
VON KARMAN INSTITUTE FOR FLUID DYNAMICS 
(HAUSS~E DE WATERLOO, 72 
B - 1640 RHODE SAINT GENESE, BELGIUM 

PROJECT REPORT 1984-14 JUNE 1984 

EXPLICIT RUNGE-KUTTA ARTIFICIAL COMPRESSIBILITY 
TECHNIQUE FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

APPLICATION TO THE BACKWARD FACING STEP FLOW 

BARRY KOREN 

SUPERVISOR : J.-A. EssERS 



-i-

ACKNOWLEDGEMENTS 

I am grateful to Professor Essers for his introductory lessons 

given from October 1983 to January 1984, which after having 

obtained the first good results (beginning month June) appeared 

to have been very valid and solid. 

I am grateful to Mart Borsboom for his useful advises during the 

whole month June, and especially for his offer to use his excellent 

plot-program. 



-ii-

ABSTRACT 

Given in this report is a solution technique for the 2-dimensional, 

incompressible Navier-Stokes equations for Reynolds numbers much 

larger than 1. 

Given also in this report are results obtained with this solution 

technique, for the steady backward facing step flow. Results have 

been obtained £or a Reynolds number of 50. No results have been 

obtained for Reynolds numbers higher than 50. 
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NOTATIONS 

symbo1s 

b 

CCX 

ccy 

cvx 

cvy 

j 

k 

m 

nx. 1 t in e 

-iv-

constant in front of the space derivatives of the 
unsteady continuity equation 

weight coefficient for the contribution of the pressure 
gradient in x-direction at the concave corner of the step, 
to the weighted pressure gradient at that corner 

weight coefficient for the contribution of the pressure 
gradient in y-direction at the concave corner of the step, 
to the weighted pressure gradient at that corner 

weight coefficient for the contribution of the pressure 
gradient in x-direction at the convex corner of the step, 
to the weighted pressure gradient at that corner 

weight coefficient for the contribution of the pressure 
gradient in y-direction at the convex corner of the step, 
to the weighted pressure gradient at that corner 

index used for horizontal mesh lines 

wave number 

index used for vertical mesh lines 

number of vertical mesh lines from the inlet up to and 
including the vertical wall of the step 

nxoutlet number of vertical mesh lines from the vertical wall of 
the step up to and including the outlet 

nyinlet 

nystep 

number of horizontal mesh lines from the lower wall of 
the inlet part up to and including the upper wall 

number of horizontal mesh lines from the lower wall of 
the outlet part up to and including the lower wall of 
the inlet part 

p pressure 

Re Reynolds number based on the maximum velocity component 
in x-direction at the inlet, and on the step height in 
the physical domain 

t 
u 

V 

X 

-X 

y 

y 

A 

]J 

p 

w 

time 

velocity component in x-direction 

velocity component in y-direction 

coordinate in the physical domain 

coordinate in the computational domain 

coordinate in the physical domain 

coordinate in the computational domain 

eigenvalue 

dynamic viscosity 

density 
/w2+w2' 

X y 



w 
X 

w y 

-v-

frequency x-dependent Fourier-component 

frequency y-dependent Fourier-component 

subscripts 

step convex corner of the step 

upper upper wall 
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1. INTRODUCTION 

The 2-dimensional, incompressible Navier-Stokes equations, 

describing a steady flow problem are 

Introducing the non-dimensional quantities 

system (1.1) can be rewritten in the following form 

Introducing next 

( 1 • 1 ) 

( 1 • 2) 

( 1 • 3) 

( 1 • 4) 

the 2-dimensional, incompressible Navier-Stokes equations become 

in non-dimensional form 



OU c)V 

U-X ~ oy =O 

"Ju c:iu ~ _!_(u2u u2.1.1) 
LJ ox.+ v uy = - rJ:x. + Re vx.i.+ v12. 

ov ·ov ~ ..]_{ v-2-v u:i..v) 
Uo:x. + vvy = - c:iy +-Re u.x~ + uy2 
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(1. 5) 

A well-known iterative technique to solve this system of equations 

is to solve at first the Poisson equation for the pressure 

( 1 • 6) 

, which can be obtained form both momentum equations, and in which 

the supersript land l+1 indicate two successive iteration levels. 

