
Multigrid for Steady Gas Dynamics Problems*

P.W. Hemker B. Koren W.M. Lioen M. Nool t

H. T .M. van der Maarel +

Abstract

This paper consists of two parts. In the first part
we give a review of a good multigrid method for
solving the steady Euler equations of gas dynam­
ics on a locally refined mesh. The method is self­
adaptive and makes use of unstructured grids that
can be considered as parts of a nested sequence of
structured grids. It is briefly described and ap­
plied to some steady Euler-flow problems. The
method appears to be much more accurate and ef­
ficient than the corresponding multigrid method
that applies global refinements only.

In the second part of the paper, vectorisation
of the code is treated. To enable this vectorisa­
tion, index arrays are introduced and added to
the quad-tree type data-structure that is applied
in the scalar case. Speed-up factors are given for
the same test cases as considered in the first part
of the paper. The results are most satisfactory.

1 A solution-adaptive multi­
grid method for the steady
Euler equations

the treatment of the Euler equations. The exten­
sion to the N avier-Stokes equations is found e.g. in
[l]. For a survey of different multigrid approaches
to these equations we refer to [2].

Our Euler solver essentially uses a sequence of
nested refinements, and the discretisations at the
various levels of refinement yield a set of nonlinear
algebraic equations for each discretisation level.
The method to solve these nonlinear systems is the
nonlinear multigrid scheme (FAS), which may be
embedded in the full multigrid algorithm (FMG)
as well as in an iterative defect-correction pro­
cess (ItDeC). First these three basic algorithms
are described as they are combined with the use
of locally refined grids. Next the strategy to in­
troduce local refinements is described. Follow­
ing that, aspects of the computer coding are dis­
cussed for the local grid-refinement method. As
an illustration, numerical results are presented for
shock reflection on a flat surface and for transonic
flow around an airfoil. These test cases are stan­
dard; they are used to validate the method and to
get an idea of the gain in efficiency by the local

In this first section we describe a self-adaptive grid-refinement method, in comparison to the cor­
multigrid method, developed at CWI, for the solu- responding uniform-grid method. We give CPU
tion of steady gas dynamics problems. The method execution times for the scalar implementation of
can be applied for the Euler as well as for the the local grid-refinement code and we compare
Navier-Stokes equations. However, because of space these to those obtained with an implementation
limitations in this paper we restrict ourselves to for uniform grids only. The latter implementation

*The research reported in this paper was partly per­
formed in the framework of the BRITE-EURAM Aeronau­
tics R&D Programme of the European Communities (Con­
tract No. AER2-CT92-0040). The vectorisation was sup­
ported by Cray Research, Inc., under grant CRG 91.01. Use
of supercomputer facilities was sponsored by the Stichting
Nationale Computerfaciliteiten.

tcwr, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands

+MARIN, P.O. Box 28, 6700 AA Wageningen,· The
Netherlands

uses the same multigrid and defect-correction al­
gorithms as the adaptive code (see Section 1.4.1).
Significant speed-up factors are observed.

In Section 2 of this paper we describe the tech­
nique used for this vectorisation on a Cray Y-MP.

1. 1 M ultigrid and iterative defect
correction

1.1.1 The first-order finite volume
discretisation

To discretise the problem, the domain n is sub­
divided into disjoint quadrilateral cells ni,j, such
that ni,j and ni,j±l or f?.;±1,j are neighbouring
cells. Further we denote the neighbours of ni,j

by D,iJk, (k=N,S,E,W) and a common cell edge by
r ij k = [iij n nij k. The restriction to this kind of
regular geometry is not necessary for the discreti­
sation method but it leads to simple data struc­
tures when the method is implemented.

