

Vyp» the connected component of the identity of the kernel of Ny : Upw > Ug.
We have that (UL”/VL")ks o (UL’/VL’)kS and that Uy »/Vy» = Uy factors through
f((4.7), cf. also (5.4.B)). Let U’ be the image of Up»/Vyn in Up. We have a
commutative diagram
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’ NL’I/& L
0 —— G(L/K)pyy, —> Upn/Vyr >Ug > 0

L

, t

00— G —_s U > Ug > 0
f

0 —— K¢ —_— U > Ug - 0

K¢(k,) is left pointwise fixed under the action of G(k/k), hence the kernel H

of the induced homomorphism G(L'/K) =~ G(L'/K)r, (ko) > G(k,) is stable
under this action (which is the action by inner automorphisms (5.1.B)). This
proves that H is a normal subgroup not only of G(L'/K),,, but also of G(L'/K)
itself. Let L be the invariant field of H. Then (U')ks = (UL /VL )y, and t becomes
the norm map under this isomorphism. One can descend Uy /Vy , cf. Remark
(7.1), accordingly the injection Uy /Vy (k. )=> Ug(k,) commutes with the action

of G(ky/k) (or apply (4.7) once more). This shows that G(L/K)_,, C G(k,) is

left pointwise fixed under the action of G(k/k). i.e. that G(L/K)_,, C Z(G(L/K)).
By the pullback theorem (2.8.G) there exists an abelian totally ramified extension
M/K such that M__ = L__. By (5.4.B) we have (Ep jx )i =( ), =E, if E denotes
the element repr::entegr by the middle extensi&% ﬁ tllflse dif;a/fn l;i)ovel.csf-lence
(4.7) Eyjg = E and we are through.

q.e.d.
(7.4) Ramification.
(7.4.A) THE Y-FUNCTION AND HERBRAND’S THEOREM.

Let L/K be a finite galois extension with galois group G and ramification sub-
groups G; (s€G; ® (vp (sa — a) > i+1 for all ae A(L))). It is clear that

(7.4.A.1) G(L/M);= G(L/M) NG(L/K)! if M is a sub-extension of L.

We define ek (x) =x -1<x<0
Pk (%) =é0 (g1t ... ¥guH(x—m)g4q) m<x<m+l,m+leN

where g; := #G;. The function ¢y g : [~1,0) > [—1,%°) is monotonically in-
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creasing. Let Y1 g be the inverse function of ¢y ;. Note that this function
coincides with the one defined in (2.6) when L/K is totally ramified galois of
prime degree.

(7.4.A.2) Lemma
If L D M are both galois extensions of K, then

Yk = Yim * YMK-

For a proof cf. [CL] Ch.IV § 3 Prop. 15.

We now define ramification groups with upper indices G by means of the
formula

Gl:=Gyg

Note that (i) is an integer if i is an integer.
These ramification groups behave nicely with respect to quotients in the sense

of:

(7.4.A.3) (Herbrand’s theorem)

If M/K and L/K are both galois extensions and M C L, then the
natural projection G(L/K) = G(M/K) maps G(L/K)' onto G(M/K)i.

For a proof cf. [CL] Ch.IV §3 Prop.14 and Lemma 5.

Herbrand’s theorem makes it possible to define G(L/K)! also for infinite galois
extensions L/K by means of the formula

G(L/K)* := lim G(M/K)Y,

where M runs through all finite galois sub-extensions of L. In particular we can
define Oty fori=0

otl = c(x*®/k)l.

Remark that Y g (x) = x if K /K is unramified; it follows that ((7.4.A.1) and
(7.4.A.2)):

\Y

G(L/K)! = G(L/Ky )%, i=o0,

where K is the maximal unramified extension of K contained in L.
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(7.4.B) SOME EXACT SEQUENCES.

Let L/K be a totally ramified abelian extension. Then we have a sequence

:n Nn
(7.4.B.1) 0 —> (G(L/K)"), —— UV, nuygt) LK un 5 0

It is clear that i® is monomorphic, and that Nﬁ/K is epimorphic ((5.2.B.1),
(2.6.D) and (7.4.A.2)).

(7.4.B.2) Lemma

The sequence (7.4.B.1) is exact if L/K is of prime degree.

Proof. Let t be the largest integer such that G, = G (where G = G(L/K)). For
n < t, the exactness of (7.4.B.1) follows from (5.2.B.1) (cf. also (2.7.A.3) and
(2.5.B.1)). 1 n > ¢, then G™ = Gy = {1} Let xe UL Y (k) be such chat

ST
N?.IK(X) =1. Then x e-;r—i- Vi (k) for a certain s€ G (5.2.B.1). Suppose s #1,
T T
then il € ULt(ks) \ULﬂ'l (ks), and hence also i——L— A (ks) C ULt(ks) \ ULtﬂ (ks)
T(L 7TL o
because Vy (k) C ULH'1 (k) (cf. (2.5.A.1)). Therefore, asn > t, - Vi (k) N
m
Uf(n) (ks) = ¢ if s #1. This shows that xe Vi, (k).

q.e.d.

(7.4.B.3) Lemma

ULW(H) OV is the connected component of the identity of the
kernel of NT |y if L/K is of prime degree. (n=0, 1,...).

Proof. It is clear that UL"b(n) NV, contains (Ker(NilK))c’ because the quotient
(Ker N’ﬁlK)/ULw(n) NV, is a subgroup of (G(L/K)), and hence finite (5.2.B.1).
(This holds also for not necessarily cyclic L/K). If n <t, then Y(n) = n and

U tNv =utn ULH'1 N Ker Ny o = UL""'1 N Ker Ny o = Vy is connected

(2.7.B.1). Let n > t. It is clear that the kernel of the induced morphism

N® —
ULw(n)/UL‘p(n"’l) ...ﬂ;.UK“/UK’ﬂ'1 is Ker NilK/Ker NLm/I% As NI?IK is zero
on ULw(")"'llUL‘p(“*'l) and the induced morphism ULl'b(“)/ULw(“)+1 _

U'I‘(/U o+l s an isomorphism (2.6.D) (v), it follows that Ker NI?IK/Ker N]._Tf{l ~

UL‘IJ(n 1/ULW(H+1) is connected. Therefore Ker NI?/K itself is also connected
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{being the projective limit of the Ker Nlﬁ,Ki’Ker le};m)
q.e.d.

17.4.B.4) Proposition

a) The sequence (7.4.B.1) is exact for all totally ramified abelian
extensions L/K.
b) va’/leﬁn‘} NV g is th; con:)ected component of the identity of
the kernel ofoiK: Up LK) Ux-
(We here write Vs for the connected component of the identity of the
morphism of pro-quasi-algebraic groups Nppr: Up > Up; ie. Vik = Vo)
Proof. We prove a) and b) simultaneously by induction on [L: K]. Lemmas
(7.4.B.2) and (7.4.B.3) prove the proposition when L/K is of prime degree.
1f L/K is not of prime deg-ee, let M be a sub-extension of L. We have a commu-
tative diagram

(7.4.B.5) 0 0

CULMy e = LMy

|

Yrk(n) Yrx@ Nog o
0~+(G(L/K}¢le(n))k—>UL /VL/KOUL — Uy ——0

Ym/x(n)
N, ,M’

¥

o o) NS
0—>(G(M/K) ))k_éuth/K( )/VM/KnUN‘fM/K( )._M/§U£—->O




The first column is exact according to (7.4.A.1) — (7.4.A.3). By the induction

hypothesis we know that the third row of the diagram is exact and that the
sequence

Yr k@ Yk VM @

0> (G(L/M)UJL/K(R))k U /UL N VLIM > Uy -0
is exact. Hence N Ymx(e) induce i hism Ker N = Ker N% d
s . LM Isl)an epimorphism e?n) Lk~ Ker Ny anlp "
an epimorphism V x MUy LK™ Vmk N Uy MIK™ because Vix MU LK
contains the connected component of the identity of Ker NII.IIK and is mapped

(m)

into Vi N Upy MIK™ | which is the connected component of the identity of
Ker NI\IA‘/K by the induction hypothesis. An application of the snake lemma

([2) §1 Prop. 2) yields that the third row in the diagram below (which is the
second column in the diagram (7.4.B.5)) is exact.

lPL K(“) Vr k) ‘I/M (n)
Ve MU R ATVl Ml g"VM/K Ny MK

| |

n Yy k(@) Yk ()
0 (G(L/M) \pL/K(“))k% U, / /VL[MnULL/Kn 5 UMM/K D L

| l l

Vp () Vpk® - Y@ Uk (@)
07 (GLM) ‘I’L/K(n))k“*ULLIK Ny VU > O MR v N MR 0

SLIK(") is

(n n
connected because both VL/M Nnup k™ and Vi K N UMM/K( are connected
by the induction hypothesis. This takes care of b). An application of the snake
lemma in diagram (7.4.B.5) (in which the second column is now also exact)
proves that the second row is exact.