Using the continuity equation above Poisson equation simplifies to 

( 1 • 7) 

Using the known pressure at iteration level l+1 the following 

Poisson equation for respectively u and vat iteration level l+1 

can be solved 

( 1 • 8) 

(1. 9) 

A simpler solution technique which avoids the cumbersome solution 

of a Poisson equation for both u,v and pat each iteration level 

has been chosen. Chosen has been the solution technique intro

duced by Chorin (ref.1). In the solution technique introduced by 

Chorin the 2-dimensional, incompressible Navier-Stokes equations 

are solved by marching in time, using the system of equations 

~ {vu uv) 
u't +- b ux +u; ==o 

uu uu uu ~ ..J.... (v:z.u ,i·uJ 
"Jc -/- LJ vx f- V ul = - U)( + Re cl.X 2. -/- D/2 

ov uv ov # ..2...(u1 v oz.v) 
N + uv:x.+voy==-""uj + Re ox<-+-uyi-

(1.10) 

The solution of the original system (1.5) will have been obtained 
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as soon as in the time marching procedure the steady state has been 

reached; i.e. as soon as the time derivatives in (1.10) can be 

neglected with respect to the space derivatives. 

The constant b has been introduced in the continuity equation as a 

constant to be used for the optimization of the rate of convergence 

of the time marching procedure. 

Concerning the time discretization: chosen can be between an 

explicit or implicit time discretization. When Cherin introduced 

the artificially time-dependent system (1.10), no good explicit 

time discretizations were available; i.e. no time discretizations 

which were stable for flows for which Re~1. Nowadays these time 

discretizations do exist. Nowadays the choice can therefore be 

made between an explicit or implicit time discretization. Chosen 

has been an explicit time discretization; chosen has been: Runge

Kutta. 

Concerning the space discretization: chosen can be between a finite 

difference, a finite volume or a finite element discretization. 

Chosen has been a finite difference discretization; chosen has been 

the five-points scheme given in fig.1.1. 

For the considered flow problem; the backward facing step flow, use 

could be made of various computational results presented at a GAMM 

Workshop (ref.2), and also of computational results recently 

obtained at VKI with an implicit time discretization and a finite 

volume space discretization. 
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2. COMPUTATIONAL METHOD 

2.1. Stretching 

In order to have a sufficient number of points in flow regions with 

large gradients, but also a total nu~ber of points which is as small 

as the accuracy allows, a non-equidistant mesh has been used. For 

simplicity the space discretization has not been performed in the 

non-equidistant mesh in the physical domain, but in an equidistant 

mesh in the computational domain. Both meshes are related with 

each other by stretching functions. Using as x,y-coordinate system 

in the physical domain, the coordinate system given in fig.2.1, 

and using the notations i and i for the coordinates in the computa

tional domain, the stretching functions used can be written in the 

following way 

with for 

and 

with for 

Y1=G 
f 

Vt ,<\ep 
y..,= z' ' 

I 

Y,cep+ )li.Jppe1 y,t~p tvuppn 
)",!ep~v·~ 1 .z. · ,Y1~.>Slep , )-'.z.= · z ' ,Yr"" y,tep 
Y:itep+ ){,EP:1 , Y:ifo, +-Yuppe1 _ _ 

l.. ~ Y~;"un;:fl : V1 =Yuof>l'l , ),:z. = , .z. '~ , >11"' Yuooe1 
/ 1 1 / , ,r- , 1 /'u 

- - -
For xstep' Ystep and Yupper it holds 

( 2. 1 ) 

} (2.2) 

(2. 3) 

(2. 4) 
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_ (nxin~I: - 1) Xoultt +- ( nxout&I::- 1) X;nfet 

X1lep = { nxin~t _ 1) + ( nx0 LJt/d: - 1) 

_ (ny1/ep- 1) /uppe1 
/ 1t7 = ( n1-:i!:ef- 1 J +- ( 'o/infet - 1 J 

( 2. 5) 

l/.Jw~1 = Yuwez 

in which is: 

- nx. 1 t: the number of vertical mesh lines from the inlet up to in e 
and including the vertical wall of the step, 

- nxoutlet: the number of vertical mesh lines from the vertical 

wall of the step up to and including the outlet, 

- nystep: the number of horizontal mesh lines from the lower wall 

of the outlet part up to and including the lower wall of 

the inlet part, and 

- ny. 1 t: the number of horizontal mesh lines from the lower of in e 
the inlet part up to and including the upper wall. 

With the constant power in respectively (2.1) and (2.3) the 

stretching can be changed; the larger the power, the more stretched 

the mesh. 

