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15.1 Introduction 

In this chapter, quantitative and qualitative comparisons are made between the various 
discretization methods, as described and tested in Chapters 2-11. The comparisons 
are made on the basis of the numerical results obtained for the problems prescribed in 
Chapter 1. The solution methods considered in Chapters 12-14 are not evaluated here. 
We think that these three chapters are sufficiently surveyable to be evaluated by the 
readers themselves. 

We start by making quantitative comparisons between the discretization methods. 
For this purpose, we have in principle selected a single discretization method per chapter. 
The selected methods are compared on the basis of the numerical results presented for 
Problem 4. Reliable quantitative comparisons are possible for this problem, because 
of its smoothness, its well-specified output data, its prescribed sequence of grids: ~ 
(20 x 20),~ (40 x 40),~ (80 x 80), and because of its prescribed benchmark problem 
for measuring computing times. After this quantitative comparison, partly quantitative 
- partly qualitative comparisons are made on the basis of the numerical results obtained 
for Problems 1, 2, 3.1, and 3.2. For these comparisons, per problem we have in principle 
also selected a single discretization method from each chapter. Interesting difficulties of 
the latter four problems are the local non-smoothnesses in initial solutions and source 
terms. These non-smoothnesses may result in reduced global orders of accuracy. 

The present evaluation still reflects our own subjective opinions, be it to a minimal 
extent. We have aimed at objectivity by giving each chapter author the opportunity to 
make critical reviews of a draft of the present evaluation. 

15.2 Evaluation numerical results Problem 4 

The various types of discretization methods considered in the preceding chapters, are 
given in Table 15.1. The specific discretization methods selected for the present ( quanti
tative) evaluation, are given in Table 15.2. For the Chapters 5, 7, 9, and 10, a selection 
was not necessary; in these chapters, results for Problem 4 are presented for a single 
method solely. From Chapter 3, because of the rather widely divergent, linear upwind 
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methods considered in it, two specific schemes have been selected: the skew-triangle 
scheme and a cyclic scheme. 

Table 15.1: Types of discretization methods considered in previous chapters 

Chapter author{s) method(s) 
2 Vreugdenhil linear, central finite differences (standard 

second-order and compact higher-order) 
3 Van Eijkeren, De Haan, linear, upwind finite differences (grid-aligned 

Stelling, Van Stijn and rotated) and upwind finite volumes 
4 Pourquie classical nonlinear, upwind finite volumes 
5 Koren modern nonlinear, upwind finite volumes 
6 Walsteijn ENO, finite differences (standard and 

variable order) 
7 Timmermans, Van de Vosse spectral (standard spectral and spectral 

elements) 
8 Segal finite elements (standard Galerkin and 

streamline upwind Petrov-Galerkin) 
9 Van Eijkeren backward semi-Lagrangian 
10 De Kok forward semi-Lagrangian 
11 Struijs fluctuation-splitting 

Table 15.2: Specific discretization methods to be evaluated for Problem 4 

method Figure/Table 
leap-frog Figure 2.9 
skew-triangle Table 3.6 
cyclic Table 3.8 
MFCT Tables 4.4-4. 7 
I' . d 1 1m1te - ~ = 3 Table 5.3 
EN0-4-LF Table 6.3b 
SEM Table 7.6 
SGA/CN-consistent Table 8.3 
adjoint-equation Table 9.11 
second-moment Table 10.1 
narrow Figure 11.17 

The numerical properties to be evaluated are successively: accuracy (both plain accu
racy and accuracy in relation to computational efficiency), positivity and conservation. 
We realize that this choice of numerical properties does not permit a general evalua
tion. For this, many more properties should be considered: memory use, complexity of 
implementation, suitability for parallelization and vectorization, applicability of acceler
ation techniques (such as conjugate gradients and multigrid), suitability for unstructured 
grids, and so on. In order to make a clear comparison, we restrict ourselves to the few 
but relevant numerical properties mentioned before. 
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Plain accuracy is evaluated on the basis of the numerical data obtained for: 

11- Cmaxl = 11 - (Cnumerica1(i,j))maxl, (15.la) 

ll~c\\i = I:i,j \ Cexact(i,j) - Cnumerica1(i,j) I, (lS.lb) 
I:i,j 1 

l\~c\lco =I Cexact(i,j) - Cnurnerica1(i,j) lmax • (15.lc) 