By integration of the fluid dynamics equations
over 0.;,i we obtain

or

Vij aa % + L f (In,,+ gny) ds = 0, (2)
t k Jr;;k

where ½j is the volume of cell f!;,j and % is the
mean value of the state variable q over ni,j. Fur­
ther we introduce the notation

where Sijk is the length ofrijk and Jijk is the mean
flux outward ni,j over the side rijk· The space
discretisation of the equations is done according
to the Godunov principle: the state q(t, x, y) is
approximated by %(t) for all 0.;,j and the mean
fluxes fiJk are approximated from the states in the
adjacent cells. For this purpose, a computed flux
fiJk(qfj, qtk) is introduced to replace fiJk· Here,

qt and qtk are approximations of q at both sides
of I'ijk· Thus we obtain the semi-discretisation of
(2):

V: Bq;j " f (k k) ij 8t = - L., Sijk ijk %, qijk ,
k

(4)

and for the steady equations we obtain the discrete
system of equations

(5)

which is short for

(N1,,(q1,,))ij := L Sijk Jijk(qt, qfjk) = 0, Vi,j.
k

In order to solve (5), we first generalise the
problem slightly to

(6)

We use iteration with the full approximation scheme
(FAS). For this we need a sequence of discretisa­
tions

with ho > h1 > · · · > h1 = h .

For the meshwidth h;_ 1 we take hi- l = 2 h;. For
an irregular mesh we delete each second line of
mesh points to obtain the coarser grid.

One FAS cycle for the solution of (6) consists
of the following steps: start with an approximate
solution q1,,; improve q1,, by application of v1 non­
linear (pre-) relaxation iterations to N1,,(%) = r1,,;
compute the residual N1,,(q1,,); find an approxima­
tion of q1,, on the next coarser grid, say q21,,. For
this we may either use a restriction q21,, = R21,,,1,,qh,,

or use another previously obtained approximation
q21,,. Compute

and approximate the solution of

(7)

by application of a- FAS cycles. The result is q21,,;
correct the current solution by

improve q1,, by application of v 2 nonlinear (post-)
relaxation iterations to N1,,(q1,,) = r1,,.

In this process the steps between the pre- and
the post-relaxation are the coarse grid correction.
These steps are skipped on the coarsest grid ho.
For the solution of the nonlinear system (5), FAS
iteration is simply applied with r1,, = 0 on the
finest grid. During the FAS iteration, on the coarser
grids, non-zero right-hand sides appear in (7).

For the grid transfer operators P1,,,21,, and R21,,,1,,
we make a choice that is consistent with the con­
cept of our finite volume discretisation. This dis­
cretisation is essentially a weighted residual method,
where the solution is approximated by a piece­
wise constant function (on cells ni,j) and where
the residual is weighted by characteristic functions
on all ni,j. From this point of view, it is natural
to use a piecewise constant interpolation for P1,,,21,,

Preconditioning 478 Hemker et al

and to use addition over subcells for R2h h• Notice
that R2h,h = Pl',2h. With these choices 'it is clear
that

i.e. the coarse grid finite volume discretisation is
a formal Galerkin approximation of the fine grid
finite volume discretisation. Using (8) on all dif­
ferent levels, we obtain a nested sequence of dis­
cretisations.

The effect of the Galer kin approximation N 2h =
R2h,h N h Ph,2h on the approximate solution 'iih ob­
tained after a coarse grid correction is the follow­
ing property of its residual

Because R.21i,,1i, is an addition over 4 neighbouring
cells, this means that the restriction of the residual
mainly contains high frequency components. A
small restriction of the residual implies that possi­
ble large residuals over neighbouring cells cancel:
the residual is rapidly varying. Local relaxation
methods, such as point Gauss-Seidel, are now able
to eliminate such residuals efficiently. In this way,
FAS is a quite efficient method to solve the first
order discrete equations. The second order accu­
rate discrete equations cannot be solved this way
because they lack sufficient numerical diffusion.

For the second-order discretisation FAS is em­
bedded in an iterative defect-correction (ItDeC)
process (3]. The implementation of the multigrid
scheme for the self-adaptive discretisation is based
on the same principles. These principles are de­
scribed in detail in (4, 5, 6, 7] and applied in (1, 8,
9]. Iterative defect correction is applied in (1, 8,
10, 11].

In the next section we proceed by giving a brief
description of these methods, including their slight
modifications for our solution-adaptive application
as studied in (12].