It then follows that ¢ is an isomorphism. This implies that V; ; N U

q.e.d.
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(7.4.C) THE RAMIFICATION GROUPS OF Otg.

The diagram

Via) n
0 (G(L/K)), > Uy -KerNpy/Vy = Up >0

I

0~ (G(L/K))y > UL /vy >Ug 20

has a cartesian righthand square because UI“IJ () Ug" is epimorphic.
(We write ¥/(n) for \I/LIK(n)). The pro-quasi-algebraic group ULw(n). Ker NL/K/VL
is not necessarily connected. Its connected component of the identity is

ULw(n)‘VL/VL ~ UL‘IJ(H)/VL N UL\IJ(n). We have an exact diagram (7.4.B.4)

0 (G(L/K)™), ~> U@V, nUY® > Uf >0
0—>(G(L/K))k - UL/VL —->UK—>0

As UL‘““) vy N ULW“) is connected, it follows that (G(L/K)"), is a quotient
of n(Ug"). We have found the theorem:
(7.4.C.1) Theorem
The image of n(Uy ")(k,) in (U ) (k) corresponds to Ot ™ under
the isomorphism n(Uy )(k ) = Oty

We know that my (Up") (k) = 71 (Ug )(k,) is injective because 7y is left exact.
Therefore

(7.4.C.2) Corollary ([CAC] Th.1).

When k =k, then O:my (Ug (k) = Oy induces an isomorphism
m (Ug")(kg) = OlKn°
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8. INFINITESIMAL CONSIDERATIONS.

Let L/K be a totally ramified galois extension. In this section we study the
infinitesimal part of the kernel of the morphism N /k between the pro-algebraic
group schemes Uy and Uy . We work in the category Pro(CG, ). The pro-alge-
braic group schemes U; and Uy are reduced (4.3.6). In characteristic zero all
algebraic group schemes are reduced (Theorem of Cartier, see e.g. [14]), hence
we shall assume in this section that the characteristic of the residue field k is
different from zero. It turns out that a totally ramified galois extension L/K is
tamely ramified iff Ker N /g is reduced.
The propositions (8.3.C) and (8.5.C) are stated for all totally ramified galois
extension L/K and proved only for cyclic L/K of prime order. One deduces
the propositions for not necessarily prime order, totally ramified, galois L/K
from this by considering towers K =K, CK; C... CK_ =L of cyclic extensions.
(One can find such a tower for each L/K because G(L/K) is solvable (2.5.B.4)).
For (8.3.C) (ii) and (8.5.C) this procedure yields the propositions immediately;
for (8.3.C) (i) one needs in addition (cf. (7.4.A))

1° a Y-function defined for all galbis L/K

2° the transitivity of these functions. (Le. wMIK' wLIK when KCL CM),
Acknowledgements must be made to Prof. P. Gabriel for this section.

If U is an algebraic group scheme, Lie U denates the tangent Lie-algebra of U.

By definition Lie U := Ker (U(k[€]) > U(k)), where k[€] is short for k[X]/(X?) ;
: 2

ie.€“=0.

As to the contents of this section: we first list some facts about the trace and
norm maps in (8.1). Then we show in (8.2) that the kernel of the norm morphism
U; = Uy is not reduced for wildly ramified extensions. After having devoted
some space to what W_(k[€]) looks like in (8.4) we then look more closely at

the equal characteristic case (char(K) = p) in (8.3), and at the unequal charac-
teristic case (char(K) = 0) in (8.5).

(8.1) Some facts about trace and norm.

Let L/K be a totally ramified galois extension of prime degree I; let t be the
largest integer such that G = G, (cf.(2.5)) Then

_[(r+1)(1—1) + n}

(8.1.1) Tr(n] A(L)) = M A(K), "
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If L/K is tamely ramified (<(t = 0) ® ((1,p) = 1)), then Tr | A(K) is multipli-
cation by 1, so we have

(8..2) TrA(L)=Tr(A(K))=A(K)  if L/K is tamely ramified.
From (2.6.E) follows that
(8.1.3) NuY@)=ug,  NuPEr) = ot

where V is the function ¥(x) = x if x <t, Y(x) = t + 1 (x—t) if x > t. From
this it is not difficult to see that for sufficiently large n

t+1
8.1.4 N(URe) = U2 wherez=[ne+t+1——1.
L K 1

If Y(r—1) + 1 < s <Y(r) we have by (8.1.1)
(8.1.5) Tr(n} A(L)) = T A(K) ifr—1>t.
Combining (8.1.3) and (8.1.5) we obtain that

(8.1.6) Tr(n A(L)) = TR A(K) ® N(UZ ) =U% for large enough r,s.

(8.2) Wildly ramified extensions.

Let L/K bea wildly and totally ramified galois extension. Its degree [L:K] is then
divisible by p. We have U; ~G_ X ULl, Ug =G X UKI. The norm morphism
maps the factor G into the factor G . One easily sees that the induced
morphism is multiplication with [L : K];i.e. x*>x" whenn = [L : K]. The
kernel of this morphism is not reduced. We have found that

(82.1) X; o :=X/X 4 #0, for wildly and totally ramified galois L/K,

where X denotes the kernel of N: Uy = Up.
(8.3) The equal characteristic case.
In this section we assume that char(k) = char(K)=p+# 0.

(8.3.A) Lemma
Lie Up /U, * =~ A(L)/m; "A(L) (as a vector space)
Lie Npy =Trppe: AL) > A(K),




Proof. Lie' U /U, ®:=Ker(U; /U (k[€]) = Uy /Uy k)
=Ker (units((A(L)/ﬂLsA(L) ®, k[€]) ~ units (A(L)/ WLSA(L))
= (A(L)/m SA(L)). (CE. (4.2.7)).

NL/K(]‘ +e€a)=(1+e€sg(a))...(1+esi(a))=1+Tr(a) e

q.e.d.

Let Tr(A(L)) = nkroA(K), thenr 2 0 and (r, > 0)  (L/K is wildly ramified).
Letsandr>r be such that NL/K(ULS) = UKr; let X8 := Ker(UL/ULS > Ug/U
Then we have:

K )
(8.3.B) Lemma
dim(Lie (X®), o) =r,.

Proof. The sequence o > X* — U /U~ UK/UKr = 0 is exact, from which we
obtain an exact sequence

0~ LieX® > A(L)/7§ A(L) > A(K)/m5 A(K)
(8.3.A); dim X® = s—r; dim Lie X® = dim(A(L)/n$ A(L)) — dim (Im(A(L)/7$ A(L))) =

=s — (r—r_) = s—r+r_. Hence dim(Lie (X%). ;) =r .
o o inf’ o

q.e.d.

(8.3.C) Proposition

Let L/K be a totally ramified galois extension;let X := Ker (U;—+Uy).
Then we have

(i) dim (Lie X, o) = r_ is finite (r_ as above)

(i) (X = 0) ® (L/K is tamely ramified).

Proof. (ii) follows from (i), for r  is determined by Tr(A(L)) = W;E’A(K) and
Tr(A(L)) = A(K) iff L/K is tamely ramified. Let (s, r') and (s, r) be two pairs
such that N(ULS,) = UKI', N(U_ %) =U, ", s'>sand £ >

We have an exact diagram
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¥ v 5
’ 1 ’
0 > X5 > UL/Ui ————-‘»UK/U;( —0
v Y v
0— X8 "_"’UL/Ui ——»UK/U% —_—0

Tr: ﬂiA(L)/ni’A(L) -> ﬂll'{A(K)/‘nll'éA(K) is surjective for large enough r (8.1.6).
Therefore dim(Lie(X®**), () = 0 if s',s are large enough. Using (8.3.B) and
dimension counting we obtain X, = (X®); ¢ for large s and hence (i).

q.e.d.
(8.4) W (k[e]).

To find the dimension of Lie X in the unequal characteristic case, we need
to know what W_(k[e]) looks like.
The addition and multiplication on W_(A) (for any commutative ring A) are

given by polynomials SO,SI,...,Sn_l;PO,...,P 1 eZ[Xo,...,X Y oY

n— n—1 > n—1 ]

which satisfy

W(S,,-.,S;) = W,(X) + W,(Y),

iV’
Wi(Po’ ”"Pi) = Wi(X).Wi(Y),
i i—1 .
where W (X) := X ;W (X) =X P+pXy5.. s Wy(X) := X P +pX,P 4+ +pX,
Recursively this gives for the S, and P,

_Wi(X) + Wi(Y) — W;_1(SB,...,8:8))

i

P

)

(84.1) S =X +Y_ S
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W,(X).W;(Y) = W;_;(PP,...PPy)
(84.2) P_=X_.Y_ P, = - .