Accuracy in relation to computational efficiency is studied by means of \lb.ell 1 versus 
normalized CPU-time. Positivity and conservation are studied by, respectively: 

lcminl = l(cnumerical(i,j))min\, (15.2) 

and 

(15.3) 

All numerical results, except those of the spectral-element scheme, have been obtained 
on a sequence of three grids with as minimal numbers of points (or cells): (nx x ny)= 
(20 x 20), ( 40 x 40), (80 x 80), and with as maximal numbers: (nx x ny) = (22 x 21 ), ( 42 x 
41), (82 x 81). The fineness of the sequence of three space discretizations as used by the 
spectral-element method, (n., n) = ( 4, 4), ( 4, 8), ( 4, 16), can be considered to be equiv
alent to that of the grid sequence (n,, x ny) = (9 x 9),(17 x 17),(33 x 33). Another 
remark that needs to be made in advance concerns the treatment of the velocity field 
by the semi-Lagrangian methods from the Chapters 9 and 10. Both methods use exact 
characteristic information. (The adjoint-equation method from Chapter 9 directly uses 
the exact characteristics. The second-moment method from Chapter 10 uses a numerical 
method in computing the characteristics, but for the present steady, solid-body-like rota
tion, this numerical method boils down to the use of exact characteristic information as 
well.) The possibility to use exact characteristic information, if available, definitely is an 
advantage over Eulerian discretization methods. However, in general, exact information 
is lacking and it is not sufficiently clear to what extent this absence will detract from 
the accuracy and computational efficiency of semi-Lagrangian methods. 

15.2.1 Plain accuracy 

Peak resolution. Peak resolution is measured on the basis of 11 - Cma,J Its values, as 
measured for the selected discretization methods (Table 15.2), are given in Figure 15.1. 
Per method we depict in upward direction: the values measured on the coarsest, the 
medium-sized and the finest grid. In addition, in Table 15.3, we give per method the 
average error value fi---=C:-.J over the three grids. In case of (nx x ny) = (20 x 20), (40 x 

40), (80x80), this means 11- Cmaxl = ~ (11- Cmaxl(n.xn,)=(20x20) + 11 - Cmaxl(n,xnv)=(40x40) 

+ I l - Cmaxl(n, xnvl=(Boxso)). To be able to make a reasonable comparison, for the spectral

element scheme we take I 1 - Cmaxl = ! (11 - Cmaxl(n.,n)=(4,8) + 11 - Crnaxl(n,,n)=(4,16i). (For 

l\b.clloo, l\~cll1, \cminl and 11- rmass\, the same averagings will be made.) Furthermore, 
in Table 15.3 we give the orders of accuracy p (p from C'J(hP)), as measured from the 
medium-sized grid to the finest grid. (In the following, this way of measuring orders of 
accuracy will also be applied to ll~cll 00 , llb.cll1, lcminl, and ll - rm._..\.) With respect to 
both error level and error convergence, the methods have been ordered in Table 15.3 with 
increasing performance in upward direction. Moreover, by means of horizontal lines, a 
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Figure 15.1: Values of 11 - Cmaxl, for prescribed grid sequence and selected discretization 
methods 

Table 15.3: Classifications of discretization methods with respect to 11 - Cmaxl 

error level II error convergence 

\ method \ 11 - Cmaxl \\ method p 

adjoint-equation 0.006 SEM 10.8 
second-moment 0.011 leap-frog 4.3 
SG A/ CN-consistent 0.012 SG A/CN-consistent 3.8 
SEM 0.027 adjoint-equation 3.6 
MFCT 0.119 EN0-4-LF 2.8 
cyclic 0.159 cyclic 2.6 
leap-frog 0.161 second-moment 2.3 
EN0-4-LF 0.204 limited - K, = ! 1.5 
limited - K, = I 0.260 MFCT 1.1 
skew-triangle 0.667 skew-triangle 0.4 
narrow 0.707 narrow 0.3 
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classification has been made into three categories, say: (i) less good, (ii) good, and (iii) 
very good. (This type of classification will also be applied to the other four errors.) 