1. 1.2 A locally nested sequence of
discretisations

In order to use multigrid for discretisations on lo­
cally refined grids, we have to specify grid-transfer
operators. Starting from a certain level, lb, now
the discrete problems do not extend over all the
domain n, but -for finer levels- over increas­
ingly smaller subdomains. The discrete problem
on such a fine grid (level l + 1) is completed by

boundary conditions that require the solution to
join with the solution on the next coarser grid
(level l). We denote the restriction operators for

the solution and the residual by Rl+l and R:+i re­
spectively, and the prolongation operator by P/+1.
These grid transfer operators are defined such that
a sequence of locally nested discretisations { N 1 h=o, ... ,L

is obtained. This means that a Galerkin approxi­
mation, Rl+l N1+1 P/+1, of the fine-grid discretisa­
tion N1+1 equals the coarse-grid discrete operator
N 1, restricted to the refined cells. This implies
that, for each cell nL for which a refinement ex-
ists on level l + 1, we have

The restriction operator for source terms, R!+l, is
given by addition of the sources:

(10)

The restriction operator for the solution, Rj+l, is .
defined by taking the mean value:

{ l l+l }I 1 '°' 1+1
R1+1q i,j = 4 L..,.; qn,m·

n~"'.'~cnl_;

If the grid is sufficiently smooth, this restriction
is second-order accurate. The operator for the
prolongation of a solution correction, Pz'+l, cor­
responds with piecewise constant interpolation:

{ pl+l l}l+l _ I
l q n,m - qi,j•

unl+l Al
VHn,m C Hi,j. (11)

As shown in (8, 1, 7], because of (9), these re­
strictions and prolongation show a good multigrid
performance, even with simple point Gauss-Seidel
relaxation.

The prolongation (11) and restriction (10) sat­
isfy the multigrid rule (see [13, 14, 15])

mp+ mr > m,

where mp is the order of accuracy of the prolonga­
tion, mr is the order of accuracy of the restriction
and m is the order of the differential equation.
(1+1 -I d For P1 , mp= 1, for R1+1, mr = 1 an m = 1
for the Euler equations.)

For the restrictions and prolongation described
above, the first-order accurate discrete equations

Preconditioning 479 Hemker et al.

form a locally nested sequence, except for the equa­
tions at the inter-grid boundaries. A first-order ac­
curate interpolation near the inter-grid boundary,
which introduces first-order accurate virtual states
at the other side of this boundary (and hence shows
first-order weak consistency, see Chapter 2 of (16]),
yields a locally nested sequence.

1.1.3 FAS and FMG

On level l, we denote the discrete operator, N1,,,
with first-order accuracy by Nf, and that with

second-order accuracy by Nf1. The set of equa­
tions to be solved is then first

(12a)

where the right-hand side r1 is given by

Jn1 .. r1,, dx, ,,,
when ni j is on the finest grid;

, I

r~ . = {Nf(Rl+l q1)} .. •,J ,,;

- {n;+l (Nt1 (q1+1)-r1+1) (j,
when the cell DL is subdivided.

(12b)
A complete FAS-cycle for the locally refined

grid, where all q1, l = 0, ... , L are improved, is a
recursive algorithm defined by the following steps:

l. improve the solution q1 by applying v1 pre­
relaxations to (12a) at level l, resulting in
the approximate solution (q1)o;

2. compute the right-hand side r 1- 1 , determined
by (126) at level l, using q1 = (q1)o;

3. improve the solution q1-1 by applying a FAS­
cycles to the equations (12a) at level l - l;

4. compute the coarse grid correction d1- 1 =
q1-1 _ Rj-l(q')o;

5. improve the solution q1 by adding the pro­
longation of the coarse-grid correction:

6. improve the solution q' by applying v2 post­
relaxation sweeps to the system (12a) at level
l.

The steps (2)-(5) together are called the coarse­
grid correction steps. These steps are skipped at
the level l = 0.