Pl

Let ¢ (j=0,...,n—1) be the element (0,...,0, €, 0,...,0) of W_(k[€]) (€ on the
j—th place). Using (8.4.2) one easily finds that in W_(k[e])

(8.4.3) €(3gs++-sp_1) = (0,0,::,0,Wi(ag,..,25) €0,....,0),
where (a_,...,a; ;) €W_ (k) for any ring k. And thus especially
(8.4.4) ej(ao,..,an_l) =(0,...,0, aoPi €,0,..,0) when char(k) = p.
In the same way one finds that

(8.4.5) e=0  forallij=0,1,..,n-1.

From (8.4.4) and (8.4.5) one now sees that, when char(k) = p

—1
(8.4.6) w_(k[e])=W_(k)+ ‘TEO ke, the sum being direct.
i=

(8.5) The unequal characteristic case.
We assume in this section that char(K) = 0, char(k) = p # 0. Let e be the abso-
lute index of ramification of K (i.e. e = ey = v (p)) ey = [L : K]e when L/K
is totally ramified of degree 1. The module A(K)/m, "¢ A(K) is free of rank n
over Wn(k).
(8.5.A) Lemma
n—1
Lie (Uy /U ™) = _20 (A(L)/pA(L))¢
l=
Proof. Lie (U, /UL ™) := Ker(Units((A(L)/m "MA(L)) ®y A ACCHE
n

Units (A(L)/m "MA(L)) ) = n;z_: (A(L)/pA(L))é (cf.(4.2.7), (8.4.6)).

q.e.d.
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(8.5.B) Lemma
Let n,n’ be such that N(ULnd) = UK“'e. The induced map Lie N:
Lie UL/ULnel = Lie Uy /U,™® is then the trace map on each of the
summands (A(L)/pA(L))¢;.
(8.5.C) Proposition
(L/K tamely ramified) ® X; = 0 (where again X := Ker (U—>U)).

Proof. From (8.1.4) we see (t=0) that N(U; ™) = U, "¢, when L/K is tamel
L K y
ramified. We have an exact sequence

0->X"->U /U ™ > U, jU >0

On A(X)/pA(K), the trace map is given by multiplication with 1, which is
prime to p; hence Tr: A(L)/pA(L) = A(K)/pA(K) is surjective, and we find
(X");¢ = 0 for all n. The opposite implication is proved by (8.2).

q.e.d.

(8.5.D) Proposition

Suppose that K contains the p—th roots of unity. Let L = K(x) where
x is aroot of XP — 7. Then dim (Lie Xpg) = .

e
Proof. In this case we have t = —P—E—i (2.2.B) and (2.5.B.1). From (8.1.4) we
obtain N(ULpne) = UKneﬂ. There is an exact sequence

n pne nete
0~>X"->U, /Uy —>UK/UK >0

A(L)/pA(L) has a basis 1,x, ... xP~L over A(K)/pA(K). But Tr(x!) = 0 for
i=1,...,(p—1) and Tr(A(K)/pA(K)) = 0. The map Lie N: Lie U; /U "P

Lie UK/UKe("ﬂ) is therefore the zero map. (one can also use (8.1.1) to show
directly that Tr(A(L)) C pA(K)). We find dim X" = pne — (n+1)e; dim( Lie X") =
pne; hence dim( Lie (X"), o) = (n+l)e. If n’' > n we have an exact diagram
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[==]

|

J

0 \rxn,n > Upne/Upne Une*-e/Unel-e >0
’ 1
0 > Xn , L/Upne _____) UKIUnC"C ____+ 0
Y l Y
00— X" ——3 U /UP“e_____> U [UEET® —0

y

A
0

¥

l

LieN=0in all three rows. Therefore dim( Lie (Xn ) inf

,

0

= (n'—n)e. The sequence

0- Lie X"® > Lie X¥ - Lie X" > 0 is always left exact by counting dimensions
we see that it is also right exact. It follows that Lie (Xn) g~ Lie (X7), ¢is

surjective for alln’ > n.

Whence dim Lie(X; () = dim Lie (X"), -

= (n+1)e for all n.
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CHAPTER III

MAXIMAL ABELIAN EXTENSIONS OF LOCAL FIELDS WITH FINITE
RESIDUE FIELD

(LOCAL CLASS FIELD THEORY)

The first section (§ 9) of this chapter sketches the relation between Ch. II and
Ch. IIL. Except for this paragraph, of which nothing is needed in the sequel,
this chapter is independant of Ch. I and of § 3,4 of Ch. I (Lemma (3.1) ex-
cluded).

In § 10 an isomorphism U(K)/Np ;i U(L) 5 G(L/K) is constructed for each
totally ramified abelian L/K, and some properties of these isomorphisms are
proved. Next, in § 11, we construct (for a given choice of my ) for each neN

a totally ramified abelian extension L, /K (the so-called Lubin-Tate extensions,
cf. (11.2)) and prove that (UL, .K ) = K2P. We then use this to construct an
isomorphism

K* = UKK) X Z ~ G(K**/K)
such that the kernel of
K*o K* ~ UK) X Z ~ G(K*®/K) > G(L/K)

is exactly Np pc L* for each abelian L/K. (Because K* >~ U(K) X Z, there is a
natural inclusion K¥< K*) This isomorphism, then, looks remarkably like the
‘classical’ reciprocity isomorphism, defined by the norm residue symbol, and
in fact it is identical with the latter (cf. (11.4.B) Remark 2; this fact is not used
further on). As a corollary we then obtain for instance the existence theorem
of local class field theory (11.4.D). All this is done without anywhere using the
norm residue symbol (cf. [LT] and [19]).

9. THE LANG ISOMORPHISM.

This section serves to point out the link between the considerations of Ch. II
and the following two sections (§10,11).

Let U be a (pro-) algebraic group scheme over a field k consisting of q elements.



For each k-algebra A we have a k-algebra homomorphism F: A= A, a+ ad;
these induce maps U(A) = U(A), which define an endomorphism FV: U~ U,
the Frobenius endomorphism of U. (We shall usely simply write F instead of
FY). The endomorphisms F are endomorphisms of (pro-)algebraic group
schemes and they commute with every homomorphism of group schemes (cf.
the remark below).

The F become automorphisms in the category Pro(CQGy ).

We also use F to denote the canonical generator of the galois group G(k,/k)
(given by x> x9, x € k() and its lift in G(K /K), the canonical generator of
G(K,/K),characterized by F(x)= xYmod. m (K ), for x € A(K,)). Note that
the homomorphism F: U(k,) = U(k,), derived from the Frobenius endomor-
phism of U, is identical with the homomorphism F: U(k,) = U(k,) induced by
the action of the galois group G(k/k) on U(k,). It follows from (5.1.A) that
both these homomorphisms F: U(k,) > U(k,) are identical with the homo-
morphism F: Uy (k,) ~ U(f(m) - U(Rnr) =~ Uy (k,), obtained restricting
FeG(K,/K) to U(Rm), when U = Uy is the pro-algebraic group scheme of
units of a local field K with residue field k.

Remark.

The existence of endomorphisms FY for all (pro-)algebraic group schemes U
over k, with the commutation properties mentioned above, is an instance of
a much more general situation. Let C be any category; and let F be a functor
endomorphism of the identity functor. The morphism F induces a functor en-
domorphism FT: T~ T for each functor T: C > Ens. (Deﬁned by FT (A) :=
T(F(A)), A€C). The FT have the property that ¢° FT=Flo ¢ for every
functor morphism ¢: T = T'. In particular, as FTXT = gT ¥ FT, this implies
that FT is an endomorphism of group functors when T is a group functor (and
that the F commute with homomorphisms of group functors). If we take
C = Aly_ (= the category of k-algebras) and for T the functor A+ U(A), where
U is a (pro-) algebraic group scheme, we obtain the situation described above.

(9.1) Isogenies with constant kernel.

Let f: U= U be an isogeny of algebraic group schemes over k with constant
kernel K¢ (where the field k is supposed to be finite). For x € U(k), let xe Ug(k)
be a lift of x; then f(F(x')—x") = fF(x')—f(x") = F(x) —x = 0 because xeU(k). The
element F(x') —x’ does not depend on the choice of x'. For, let x” be any other
lift of x, then x” — x"€K(k,) = K¢(k) and therefore F(x"—x") = x" —x'. We have
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so defined a homomorphism U(k) = K¢(k). The image of x € U(k) in K(k) is
zero iff we can find a lift x € Ug(k,) such that F(x') = x'; ie. such that xe Ugk).
We have:

Proposition (Lang)
If f: Ug~ U is an isogeny of connected algebraic group schemes over

k with constant kernel K¢, then the homomorphism U(k) - K ¢(k)
described above, induces an isomorphism

U(k)/f Ugk) ~ K¢k)

(This is proved by the above, except for the surjectivity of U(k) = K(k),
which follows from the fact that F—1: Ug(k,) = Ug(k,) is surjective for con-
nected algebraic group schemes Uy.)