2.2. Runge-Kutta schemes 

In order to discuss the Runge-Kutta schemes, consider the system 

of equations 

(2.6) 

with in the left hand side the time-dependent part and in the right 

hand side the space operator. Consider now to be known the 
+ + 

solutions at iteration level i, and to be computed the solutions 

at the next iteration level; iteration level £+1. 
A general Runge-Kutta scheme, i.e. a Runge-Kutta scheme consisting 

of n steps has the following form 

s'= r 2 + 01 At fr;-P; 
r2 = s 1+ a2 At Fc? 1J + tAt fr1PJ 
s3 = -;P +- 03 4t Fcs 2 J -1- g3 Al Fcs'J + c3 4l Frt 1J . (2.7) 
-:l"n-1 -./ I !="{..,,.n~'l-) 0 ! C:-( ➔ n->J I f1 -n-il) / ~ = 5 + On_1 .AC I < 5 + -On-l .1t I i 5 +- Cl)-1 At: L 5 + .. 
-gf-1-1 = s1 + On At F ctn-1 ) + ,gn .c,.t rcsn-2.) +- Cn .L1t F ( 5 n- 3) + .. 
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It is composed of n-1 predictor steps (the first n-1 steps) and 1 

corrector step (the last step). 

With an-steps Runge-Kutta scheme, i.e. a Runge-Kutta scheme 

consisting of n steps, nth order accuracy in time can be obtained. 

A good accuracy in time is however not important when considering 

a steady flow problem. Important in that case is a fast conver

gence. 

An improvement of the rate of convergence of (2.7) can be obtained 

by simplifying it to 

t' = s I +-L.t Fes1J 

r 2 =sf+- A Fr t 1) 

s 3 = r! + At F ct 2 J 

sn-1== :tl+ At F<sn-2; 
?l+'=s'+ a At Fct 0 - 1J+tLlt Fctn-z) + CAt Fcgn-~; + .. 

The space operator Fis composed of a convective and viscous 

operator; 

An improvement of the rate of convergence of (2.8) can now be 

obtained by simplifying it to 

1 1= sl+AI:{ CcsfJ+ vct1J} 

(2.8) 

(2.9) 

:s2 = s; +..t1d C cs1J + Vcs1J} 
s3 = :sf +A~{ c c.t2J + V{s1J} (2.10) 

s11-'=:st;Ai{ Cttn-1J+ V<s'>} 
:sf+1= rf., QAd C a 0 - 1)+ \Jt>fJ}+lAd Ccr-2.J+ VrtM + c.ddcc:tn-3)+ VcsfJ }+ ... 

, so by applying the viscous operator only in the first predictor 

step. 

The time steps to be taken with the Runge-Kutta schemes are 

limited by stability requirements. Since a good accuracy in time 

is not important for steady flow problems, one does not need to 

take the same time step at each mesh point. Assuming that the 

larger the time steps taken, the better the rate of convergence, 

the best rate of convergence is obtained by taking at each mesh 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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point the maximum allowable time step. 

For for instance the three-steps Runge-Kutta scheme which is third 

order accurate in time it holds: a=1/6, b=1/3 and c=1/2. Since a 

good accuracy in time is not important these coefficients may be 

changed such that a better rate of convergence is obtained. This 

now has been investigated for the Runge-Kutta schemes of the form 

(2.10) from n=2 up to and including n=6. The optimization of the 

coefficients has been performed numerically. The results obtained 

are given table 2.1. 

From table 2.1 it appears that (theoretically) the four-steps 

Runge-Kutta scheme is the fastest scheme. The five-steps and six

steps Runge-Kutta schemes may be unstable when using them. The 

neutral stability curves of these schemes jump away from the origin 

at the left side of the imaginary axis. These schemes are there

fore unstable for eigenvalues of the Navier-Stokes equations which 

have a very small real part. 

The neutral stability curves belonging to the five Runge-Kutta 

schemes of table 2.1 are given in fig.2.2. 

2.3. Stability analysis 

In order to determine the eigenvalues A of system (1.10) one can 

introduce 

(2.11) 

Substitution of (2.11) into (1a10) yields, written in matrix form 

(
-u i W:x-Viwr R~(w;+ wJ )-A. o.l._ 

o -ufwx-Viwy-Rdw;+wy )_;.. 