We here classify schemes which still have a peak decrease of more than 10 % on the 
finest grid as low-accurate. We see there are two such schemes: the narrow scheme and 
the skew-triangle scheme. Concerning the order of accuracy with respect to 11 - Cmaxl, 
we see that for both schemes this is still below the (theoretically expected) asymptotic 
O(h) convergence. Note, however, that for steady multi-D problems the narrow scheme, 
and particularly the associated PSI scheme, perform significantly better than for un
steady problems (see Chapter 11 for evidence on this.) Probably this relatively better 
performance for steady problems also holds for the skew-triangle scheme. Good results 
are obtained by the MFCT scheme and the limited - 1,, = ½ scheme, for error level as 
well as for error convergence. (With respect to average error level, the MFCT scheme 
is preferable to the limited - 1,, = l scheme, with respect to order behavior it is the 
reverse.) On average, both methods behave more or less the same. Given the common 
numerical recipes in the two methods, this was to be expected. Good to very good orders 
of accuracy are obtained by the two semi-Lagrangian schemes, the cyclic scheme, the 
ENO scheme, the finite-element scheme, the leap-frog scheme, and the spectral-element 
scheme. All seven methods have a higher than O(h2 ) accuracy behavior, particularly 
the spectral-element scheme has a very high order of accuracy. It is followed at great 
distance by the leap-frog scheme, which is closely followed by the finite-element scheme, 
the latter having the additional advantage (over the leap-frog scheme) of a very small 
average error level. As for the superior average peak resolution of the adjoint-equation 
method, it is unfortunately not clear to what extent this is favored by the direct use of 
exact characteristic information. The remaining results speak for themselves. 

1 00-norm solution error. We proceed by considering ll.6.cll 00 , which for many meth
ods is supposed to be closely related to 11 - Cmaxl• The values of ll.6.cll 00 , as measured for 
the selected methods, are given in Figure 15.2. As in Figure 15.1, depicted upward per 
method are: the values measured on the coarsest, the medium-sized and the finest grid. 
Furthermore, as in Table 15.3, in Table 15.4 we also give the classifications for average 
error levels and orders of accuracy. 

The skew-triangle scheme and the narrow scheme appear to behave much the same 
again. Here also, the orders of accuracy of both schemes are still below O(h). Good 
order behavior is shown by the MFCT scheme, the limited - 1,, = ½ scheme, the leap-frog 
scheme, the adjoint-equation scheme, and the cyclic scheme. All five schemes behave 
in between O(h) and O(h2 ). Note the excellent average error level of the adjoint
equation method. Higher than second-order accuracy is shown again by the second
moment scheme, the ENO scheme, the finite-element scheme, and (the best again) by 
the spectral-element scheme. 

1 1-norm solution error. We end this evaluation of plain accuracy by considering 
11.6.cl\i. The values measured for it are given in Figure 15.3. Classifications are given in 
Table 15.5. 

We observe that here also the skew-triangle scheme and the narrow scheme have an 
order of accuracy which is still lower than O(h), with the skew-triangle scheme again 
converging slightly better than the narrow scheme. A nearly O(h2 ) accuracy behavior is 
obtained by the cyclic scheme and the second-moment scheme. All remaining schemes 
show a higher than O(h2 ) behavior. A superior order of accuracy is shown again by the 
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Figure 15.2: Values of ll~cl[00 , for prescribed grid sequence and selected discretization 
methods 

Table 15.4: Classifications of discretization methods with respect to ll~clloo 

[--· error level 11 ...... error convergence __ J 
[ ~eth~d -······--··· I TIE:cifO: II method J-pj 

adjoint-equation 0.006 SEM-· ···· ···· 4.8 

second-moment 0.023 SGA/CN-consistent 2.9 
SGA/CN-consistent 0.030 EN0-4-LF 2.8 
SEM 0.034 second-moment 2.3 
MFCT-·- ------ --0.119 cyclic ·-- --- - -r_s 
cyclic 0.172 leap-frog, adjoint-equation 1.6 
EN0-4-LF 0.204 limited - K = l 1.5 
limited - K = ½ 0.261 MFCT 1.2 
leap-frog -·· 0.333 skew-triangle . - --· 0.5 
narrow o:·1nr· narrow l o.3 

[skew-triangle 0. 723 
- ----··---•-------·------------- - ___ ., ___ - ---~-----· ·=::---··=·-········ -·----·· --- -·:.: ----- -
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Figure 15.3: Values of ll.6.clh, for prescribed grid sequence and selected discretization 
methods 