Remark.

We have in fact applied the snake lemma to the exact diagram

Uglk) uk)

\\\
N\
\
i
A 2 7

0 —> Kk,) —> Ugk,) —> Ulk) —== 0

’,-’
-

l(F-—l)=0 lf_——,l.——"'——l——l

-

0 —5Ke(ky) ——> Uglk,) —> Ulk) >0

(9.2) The group WUy ) (k,) when the residue field is finite.
Let 0 N = X - Ug = 0 be an isogeny with constant kernel of the pro-alge-

braic group scheme Uy of units of the local field K with finite residue field k
(#k =q). Consider the exact diagram
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¥ 4
0 —— N > > Ug > 0
0

(For the fact that F—1: Uy = Uy is epimorphic cf. (10.1.A)). The constant
group scheme (U(K))y is pro-finite (because k is finite). The morphism F~1 is
zero on N because N is constant, therefore N - X F-1xis zero; it follows that
there exists a morphism g as indicated in the diagram which factorizes F—1:
Uy = Ug through X. The isogeny F—1: Uy > U is hence larger than all iso-
genies with constant kernel of Uy . It follows that

(9.2.1) RMUg) 2 UK T{Ug) (k,) = U(K)

and by applying theorem (5.4.D) that

(9.2.2) G(K*®/K) . ~og ~U(K).

This last isomorphism will be established again in § 10, 11, but then without
using algebraic geometry.

(9.3) Description of the isomorphism (9.2.2).

It was Serre in section 7 of [17] who remarked that the Lang isomorphism
(9.1) (or rather its pro-algebraic analogue) should be the think between the
theory of chapter I and the ‘classical’ class field theory of local fields with
finite residue field.
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Let L/K be a totally ramified abelian extension of the local field K with finite
residue field k. We have an isogeny with constant kernel over k (cf. (5.2.B)).

Npx
0= (G(L/K)), = Uy /Vp —5 Uy > 0

From this we obtain an isomorphism (9.1)
(9.3.1) UK(k)/NL/K(UL/VL(k)) ~ G(L/K)

One now proves that NL/K(UL/VL(k)) =Ny /g (U(L)) (cf. (10.2); we know
that U(K) ~ Ug (k)), and we find an isomorphism

(9.3.2) @: U(K)/Np ¢ (U(L)) = G(L/K)

(cf. also (10.2), where this isomorphism is constructed again)

We showed in (5.1.A) that the action of G(k,/k) on Uy (k) ~ U(K,) is the
same as the action of G(kg/k) =~ G(K /K) on U(K, ) as a subset of A(K_,).

Let F be the Frobenius automorphism in G(K, /K), then ue Uy (k) >~ U(K) iff
(F—1)(u) = 0. The recipe for the isomorphism ¢ of (9.3.2) now becomes:

take ue U(K),letu'e U(inr) be any lift of u; then there is exactly one
¢(u) € G(L/K) such that

F ~
AT = 22 mod. ik,
Ty k

the isomorphism g is induced by the homomorphism
ur> ¢(u)

If we had taken instead of u+> ¢(u), the homomorphism ur p(u™), we would
have obtained exactly the description of the reciprocity isomorphism for
totally ramified abelian extensions given by Dwork in [4] (cf. also [CL]

Ch. XIII § 5 (especially the Cor. to Th. 2 and p. 210) and (11.4.B) Remark 2).

10. ‘ALMOST’ THE RECIPROCITY ISOMORPHISM.
In this and the following section K will be a local field with a finite residue

field consisting of q elements. We use the symbol F for the Frobenius auto-
morphism of G(kg/k) and for the canonical lift of this automorphism in G(K./K).
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Let L/K be a totally ramified abelian extension of K. In (10.1) we prove some
lemmas necessary to define an isomorphism

¢: U(K)/Np g U(L) ~ G(L/K)

in (10.2) for abelian totally ramified extensions L/K. The isomorphism ¢ (or
more precisely the isomorphism uv> p(ul)) will play an important part in the
definition of the reciprocity isomorphism in (11.4.B). In (10.3) we note a func-
torial property of this isomorphism.

(10.1) Some lemmas.

(10.1.A) Lemma

The homomorphisms F—1: U(im,) - U(inr) and F-1: V(im) >
V(im) are surjective. ((F—1)(u) := _1-13 if we write the groups U(L,,)
and V(L ) multiplicatively).

Proof. Use the filtration by the U"('I:m,) of U(im). The induced homomor-
phisms are U('I\.,m,.)/U1 L) = k¥ >k} '::-U('I:.nr)/U1 (im), x> x37 1 and for
i>1 U (L, )/U* (L) >k~ kUL JUMYL ), x> x3—x (Note thatk is
written additively). These homomorphisms aré all surjective (as k, is algebraic-
ally closed). An application of lemma (3.1) ields the first part of the lemma.

tx

Let —e V(f.nr) t€ G(L/K) (these elements generate V(im,)); choose y € U(I:m)
x

such that (F—1)(y) = x; then we have

ty Fty [ty tFy [Fy Fy Fy tx
(F_l) —_— T | == — [ — = — — —
vy, Fyly wly y y X

because F and t commute, as L/K is totally ramified.

(10.1.B) Lemma.

Suppose Fx = x for x €K, then xe K.

Proof. Write x = ﬂ;’(u, ue U(ﬁm), mg €K; Fx = x yields Fu = u; write u = ug +

' . ' . ' ' . -

g wy with ug €K ; Fu =u yields Fup = uq mod. my ; hence we can write u =
ug + Mg wy with ug € K; then Fu = u yields Fw; = w, ; repeating this proces

with w; we obtain u=ug + 7gu; + ﬂ%wz ,Up, u; € K. Continuing in this way
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we see that ue K mod. W’E’( for all n, and hence that ue K and x €K because K
is complete.

q.e.d.

(10.1.C) Remark.

Let {2 be a completion of an algebraic closure £ of K. The galois group

G(Q2/K) acts on Q (extend the action of G(£2/K) on £ by continuity).
In this case also we have for all xe {2

(sx =x for all se G(2/K)) ® x e K.

The proof of this (cf. [20] (3.3) Th. 1) is much more difficult because
the valuation on £ is no longer discrete.

(10.2) “Almost’ the reciprocity isomorphism.

Let L/K be a totally ramified abelian extension. Consider the following exact
diagram (cf. (2.7.A.2) and (9.1) Remark)

X » Y

~eas

o o N ~ V4
0 —>GLK) — Ul Jv(i,) — UR,) —> 0 -~

s C —— D

X, Y, C and D are the respective kernels and cokernels of the vertical maps in
the middle.

(i) By the snakelemma ([2] § 1.4 Prop. 2) there exists a homomorphism g:
Y = C such that the sequence X + Y = C— D is exact.

s
(ii) The homomorphism j is an isomorphism. For F (——I'-) =—=——=—
T Fny, Fmp
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mod. V(im) which proves that F—1 is zero on G(L/K) (cf. also (2.7.A.3) and
(5.1.C)).

(iii) Y = U(K) according to Lemma (10.1.B).

(iv) The homomorphism b is zero. For F—1: U('I\,n )= U( ¢) is surjective
(10.1.A);i.e. D=0.

(v) a(X) = NL/K U(L). It is clear that Ny g U(L) C a(X);letXe X be tepresented
by x€ U( L), then Fx/x isin v(L ar)s by lemma (10.1.A) there exists an ye V(L nr)
such that F(y)/y = F(x)/x, then F(xy™!) = xy"1, hence xy™l e U(L) (10.1.B); and
Np (xy!) = N(x) = N(%) = a(%).

(i)—(v) imply that the homomorphism

¢: U(K)IN g (U(L)) 5 G(L/K)

induced by g is an isomorphism.

Remarks.

1. Dwork has shown in [4] that the isomorphism u+> «p(u'l) is in fact the
‘classical’ reciprocity isomorphism. (Cf. the last few lines of § 9).

2. Also when the residue field k of K is quasi-finite (instead of finite) one can
prove that the homomorphism ¢ is an isomorphism. The proof has to be
changed slightly because in this case F—1: U(f.m,) > U(im) is not necessarily
surjective. We have instead:

(x = root of unity mod. U' (L)) = (x e Im(F-1)).