-biw.x: -bi;1 

A non-trivial solution /~) exists if the 

matrix is zero, so if I 

(2.12) 

determinant of above 

(2. 13) 
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with 

1 

a1 =, d w::c. u + wy v) + Re ( w;_ + w'f) 

(2.14) 

From (2.13) it follows for the eigenvalues 

} (2.15) 

Substitution of (2.14) into (2.15) yields 

1 

11 1 -== - i( wx u + w/ v )- Re ( w:_ +- wJ) 

A,,a. :£ i;/w,u, "Y )-R: I w);, w/ J±\/tdw,_u+"yv)-1-fklw;! +w;JJ'_,blw;zwy J J } (2.16) 

Introducing 

(2.17)' 

we can write 

.\-= -iw{uco~e+v-Jine- if) 
(2.18) 

Using the relation 

j= 1, 2,3 (2.19) 

between the eigenvalues A. and the propagation speeds w. one 
J J 
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obtains as expressions for the propagation speeds 

JQ 

w1= u co,e + v 11n. e - i Re. 
} (2.20) 

These now are the expressions for the propagation speeds in the 

physical domain. The expressions need to be transformed to the 

computational domain. Denoting quantities in the computational 

domain with a bar, the relations to be used for the transformation 

are 

w -vir <(Y.) a;:2. ("'ine)2' 
\rl_ XI +- ! ' 

ro,e/x' 

co::ie= (2.21) 

:Jine = 

dx d,, 
in which x'=dx and y'=cty· 

With (2.21) obtained can be from (2.20) 

_ CO:l& :lin.6 . .!d.._~ Qr (O:le: )2 (:>in
1
e )2 1 

W1 = LI .X 1 +- Y ! ' - I Re. VI .::X. 1 / f j I 

- J_ r co:ie :,1()0 . .!d... '(co-'.!8)2. ("''nliJ1 

w,.., 3 =2.lll .x' +-v '-1Re \·:x• + , +-
(2.22) 

{( co,e)2 (-:iine12.; { { cooe -:)ir,9) w 
± 4b xT +- y; - i u7"+-v7;-1--Re 

For the discretized problem in the computational domain introduced 

then has to be 

:lin£1/Ai". 

co~e= r~:/r+t:J~2 
:linA..IA-

. I/ :lin} 1 F- (:Jin_ 2.)2 

l· A:x J + 1:,y 

(2.23) 

For the eigenvalues X. of the discretized problem in the computa
J 

tional domain it holds 

-. _ r-,1n}1J2 (1inj,..)2 _ fir= -l ,!JJ( +- ,,.1 I 1 ; J=1.2,3 (2.24) 

Using (2.23) and (2.24) one obtains finally as expressions for the 
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eigenvalues Xj of ·the discretized problem in the computational 

domain 

(2.25) 

(2.26) 

The maximum allowable time step to be taken now in each mesh point 

is limited by the (\j)k =k =~ with the largest modulus in that 

mesh point. The time siep2 t§ be made should satisfy 

Ir/ BK 
(2.27) 

in which Ir IRK is the radius of the neutral stability curve of the 

considered Runge-Kutta scheme, for the argument corresponding with 

IX. I k -k -~· Inequality (2.27) comes from a von Neumann 
J max, 1- 2-2 

stability analysis, so an analysis which is not valid for non-

linear problems. Assumed now is that for the destabilizing effect 

of non-linearities can be accounted by simply introducing a safety 

factor into (2.27), so by satisfying 

Ir IRK 
(2.28) 

with sfact<1. 

2.4. Boundary conditions 

As physical boundary conditions have been used: 
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- at all walls 

LJ:.O 

V=O 

} (2.29) 

at the inlet the Poiseuille solution for the velocity in the 

inlet part, so 

- and at the outlet 

p=o 

As numerical boundary conditions have been used: 

- at the horizontal walls 

- at the vertical wall of the step 

- at the inlet 

- and at the outlet 

vu 
oX.::0 

'uV 
c):X.=0 

} (2.30) 

(2.31) 

( 2. 32) 

(2.33) 

(2.34) 

}(2.35) 

The numerical boundary condition at all walls is the momentum 

equation normal to the corresponding wall. 
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The numerical boundary condition at the inlet and outlet come from 

the Poiseuille solution. 

For the numerical boundary condition at the convex and concave 

corner of the step, use has been made of 

(2.36) 

respectively 

(2.37) 

in which cvx,cvy,ccx and ccy are weight coefficients. 

The boundary conditions are summarized in fig.2.3. 

2.5. Initial solution 

As initial solution has been used in both the inlet and outlet 

part; the corresponding Poiseuille solution. Both solutions are 

related with each other by the law of conservation of mass. 

In order to be consistent with the boundary condition for the 

pressure at the outlet the initial pressure has been taken equal 

to zero at the outlet. 

So the initial solution used in the inlet part is 

V=O (2.38) 

, and the initial solution used in the outlet part is 

V=O (2.39) 
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For a channel of which the step has the same height as the inlet 

part and for Re=50, the initial solution is given in fig.2.4. 