Table 15.5: Classifications of discretization methods with respect to ll.6.cll 1 

error level II error convergence 

I method ll.6.clli II method p 

adjoint-equation 1.5 X 10-4 SEM 5.3 
second-moment 7.0 X 10-4 ENO-4-LF 3.9 
SGA/CN-consistent 1.4 X 10_., limited - Ii,= 1, SGA/CN-consistent 2.6 
MFCT 3.6 X 10-3 MFCT 2.3 
SEM 4.8 X 10-3 adjoint-equation 2.2 
ENO-4-LF 6.'l X 10-3 leap-frog 2.1 
limited - Ii, = l 7.0 X 10-3 cyclic, second-moment 1.9 
cyclic 8.6 X 10-3 skew-triangle 0.5 
leap-frog 2.7 X 10-~ narrow 0.4 
skew-triangle 3.0 X 10-2 

narrow 3.6 X 10-2 
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spectral-element scheme. The solution error of the limited - 1,, = ½ scheme converges a 
little faster again than that of the MFCT scheme, whereas the average error level of the 
MFCT scheme is somewhat lower again than that of the limited - 1,, = ½ scheme. The 
ENO scheme practically reaches its CJ(h4 ) accuracy behavior in going from the medium
sized grid to the finest grid. Yet, note the modest error level of the ENO scheme on the 
coarsest grid. High-resolution schemes as this ENO scheme (and in some sense also the 
limited - 1,, = ½ scheme) seem to need sufficient smoothness and distance from boundaries; 
i.e. sufficient grid fineness. However, note also that this does not seem to be the case 
for the variable-order ENO schemes introduced in Chapter 6 (not depicted in Figure 
15.3), nor for the spectral-element scheme (Figure 15.3). (Concerning the variable-order 
ENO scheme, compare its coarsest-grid value of IIAcl\i, as given in Table 6.6, with the 
corresponding ENO-4-LF value given in Table 6.3b. As for the spectral-element scheme, 
we emphasize again that its results for the medium-sized resolution (n., n) = ( 4, 8) should 
be compared with the coarsest-grid results of all other methods (n., x ny) ~ (20 x 20).) 
Excellent coarse-grid resolution is also shown by the Galerkin finite-element scheme and 
by the two semi-Lagrangian schemes. For the latter two schemes, this can probably 
be attributed in large measure to their use of exact characteristic information; for the 
finite-element scheme it is not well-understood, however. 

15.2.2 Accuracy versus computational efficiency 

Accuracy in relation to computational costs is studied by means of the IIAcl\i-values 
and normalized CPU-times. Normalization of CPU-times measured by the different 
authors, has been achieved by means of a benchmark code, the code for the computation 
of Problem 4 on a 40 x 40-grid, by the leap-frog method from Chapter 2. Since the 
authors have used different time integrators which also differ in degree of optimization, 
the importance of the present evaluation should not be overestimated of course. Still 
we think that the results do give some reliable qualitative information about the price
performance aspects of the various space discretization methods. 

In Figure 15.4 the results are given. The measured data of the two semi-Lagrangian 
schemes (the adjoint-equation method and the second-moment method) as well as the 
data of the narrow scheme have been set apart from those of the other schemes by 
connecting them with dashed lines. The narrow scheme differs from the other schemes 
because it has been implemented in a research code meant for unstructured grids, and the 
two semi-Lagrangian schemes differ because their use of exact characteristic information 
influences both accuracy and computational efficiency in a positive way. Ignoring this 
advantage of semi-Lagrangian schemes for (at least) the present sequence of grids, the 
two schemes definitely appear to be the best buy. Clearly the best performance of all 
remaining Eulerian sch0illes is obtained by the cyclic scheme. It is followed by a cluster 
of higher than first-order Eulerian methods. From these, th.e limited - 1,, = ! scheme and 
the finite-element scheme perform best. The best scheme for grids finer than the present 
ones seems to be the spectral-element scheme. It appears that, for perfectly smooth 
problems, a very high order of spatial accuracy is really useful on finer grids (with the 
restriction, of course, that the accuracy in time is of very high order as well). Also 
noteworthy is the performance for grids which are coarser than those of the sequence 
considered here. For these coarse grids, the price-performance behavior of low-order 
schemes, such as the skew-triangle scheme, becomes interesting. This is relevant for e.g. 
multigrid computations. 
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Figure 15.4: Values of 116.cll 1 versus normalized CPU-times for prescribed grid sequence 
and selected discretization methods; solid lines: +: leap-frog, x: skew-triangle, ®: 

cyclic, *: MFCT, o: limited - K = }, E&: ENO-4-LF, @: SEM, @: SGA/CN-consistent; 
dashed lines: +: adjoint-equation, x: second-moment, *: narrow 

15.2.3 Positivity 

Positivity is evaluated on the basis of lcminl- The values of lcminl, as measured on the 
sequence of grids for the selected discretization methods, are given in Figure 15.5. (In 
Figure 15.5, no results are missing; all invisible results are smaller than 10-10 .) Classifi
cations are given in Table 15.6. 