This suffices to prove that b = 0.

3. If we take an arbitrary finite abelian extension L/K and for F in the middle
column of the diagram any lift F' in G(L,,/K) of the canonical generator of
G(kg/k), then we obtain in exactly the same way

G(L/K)m =~ U(K)/Np g U(L)

(replace G(L/K) by G(L/K) 4 in the diagram), where L' is the invariant field
of F'. Therefore, because Npmm (U(M)) = U(M) if the extension M'/M is un-
ramified (2.6.]), we see that

G(L/K) g = U(K)/Np 1 U(L)

also in this case.

4. Let L/K be a not necessarily abelian totally ramified galois extension, then
we obtain an isomorphism
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G(L/K)™® ~ U(K)/Ny  U(L)

The proof is exactly the same, except that we must replace G(L/K) by
G(L/K)?® in the diagram above (cf. (2.7.A.2)).

5. Let L/K be any galois extension. Let H := G(L/K),, -
struct exactly the same diagram as above with H?® instead of G(L/K). (For
F in the middle column take any lift in G(L,./K) of F € G(K,/K)), cf. Re-
mark 3 above). The homomorphism F—1: H2 — H? is then not necessarily
zero. Its cokernel is the quotient H/<<G,H> of H? ;= H/<H,H> (where
G = G(L/K)) Cf. (5.2.D). We find an isomorphism

Then we can con-

H/<G,H> = U(K)/Np g U(L).

(Again with the help of (2.6.]) as in Remark 3. Cf. also (5.2.D).)
(10.3) Functoriality

The isomorphism p described above is functorial in L. Le. if M/K is a larger
totally ramified extension than L/K (in the sense that M D L; or even in the
sense of M, D L, .cf. (2.8.H)) then the following diagram is commutative.

G(M/K) <=— Uy /NpgU(M)

I

(Both the vertical homomorphisms are the natural projections). The commuta-
tivity follows from the functoriality of the fundamental exact sequence (2.7.A.2’
(cf. also (5.3)) and the functoriality of the snake lemma.

11. LOCAL CLASS FIELD THEORY.

In this section as in the preceding one K is a local field with a finite residue
field consisting of q elements. We here use 7 (instead of 7 ) to denote a uni-
formizing element of K.

Let fe F; be a Lubin-Tate power series (cf. (2.2)); i.e.

f=rXmod. X2 and f=X%mod. 7
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Let A, be a root of £m) but not of fAm1) (we denote with ™) the m-th iterate
of fiie. fm) ;= fm1) o £ (1) .= f). Define L :=K(\_,)and Lp=UL_.When
K =Q,, for instance, we might take f := (1+X)P —1, then fm) = (14x)P™ — 1,
and L, =K({;m) where §pm is a primitive p™-th root of unity. It is well known
that in this case Q;b =L, .(Qp ), The first three sections ((11.1)—(11.3)) esta-
blish the analogous fact (that L. K = K?) when K is any local field with a
finite residue field (consisting of q elements) and f is a Lubin-Tate polynomial
of degree q. To this end we show in section (11.1) that the extensions L /K
have small norm groups (in fact that Np kU(Lgy) © UM (K)), and in (11.2)
that the L /K are normal abelian totally ramified extensions. (This is done
without using formal groups). In section (11.3) we calculate oty = G(K*P/K) ram
and show that indeed K2 = L;.K, . We then use this in (11.4) to define a re-
ciprocity homomorphism (injective)

r: K* > G(K®/K)
such that the kernel of
K* > G(K3/K) - G(L/K)

is precisely Ny ;¢ (L*) C K* for every abelian L/K.
One can also base the construction of the reciprocity isomorphism in (11.4)
on (9.2) instead of on (11.3.A).

(11.1) Construction of extensions with small norm groups.

(11.1.A) Lemma

Let k be an arbitrary field, g= X" +a_ 4 X1+ o+ ag a polynomial
over k such that (n, char(k)) = 1 if char(k) # 0. Then there exists an
r> 0 and a polynomial § of degree <r-1 such that the polynomial

h := X"g + g is separable (i.e. has only simple roots).

Before proving this lemma we want to state a corollary (which is equivalent
with the lemma). Give the multiplicative group My :=1+ Xk[[X]] of power
series in X over k with constant term equal to 1 the topology induced by the
system of open subgroups 1 + X" k[[X]].

Corollary. The separable polynomials 1 + 2, X + ... + a, X" aredense in the
topological group My.
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PROOF OF THE LEMMA.

If k has infinitely many elements, we can choose r = 1 and g equal to some
suitable constant c e k. (For _(%_( (Xg+ c) is independant of ¢ and has only finite-

de

ly many roots). Suppose now that #k = g then d%( ¥ 0 (because (n, char(k)) = 1).

Letxq,...,X,.1 be the set of roots ofjix .The x,...,x%;_; are all contained

in some finite extension k' of k. Let #k' = ¢°, we can assume that q°* > degree(g).
Let h be the polynomial (r = ¢Hligi= —X%X) + 1)
dh s+1 dg

= (X% —Xx9) =,
( )dx

o= q5+1 X...Xq Xy+1 —
h:=X?  g(X) gX) +1, =

+1
If aisaroot ofj—l}‘( , then we have either that a is a root of x9%" _xe and then
h(a) = 1, or we have that a isa root of%%, then a€k’, hence aqs = a, and also
ha) =1 q.e.d.
Let f be a polynomial over A(K) of type (Lubin-Tate polynomial)
f=XT+m(ag X+ + 0, X2) 41X ay,...,a0 €A(K)

We use £ to denote the m-th iterate of f, i.e. flm)-, = f(f(m'l)), V=f Asx
divides £, it follows that £™1) divides £™). One sees directly from the shape of

f that £m)/fm1) is an Eisenstein polynomial. Let A, be a root of this Eisen-
stein polynomial and let L, := K(A;,,). The extension L /K is totally ramified
of degree (q-l)qm'l. We can choose the A, inductively in such a way that f(A )=
Am.y> then Ly C L, and we can form Ly : = an) Lo

(11.1.B) Theorem
Np_g(U(Lp)) € U™ (K).

Proof. Every element of U(L, ) can be written as u u’ with u" a (g-1)-th root
of unity in K and ue U (L, ). Now N(u') = (u')(q'l)qm-l = 1. Hence it suffices
to show that N(Ul(Lm)) C U™(K). This is clearly true for m = 1, we therefore
assume m > 2. Every element of u? (L,,) can be written as a sum

u=1+a1>\+a2)\2+...+an)\n+x 3, €A(K), A=,

with n =m(q-1)q™ — 1 and v(x) > v(7™), so that (n, char(k)) = 1 (as m > 2;
v denotes the normalized exponential valuation on K). Consider the polynomial
d(X)=Xx"+ aIX"'1 +...+a_ (same a; as in the sum above). Let g be the re-
duction of d to a polynomial over k. Choose r and g as in the lemma (11.1.4),
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let g be a lift of g of the same degree as§. Let h : = X"d + §. Then the reduc-
tion of h in k[X] has no multiple roots, hence all roots of h are in K .. We can
choose the constant term of h equal to 1, which implies that the product of the
roots z1,...,2, of his equal to £ 1, and that therefore the roots of h are all
units (of K, ). Then (1-z;\) ... (1-z,A) = 1+ a;A +...+a A" + x" with v(x') =
v(r™)andu=1+a;A+...+a A" +x=(1-z;\) ... (1-z\) (1 +y) with v(y) =
v(m™). Now N(1+y) e U™ (K). We have left to show that

N(.fl1 (1-2) € U™(K)

It suffices to show that Ny y g (II(1-zA)) isin U™(K,, ). This follows
from the commutativity of the diagram below and the fact that U™ (K ) N
U(K) = U™ (K) (because K /K is unramified).

Lm Lm'Knr
(11.1B.1) N =INLm,K N K /Ky
K &— K

nr

(The commutativity is proved as follows. Let x € L, then x has the same
minimum polynomial over K as over K., because K, /K is unramified and L /K
is totally ramified, q.e.d.)