The pressure distribution given in fig.2.4b is the pressure 

difference Re{p(m,j)-p(mstep'jstep)}. 

The initial solution is physically unrealistic; no separation 

occurs at the convex corner of the step. 

2.6. Convergence test 

For the convergence test considered has been after each time step, 

i.e. after each iteration with the Runge-Kutta scheme: the maximum 

value for all (inner) mesh points of~; j=1,2,3. As convergence 

criterion has now been used that as sJo\i as this maximum is lower 

than 10- 6 the steady state has been reached; i.e. the iteration 

procedure has converged. 

2.7. Computer program 

A global flow chart of the computer program has been given in 

fig.2.5. 

For getting a (converged) solution the first four blocks in the 

flow chart are of course important but need taken together less 

than 0.1 percent of the CPU TIME needed by both loops taken to

gether. 

From the inner loop in fig.2.5 it appears that the boundary 

conditions are imposed not only after the corrector step, but 

after each predictor step. 

After having performed the inner loop, the convergence to the 

steady state is investigated at all inner mesh points. Because 

5 is considered for the convergence test and because ~tis not 

k~n~wn for the points on the boundaries, only the inner points can 

be considered for the convergence test. If the convergence test is 

not satisfied for all inner mesh points a return is made; the 

maximum allowable time ~tep to be made in each inner mesh point 

is computed again, making use of the latest solution, and new time 

steps are made. As soon as the convergence test is satisfied at 

all inner mesh points, the outer loop will be left, i.e. the 

solution will have been obtained. 
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3. RESULTS 

3.1. Test cases 

Two different geometries have been considered for the channel with 

step; 

- a channel with an inlet which has the same height as the step 

(channel with small inlet), and 

a channel with an inlet which is twice as high as the step 

(channel with big inlet). 

The length of the inlet and outlet part of both channels is the 

same. Both channels are given in fig.3.1. 

In both channels the flow has been computed for Re=50. 

The mesh used for both test cases is given in table 3.1 and 

fig.J.2. As appears from table 3.1 and fig.3.2, both meshes are 

slightly stretched. 

For both test cases as safety factor on the time steps made has 

been used: sfact=0.9. Divergence occurred for sfact~0.95-

3.2. Convergence history 

The convergence history obtained for both test cases on the 

VAX 11/780 is given in fig.3.3. 

For both test cases use has been made of a four-steps Runge-Kutta 

scheme. In practice it also appeared that this scheme gives the 

best rate of convergence. To proof this the flow in the channel 

with small inlet has been computed for Re=50, using two different 

two-steps Runge-Kutta schemes, and one three-steps and one four

steps Runge-Kutta scheme. The input parameters and convergence 

characteristics of these four Runge-Kutta schemes are given in 

table 3.2. The two-steps Runge-Kutta scheme with sfact=~/2' has 

been considered because it has recently appeared from theory that 

½12' times the maximum allowable time steps might give the best 

rate of convergence obtainable with a two-steps Runge-Kutta I 
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scheme. 

So it appears from table 3.2 that the four-steps Runge-Kutta scheme 

gives the fastest convergence to the steady state. 

For both test cases use has been made of b=0.5. It has appeared 

that this value of b gives the best rate of convergence. 

For the channel with big inlet the rate of convergence is better 

than for the channel with small inlet. After 60 minutes of CPU 

TIME the value of ~~~)max for the channel with small and big inlet 

is equal to 10- 4 respectively 10-s. The difference between these 

two values is too large to have been caused by the somewhat smaller 

number of points in the channel with big inlet. 

In table 3.3 a comparison has been made between the present CPU 

TIMES needed to converge to the steady state and the same CPU TIMES 

as needed by some contributors to the GAMM Workshop. The CPU TIMES 

of the contributors to the GAMM Workshop have been corrected for the 

difference in computer used. The CPU TIMES given in table 3.3 are 

the CPU TIMES needed to converge to the steady state, when making 

use of the VAX 11/780. 

The present CPU TIMES are nearly the same as those of two of the 

contributors in table 3.3. 

To illustrate the large values of (~~ max occurring in the 

beginning of the time-marching procedure and the convergence 

to the steady state, given are in fig.3.4 for the channel with 

small inlet and Re=50: for several iteration levels; the stream

line distribution in the neighbourhood of the step and the velocity 

profile at the location which will finally become the location of 

the reattachment point. 

In the convergence history at the left of each streamline distri

bution the corresponding iteration level has been indicated. 

Clearly visible are the large changes in the streamline distri-

bution, occurring at large values of (as) in the beginning of at max 
the convergence history. 