Relatively poor order behavior is shown by the finite-element scheme. A poor average 
error level is obtained by the leap-frog scheme, closely followed by the spectral-element 
scheme and the cyclic scheme. Good average error levels are obtained by the limited 
- r;, = ~ scheme and the adjoint-equation method, whereas their orders of convergence 
may even be qualified as very good. The limited - r;, = ½ scheme is not perfectly positive 
because it is not applied near boundaries. (By introducing a single row of virtual cells 
across the boundaries, and then applying the limited scheme up to and including the 
boundaries, perfectly positive results would be obtained.) Although their order behaviors 
with decreasing mesh size are not visible, we assume that for sufficiently small time steps, 
perfect positivity is guaranteed for the four schemes with lc;;n-1 < 10- 10 . (For the skew
triangle scheme and the narrow scheme, this is certainly the case.) In conclusion, we 
emphasize that the present problem is in fact not very discriminating with respect to the 
positivity property; more discriminating are Problem 3.1 and - particularly - Problem 
3.2 (to be evaluated in the Sections 15.3.3 and 15.3.4). 
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Figure 15.5: Values of lcminl, for prescribed grid sequence and selected discretization 
methods 

Table 15.6: Classifications of discretization methods with respect to lcminl 

error level II error convergence 

I method lcminl II method p 

skew-triangle, MFCT, EN0-4-LF 8.9 
second-moment, narrow < 10-10 limited - K, = ~ 6.9 
adjoint-equation 3.7 X 10-o cyclic, adjoint-equation 5.8 
limited - K, = ¼ 9.4 X 10-5 leap-frog 5.6 
EN0-4-LF 2.6 X 10-6 SEM 5.5 
SG A/ CN-consistent 3.0 X 10-3 SGA/CN-consistent 2.0 
cyclic 2.5 X 10-2 

SEM 3.3 X 10-2 

leap-frog 1.0 X 10-l 
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Figure 15.6: Values of 11 - Tmassl, for prescribed grid sequence and selected discretization 
methods 

15.2.4 Conservation 

Whereas the exact net flux across the entire boundary is zero, the local fluxes are not. 
Although very small, at (almost) all boundary points there is an inflow or outflow flux. As 
a consequence, when in a numerical computation the exact fluxes are imposed as inflow 
boundary conditions and when - mathematically correct - no outflow boundary conditions 
are imposed, due to discretization errors, the net flux across the entire boundary generally 
will not be equal to zero. Hence, schemes which are strictly conservative, do not show 
strictly conservative behavior for this test case, unless - mathematically incorrect - the 
exact fluxes are also imposed at outflow. Nevertheless, poor conservation properties 
can be detected; for schemes which converge well with respect to lib.ell 1 but not so 
well with respect to [l - Tma.ssl, it may be concluded that they have poor conservation 
properties. For a well-conservative scheme, I 1 - r mass I should converge better, the same, 
or a little bit worse than \lb.cl\i, but not much (say one or more orders) worse. Hence, a 
good quantity to look at here is the measured order of accuracy of\ 1 - r mass I subtracted 
by the corresponding measured order of llb.cl\i. The values of 11 - rmassl as measured 
on the sequence of grids for the selected discretization methods, are given in Figure 
15.6. Classifications are given in Table 15.7. In this table, per method, we give the 
aforementioned order-of-accuracy difference P[l-rm ... l - Pl[6.cffi, where Pif6.clf, has already 
been given in Table 15.5. 

Schemes of which the order of 11 - r mass I behaves clearly less well than that of II ti.ell 1 , 

are: the second-moment, leap-frog, MFCT, and ENO schemes. All remaining schemes 
behave well. Still note the good convergence of the narrow scheme. This good perfor
mance is explained by the low crosswind-diffusion of that scheme. 
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Table 15. 7: Classifications of discretization methods with respect to 11 - r mass I 

error level error convergence 

method 11-rmassl method Pil-rm ... l - Pfl,;,_:ll_1__ ---··-------·-

SGA/CN-consistent 9.0 X 10- cyclic 2.0 : 
adjoint-equation 9.2 X 10-S narrow Lo. . 
second-moment 2.9 X 10-4 adjoint-equation 0.6 