In particular we have that the minimum polynomial of A€L _.K  is flm)/f{m-1)
€K, [X]. This yields

m1 £™()
f(m-l) (Z-l)
(Thanks to the commutativity of the diagram (11.1.B.1) above we can and

shall‘use N for bloth Np . /x and Ny KnelKng indiscriminatedly).
Putting y; := z;” we obtain from (11.1.B.2)

(11.1B.2)  N(1-z\) =234 zeU(K

nr)

t t 4t f(m)(y.)
0 (1z\) = (I zy@da™t g — IV
N(i=1 (1-z;M)) (i=1 z) 1 f(m-l)(}’i)

t £y
Sy,

(because I1z;=*1 and m > 2)
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The z; are units, therefore the y; too and also the f(m'l)(yi) asis easily seen
from the shape of £, It follows that it suffies to prove that

[tl f(m)(yi) - ItI f(m'l)(yi)EO mod. (7™)
i=1 i=1

The automorphism FeG(K,,/K), the Frobenius automorphism, permutes the
roots z; of h, hence F also permutes the y;. The homomorphism F reduces to
x> x% mod. (). Therefore there exists a permutation ¢ of 1,...,t such that

£(y;) =ygy mod. (m)
because also x> f(x) reduces td x+ x9 mod. (7).
For any two elementsa, be A(K, ), if a=b mod (1r’) with r> 1 then a% =b?
mod. (Trrﬂ) and 12* = 7b% mod. (711 (s = .,q-1) hence also f(a) =f(b)
mod. (7*1).
Applying this to the relation

f(y)) = ygy mod. (m)
we obtain

) (yy) = 8™ Dyg mod. (1)

Taking the product over i we find
H f(m)(y)’ H flm- )(Yo() H flm l(y! mod. (7™)

q.e.d.
Remark. Note that the first part of the proof above shows that:

The unramified polynomials 1 +a;X +...+a, X" are dense in the
topological group 1 + X A(K) [[X]].

102




(11.2) The Lubin-Tate extensions.

Consider the polynomial f := X9 + 7X; f is of the type discussed in the preceding
section. By the fundamental Lubin-Tate lemma (2.2.A) there exists for every
a€ A(K) exactly one power series [a] ¢ such that

[a] f=aX mod. X2  and fo [a]¢=[a]gof

As in the preceding section let L, = K(A ) where A, is a root of £m) bue not
aroot of ™Y For every u € U(K) we obtain (possibly) another root [u]dA ) €L,
of ™) which is not a root of ™Y, It is our aim to prove in this section that
L.,/K is an abelian totally ramified extension for every m > 1. This is done by
showing that one finds enough different roots [u]¢(A,,) € L., when uruns

through U(K). To do this we need to know somewhat more about the power

series [u] ¢ This can be found by direct calculation as in (11.2.A) and (11.2.B)

or by a more elegant method (11.2.C) and (11.2.D) for the suggestion of which

I am indebted to A. Menalda.

(11.2.A) Lemma.

Let f:= X%+ #X. If u=1+7"x, x € U(K), then we have for the power
series [u]g=u X +u, X2 +...

v(ug) =0;v(y;) =n i=2,...,q1

V(“q) =n-1;v(y;) =n-1 i=gq+,..., q2-1

v(uqz) =n-2;v(u;) 2 n-2 i= q2+1, cen, q3_1

v(uqn) =0

Proof. u(X% + nX) = (uX)? + nuX mod. X9. Therefore u; =u and v(u;) =0
anduy =ujz =...=ug4 = 0. The coefficient uy must be equal to (u%-u)/(n%-m)
hence v(ug) = n-1if n > 1. Suppose we have proved the lemma for i < q™,
1< m < n. Consider the coefficient of X3 for 1 <j <(q-1)q™ in the rela-
tion

[a] ¢ (X2 + ) = [u]3 + {u]

The coefficient of X3 J on the left side is

+ [n'-(q-1) . [n"2(g-1) 2 n'-t(q-1) K
“n"’"+< 1 >“n’(q—1)’rnq+< 2 >“n'.2(q-1)”n q*"'( ¢ )“kn"
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wherek :=q™ +j-tq, t: [qm'l J}n’:=qm+j.
q

One hask = 0if (q,j) = q and k > 0 elsewhere. Assume the lemma proved for
indices smaller than n’. Then we know that

[u]f=uX+7"™ (something) mod. (Xn')
therefore
[u]=uiXd + 21 (something) mod. (X™*1)

We therefore have the relation

» [n'g-1) | n't(q-1)
(11.2.A.1) u " +< ) >un._(q_1)1r“*1+...+< . >uk+t1rk =

= ,”n-m+1y +muy,

If k > 0, we obtain v(u,s) 2 min(n-m+1, v(up4,) +1) -1 > n-m.

Ifk =0and 1<j<(q-1)q™ we obtain v(u,s) = min(n-m+1, v(u,))- 1 > n-m.
Ifk =0andj=(q-1)q™ we have t=q™ and v(u,) = n-m; the coefficient of u,
in the relation above is then 1, the term u, has in this case strictly smaller value
than all the others on the left, therefore we have exactly v(u) = v(u,) = n-m-1.

q.e.d.

(11.2.B) Lemma.

Let f:= X3 + 71X and A, as above. If [u] ¢(A,) = [u']¢(A,,) then
u=u' mod. U™ (K).

Proof. Composmg with [u” ]f we obtain [ulu’ 1¢(Am) = A and we have to

prove u’ 1y' € U™(K) (cf. the remark below). Suppose then that [ule(Ay) = Ao

We proceed by induction. The case m = 1 is clear. As [u]¢(Ap1) = [u]lf(f(Ap ))
f([ulf(A\p)) = fAy) = A we know by the induction hypothesis that u eUm'l(K),
i.e.u=1+7"1x. Suppose v(x) = o (i.e. u e U™ (K)\ U™ (K)) then v(u ) =0

by the preceding lemma. The value of all terms of [u]f(Ay,) - Ay €Xceptu gl }\qm-
>(qm'1 +1) v(A,), because v(m) = (g-1)q™" v(7\ ). This gives a contradlctlon,
hence v(x) > 0 and u e U™ (K).

qe.d.
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Remark.

The fact that [u]¢([u']¢) = [uu'] ¢ used in (11.2.B) and (11.2.E) further on,
follows from the uniqueness property of the series [ ] ¢; both right hand and
left hand side start off with uu'X + ... and both commute with f, therefore they
are equal (2.2.A).

(11.2.C) Proposition.

Let f be a power series over A(K) (no hypothesis on the residue field
of K). Suppose A€ L (where L/K is a finite extension) is a root of
positive value of f (i.e. v(A) > 0). Then there exists a power series g
with coefficients in A(L) such that f = (X-A) g.

Proof. Write £ = (X-A) g, + h, mod. (X"), with h, € A(L) (division with re-
mainder in A(L) [X]). Now f{A) = 0, therefore v(h,) = n v(\) which goes to
infinity as n = © because v(\) > 0. Also we have f=(X-\)g 41 + hp4; mod. X+l
therefore (X-A) (g,4+1-8,) = 0 mod. (A", X"). We write g 41 -g, =2, X* + an_lx“'l
+...+ag, and we obtain

v(agh) Znv(N), v(ajA-ap) Znv(A),...,v(a, A -a,,) 2 nv(A)
from which
v(ag) = (n-1) v(N), v(ay) = (n-2) v(A),...,v(ap,) = 0.

It follows that the sequence g, has a limit g as n = <. Then {= (X-A)g mod.
(A", X™) for all n, i.e. = (X-\)g.
q.e.d.

(11.2.D) SECOND PROOF OF (11.2B).

Asin (11.2.B) we have to prove that [u] ¢((A,,) =X, impliesu=1 mod. 7™.
Let se G(K, L > §2), then also s\, is a root of [u]¢(X)-X because of the con-
tinuity of the action of s. Also f¥)(\) is a root of [u]{(X)- X because [u]
commutes with f and f(0) = 0. Therefore all the roots of £™) are roots of
[u]¢(X)-X. By repeated application of (11.2.C) we obtain a factorisation

[u]¢(X)-x=fm).g

But M =gmx + _; comparing the coefficients of X left and right we find
(u-1) = 7™ a for some a with non negative value.

q.ed.
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Remarks.

1. For this second proof of (11.2.B) we did not need to suppose that f=X3+7X
but only that f is of the shape

f=X3+m(ag XU+, 42y XE) 41X,

2. One can also give a proof of (11.2.B) analogous to (11.2.D) in the case that
fisa Lubin-Tate power series.

(11.2.E) Theorem.

The extensions L /K are galois extensions with galois group isomor-
phic to U(K)/U™ (K).

Proof. #U(K)/U™(K) = (q—1)q™ 1 = [Ly, : K]. With A, also [u]¢(A,)eL_
and these elements are all roots of £ and not of A™~ if ue UgK). In this
way we obtain in virtue of (11.2.B) at least #(U(K)/U™(K)) = (q—1)q™ !
different roots of f£™/fm~1) in L . This proves that L /K is normal. The ex-
tension L, /K is separable as it is a composite of extensions L, DL D...
O Ly DK, defined by polynomials X4+aX -\, X314 q, (Or, L /K is de-
fined by a polynomial of degree (q—1) q™ ! with no multiple roots). The as-
signment s+ (class of any u such that s(A,) = [u]¢(A,)) definesthe desired
isomorphism G(L,/K) 3 U(K)/U™(K). That this map is an homomorphism
follows from (2.2.A). Cf. the remark below (11.2.B).

qe.d.

