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Abstract 

This paper consists of two parts. In the first part 
we give a review of a good multigrid method for 
solving the steady Euler equations of gas dynam­
ics on a locally refined mesh. The method is self­
adaptive and makes use of unstructured grids that 
can be considered as parts of a nested sequence of 
structured grids. It is briefly described and ap­
plied to some steady Euler-flow problems. The 
method appears to be much more accurate and ef­
ficient than the corresponding multigrid method 
that applies global refinements only. 

In the second part of the paper, vectorisation 
of the code is treated. To enable this vectorisa­
tion, index arrays are introduced and added to 
the quad-tree type data-structure that is applied 
in the scalar case. Speed-up factors are given for 
the same test cases as considered in the first part 
of the paper. The results are most satisfactory. 

1 A solution-adaptive multi­
grid method for the steady 
Euler equations 

the treatment of the Euler equations. The exten­
sion to the N avier-Stokes equations is found e.g. in 
[l]. For a survey of different multigrid approaches 
to these equations we refer to [2]. 

Our Euler solver essentially uses a sequence of 
nested refinements, and the discretisations at the 
various levels of refinement yield a set of nonlinear 
algebraic equations for each discretisation level. 
The method to solve these nonlinear systems is the 
nonlinear multigrid scheme (FAS), which may be 
embedded in the full multigrid algorithm (FMG) 
as well as in an iterative defect-correction pro­
cess (ItDeC). First these three basic algorithms 
are described as they are combined with the use 
of locally refined grids. Next the strategy to in­
troduce local refinements is described. Follow­
ing that, aspects of the computer coding are dis­
cussed for the local grid-refinement method. As 
an illustration, numerical results are presented for 
shock reflection on a flat surface and for transonic 
flow around an airfoil. These test cases are stan­
dard; they are used to validate the method and to 
get an idea of the gain in efficiency by the local 

In this first section we describe a self-adaptive grid-refinement method, in comparison to the cor­
multigrid method, developed at CWI, for the solu- responding uniform-grid method. We give CPU 
tion of steady gas dynamics problems. The method execution times for the scalar implementation of 
can be applied for the Euler as well as for the the local grid-refinement code and we compare 
Navier-Stokes equations. However, because of space these to those obtained with an implementation 
limitations in this paper we restrict ourselves to for uniform grids only. The latter implementation 
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uses the same multigrid and defect-correction al­
gorithms as the adaptive code (see Section 1.4.1). 
Significant speed-up factors are observed. 

In Section 2 of this paper we describe the tech­
nique used for this vectorisation on a Cray Y-MP. 



1. 1 M ultigrid and iterative defect 
correction 

1.1.1 The first-order finite volume 
discretisation 

To discretise the problem, the domain n is sub­
divided into disjoint quadrilateral cells ni,j, such 
that ni,j and ni,j±l or f?.;±1,j are neighbouring 
cells. Further we denote the neighbours of ni,j 

by D,iJk, (k=N,S,E,W) and a common cell edge by 
r ij k = [iij n nij k. The restriction to this kind of 
regular geometry is not necessary for the discreti­
sation method but it leads to simple data struc­
tures when the method is implemented. 

By integration of the fluid dynamics equations 
over 0.;,i we obtain 

or 

Vij aa % + L f (In,,+ gny) ds = 0, (2) 
t k Jr;;k 

where ½j is the volume of cell f!;,j and % is the 
mean value of the state variable q over ni,j. Fur­
ther we introduce the notation 

where Sijk is the length ofrijk and Jijk is the mean 
flux outward ni,j over the side rijk· The space 
discretisation of the equations is done according 
to the Godunov principle: the state q(t, x, y) is 
approximated by %(t) for all 0.;,j and the mean 
fluxes fiJk are approximated from the states in the 
adjacent cells. For this purpose, a computed flux 
fiJk(qfj, qtk) is introduced to replace fiJk· Here, 

qt and qtk are approximations of q at both sides 
of I'ijk· Thus we obtain the semi-discretisation of 
(2): 

V: Bq;j " f ( k k ) ij 8t = - L., Sijk ijk %, qijk , 
k 

(4) 

and for the steady equations we obtain the discrete 
system of equations 

(5) 

which is short for 

(N1,,(q1,,))ij := L Sijk Jijk(qt, qfjk) = 0, Vi,j. 
k 

In order to solve (5), we first generalise the 
problem slightly to 

(6) 

We use iteration with the full approximation scheme 
(FAS). For this we need a sequence of discretisa­
tions 

with ho > h1 > · · · > h1 = h . 

For the meshwidth h;_ 1 we take hi- l = 2 h;. For 
an irregular mesh we delete each second line of 
mesh points to obtain the coarser grid. 

One FAS cycle for the solution of (6) consists 
of the following steps: start with an approximate 
solution q1,,; improve q1,, by application of v1 non­
linear (pre-) relaxation iterations to N1,,(%) = r1,,; 
compute the residual N1,,(q1,,); find an approxima­
tion of q1,, on the next coarser grid, say q21,,. For 
this we may either use a restriction q21,, = R21,,,1,,qh,, 

or use another previously obtained approximation 
q21,,. Compute 

and approximate the solution of 

(7) 

by application of a- FAS cycles. The result is q21,,; 
correct the current solution by 

improve q1,, by application of v 2 nonlinear (post-) 
relaxation iterations to N1,,(q1,,) = r1,,. 

In this process the steps between the pre- and 
the post-relaxation are the coarse grid correction. 
These steps are skipped on the coarsest grid ho. 
For the solution of the nonlinear system (5), FAS 
iteration is simply applied with r1,, = 0 on the 
finest grid. During the FAS iteration, on the coarser 
grids, non-zero right-hand sides appear in (7). 

For the grid transfer operators P1,,,21,, and R21,,,1,, 
we make a choice that is consistent with the con­
cept of our finite volume discretisation. This dis­
cretisation is essentially a weighted residual method, 
where the solution is approximated by a piece­
wise constant function ( on cells ni,j) and where 
the residual is weighted by characteristic functions 
on all ni,j. From this point of view, it is natural 
to use a piecewise constant interpolation for P1,,,21,, 
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and to use addition over subcells for R2h h• Notice 
that R2h,h = Pl',2h. With these choices 'it is clear 
that 

i.e. the coarse grid finite volume discretisation is 
a formal Galerkin approximation of the fine grid 
finite volume discretisation. Using (8) on all dif­
ferent levels, we obtain a nested sequence of dis­
cretisations. 