-cyclrc 1.5 X 10- SEM, skew-triangle 0.5 
ENO-4-LF 4.6 X 10-3 limited - 1<; = ½ 0.0 
limited - 1<; = ½ 5.9 X 10-3 SGA/CN-consistent -0.3 
MFCT 6.Q X 10-3 ENO-4-LF -1.1 
leap-frog 1.6 X 10-2 MFCT -1.3 
narrow 5.5 X 10-2 leap-frog -2.2 
SEM 6.8 X 10-2 second-moment -2.4 

3fx-ia-=r 

15.2.5 Synopsis 

Table 15.8 collects all preceding classifications of accuracy, efficiency, positivity, and 
conservation. Here ++ may be interpreted as very good, + as good, and - as less good. 
In the evaluation of accuracy versus computational efficiency, the two semi-Lagrangian 
schemes and the narrow scheme have been left out for reasons explained in Section 15.2.2. 

15.3 Evaluation numerical results Problems 1, 2, 3.1, and 3.2 

Extensive quantitative evaluations are not possible for these four 1-D problems (because 
no explicit request has been made for quantitative results, and also because no specific 
grid sequences have been prescribed). Nevertheless, some interesting partly quantitative 
- partly qualitative comparisons can be made. In the following, per problem, we look for 
(as far as we can judge) the 'best' method per chapter, and give qualifications on such 
properties as accuracy (phase errors, resolution of maxima, shocks, ... ) and monotonicity 
(or, if applicable: positivity). Chapter 11 is left out here, since it considers multi-D 
methods and multi-D problems only. 

15.3.1 Problem 1 

First, in Table 15.9 (in the 3rd-5th column), we give our evaluation of numerical results 
obtained for Problem 1. (In most cases, the name of a method in Table 15.9 refers to 
the discretization scheme applied to the advection operator.) The same qualifications 
are used as before(++: very good,+: good,-: less good). In the last column, as far 
as available, we also give the order of accuracy with respect to 116.cl\i, as measured from 
the one-but-finest to the finest grid. 

An interesting feature of Problem 1 is that its initial condition has a discontinuous 
first derivative at two points. Due to these two kinks in the initial solution, no higher 
than O(h2 ) 116.clli convergence can be expected because, in general, a kink in the initial 
solution causes an O(h) error extending over an O(h) area. Note that the presence of 
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Table 15.8: Specific discretization methods and their evaluation for Problem 4 

Chapter method accuracy 

2 leap-frog + 
3 skew-triangle -
3 cyclic + 
4 MFCT + 
5 limited - K = ½ + 
6 ENO-4-LF ++ 
7 SEM ++ 
8 SGA/CN-consistent ++ 
9 adjoint-equation ++ 
10 second-moment ++ 
11 narrow -

------·----L---

accuracy versus 
CPU-time 

+ 
-

++ 
+ I 

+ 
+ 
+ 
+ 

left out 
left out 
left out 

positivityTco 
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++ 
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+ 
++ 
++ 
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Table 15.9: Specific discretization methods and their evaluation for Problem 1 
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Figure phase 
2.17b + 

3.7 -
3.29 + 
4.3 ++ 
5.9 ++ 
6.2d ++ 

7.6 ++ 
8.2 ++ 
9.4 ++ 

10.11 ++ 

maximum positivity P\l~c\11 

++ - 3.7 

+ - 2.0 

++ - 1.9 

+ + 2.5 

+ ++ 2.9 

++ ++ see discussion 
in Section 6.3 
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Figure 15.7: Orders of ll!::i.cll 1-accuracy measured for Problem 1 on an extensive sequence 
of grids, for third-order accurate space discretization 