(11.2.F) Corollary
Np & (ULy)) = UR(K).

Proof. We now from (11.1.B) that Ny (U(Ly,)) © U™(K). As both groups
have index ™ 1(q—1) in U(K), the corollary follows (10.2).
qed.

(11.2.G) Remark.
The element 7€ XK is a norm from every L /K.
Proof. We defined L | asL, = K(A\,) where A is a root of £m)  fm=1) pp;

polynomial is of the shape X(4—1) qm-1, m(...)+m. It follows that NLmIK(“)‘m)

=mforal L /K withm=>1.
q.e.d.
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L.H) Remark.

can use (11.2.A) to calculate the ramification groups of G(Lp,/K) and the
nction of L /K. It turns out that G(L IK)y i) = G(Lyy /K)! corresponds
U‘(K)/Um(K) under the 1somorphlsm G(L_ /K) = U(K)/U™(K) for
' <m; and that G' = 0 when i > m. For the Y-function we find
Y() =qi-1 i<m
V() =(q"-1) + (i-m) (q"—q™Y)  iZ>m
3) Calculation of &y . Description of K%,

3.A) Theorem

»f. For every totally ramified abelian extension L/K we have an isomorphism
2), which is functorial

¢: U(K)/Np x U(L) 5 G(L/K)

every finite quotient G of oty there exists a totally ramified extension with
is group G ((2.8.H); otk is a galois group; (2.8.F)). Hence taking the pro-
ive limit of the isomorphisms above, we find an isomorphism

3.A.1) p: lim U(K)/Np U(L) 5 o
L/K

also the definition of the projective system defining &y (2.8.H) and (2.1.B))
I(L) is compact, Ny ¢ is continuous, hence Np jx (U(L)) is also compact and
herefore closed in U(K); it is also of finite index in U(K) (10.2) and there-
ore also open in U(K); i.e. there exists an n such that U"(K) C Np g (U(L)).
by (11.1.B) and (11.2.E) there exists for every n a totally ramified abelian
xtension L such that Np x(U(Ly)) © U™ (K).

nd b) together imply that

3.A.2) Ll_m_ U(K)/NL/KU(L) :LiEU(K)/Un(K) ~ U(K)
LK n

mulas (11.3.A.1) and (11.3.A.2) together prove the theorem.
q.e.d.

Lp:=UL_,where L :=K(\,), A, aroot of fm)yfm=1) £.= x4+ 17X
m
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(or any other Lubin-Tate power series in F; cf. (2.2.A) and (11.2.D) Remark
2). Section (10.2) implies that G(L,/K) = Ln_‘g U(K)/U™(K) ~ U(K) (cf. also
(11.2.F)).

(11.3.B) Corollary (Description of K®).

Every abelian extension L/K (in ) is contained in the abelian exten-
sion L. K .

Proof. There exists a totally ramified abelian extension L'/K such that L.K =
L'.K,, for every abelian extension L/K (2.8.F). There is an n such that

Ny (U(L')) D UM(K). It follows that L'.K,, C LR, ((10.3) or (11.3.4);cf.
also (11.2.F)) and hence that L.K,, =L".K  CL_.K; ((2.1.C); cf. also the
definition of the projective system defining atg in (2.8.H)).

q.e.d.

(11.3.C) Corollary
G(K®/K) ~ UK) X Z

This follows from (11.3.A) together with (2.8.H); or from (11.3.B) directly,
asK —and L are linearly disjoint.

(11.3.D) Remarks.

1. The group U(K) X Zis the completion of K* ~ U(K) X Z with respect to
the topology of open subgroups of finite index. (Open in the sense of the
topology on K* induced by the valuation on K). When regarded as this com-
pletion we shall write K* for U(K) X Z, and K*<> K* will be the natural in-
clusion.

2. One can of course choose many isomorphisms K*~ U(K) X Z-~ G(Kab/K).
It is the aim of the next section to show that we can choose this isomorphism
in such a way that the kernel of

K*o K* > G(K®/K) > G(L/K)

is precisely Np ¢ (L*) C K* for every abelian L/K (where the last map is the
natural projection).
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(11.4) The reciprocity isomorphism and the existence theorem.

(11.4.A) PRELIMINARY DEFINITION.

Let L'/K be a totally ramified abelian extension; T a uniformizing element of
K which is a norm from L'; and K /K an unramified (abelian) extension of K.
We define a homomorphism r: K* - G(L".K_ /K) as follows. (Strictly we should
write ry/ g OF something similar).

U(K) su & r(u) :=p(u™?) eG(L'/K) = G(L'.K,_/K,)
g P> F

where F is the Frobenius automorphism of G(L'.K, /K) and u+> ¢(u) is the
homomorphism defined in (10.2).

(11.4.A.1) Lemma

Let L/K be an abelian extension. The index of Ny i (L*) in K* is
equal to the number # G(L/K).

Proof. Let K be the maximal unramified extension of K contained in L. We
have [L: Ky ] = #(U(K)/Np g (U(L))) (cf. (10.2) and (10.2) Remark 3). There
is an exact diagram

YL

0 — U(L) > L* > Z > 0
K

0 ——> U(K) > K* > 7 > 0

where f:= fy  := [Ky:K]. Hence #(K*/Np g (L¥)) = #(U(K)/Np g (U(L))).
f= [L H KL] [KL ZK] = #G(L/K).

q.ed.
(11.4.A.2) Lemma

Let L" C L".K, be any other totally ramified abelian extension such
that L”. K =L".K, (ie. [L":K] = [L": K] ;same situation asin the
definition of r above). Then

Ker (K*—» G(L'K, /K) — G(L"/K)) = Ny (L"*).

109



Proof. (11.4.A.1) implies that it suffice to show that Npwy (L"*) C Ker(...).
For this it suffices to show that NLn/K(Tr") €Ker(...) when 7" isa uniformizing
element of L", (Because NLH/K(U(L")) C Ker(r) (10.2), or because the uni-
formizing elements of L” generate L"*). Let L” be the invariant field of r(u)F.
Write 7" = x7' where 7' € L' is such that Ny (n') = Tk . We have

- N -1 "o o__ —1 n
mg =Nprg g, (M) =Ny gk (77 Npg g (M) =Nprg g (x77) Npmg (),

hence NL'~}<n/Kn(x) € U(K). Now r(u)F(n") =", it follows that we have in the
group U(L )

ol

' '

_rw(m)_  x _fwFTh r)Fx"h) Fh_ P
7 m r(w)F(x)  x ! Fx~l)  xt o xl

~

mod. V(L, ).

Hence by the definition of the isomorphism ¢ in (10.2) Ny g, /K, (%) =u
mod. Ny (U(L')). And we find

r(Npmg (")) = r(umy ) = r(u)F

which is the identity on L.
q.ed.

(11.4.A.3) Corollary

If we had defined r: K* = G(L'.Kn/Kn) using L" instead of L', i.e. if
we had taken

UK)3u & r(u) :=p(u?)
Npng (n') > F'

where F' is the Frobenius automorphism of G(L".K /L"), we would
have obtained the same homomorphism r.

(11.4.A.4) Remark
It is clear from the definition of rin (11.4.A) that

Ker(K* > G(L'.K, /K) > G(L'/K)) = Np s (L™*),
and that

Ker(K* > G(L'.K,)) = NL"Kn/K((L'.Km)*),
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because

Npg k(LK) = Ng_ge(KE) N Ny (L),

as L'/K is totally ramified and K, /K is unramified (cf. (2.6.H)).

(11.4.B) DEFINITION OF THE RECIPROCITY ISOMORPHISM.

Choose a uniformizing element m of K. Let Ly, =UL_, be the union of the Lu-
bin-Tate extensions L. Then K® =K__.L, (11.3.B). Now define

r: K* —» G(K®/K)
U(K) 3u > r(u) = p(u™}) e G(L/K) = G(KP/K )
T —> FeGK®/L,)

where F is the Frobenius automorphism of Kab/Lﬂ.

Remarks.

1. This definition checks out with the one given in (11.4.A), because 7 is a
norm from every L_ /K (11.2.G) (cf. (11.4.A.3)).

2. It follows also from (11.4.A.3) that r does not depend on the choice of 7
in K.

3. Exactly as in the corollary to theorem 3 of [LT] one can prove from re-
mark 2 that r: K¥ > G(Kab/K) is identical with the ‘classical’ reciprocity
isomorphism, given by the norm residue symbol .