The effect of the Galer kin approximation N 2h = 
R2h,h N h Ph,2h on the approximate solution 'iih ob­
tained after a coarse grid correction is the follow­
ing property of its residual 

Because R.21i,,1i, is an addition over 4 neighbouring 
cells, this means that the restriction of the residual 
mainly contains high frequency components. A 
small restriction of the residual implies that possi­
ble large residuals over neighbouring cells cancel: 
the residual is rapidly varying. Local relaxation 
methods, such as point Gauss-Seidel, are now able 
to eliminate such residuals efficiently. In this way, 
FAS is a quite efficient method to solve the first 
order discrete equations. The second order accu­
rate discrete equations cannot be solved this way 
because they lack sufficient numerical diffusion. 

For the second-order discretisation FAS is em­
bedded in an iterative defect-correction (ItDeC) 
process (3]. The implementation of the multigrid 
scheme for the self-adaptive discretisation is based 
on the same principles. These principles are de­
scribed in detail in (4, 5, 6, 7] and applied in (1, 8, 
9]. Iterative defect correction is applied in (1, 8, 
10, 11]. 

In the next section we proceed by giving a brief 
description of these methods, including their slight 
modifications for our solution-adaptive application 
as studied in (12]. 

1. 1.2 A locally nested sequence of 
discretisations 

In order to use multigrid for discretisations on lo­
cally refined grids, we have to specify grid-transfer 
operators. Starting from a certain level, lb, now 
the discrete problems do not extend over all the 
domain n, but -for finer levels- over increas­
ingly smaller subdomains. The discrete problem 
on such a fine grid (level l + 1) is completed by 

boundary conditions that require the solution to 
join with the solution on the next coarser grid 
(level l). We denote the restriction operators for 

the solution and the residual by Rl+l and R:+i re­
spectively, and the prolongation operator by P/+1. 
These grid transfer operators are defined such that 
a sequence of locally nested discretisations { N 1 h=o, ... ,L 

is obtained. This means that a Galerkin approxi­
mation, Rl+l N1+1 P/+1, of the fine-grid discretisa­
tion N1+1 equals the coarse-grid discrete operator 
N 1, restricted to the refined cells. This implies 
that, for each cell nL for which a refinement ex-
ists on level l + 1, we have 

The restriction operator for source terms, R!+l, is 
given by addition of the sources: 

(10) 

The restriction operator for the solution, Rj+l, is . 
defined by taking the mean value: 

{ l l+l }I 1 '°' 1+1 
R1+1q i,j = 4 L..,.; qn,m· 

n~"'.'~cnl_; 

If the grid is sufficiently smooth, this restriction 
is second-order accurate. The operator for the 
prolongation of a solution correction, Pz'+l, cor­
responds with piecewise constant interpolation: 

{ pl+l l}l+l _ I 
l q n,m - qi,j• 

unl+l Al 
VHn,m C Hi,j. (11) 

As shown in (8, 1, 7], because of (9), these re­
strictions and prolongation show a good multigrid 
performance, even with simple point Gauss-Seidel 
relaxation. 

The prolongation (11) and restriction (10) sat­
isfy the multigrid rule (see [13, 14, 15]) 

mp+ mr > m, 

where mp is the order of accuracy of the prolonga­
tion, mr is the order of accuracy of the restriction 
and m is the order of the differential equation. 
( 1+1 -I d For P1 , mp= 1, for R1+1, mr = 1 an m = 1 
for the Euler equations.) 

For the restrictions and prolongation described 
above, the first-order accurate discrete equations 
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form a locally nested sequence, except for the equa­
tions at the inter-grid boundaries. A first-order ac­
curate interpolation near the inter-grid boundary, 
which introduces first-order accurate virtual states 
at the other side of this boundary ( and hence shows 
first-order weak consistency, see Chapter 2 of (16]), 
yields a locally nested sequence. 

1.1.3 FAS and FMG 

On level l, we denote the discrete operator, N1,,, 
with first-order accuracy by Nf, and that with 

second-order accuracy by Nf1. The set of equa­
tions to be solved is then first 

(12a) 

where the right-hand side r1 is given by 

Jn1 .. r1,, dx, ,,, 
when ni j is on the finest grid; 

, I 

r~ . = {Nf(Rl+l q1)} .. •,J ,,; 

- {n;+l ( Nt1 (q1+1)-r1+1) (j, 
when the cell DL is subdivided. 

(12b) 
A complete FAS-cycle for the locally refined 

grid, where all q1, l = 0, ... , L are improved, is a 
recursive algorithm defined by the following steps: 

l. improve the solution q1 by applying v1 pre­
relaxations to (12a) at level l, resulting in 
the approximate solution (q1)o; 

2. compute the right-hand side r 1- 1 , determined 
by (126) at level l, using q1 = (q1)o; 

3. improve the solution q1-1 by applying a FAS­
cycles to the equations (12a) at level l - l; 

4. compute the coarse grid correction d1- 1 = 
q1-1 _ Rj-l(q')o; 

5. improve the solution q1 by adding the pro­
longation of the coarse-grid correction: 

6. improve the solution q' by applying v2 post­
relaxation sweeps to the system (12a) at level 
l. 

The steps (2)-(5) together are called the coarse­
grid correction steps. These steps are skipped at 
the level l = 0. 

Upon convergence of the nonlinear multigrid 
iteration, the solution not only satisfies {12) for 
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all l, but also 

(13) 

As a relaxation procedure in FAS a collective sym­
metric point Gauss-Seidel relaxation is used on 
each level of refinement. This means that for each 
cell n~,i visited during this relaxation process, the 
complete state qL is updated. This implies the so­
lution of a local 4 X 4 nonlinear system, { Nf ( q1) }L = 
rL, which is done by Newton iteration. The stop­
ping criterion for the Newton iteration is chosen 
so that, in all but exceptional cases, only one or 
two iteration steps are made. On each level, after 
a first (nonlinear) relaxation sweep in the usual 
lexicographical order, another sweep is done in 
the reverse direction. This smoother is shown to 
be very efficient in both subsonic and supersonic 
Euler-flow computations [4]. 

The initial solution on the finest level is ob­
tained by the application of nested iteration, also 
called full multigrid (FMG) [17, 18, 13]. This 
means that the system is first solved on the coars­
est grid, l = 0, simply by sufficient relaxation. On 
the finer levels, l = 1, 2, · · ·, L, the FMG-scheme 
is recursively defined as follows: 

l. initialise the solution on level l by q1 := 
pl ql-1. 1-1 , 

2. improve the solution on level l by the appli-
cation of I FAS-cycles with level l as highest 
level; 

3. if the solution on level l is not sufficiently ac­
curate, then introduce level l + 1 by (locally) 
refining the grid and apply the FMG-cycle 
for level l + 1; 

In the experiments presented at the end of this sec­
tion we use a= 1 (V-cycles), V1 = v2 = 1 (a single 
pre-relaxation and a single post-relaxation) and 
1 = 1 (a single V-cycle, before starting a higher 
level). The prolongation J5/+1 used in the FMG­
algorithm is bilinear interpolation. 