diffusion cannot help to remove the O(h2 ) ll!::i.clh-error made in discretizing the initial 
solution. (Diffusion does make the exact solution C00 at t = o+; if the time integration 
were started from that moment, there would be no O(h2 ) order barrier.) In spite of this 
theoretical O(h2 ) order barrier, for the grids considered some of the O(hP)p>2 methods 
still seem to reach their theoretical order of accuracy, valid for perfectly smooth prob
lems. However, in Section 6.3, for the present problem Walsteijn pointed out the feature 
that for O(hP)p>2 methods, after a "pre-asymptotic" convergence to their corresponding 
theoretical O(hP) (valid for perfectly smooth problems), the orders finally converge to 
the expected O(h2). To show this "pre-asymptotic" convergence, in Figure 15.7 we de
pict the orders of ll!::i.cll 1-accuracy, as measured on a very extensive sequence of grids, by 
means of a finite-difference space discretization which is formally third-order accurate 
for the advective part ( a non-limited - ,,;; = ! discretization), and fourth-order accurate 
for the diffusive part (standard O(h4) central). Time integration is done through the 
standard, fourth-order accurate Runge-Kutta scheme, with the time step t::i.t in linear 
pr-0portion to the mesh size and sufficiently small to ensure that time discretization er
rors are negligible with respect to space discretization errors. In Figure 15. 7, grid level 
l corresponds to the grid with 21 x 20 (interior) grid points. Indeed, it appears that 
O(h3 ) convergence sets in at first, but that at enhanced grid refinement, llt::i.cll 1 finally 
converges as O(h2). It is remarkable that the "pre-asymptotic" O(h3) accuracy collapses 
where the cell Peclet number P = 1yj passes 1: from l = 4 to l = 5. As soon as P has 
become smaller than 1, for reasons of accuracy, it is expected that t::i.t should be taken 
proportional to h2 (instead of proportional to h, as we did). A conjecture might be that 
not obeying this quadratic proportionality is a secondary cause of the order reduction. 
However, additional numerical experiments with !'::i.t in proportion to h2 have shown that 
this conjecture is false; in going from l = 4 to l = 5, the identical collapse of Pll"'-clli 
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Table 15.10: Specific discretization methods and their evaluation for Problem 2 

method Figure maximum wake positivity P1i,lcll1 
compact RK4 2.19c ++ ++ ++ 2.0 
quadratic upwind 3.13 + + ++ 1.9 
cyclic 3.33 ++ ++ + 0.6 
MFCT 4.7 ++ + + 2.6 
limited - K, = ½ 5.13 ++ ++ ++ 1.9 
ENO-6 6.3b ++ ++ ++ 
SEM 7.3 ++ + + 
SGA 8.5 ++ + -
adjoint-equation 9.6 ++ + - 1.1 
second-moment 10.12 ++ + - 1.7 

occurred. The explanation for the "pre-asymptotic" convergence to higher than V(h2 ) 

accuracy is that at first, (i.e. on the coarser meshes) the kinks are not yet clearly 'visible', 
and hence - at first - there is no reduction of accuracy. 

The present results suggest that V(hP)p> 2 discretization methods are of limited prac
tical importance to pollutant-transport problems, since non-smooth initial solutions are 
very common in these problems. 

15.3.2 Problem 2 

In Table 15.10 (in the 3rd-5th column), the qualitative evaluation for Problem 2 is given. 
We also look at qualitative solution accuracy in the wake of the source. (Uncareful 
treatment of the two discontinuities in the source is expected to show up in the wake.) 
In the last column we give again orders of accuracy with respect to lillclli- It is to be 
expected that local V(h) errors occur near the two jumps; llllclli will then behave V(h2 ) 

at most. 
As opposed to the accuracy results observed for Problem 1 (Table 15.9, last column), 

here it appears that not till very fine, but already on the present moderately fine grids, 
most of the numerical methods do not reach higher than second-order accuracy. ( Only the 
MFCT scheme does.) Since discontinuous source terms may also often occur in pollutant
transport problems, this probable accuracy barrier suggests that O(hP)p>2 discretization 
methods might be of limited importance to these problems as well. 

15.3.3 Problem 3.1 

For Problem 3.1 we confine ourselves to a qualitative evaluation only (Table 15.11). Un
fortunately, no cyclic scheme has been applied to this nonlinear problem, nor to Problem 
3.2. Instead of positivity we consider monotonicity. As expected, the monotonicity prop
erty has become more discriminating here than it was for the previous linear problems. 
The results in Table 15.11 speak for themselves. 

15.3.4 Problem 3.2 

In Table 15.12, the evaluation for Problem 3.2 is given. Except for the local maximum, 
the same properties are considered as for Problem 3.1. (Instead of the local maximum, 
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Table 15.11: Specific discretization methods and their evaluation for Problem 3.1 

l metfi:_?~---- _-- -- Figure phase maximum 
-~---------
monotonicity 

i compact RK4 --273- ++ ++ + 

I quadratic upwind 3.16 + + 
I MFCT 4.11 ++ + + 
I 

limited - r;, = ~ 5.5 ++ + ++ 
ENO-4 6.4d ++ ++ ++ 
SEM 7.7 ++ ++ 
SCA 8.7 ++ ++ + 
adjoint-equation 9.7 + + 