Hardly visible are the changes in the streamline distribution 

occuring at the end of the convergence history, and with that 

clearly visible is: the convergence to the steady state. 
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3.3. Streamline distribution and velocity profiles 

The streamline distribution obtained for both test cases is given 

(for the entire integration regions) in fig.3.5. 

In fig.3.6 and 3.7 the streamline distributions are given in more 

detail and with some velocity profiles added to it. 

The velocity profile in the inlet part and the velocity profile 

downstream of the reattachment point are for both test cases by 

very good approximation equal to the corresponding Poiseuille 

velocity profile. 

Concerning the other velocity profiles; the velocity profile at 

the reattachment point has in agreement with the physics a slope 
du dy=O at the wall, and the velocity profile at the vortex center 

has in agreement with the physics: u=O in the vortex center. 

For both test cases a comparison has been made with the results 

obtained at VKI by Borsboom for exactly the same test cases (but 

with the compressible Navier-Stokes equations and a finite volume 

discretization). 

The agreement between both present streamline distributions and 

those of Borsboom is reasonably good. In both cases nearly the 

same values have been obtained for the stream function 

¢=JJ(udy-vdx)dxdy. The only difference between the present stream

line distributions and those obtained by Borsboom appears in the 

test case of the channel with small inlet, and concerns the loca

tion of the reattachment point. In the present results, for the 

channel with small inlet the reattachment point is located further 

upstream than in the results of Borsboom. 

The choice of the weight coefficients cvx and cvy has hardly any 

influence on the location of the reattachment point. For both 

test cases used has been: cvx=cvy=0.5. 

Remarkable is that for both test cases the x-coordinate of the 

vortex center is exactly 3 times smaller than the x-coordinate of 

the reattachment point. 
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In table 3.4 a comparison has been made between 

- the present locations of the reattachment point and those 

obtained by the persons already mentioned in table 3.3, and 

between 

- the maximum velocity component in x-direction at the location 

x=0.8 and that obtained by the other persons. 

The agreement between the present results and those obtained by 

the others is better for the channel with big inlet than for the 

channel with small inlet. 

3.4. Pressure distribution 

The pressure distribution obtained for both test cases is given 

(for the entire integration regions) in fig.3.8. 

Just as in fig.2.4b plotted has been the pressure difference 

Re{p(m,j)-p(mstep'jstep)}. 

As can be seen in both fig.J.8a and J.8b the pressure is wiggled 

in the neighbourhood of the step. 

In order to remove the wiggles use has been made of several combi

nations of numerical boundary conditions and several different 

meshes. 

For the numerical boundary conditions at the walls, use has been 

made of: 

- the inviscid momentum equation normal to the corresponding wall; 

££. 
cln.:.O ( 3. 1 ) 

and the viscous momentum equation normal to the corresponding 

wall; 

(J.2) 

For the numerical boundary condition for the pressure at the inlet, 

use has been made of: 
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- the unsteady continuity equation; 

the steady momentum equation in x-direction; 

- and the "upstream characteristic relation" belonging to the 

system 

( 3. 3) 

( 3. 4) 

( 3. 5) 

For the numerical boundary condition for u at the outlet, use has 

only been made of the continuity equation; 

uu 
""i)X =0 ( 3. 6) 

The momentum equation in x-direction has not been used. This 

because u cannot be obtained explicitly from that equation in an 

easy way. 

For the numerical boundary condition for vat the outlet, use has 

been made of: 

the steady momentum equation in y-direction; 

and the unsteady momentum equation in y-direction; 

uv av 
'5"[ + Uu::C == 0 

( 3. 7) 

( 3. 8) 

It has appeared that of the previous numerical boundary conditions 

only that ·for the pressure at the inlet has influence on the 

smoothness of the solution. It has appeared that use of the 

numerical boundary condition ~:~=Oat the inlet gives the 
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smoothest solution. 

For the numerical boundary condition for the pressure at the 

convex corner of the step use has been made of both 

and 

(3.9) 

(3.10) 

It has appeared that neither the choice of the weight coefficients 

cvx and cvy nor the use of (3.9) or (3.10) has some influence on 

the smoothness of the solution. 

Smoothed and in more detail the pressure distribution is given in 

fig.3.9 and 3.10. (The smoothing applied is nothing else but a 

summation of the pressure and coordinates of the 4 neighbouring 

mesh points (m,j), (m+1,j), (m,j+1) and (m+1,j+1), and next a 

dividing by 4.) 

For both test cases a comparison has been made again with Borsboom. 