1. 1.4 Iterative defect correction 

In the previous section, we showed how the first 
order accurate discrete system {12) is solved. Gen­
erally, first order accuracy is not sufficient, and we 
want to solve a second order accurate discretisa­
tion. The system of equations with second-order 
accuracy is not efficiently solved by the same tech­
nique as the first order system. The reason is that 
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the second-order discrete system has less numeri­
cal dissipation, and hence a sufficiently efficient re­
laxation procedure cannot be found. The second­
order system is solved by iterative defect correc­
tion (ItDeC) [3, 13]. Let the set of our equations 
at level l be given by 

(14) 

The ItDeC-algorithm makes use of the fact that 
an efficient technique does exist for the lower-order 
system Nf(l) = r1• An initial approximation for 
the ItDeC-process is obtained by application of 
the FAS-algorithm to (12). In the ItDeC-process 
the right-hand side r 1 depends on the defect of the 
higher-order accurate equations, through 

{Nf(q1) r. -{ Nfr(l) r .. 
• I '•! ',J 
1f ni,j lS a cell on the finest grid, 

r! . = {Nl(Rl ql+l)}l 
IJ I 1+1 .. 

i,J 

-{R:+1 (Ntl(ql) - rl+l)}I.' 
',J 

if a refinement exists for cell n;,i . 
(15) 

Upon convergence of the ItDeC-scheme, equation 
(14) is satisfied. 

In [8] it is shown that one nonlinear multigrid 
cycle per defect-correction cycle is sufficient and 
most efficient. In our experiments at the end of 
this section we use a single nonlinear multigrid 
cycle per defect-correction cycle indeed. 

Before any local grid refinement is introduced, 
first the solution is approximated, sufficiently ac­
curate, on a certain level lb. This is done by the 
application of the nested iteration FMG, one or 
two FAS-cycles to approximately solve the first­
order discretisation and then a sufficient number 
of ItDeC-cycles for second-order accuracy. 

1. 2 Refinement cycles 

Solution-adaptive grid refinement involves auto­
matic grid refinement at some stage in the solu­
tion process. Based on an a-posteriori estimate 
of relevant quantities appearing in the refinement 
criterion, the grid is refined where these quantities 
exceed a pre-set or solution-dependent threshold 
value (see e.g. [19]). 

A computation that uses local grid refinement 
starts with the FMG-algorithm and subsequent it­
erative defect correction. It yields first an approx-

i~ate solution for the uniform grid on some ba­
~1c level lb·. Introduction of local grid refinements 
1~ accomplished by the following refinement algo­
rithm, where l is the highest available level: 

1. determine which cells on level l should be 
refined (or may be deleted), based on the 
re~nement criterion and on an a-posteriori 
estimate of the relevant quantities used in 
the refinement criterion· 

2. decide whether a grid ~n level l + 1 should 
be created, denote the (new) highest level bv 
L; • 

3. refine the grid and delete obsolete cells on 
all levels, from lb up to and including level 
L-1; 

4. initialise the approximate solution of the newlv 
created refine~ents by the application of the· 
prolongation P;::+1, for m == lb, ... , L - 1 
(similar to the FMC-algorithm): 

5. improve the solution on all levels by the ap­
plication of p FAS iterations ( first-order d1s­
cretisation), or by p ItDeC-cycles (second­
order discretisation) on the complete sequence 
of grids; 

6. either apply a refinement cycle on the new 
system, or solve the present system of equa­
tions by a sufficient number of (FAS or Jt. 
DeC) iteration; 

The decision in step (2) of the refinement algo­
rithm may be determined by the answer to the 
question whether the grids on all currently present 
levels have sufficiently converged, or whether the 
highest level allowed has already been reached. 
Notice that for newly created cells, the refinement 
cycle actually is an application of the nested iter­
ation algorithm FMG, as introduce~ in the previ­
ous section. For the prolongation Pi"t- 1 a bilinear 
interpolation is used for newly created cells. In 
second-order computations, after initialisation of 
the solution for newly created cells, defect correc­
tion is continued, without first applying the non­
linear multigrid scheme to the first-order accurate 
system (12). The number of iterations p before 
a new refinement cycle is started, in step ( 5) of 
the refinement algorithm, determines to a large ex­
tent the efficiency of the adaptive grid-refinement 
method. However, using an insufficient number of 
iterations in step (5) may yield a grid too much 
distorted by the insufficiently converged numeri­
cal solution. In practice, p = 1 or p = 2 for a 
first-order discretisation appears to yield a grid 
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virtually the same as the grid obtained by using a 
fully converged solution. For a second-order dis­
cretisation p = 4 or p = 5 appears to be sufficient. 

1.3 A scalar implementation 

In order to perform Euler-flow computations, ac­
celerated by multigrid with solution-dependent lo­
cal grid refinement, a computer code has been de­
veloped in portable Fortran 77. This code consists 
of two modules. One module, called BASIS, is en­
tirely devoted to set up and maintain the data 
structure. It is described in (20]. The second part, 
called EULER, consists of routines related to the 
adaptive multigrid Euler-flow computations. This 
module is described in (21]. Recently, it appeared 
that the efficiency of the code could benefit essen­
tially from vectorisation(22]. This resulted in an 
additional module, called EUVEL, which is pre­
sented in Section 2. 

In the code, the (sequence of locally refined) 
grids over the domain that is discretised, is com­
posed of so-called patches. A patch consists of a 
corner point, and (if not at a top or right side of 
a grid) a vertical cell edge, a horizontal cell edge 
and a cell interior. If a patch contains a cell, suffi­
cient neighbour patches exist to provide the neces­
sary edges and vertices. On the other hand, each 
corner point, each edge and each cell of the geo­
metric structure belong to some patch. The data 
in the structure are stored and referenced through 
these patches. By the nature of the refinements, 
the patches in the data structure are related in a 
quad-tree structure. The tree of cells is a genuine 
subtree of the tree of patches. 

In the linked list that implements the quad-tree 
structure, nine pointers are used for each patch. 
One pointer is used for the parent of a patch, 
four pointers for the kid patches and four pointers 
for the neighbours of each patch. In the Fortran 
implementation each patch has a unique number, 
and the use of pointers in the linked list is em­
ulated by a large, two-dimensional array of type 
integer. For each patch the patch-numbers of 
its parent, its possible kids and its possible neigh­
bours are stored column-wise in the integer array. 
Furthermore, for each patch a set of properties is 
kept, which identify the type of the patch: whether 
the patch contains a cell, whether the horizontal 
cell edge or vertical cell edge is part of the inter­
grid boundary or the boundary of the domain, 
whether the cell contained in the patch should 
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be refined at the earliest possible occasion, etc .. 
These properties are stored column-wise in a two­
dimensional array of type logical, where the col­
umn number corresponds with the unique number 
of the patch, and the row with the specific prop­
erty. Finally, the numerical data for the problem 
are kept in another two-dimensional array of type 
real (or double precision). These data are also 
addressed through the unique patch number. For 
each patch a total of 18 real numbers is stored. 
The data structure handled by BASIS has a much 
wider range of applications than Euler-flow com­
putations or cell-centred discretisation schemes. 