In fact, let s: K* — G(Kab/K) be the reciprocity law isomorphism; i.e. s(a) =
(a, Kab/K). Let 7 be any uniformizing element of K. We know that K3 =
K. .. Ly (11 3.B). The element 7 is a norm from every L, C L, (11.2.G),
hence s(m) :=(m, Kab/K) is the identity on L. Furthermore s(m) is the Fro-
benius automorphism on K, .. By the definition of r above (using 7 and L;;)
the same is true for r(m). Since the prime elements of K generate K*, this
shows that s =r. .

4. The homomorphism r is the restriction to K* C K* ~ U(K) X Z (cf. (11.3.D)
Remark 1) of an isomorphism

K* ~UK) X Z 5 GK®P/K)
viz. the isomorphism given by’
a=7mu P (u,r1) P gu HF

(cf. (11.3.D) Remark 2 and (11.3.C)).
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(11.4.C) Theorem
Let L/K be an abelian extension, then we have
Ker(K* - G(K® /K) > G(L/K)) = Np g (L*).

Proof. It suffices to prove that Ny j (L) is contained in this kernel (11.4.A.1).
Let K be the maximal unramified extension of K contained in L;let 1,

K* - G(K,*®/K,) be the analogous homomorphism (for K,,) to r: K* -
G(K2®/K). Then we have a commutative diagram

K* n K*

(11.4.C.1) lrn

G(L/K,)&——— G(L/X)

1}

To see this, let L'/K be a totally ramified abelian extension such that L'.Km
L.K,, for some unramified extension K_ /K of degree m, where m is a multi-
ple of the degree n = [K : K]. Then K, D K.

LK, =LK, LK,
K, K, K

Let FeG(L".K, /L") be the Frobenius automorphism. Then F" is the Frobenius
automorphism of G(L'.K /L".K_). Let 7 be a uniformizing element of K,
which is in NL:,K(L'*). Then
r,(m)=F"  and r(NKnIK (m))=r(n")=F"
(cf. (11.4.A.3)). It remains to check that
(¥) =r(Ng_p(w)) forueU(K,).

Let u’ eU(i;“) = U(im,) be any lift of u. The element u” := (1+F+...+Fn_1) (u)
is then a lift of Ny (u) = (L+F+...+F"1) (u).

The element r, (u) € G(L'.Km/Km) corresponding to u is, according to (10.2)
and (11.4.A), characterized by

ON DI
T P
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where 1 is a uniformizing element of L’. Hence

(u) (myr) _ (4P ) W
T FQ+F+.+F 1) (') F(a')

'
nr)

mod. V(L

But r(u) e G(L'.K /K, ) is characterized by

() (m) = ¢ ") mod. V(f,

mpe F(u

!
nr)

This shows that r_ (u) = r(NKn/K(u)) forue U(K, ). We have shown that the
diagram

K* Nkl > K*

(11.4.C.2) r r

n
G(LK /K ) ——> G(L'K_ /K)

is commutative. It follows that the diagram (11.4.C.2) is also commutative. We
know from (11.4.A.2) that the kernel of r,, in diagram (11.4.C.1) is equal to
NL/Kn(L*); it follows that

Npg(L*) = NKn,K(NL/Kn(J,_f)) CKerr

because of the commutativity of (11.4.C.1).
q.e.d.

(11.4.D) Corollary (The existence theorem) ([CL] Ch. XIV § 6 Th. 1)

The norm subgroups of K* (i.e. the subgroups of the Ny j (L*) C K*
where L/K is a finite extension of K) are precisely the open subgroups
of finite index of K*.

(11.4.E) Corollary

For every open subgroup R of finite index of K*, there is precisely
one abelian extension L/K such that the kernel of r: K* > G(K2° /K )~
G(L/K) is exactly R.

A norm subgroup of K is necessarily open and of finite index (cf. (11.4.A.1)).

The other half of Cor. (11.4.D) and (11.4.E) then follow both from the fact
that r is the restriction to K* of some isomorphism
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B* 3 G(K® /K)

(cf. (11.4.C), (11.3.C), (11.3.D) Remark 1 and (11.4.B) Remark 4).

(11.5) Remarks.

(11.5.A) A FUNCTORIAL PROPERTY OF THE RECIPROCITY ISOMORPHISM.

The reciprocity homomorphisms ry : K* = G(K® /K) satisfy a functorial prop-
erty. In fact if L/K is any finite galois extension of K, then the following dia-
gram is commutative

Ny g

L* > K*

I'L I.'K
G(L*® /L) —> G(K? .L/L)=> G(K® . L/K)

The commutativity of the diagram (11.4.C.2) proves this for the case that L/K
is unramified. It suffices to prove in addition that the diagram above is com-

- mutative when L/K is cyclic totally ramified (because G(L/K) is solvable). To
this end let M'/K be a totally ramified abelian extension, K /K an unramified
extension. By means of the same kind of argument as used in (2.8.J) Remark 2
we can find a totally ramified extension M"/K such that LC M" and M".K =
M'.L.Km for some unramified extension K /K of degree m, where m is a
multiple of n, the degree of K /K.

"

M,

" ’ "
M".K, LMK =L .M"=K_.M

’

\

l
7

K K

LM

’ ’

Now use M"/Land L, = L.K todefine ry : L* - G(L,,.-M"/L) and M"/K

and K /K to define ry : K* = G(K,,, .M"/K) (cf. (11.4.A)), It is clear from
(10.2) that rp (u) = rg (Np g (u)) for ue U(L). And if 7" is a uniformizing element
of M", we have ry (Nyn (1)) = FeG(L,,.M"/M") = G(K,,.M"/M"), and if
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7y € L is the uniformizing element 7y := Ny, (n") then ry (N, x(m)) =
rg (Nyr g (1)) = FeG(K . M"/M").
q.e.d.

(11.5.B) Problem

Lubin and Tate show in [LT] that the homomorphism r: K* »> G(K?/K)
defined by

U(K) su & [u_ljf on L, and identity on K
7 +> identity on Ly, and Frobenius on K

is independant of the choice of m. It follows that this homomorphism is identi-
cal with the homomorphism r (and with the homomorphism defined by the
norm residue symbol; cf. (11.4.B) Remark 3). Specifically this means that if
u'eU(L, .f(m) is such that

Fu' [u] )

U

mod. V(L_.K, )

m
m

that then N & g (u') € U(K) (this follows from (10.1.B)) and
~ ~ ! = m .
NLm- Knr/Knr(u J=u mod. UM (K)
I do not know a direct proof of this fact. (One can use (11.2.A), especially
(11.2.A.1), to show that s and r both map U™ (K) into G(Ly/K)™ and that
the induced maps 1,5: U™ (K)/U™!(K) > G(L;/K)™ /G (L/K)™*?! are iden-
tical.)
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Samenvatting

Zij K een lokaal lichaam, d.w.z. een discreet niet-archimedisch gevalueerd
lichaam, dat compleet is in de metriek, die door deze valuatie geinduceerd
wordt.

Veronderstel dat het restklassenlichaam k van K algebraisch gesloten is. Men
kan de groep van eenheden U(K) van K de structuur van een pro-algebraische
groep over k geven. Serre bewees in [CAC] dat er bij elke eindige abelse
lichaamsuitbreiding L/K een isogenie van U(K) hoort, en dat in zekere zin

alle isogenie&n van U(K) zo verkregen worden. Hoofdstuk II van dit proef-
schrift behandelt een generalisatie van deze stelling voor het geval dat k perfect,
maar niet noodzakelijk algebraisch gesloten is. Het bewijs sluit nauw aan bij
het oorspronkelijke bewijs van Serre.

Veronderstel nu dat het restklassenlichaam k eindig is. Hoofdstuk III begint
net als [LT] met de constructie van zekere totaal vertakte abelse uitbreidingen
L /K. Een stelling over het beeld van de norm-afbeelding NLm /k stelt ons
dan in staat te bewijzen dat de lichaamsuitbreiding (UL )-K__de maximale
abelse uitbreiding van K is (K = de maximale onvertakte uitbreiding van K).
Met behulp hiervan construeren we een reciprociteits isomorphisme dat iden-
tiek blijkt te zijn met het ‘klassieke’ reciprociteits isomorphisme dat gedefi-
nigerd wordt door het norm rest symbool.

Het voordeel van deze methode (naar de mening van de schrijver) is dat men
de nogal ingewikkelde machinerie kan vermijden die te maken heeft met het
bestaan van de zg. fundamentele 2-cocykel (van K).

De mogelijkheid het reciprociteits isomorphisme zo te definieren volgt uit
Dwork’s beschrijving van dit isomorphisme in [4], en vooral uit de resultaten
van Lubin en Tate in [LT]; ze werd trouwens al in 1959 door Serre aangeduid
in [17] §7.
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