I second-moment __ 10.13 ++ ++ 
--··-- -- ___ ,L. •.. ------ ~-- ----------- --

Table 15.12: Specific discretization methods and their evaluation for Problem 3.2 

method Figure phase steepness -- --monotonicity 1 
Lax-:Wendroff - 2.12 - ----·----·----•- ---- ------·--·~ --------·-

++ ++ 
first-order upwind 3.17 ++ ++ 
MFCT 4.14 ++ ++ + 
limited - K, = 1 5.6 ++ ++ ++ 3 
ENO-4 6.6d ++ ++ ++ 
SEM-Picard 7.8 + + + 
SUPG 8.9 ++ ++ 
adjoint-equation 9.8+9.9 + + + 
second-moment i_J0.14_ ++ ++ + 

--·-··---------•--· - -

we look at the steepness of the discontinuity.) The monotonicity property has become 
Pven more discriminating here. 

Remarkable are the very small phase errors shown by almost all methods. As dis
cussed in Chapter 1, use of the non-conservative form of the equation may lead to erro
neous shock solutions. Surprisingly, this does not even occur with the spectral-element 
method which is explicitly in non-conservative form. As expected, the streamline upwind 
Petrov-Galer kin finite-element scheme performs better for this non-smooth problem than 
does the standard Galerkin finite-element scheme. (We remark that the streamline up
wind Petrov-Galerkin scheme applied here is not a specifically tailored method, but -
instead - a generally applicable method.) The unexpected monotonicity which arises in 
the first-order upwind results from Chapter 3, is caused by a central evaluation of the 
term c4 in the quasi-linear form of the equation (see Section 3.2.4). 

Because, in general, an 0(1) solution error will occur at the shock, a higher than 
O(h) convergence of ll.6.cll 1 generally cannot be expected. Despite of this severe order 
barrier, the order of accuracy is still of interest here. For linear shock propagation, it 
can be argued that a p-th order method yields an O(P!tl ll.6.c!Ji-convergence. To give 
some Pvidence of this, consider the equation 

oc oc 
at+ u ax= o, 

(15.4) 
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~igure 15.8: Exact solution and solution of first-order accurate upwind discretization: 
lmear advection equation with discontinuous initial solution · 

with the initial solution 

c( X, t = 0) = 1 X ::;; 0, 
c(x, t = 0) = 0 x > 0. 

( 15.5) 

It is known (see e.g. [l, 2]) that the standard first-order accurate upwind scheme yields 
a solution which approximately satisfies the modified equation 

(15.6) 

where D = O(h). Both (15.4) and (15.6) can be solved exactly. Then ll~clli can be 
determined. It is found to behave as 0( ,/Dt) (Figure 15.8), i.e. (with D = O(h)) as 
0 ( ✓Fi). A similar reasoning for a second-order accurate space discretization leads to an 
O(h;) convergence of ll~cl\i. In general, for an O(hP) space discretization and a linear 
shock problem, an O( 1) error will be committed at the shock, whereas the region over 

l 

which this error spreads will have an O (Dt);;:n width. As a consequence, one gets an 
0 ( h,,t 1 ) ll~clli-convergence. A similar analysis for the nonlinear advection equation 

?~ + ?(en) = 0 
at ax , (15.7) 

would be of interest. It might well show that for Problem 3.2, ll~clh converges faster 
than O(hp~l) (but still slower than O(h), of course). With increasing nonlinearity, the 
region in which the error occurs (Figure 15.8) is expected to be compressed. 

In conclusion, we remark that a non-scalar variant of this problem would have been 
rnore discriminating, for, whereas in a scalar problem numerical errors entering the shock 
are 'swallowed' by it, in a non-scalar problem such errors may come out of it again. 
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15.4 Conclusions 

A rather wide variety of discretization methods for advection-diffusion equations has 
been evaluated: finite-difference, finite-volume, finite-element, spectral-element, semi
Lagrangian, and fluctuation-splitting methods; central and upwind methods; conserva
tive and non-conservative methods; linear and nonlinear methods; and so on. Among all 
discretization methods considered, the "ultimate" method has not been found, though 
for the prescribed set of test problems a few methods come very close. 

For a possible future evaluation, we suggest that test problems are prescribed which 
are of a more large-scale nature. We are thinking of e.g. 2-D boundary-layer problems, 
2-D nonlinear advection problems, and 3-D linear advection problems. The advantage 
of 'large-scaleness' is the increased importance of computational efficiency; the choice 
( or construction) of the combination 'discretization method + solution method' will be 
more critical then. As for the present book we hope that sufficient material has been 
presented in it to help users to select methods which meet most of their requirements. 
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