The actions on the data in the data structure 
are performed through a depth-first traversal of 
the quad-tree. The subroutines performing the 
necessary numerical actions work by the applica­
tion of this tree traversal algorithm. 

For each patch visited through this algorithm, 
a subroutine is called to perform some action on 
the data in the structure. The quad-tree struc­
ture and the use of such a traversal algorithm to 
perform any task, is very well-suited for the imple­
mentation of a multigrid algorithm with adaptive 
mesh refinement. However, automatic vectorisa­
tion (i.e., vectorisation by a compiler) of a code of 
this nature does not gain any performance. There­
fore, in the vector extension library presented in 
Section 2, subroutines are provided that collect 
pointers to patches contained in the geometric struc­
ture of a single level of refinement. These pointers 
are placed in an appropriate order in a separate 
array of pointers. The array of pointers makes 
the algorithm fit for vectorised processing. Essen­
tially, by using indirect addressing via those point­
ers, instead of tree-traversing, the original subrou­
tines that were called for a single patch to perform 
some numerical action, have been replaced by sub­
routines that work on multiple patches. Details 
follow in Section 2. 

1.4 Numerical results 

1.4.1 Shock reflection 

The problem In this section we consider a shock 
reflection problem. This is a gas dynamics prob­
lem of a supersonic flow along a flat solid surface. 
The domain of definition is n = {(x, y) l O < x < 
4, 0 < y < I}, and the flat surface is located at 
y = 0. A shock is impinging from the point (0, 1), 
at an angle of 29° with the positive x-direction. 
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At the inflow boundary x = 0, the boundary con­
ditions for this solution are given by 

u(0,y) 
v(0,y) 

M(0,y) 
p(0,y) 

= 
= 
= 
= 

1, 
o, 
2.9, 
1 

( x-velocity) 
(y-velocity) 
(Mach number) 
(density). 

(16) 

At the inflow boundary y = 1, the flow perpendic­
ular to the horizontal boundary is subsonic, and 
we impose three conditions. These are approxi­
mately given by 

First-order discretisation The equations re­
sulting from the first-order discretisation, are solved 
on an adaptively refined grid. For the highest 
level L we take successively L = 4, 5, 6 to study 
the convergence behaviour. The number of FAS­
iterations (V-cycles) for each refinement cycle is 
two (-y = 2). A cell is refined if the absolute 
value of the first undivided difference in either x­
direction or y-direction exceeds 0.05. We consider 
refinements to have become obsolete if the abso­
lute value of the first undivided difference of den­
sity drops under 0.025. In Table 1 the number of 

u(x, 1) = 
v(x, 1) = 

M(x, 1) = 

0.90322141, 
-0.17459319, 

2.37807192. 
( 17) Table 1: Final number of cells used for shock re­

The boundary y = 0 is the solid wall, and we 
impose impermeability, given by 

v(x, 0) = 0. 

The shock is reflected at the solid wall, at an angle 
of about 23.279°. The exact solution is known 
from shock relations. It is a piecewise constant 
function. The impinging and reflected shocks form 
the discontinuities of this function. 

Refinement The domain n is rectangular. The 
coarsest grid used, level l = 0, is a 6 x 2 grid. 
The basic level is lb = 1. Since, away from the 
shock, the exact solution is a constant function for 
both a first-order discretisation and a second-order 
discretisation, the local discretisation error is zero 
away from the shock. For an adaptive computa­
tion, it is sufficient for this problem to use only 
the variation of the solution as the refinement cri­
terion. Grids are refined on the basis of the first 
undivided difference of a solution component. Ac­
cording to research on the use of undivided differ­
ences as a general refinement criterion, it is found 
that of any component of the solution, the first un­
divided difference of density gives the best results 
(23). 

Results For this problem, away from the shock, 
the discretisation yields equations with local dis­
cretisation error equal to zero. The accuracy of 
the results will be determined to a large extent by 
the resolution provided by the grid used. In the 
following paragraphs we describe the first and the 
second order discretisation, respectively. 

flection problem; first-order discretisation. 
locally refined uniform 

L composite total composite total 
4 1533 2040 3072 4092 
5 3582 4772 12288 16380 
6 7797 10392 49152 65532 

cells used are given for both the locally refined and 
the uniform grids. Note that the number of cells 
doubles approximately when going from L to L+ 1. 
Figure 1 shows for L = 5 the grid obtained by local 
refinement, with iso-plots of the Mach number on 
that grid as well as on the corresponding uniform 
grid. In Figure 2 the convergence histories are 
given for both the adaptive method and the uni­
form method. Along the vertical axis, these figures 
show the logarithm of the mean of the four discrete 
£ 1 norms of the scaled residual of the first-order 
discretisation, defined by (Ai,;)-1{Ni(l)- r 1}Lj• 
Along the horizontal axis the figures show the log­
arithm of the number of elementary Newton iter­
ation steps performed (i.e., the approximate solu­
tion of the nonlinear 4 x 4-system used in the point 
relaxation). For L = 6 the number of Newton iter­
ation steps to convergence up to machine precision 
for the adaptive method is about nine times less 
than the number of iterations needed when a uni­
form grid is used, while virtually the same solution 
is obtained (see Figure 1 and Figure 2). For L = 5 
the number of iterations for the adaptive method 
is about five times less and for L = 4 this is about 
2.5 times less. 

Second-order discretisation We use the second­
order discretisation Nh, with the Van Albada lim­
iter [24), and third-order accurate virtual states as 
defined in Chapter 2 of (16]. The refinement de-
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Figure 1: Locally refined grid and iso-lines of the 
Mach number for the shock reflection problem on 
the locally refined and the uniform grid (from top 
to bottom). First-order discretisation; L = 5. 
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Figure 2: Residual versus amount of work: conver­
gence histories for adaptively refined and uniform 
grids; first-order discretisation; ◊: L = 4; +: L = 5; 
□: L = 6; ---: locally refined; - -: uniform. 
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Figure 3: Grid and iso-lines of the Mach number 
for the shock reflection problem on a locally refined 
grid; second-order discretisation; L = 5. 

cision is the same as for the first-order discretisa­
tion. The number of defect-correction iterations 
in each refinement cycle is five. It appears that, 
after five defect-correction cycles, possible wiggles 
in the 'initial' solution have vanished. The final 
locally refined grid and iso-lines of the Mach num­
ber for L = 5 are shown in Figure 3. The num­
ber of cells for local refinement with this second­
order discretisation is shown in Table 2. Notice 
that the number of cells for levels L = 4, 5, 6 is 
much smaller for the adaptive computation with 
second-order discretisation than for the computa­
tion with first-order discretisation. For second­
order discretisation some extra refinements may 
be introduced, apart from the refinements intro­
duced by the refinement criterion itself. These 
extra refinements are introduced in order to let 
virtual states for the discretisation on level l de­
pend only on the solution on levels land l-1, and 
not on the level l - 2 . 