Borsboom's pressure distribution in the neighbourhood of the step 

is smoother and has larger gradients. _ This might be due to the 

fact that Borsboom uses a mesh which is much finer in the neigh

bourhood of the step and moreover better adapted to the streamline 

distribution in the neighbourhood of the step (fig.3.11). 

It has appeared that the coarser the mesh, the larger the wiggles, 

and also the further extended the wiggles. For the channel with 

small inlet a mesh which was twice as fine in both x- and y

direction as that given in fig.3.2a gave however no improvements. 

Maybe this finer mesh was not yet fine enough, or maybe it is the 

not-being well-adapted of the mesh to the streamline distribution 

which causes for the greater part the (last) wiggles. 

3.5. Higher Reynolds number flows 

Flows at higher Reynolds numbers have been considered as well. No 

convergence to the steady state has been obtained (for both the 
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channel with small and big inlet) for Re~150. For the channel with 

small inlet the divergence history obtained for Re=150 and Re=500 

is given in fig.3.12. For both high Reynolds number cases all 

input parameters (except of course Re) were the same as those used 

for the test case with Re=50. 

Several possible changes have been tried separately and in combi

nation in order to avoid the divergence; lowering of the safety 

factor, use of two-steps and three-steps Runge-Kutta schemes, 

application of the viscous operator in each predictor step, and 

decreasing of the stretching of the mesh. No remedy has been found. 

Remarkable was that the effect of lowering the safety factor with 

a certain factor just led to an increase with the same factor of 

the time after which divergence occurred. 

3.6. Channel with cavity 

In order to show that the computer program can be modified for the 

computation of flows in other geometries, computed has been the 

flow in a channel with cavity. 

As initial solution in the channel has been used: the Poiseuille 

solution for that channel, and in the cavity: no flow at all but 

the same pressure distribution as in the part of the channel above 

it. The initial streamline distribution and the initial velocity 

profile at the center of the cavity are given in fig.3.13a. 

The converged streamline distribution and the converged velocity 

profile are given in fig.3.13b. In more detail the latter stream

line distribution and velocity profile are given in fig.3.13c. 
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4- CONCLUSIONS 

The computational results are in agreement with the expected 

physical results. 

The computational results are in reasonably good agreement with 

the computational results of others. 

The rates of convergence obtained are nearly the same as those 

obtained by some contributors to the GAMM Workshop. 

The best rate of convergence is obtained with a four-steps 

Runge-Kutta scheme. 

The smoothness of the solution is strongly dependent on the 

numerical boundary condition for the pressure at the inlet. 

The smoothest solution is obtained with a zero second order 

derivative of the pressure, normal to the inlet. 
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5. RECOMMENDATIONS 

Before making the step to the computation of more complicated flows 

such as 3-dimensional, compressible or turbulent flows, the 

capability to compute higher Reynolds number flows should be 

improved. 

A way of improving this capability is to artificially add viscosity, 

taking care for the accuracy of the solution. 

Once one succeeds in computing higher Reynolds number flows an 

urgent demand for a faster convergence might still exist. Before 

making the step to more complicated flows this demand should be 

met. In order to further increase the rate of convergence, 

investigated could for instance be if an implicit scheme exists 

which is much faster than the four-steps Runge-Kutta scheme, and 

if a multigrid technique can be applied to that scheme. 
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Runge-Kutta scheme 

two-steps (RK2) 

three-steps (RK3) 
four-steps (RK4) 
five-steps (RK5) 
six-steps (RK6) 

table 2.1: Results optimization Runge-Kutta schemes 

(rate of conv. RKi)/ 
a b C d e f (rate of conv. ex-

plicit Maccormack) 

1 0 - - - - 1.33 
1/6 1/3 1 /2 - - - 2.00 
1/24 1/8 1/3 1/2 - - 2.26 
1/120 1/30 1/8 1/3 1/2 - -
1 /720 1/144 1/30 1/8 1 /3 1 /2 -

remarks 

-
-
-

unstable for eigen-
values with a small 
real part 

I 
[\J 
.f:---

1 
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table 3.1a: x-coordinates mesh for both 
channel with small and big inlet 

-6.00 
-5.39 
-4.82 
-4.28 
-3.78 
-3.31 
-2.87 
-2.46 
-2.08 
-1.72 
-1. 38 
-1.07 
-0.77 
-0.50 
-0. 24 

0.00 

0.21 
0.44 
0.70 
0.98 
1.29 
1. 64 
2.02 
2.44 
2. 91 
3.42 
3-99 
4.62 
5.31 
6.08 
6.93 
7.87 
8.91 