Convergence histories for locally refined and 
uniform grids are given in Figure 4. This figure 
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Preconditioning 

Table 2: Final number of cells used for shock re­
flection problem; second-order discretisation. 

locally refined uniform 
L composite total composite total 
4 924 1228 3072 4092 
5 2004 2668 12288 16380 
6 4707 6272 49152 65532 

Table 3: CPU-time required per Newton iteration 
step for the shock reflection problem. 

adaptive-grid code uniform 
locally uniform grid 
refined code 

FAS 0.96 0.93 0.84 
ItDeC/FAS 1.14 1.03 0.84 
The numbers denote CPU-time: ms/iteration. 
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Figure 4: Residual versus amount of work: conver­
gence histories for defect correction and second­
order discretisation on uniform and locally refined 
grids; o: L = 4; +: L = 5; □: L = 6; ---: locally 
refined; - -: uniform. 

shows the logarithm of the mean of the four dis­
crete L1 norms of the second-order discretisation 
versus the logarithm of the number of Newton it­
eration steps. We did not consider L = 6 and a 
uniform grid. (The latter problem is so large that 
it caused our workstation to start swapping pieces 
of memory to disk, resulting in a very large pro­
cessing time.) 

Apparently, the defect-correction process does 
not converge for uniform grids. The reason for 
this is possibly the following. On a uniform grid 
with finest level L, many more Fourier modes can 
be represented than on the refined grid with finest 
level L. Especially low-frequency modes can be 
represented very well on the uniform grid, better 
than on the locally refined grid. In [25) an am­
plification factor g ~ 1 for low-frequency Fourier 
modes is found, in case of the linear convection 
problem in two space dimensions. However, it 
should be stressed that for this linear convection 
problem this high amplification factor corresponds 
to functions that are constant in the characteristic 
direction of the problem. 

The defect-correction algorithm for locally re­
fined grids does converge. For second-order dis­
cretisation and defect correction, discretisation on 
a locally refined grid yields a more robust algo­
rithm for this problem. 

Execution time In order to get an idea of the 
execution time, for this problem we give CPU-

times of our scalar Fortran research code on an 
SGI IRIS INDIGO XS workstation. Optimisation 
was done automatically by the compiler. In Ta­
ble 3 we give the average CPU-time per Newton 
iteration step. Note that these Newton iterations 
are again local Newton iterations, used in the non­
linear point Gauss-Seidel relaxation. Table 3 also 
shows the average CPU-time for another (scalar) 
multigrid code, developed to work with uniform 
grids only. This non-adaptive code, called EU­
LER 7, implements the same multigrid and defect­
correction algorithms as used in the code for adap­
tive computations (see e.g. [8)). The FAS-algorithm 
on a locally refined grid appears to be only three 
percent more expensive than on a uniform grid 
with the adaptive code. The iterative defect cor­
rection appears to be about 18% more expensive. 
For the FAS-algorithm, the adaptive code with lo­
cal grid refinement, appears to be about 14% more 
expensive than the non-adaptive code EULER7. 
For iterative defect correction, the adaptive-grid 
code is about 34% more expensive than EULER7. 

1.4.2 Transonic airfoil flow 

In this section we consider transonic flow around 
the N ACA0012-airfoil. The flow conditions at the 
far-field boundary are: M00 = 0.8, angle of attack 
a = 1.25°, p00 = 1 and ( u2 + v 2 ) 00 = l. The com­
putational domain extends to about 100 chords to 
all sides. 

As second-order operator, Nfr, we use the Van 
Albada limiter scheme [6, 24]. Again, third-order 
accurate computation of virtual states is applied 
(see Chapter 2 of [16] for details). The limiter 
scheme is used because spurious wiggles in the so­
lution are expected if a non-limited, second-order 
scheme is used. 

In the refinement criterion we use first undi­
vided differences of the density, in both strearnwise 
direction and the perpendicular direction. Two 
thresholds are used, one for each direction. This 
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prevents the algorithm from refining in the neigh­
bourhood of a shock only. It allows the algorithm 
also to find the contact discontinuity, and to re­
solve the expansion region. Then, we not only get 
a good resolution of the shock, but also a good 
resolution of the expansion. This in turn is im­
portant for the accurate computation of the lift 
and drag coefficients. The use of a single thresh­
old value only (i.e., the same threshold for both 
criteria) would be inefficient for a small threshold 
value (too many refinements). On the other hand, 
a larger threshold value only refines at strong dis­
continuities. 

The grid used is an O-type grid. The coarsest 
grid is a 5 x 8 grid. The highest level is L = 5. 
The uniform grid at level l = 1 is shown in full and 
in detail in Figure 5. A cell is refined if the first 

-1.5 ,-..c>---~--...._-~--~ 
-1 -0.5 0 0.5 

X 

Figure 5: Uniform grid of level = 1, around 
NACA0012 airfoil. 

undivided difference of density in flow direction is 
larger than 0.02, or if this difference in the direc­
tion perpendicular to the flow is larger than 0.004. 
The final adaptively refined grid, with L = 5, is 
shown in Figure 6. In Figure 7 the Mach number 
distributions are shown both for an adaptively re­
fined grid and a uniform grid. The pressure dis­
tributions for the uniform grid and for the locally 
refined grid are shown in Figure 8. For the lift 
and drag coefficient on the adaptively generated 
composite grid we find c1 = 0.3480, Cd = 0.0235. 
On the non-adaptive grid we find c1 = 0.3512 and 
cd = 0.0235. The difference between these val­
ues is less than 10% of the scatter found between 
different reference results listed in [26]. This refer­
ence gives c1 = 0.3632 and cd = 0.0230, obtained 
on a grid of 20480 cells by Schmidt and Jameson 

y 0 

- 1.5 '--"--'---"'--'-:::...,.-l...l_...L..J'"""---'----'-~'--1 

-1 -0.5 0 0.5 
X 

Figure 6: Locally refined grid with L = 5, around 
NACA0012 airfoil. 
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Figure 7: Iso- line plots of the Mach number for the 
transonic flow around a NACA0012 airfoil; o: = 
1.25°; M00 = 0.8; locally refined grid: L = 5; 
uniform grid: L = 4. 

Preconditioning 487 Hemker et aL 



-1.s~---------------, 

-1.0 

LS+---------,--------,' 
0 0.5 

:t 

Figure 8: Pressure distribution for adaptively re­
fined and uniform grids for transonic flow around 
a NACA0012 airfoil; a = 1.25°; M00 = 0.8; 
---: locally refined grid, L = 5; - -: uni­
form grid, L = 4. 
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Figure 9: Residual versus amount of work: con­
vergence histories of defect correction and second­
order discretisation for NACA0012 airfoil flow; 
a = 1.25°; M00 = 0.8; locally refined grid: L = 5; 
uniform grid: L = 4. 

[26). The number of cells on the adaptively gen- vectorisation. In Section 2.2 we describe the vec­
erated composite grid is 7876 and a total number torisation of some of the EULER subroutines. To 
of 10488 cells was used in the computation. The 
non-adaptive grid uses 10240 cells on the finest 
grid and a total number of cells of 13640. The con­
vergence histories of both the adaptive and non­
adaptive case are shown in Figure 9. The adap­

enhance the vectorisation of the relaxation pro­
cess, Osher's flux-difference splitting scheme [29] 
was replaced by Van Leer's flux-splitting scheme 
[30]. 

tive computation takes about three tdimes less wdork 2.1 Extensions to BASIS 
than the computation on the non-a aptive gri . 

The solution-adaptive multigrid method appears A strict definition of the data structure is found in 
to be an efficient tool for detailed studies of singu- [20). In the following subsections we briefly sum­
lar flow phenomena as well (see [27, 28)). marise the data structure, possibly repeating some 

2 EUVEL: An EULER 
Vector Extension Library 

In this section we describe the EUler Vector Ex­
tension Library (EUVEL), which contains a set 
of vectorised subroutines for the same algorithm 
as used for the original subroutines in BASIS and 
EULER. Since the implementation of the original 
subroutines in BASIS and EULER is inherently 
scalar and since the greatest performance gain on 
a ma.chine as the Cray Y-MP is expected from vec­
torisation and not from parallelisation, we focus 
our attention on vectorisation of the original EU­
LER code, using the same data structure. By the 
typical tree structure of the data structure used, 
it can be expected that parallelisation of the code 
will be more straightforward. In Section 2.1 we 
describe an extension of BASIS to facilitate the 

information given in preceding sections. The com­
putational domain n is partitioned into a finite 
number of quadrilateral cells. For the adaptive 
multigrid algorithm different levels of refinement 
of the grid are used. Each cell of the grid 0 1 on 
level l > 0 is a member of a division of a cell of 
n1- 1 , into a set of 2 x 2 smaller cells. We call the 
cell on n1- 1 the parent cell and the four smaller 
cells of the subdivision on 0 1 the NE-kid, SE-kid, 
SW-kid, and NW-kid cell, respectively (using the 
compass to denote the direction). The data struc­
ture is ordered by patches: the union of a point 
with possibly a horizontal cell edge, a vertical cell 
edge and a cell interior. The data structure con­
sists of a quad-tree of such patches (i.e., at most 
four new branches at each node). With each cell 
( or node), a patch as well as a number of pointers, 
properties, coordinates and numerical values are 
associated. 

The kernel of EULER is a BASIS subroutine 
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called Scan, which accomplishes a depth-first quad- diagonal d of lev J k b £ d · h 
t t 1 · k" e can e oun m t e range 
ree raversa , mvo mg an external subroutine (Do It) 

which is passed as argument to Scan, for every ' NDiag(d,k,0) : NDiag(d,k, 1) 
patch found. Another argument of Scan is an 
INTEGER array Order ( 1 : 4) which contains a per­
mutation of the directions NE, SE, SW, NW: the 
order in which the four kid cells (branches in the 
tree) are visited. Since Do It is called separately 

of LevelW. These index arrays are all generated 
by a subroutine, SortLv, and they must be up­
dated only when the cell structure (the mesh) has 
changed. 

for every patch found we hardly find any perfor­
mance gain by automatic vectorisation. On the 2·2 
other hand, the data structure is ideally suited for 

Vectorisation of some of the EU­
LER subroutines 

a self-adapting mesh. So, we decided to leave the 
We have restricted vectorisation to the most time-

data structure unchanged and to add a pointer . 
t t · d t ll t • t· consummg subroutines. All subroutines adapted 

s rue ure 1n or er o a ow vec onsa ion. • • all • 1 d . were ongm y imp emente usmg Scan 
Each patch has an 'arbitrary' identification num- · 

ber. Therefore, two successive patch numbers can 
be related to patches that have nothing in com- 2.2.1 Computation of the flux, transport 
mon. All information concerning patches and their and their derivatives 
relations is stored in three large two-dimensional 
arrays: 

PNTR - an INTEGER array, 

To enhance the performance of the vectorised re­
laxation routines, it appeared that the P-variant of 
Osher's flux-difference splitting scheme ([5]) could 

PPTY - a LOGICAL array, be replaced by Van Leer's flux-splitting scheme. 
DATA - a REAL (or DOUBLE PRECISION) array. The relaxation process is responsible for approxi-

These arrays have MNOP (Maximum Number Of Patcheshiately 80-90% of the total CPU-time. The vector 
columns. To prevent tree-wise scanning of the length used in the relaxation will be at most the 
patche_s each tim:, we _oper~te o~ patches of whic~ number of cells in a diagonal of the finest grid. 
the ~01n~ers are hste~ m various mdex arrays._ Which However, since we are dealing with an adaptively 
spe:ific mdex array 1s used depends on the kmd of refined grid, in many cases this vector length will 
action. not be very large. The motive for preferring Van 

First of all, pointers to patches that belong to Leer's scheme above Osher's scheme is its smaller 
the same level are gathered and stored into an number of branchings. In Osher's scheme there 
array LevelW (0: MNOP). Array LevelW ( combined are 16 different possibilities, whereas in Van Leer's 
with INTEGER array NLev ( 0: MNOL), where MN0L scheme there appear to be only 4. In fact, the main 
denotes the Maximum Number Of Levels), tells us problem in vectorising is not the number of con­
where we can find patches of level k: the array ditions, but the small number of patches that sat-
segment isfy a particular condition in the upwind scheme. 