10.05 
11.32 
12.72 
14.27 
15. 98 
17. 87 
19.96 
22.26 
24.82 
27. 64 
30.75 
34.19 
38.00 
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table J.1b: y-coordinates mesh 

channel with small inlet channel with big inlet 

2.00 3.00 
1 . 92 2.87 
1. 83 2. 72 
1. 73 2.56 
1. 62 2.39 
1.50 2.20 
1. 38 2.00 
1.27 1.80 
1 . 1 7 1. 61 
1.08 1.44 
1.00 1. 28 
0.92 1. 1 3 
0.83 1.00 
0.73 0.86 
0.62 0.70 
0.50 0.50 
0.38 0.30 
0.27 0.14 
o. 17 0.00 
0.08 
o.oo 



table J.2: Input parameters and convergence characteristics Runge-Kutta schemes 

Runge-Kutta scheme sfact a b C d converged? CPU TIME used (min.) 

two-steps 0.90 1 0 - - no 150 
two-steps ½12' 1 0 - - no 150 

three-steps 0.90 1/6 1/3 . 1 /2 - yes 150 
four-steps 0.90 1/24 1/8 1/3 1 /2 yes 100 

I 
N 
---J 
I 



table 3.3: CPU TIMES (min.) needed on the VAX 11/780 
for convergence to the steady state 

channel with small channel with big 
inlet, Re=50 inlet, Re=50 

present method 100 70 
Becker 14 14 
Bredif 27 20 

Nicolai and Pironneau 105 77 
Ecer, a.o. 1020 1680 
Wilkes, a.o. 129 83 

table 3.4: Location reattachment point and maximum 
velocity component in x-direction at x=0.8 

channel with small inlet channel with big inlet 

X re at t . point. u at x=0.8 X reatt. point u at x=0.8 max max 

present method 2.8 0.88 2.7 0.92 
Becker 4.0 0.85 2.7 0.94 
Bredif 2. 1 0.73 2.9 0.90 

Nicolai and Pironneau 2.3 - 3.0 -
Ecer, a.o. o.6 0.61 1. 2 0.82 

Wilkes, a.o. 2.0 0.72 3.0 0.91 

I 
rv 
00 
I 
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fig.2.3b: Numerical boundary conditions 
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assignment of numerical values 
to all input parameters 

,r 

I mesh generation I 
, 

assignment of the initial values 
to u,v and p at all mesh points 

, 

computation of the neutral stability 
curve of the Runge-Kut ta scheme chosen 

·Ir 

computation of the maximum allowable -. time step at each inner mesh point 

., 

:: 
execution of one predictor or corrector 
step of the Runge-Kut ta scheme chosen 

' 
·- .. 

imposition of the boundary - conditions to u,v and p 

" 

no stea~y state! investigation at all inner mesh points 
- of the convergence to the steady state 

, steady state! 

I writing of output I 

fig.2.5: Flow chart computer program 
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fig.3.3a: Convergence history; channel with small inlet, Re=50 
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fig.3.3b: Convergence history; channel with big inlet, Re=50 
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I 3,___..X 

I 
-t-
l\) 

I 

l~X 
38 



y 

2 

-0,0275 

-0,0165 I \ 's: •-... 

-o.ooss __.x 
-2 0 2 4 6 8 

fig.J,6a: Streamline distribution; channel with small inlet, Re=50 (present results) 
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fig.3.7b: Streamline distribution; channel with big inlet, Re=50 (results Borsboom) 
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fig.J.8b:- Pressure distribution; channel with big inlet, Re=50 
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fig.3.9a: Smoothed pressure distribution; channel with small inlet, Re=50 (present results) 
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fig.3.9b: Non-smoothed pressure distribution; channel with small inlet, Re=50 (results Borsboom) 
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fig.J.10a: Smoothed pressure distribution; channel with big inlet, Re=50 (present results) 
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fig.3.10b: Non-smoothed pressure distribution; channel with big inlet, Re=50 (results Borsboom) 
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fig.J.11a: Present mesh; channel with big inlet 
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fig.J.11b: Mesh Borsboom; channel with big inlet 
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fig.3.12a: Divergence history; channel with small inlet, Re=150 
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fig.J.12b: Divergence history; channel with small inlet, Re=500 



fig.3.13a: Initial streamline distribution channel with cavity, Re=50 
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fig.J.13b: Converged streamline distribution channel with cavity, Re=50 
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fig.3.13c: Detail converged streamline distribution channel with cavity, Re=50 
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