LevelW(1: NLev(O)) Moreover, this number of patches in a diagonal de-
contains pointers to patches on level l = 0, whereas creases during the relaxation process, because the 
the segment number of Newton-steps needed on the individual 

LevelW(NLev(k-1)+1: NLev(k)) patches may differ. It is clear that the 16 possi-
contains pointers to patches on level l = k. bilities in Osher's scheme would result in smaller 

The collective symmetric point Gauss-Seidel vector lengths than the 4 possibilities in Van Leer's 

relaxation can be vectorised by using a diagonal scheme. 
ordering. For this purpose, the elements of LevelW, The original subroutine FTA computes the Flux, 
referring to patches, are stored such that their di- the Transport and the left and right transport deriva­
agonal number (being the sum of the {- and r,- tives on a single patch. We created a generic 
coordinates) is in monotonously non-descending source (to be pre-processed by c~p, t~e C lan­
order. The INTEGER array NDiag(O :MNOD, 0 :MN0L, guage pre-processor~ with the functionality of F'TA. 
0: 2) 1 , informs about the position of the diagonal It operates on multiple patches (passed as ,an ar­
elements within the array LevelW. The patches on ray of patch numbers), and i~ h_as Van ~eer s flu~-

splitting scheme completely mimed. ~1th cpp s1~ 
different versions are generated, workmg on multi-1 Here MNOD denotes the Maximum Number Of Diagonals, 
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ple patches, but with different variants for horizon­
tal and vertical cell edge; in addition, left or right 
derivatives are computed if necessary. It saves us 
from passing some original arguments, and -more 
important- it saves us from the resulting con­
ditions in the generated subroutines. For exam­
ple, one of the variants, FTAHLS, replaces FTA on 
Horizontal cell edge computing Left derivatives and 
it operates on multiple patches ( a Subset). Inside 
an FTA variant, lists of patch numbers are pre­
computed satisfying the subsonic and supersonic 
flow conditions considered in the Van Leer scheme; 
this is done completely vectorised. Next, the flux, 
the transport and the derivatives are computed 
( completely vectorised) using indirect addressing 
via the pre-computed lists. 

2.2.2 Right-hand side computation 

Originally, the right-hand sides were constructed 
using Scan over all patches that build up the grid. 
Vectorisation by looping over all patches on one 
level is not feasible because too many actions must 
be performed for each patch. Fluxes must be cal­
culated and sent to the memory locations in DATA. 
Then, the residuals of the kids are collected, or, 
when there are no kids, a source term is evalu­
ated. For the vectorisation it is better to split up 
the actions and to perform them on all patches re­
siding on the same level. The new structure of the 
subroutine MkRhs, which computes the right-hand 
side, looks as follows: 

call ZRhsV ( . . . ) 
if (lev .eq. TopLev) then 

call MkRhsTV( ) 

else 
call MkRhsKV( ) 
call MkRhsHV( ) 
call MkRhsVV( ) 

end if 

These subroutines operate on multiple patches, 
listed in an index array, and they perform one of 
the following subtasks: 

ZRhsV - initialises the right-hand sides in 
DATA on a given level; 

MkRhsTV - evaluates the source term on the 
highest level and assigns the value 
to the corresponding DAT A memory 
location; 

MkRhsKV - adds the right-hand sides of the kids 
or, when there are no kids, a source 
term is evaluated and assigned; 

MkRhsHV - calculates the horizontal fluxes and 
adds them to corresponding DATA 
memory locations of the cells and/or 
their (southern) neighbour; 

MkRhsVV - calculates the vertical fluxes and 
adds them to corresponding DATA 
memory locations of the cells and/ or 
their (western) neighbours. 

The computation of the fluxes is bounded by many 
restrictions: distinction should be made between 
green cell edges (i.e. edges at fine-coarse grid inter­
faces), boundary edges, and ordinary edges. More­
over, it should be known whether the patches have 
kids or not. Fortunately, the computation of the 
horizontal and vertical fluxes can be done indepen­
dently, minimising the number of conditions for a 
patch. 

Again it turns out to be convenient to use in­
dex arrays in order to save tests on properties of 
patches and to make vectorisation easier. 

The flux transport computation across ordi­
nary cell edges has been completely vectorised. 
For the green and boundary cell edges the flux 
computation required a slightly different approach. 
However, as soon as the left and right states have 
been computed for all green and boundary edges, 
the process can proceed analogous to the 'ordi­
nary' case, i.e., completely vectorised. The fluxes 
are computed by the vectorised subroutines de­
scribed in Section 2.2.1. Finally, sending of the 
flux values to the patches and/or their neighbours 
can be done in a straightforward way. 

2.2.3 The residual 

The computation of the residual on the composite 
grid (i.e., the grid consisting of all cells that have 
not been refined) corresponds to the previously 
discussed computation of the right-hand sides of 
the equations. First-order fluxes in horizontal and 
vertical direction must be computed. Again, it 
is possible to separate the horizontal and vertical 
part. For both directions index arrays are gener-
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ated for the composite grid. The computational 
complexity for the residual computation and the 
right-hand side evaluation is roughly the same. 

Originally, after the residual was computed, 
another Scan through the data structure was made 
to construct the £1 and £ 00-norms of the residual 
fields. The weighting is done by a multiplication of 
the residual by a factor 4 -! , where l is the level on 
which the cell resides. This implies, that for each 
patch its weighting factor must be computed. Op­
erating along the index array LevelW has the ad­
ditional advantage of a constant weighting factor 
for each level. 

Both norms can be calculated at vector speed 
using the BLAS subroutines SASUM and ISAMAX, 
respectively. Originally, the norms were computed 
simultaneously; in the modified code these norms 
are computed separately for each residual field. 

2.2.4 The relaxation 

Collective symmetric point Gauss-Seidel relaxation 
is used as the relaxation procedure in EULER. 
Point refers to the property that during the update 
of a state vector on a patch all other state vectors 
are kept fixed. Collective refers to the property 
that the update of the state vector on a patch is 
done for all of its four components simultaneously. 
Symmetric means that after a relaxation sweep a 
new sweep is made with the reverse ordering. For 
each cell visited during a relaxation sweep a sys­
tem of four nonlinear equations is approximately 
solved by Newton iteration, the differential oper­
ator being (8/8u,8/8v,8/8c,8/8zf; see [5) for 
definitions and details. We consider two possibili­
ties for vectorising the relaxation: 

1. Replacing symmetric Gauss-Seidel by a red­
black ordering. This leads to an essentially 
worse convergence factor (based on other ex­
periments we expect to loose a factor 5). 

we keep exactly the algorithm as used in the orig­
inal EULER code. It can be easily seen that the 
original relaxation, using Scan with (SW, NW, SE, 
NE)-ordering, corresponds to the lexicographical 
ordering, which in turn is identical to the diagonal 
ordering because all non-linear systems on a di­
agonal are completely decoupled. In Section 2.1, 
we already described how an additional pointer 
structure has been added to facilitate working on 
diagonals. 

We still have to describe how the decoupled 
non-linear systems on a diagonal are solved. First, 
the linearised ( 4 x 4) systems are constructed by 
use of the previously described flux, transport and 
derivatives subroutines. Next, a single Newton it­
eration step is performed, in which a 4 X 4 linear 
systems must be solved. For this, a subroutine was 
developed which contains one completely vectoris­
able loop, in which the loop body solves a 4 X 4 
linear system using Gaussian elimination with par­
tial pivoting. In order to vectorise this loop and 
to enhance the vector and even the scalar perfor­
mance, the Gaussian elimination code for the solu­
tion of the 4 x 4 system is completely unrolled. A 
problem is that one or more of the linear systems 
might be singular. This is taken care of by replac­
ing the matrix-diagonal elements by '1' and sepa­
rately marking the systems singular. Finally, we 
notice that we do not know beforehand, how many 
Newton iteration steps are to be performed. After 
a Newton step on the patches in a grid-diagonal, 
we test whether the specified accuracy is reached, 
and then the patch numbers are collected of the 
non-linear systems that did not reach the required 
accuracy. The Newton process is continued on this 
probably much smaller subset. The iteration pro­
cess is finished if either the subset becomes empty 
or a certain number of Newton steps has been per­
formed. 

2. Staying with symmetric Gauss-Seidel, but 2.2.5 Some other vectorised subroutines 
using a diagonal ordering (since the non-linear . . 

t 'd d' 1 l t l Finally, we discuss some other mterestmg subrou-sys ems on a gn - 1agona are comp e e y . . 
d l d) d l · 0 h , ch b tines that have been vectorised, viz., RstSol, BckUp ecoup e an rep acmg s er s s eme y . 
V: L , h Th' lt · 1 and AddPl. The first, RstSol computes a restnc-an eer s sc eme. 1s resu s m onger . 

t b th b f h • · th tion of the solution on a given level, and sends vec ors, ecause e num er o c 01ces 1n e . . 
· d h d f l6 t 4 it to the memory locations of the solution on an-upwm sc eme re uces rom o . . 

other level. BckUp makes a copy from the solution. 
A comparison of both choices shows a better effi- AddP1 interpolates and adds the correction from 
ciency for the latter approach. This means that, one level to another. The Scan approach origi­
except for the replacement of Osher's flux-difference nally used being too expensive, in the new imple­
splitting scheme by Van Leer's flux-splitting scheme, mentation the actions are performed directly for 
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Table 4: Speed-up achieved with EUVEL on shock Table 5: Speed-up achieved with EUVEL on airfoil 
reflection problem. The CPU time is given in sec- problem. The CPU time is given in seconds. 
onds. 

CPU time CPU time Speed I 
routine original EUVEL up 

AddP1 0.0107 0.0009 12 
BckUp 0.0079 0.0002 40 
MkRhs 0.2070 0.0279 7.4 
Relax 2.1587 0.5294 4.1 
RstSol 0.0106 0.0006 18 
FAS 2.3949 0.5590 4.3 

Res 0.1707 0.0208 8.2 
Norm.RP 0.0275 0.0008 34 

multiple patches and can be vectorised, including 
the IF-tests on the patch properties. Additional 
index arrays are not necessary. 

2.3 Vector Performance 

We consider the same two test problems that were 
used in Section 1.4. In this section, our main in­
terest is the performance improvement obtained 
by vectorisation. 

2.3.1 Shock reflection 

The first test problem is the shock reflection prob­
lem considered in Section 1.4.l. Here the finest 
grid has dimensions 128 x 64, so the maximal di­
agonal length (being the maximal vector length) 
in the relaxation process is 64. The vector speed­
up, measured for one FAS-cycle, can be found in 
Table 4. The total cost of maintaining the addi­
tional data structure, which allow vectorisation is 
0.0142 CPU seconds, being only 2.5% of the total 
execution time. 

2.3.2 Transonic airfoil flow 

The second problem is the transonic flow prob­
lem around the NACA0012-airfoil, shown in Sec­
tion 1.4.2. Beside the replacement of Osher's flux­
difference splitting scheme by Van Leer's, the so­
lution method differs for this problem due to the 
O-type grid. In this case the diagonal ordering no 
longer corresponds with the original lexicographi­
cal ordering. For the solution a cylindrical grid (a 
rectangular grid with coinciding lower and upper 

CPU time CPU time Speed 

subroutine original EUVEL Up 

AddP1 0.0229 0.0019 12 

BckUp 0.0167 0.0004 40 

MkRhs 0.4193 0.0641 6.5 

Relax 4.4489 0.9914 4.5 

RstSol 0.0427 0.0025 17 

FAS Total 4.9510 1.0605 4.7 

Res 0.3396 0.0347 9.8 

NormRP 0.0500 0.0015 33 

boundaries) is used: the d-th diagonal, having d 
as sum of the ~- and 17-coordinates, extends over 
the lower boundary to the diagonal in the rect­
angular grid having d + NY as sum of the ~- and 
7)-Coordinates. (NY is the number of points in the 
7)-direction). In fact, the diagonals on the rect­
angular grid render into spirals on the cylindrical 
grid. In Table 5, we can find the vector speed-up 
for this problem. 

2.4 Conclusions 

Whereas, at first sight, the quad-tree data struc­
ture used for the self-adaptive algorithm seems not 
suitable for use on a vector computer, we have 
vectorised the EULER code, obtaining a vector 
speed-up factor of 4-5. To judge this speed-up we 
must bear in mind, first, the indirect addressing, 
necessary for the adaptive grid, and second, the 
relatively small average vector length due to the 
adaptive grid. Furthermore, the use of adaptive 
grids instead of uniformly refined grids has already 
decreased the amount of computational work by a 
factor 5-10 for realistic problems. We could ob­
tain slightly higher vector speeds by changing the 
refinement criterion. However, in that case, the in­
crease of computational work is not compensated 
by the increased vector speed. 

The price to be paid for vectorising the origi­
nal Euler code is the replacement of Osher's flux­
difference splitting scheme by the somewhat less 
accurate Van Leer flux-splitting scheme. This is a 
relatively low price, because it is possible to com­
pensate for this by applying defect correction with 
Osher's flux-difference splitting scheme. 
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As indicated in the introduction, vectorisation 
instead of parallelisation of the code was a well­
considered approach; the greatest performance gain 
on a Cray Y-MP was expected from vectorisation. 
Parallelisation is still possible using domain de­
composition or, chopping up the quad-tree. Com­
pared to our vectorisation efforts, parallelisation 
should be relatively easy. 

Requests for the modules BASIS, EULER and 
EUVEL can be directed to one of the e-mail ad­
dresses: barry@cwi.nl or walter@cwi.nl. 
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