Upon convergence of the nonlinear multigrid
iteration, the solution not only satisfies {12) for

Preconditioning

all l, but also

(13)

As a relaxation procedure in FAS a collective sym­
metric point Gauss-Seidel relaxation is used on
each level of refinement. This means that for each
cell n~,i visited during this relaxation process, the
complete state qL is updated. This implies the so­
lution of a local 4 X 4 nonlinear system, { Nf (q1) }L =
rL, which is done by Newton iteration. The stop­
ping criterion for the Newton iteration is chosen
so that, in all but exceptional cases, only one or
two iteration steps are made. On each level, after
a first (nonlinear) relaxation sweep in the usual
lexicographical order, another sweep is done in
the reverse direction. This smoother is shown to
be very efficient in both subsonic and supersonic
Euler-flow computations [4].

The initial solution on the finest level is ob­
tained by the application of nested iteration, also
called full multigrid (FMG) [17, 18, 13]. This
means that the system is first solved on the coars­
est grid, l = 0, simply by sufficient relaxation. On
the finer levels, l = 1, 2, · · ·, L, the FMG-scheme
is recursively defined as follows:

l. initialise the solution on level l by q1 :=
pl ql-1. 1-1 ,

2. improve the solution on level l by the appli-
cation of I FAS-cycles with level l as highest
level;

3. if the solution on level l is not sufficiently ac­
curate, then introduce level l + 1 by (locally)
refining the grid and apply the FMG-cycle
for level l + 1;

In the experiments presented at the end of this sec­
tion we use a= 1 (V-cycles), V1 = v2 = 1 (a single
pre-relaxation and a single post-relaxation) and
1 = 1 (a single V-cycle, before starting a higher
level). The prolongation J5/+1 used in the FMG­
algorithm is bilinear interpolation.

1. 1.4 Iterative defect correction

In the previous section, we showed how the first
order accurate discrete system {12) is solved. Gen­
erally, first order accuracy is not sufficient, and we
want to solve a second order accurate discretisa­
tion. The system of equations with second-order
accuracy is not efficiently solved by the same tech­
nique as the first order system. The reason is that

480 Hemker etaL

the second-order discrete system has less numeri­
cal dissipation, and hence a sufficiently efficient re­
laxation procedure cannot be found. The second­
order system is solved by iterative defect correc­
tion (ItDeC) [3, 13]. Let the set of our equations
at level l be given by

(14)

The ItDeC-algorithm makes use of the fact that
an efficient technique does exist for the lower-order
system Nf(l) = r1• An initial approximation for
the ItDeC-process is obtained by application of
the FAS-algorithm to (12). In the ItDeC-process
the right-hand side r 1 depends on the defect of the
higher-order accurate equations, through

{Nf(q1) r. -{ Nfr(l) r ..
• I '•! ',J
1f ni,j lS a cell on the finest grid,

r! . = {Nl(Rl ql+l)}l
IJ I 1+1 ..

i,J

-{R:+1 (Ntl(ql) - rl+l)}I.'
',J

if a refinement exists for cell n;,i .
(15)

Upon convergence of the ItDeC-scheme, equation
(14) is satisfied.

In [8] it is shown that one nonlinear multigrid
cycle per defect-correction cycle is sufficient and
most efficient. In our experiments at the end of
this section we use a single nonlinear multigrid
cycle per defect-correction cycle indeed.

Before any local grid refinement is introduced,
first the solution is approximated, sufficiently ac­
curate, on a certain level lb. This is done by the
application of the nested iteration FMG, one or
two FAS-cycles to approximately solve the first­
order discretisation and then a sufficient number
of ItDeC-cycles for second-order accuracy.

1. 2 Refinement cycles

Solution-adaptive grid refinement involves auto­
matic grid refinement at some stage in the solu­
tion process. Based on an a-posteriori estimate
of relevant quantities appearing in the refinement
criterion, the grid is refined where these quantities
exceed a pre-set or solution-dependent threshold
value (see e.g. [19]).

A computation that uses local grid refinement
starts with the FMG-algorithm and subsequent it­
erative defect correction. It yields first an approx-

i~ate solution for the uniform grid on some ba­
~1c level lb·. Introduction of local grid refinements
1~ accomplished by the following refinement algo­
rithm, where l is the highest available level:

1. determine which cells on level l should be
refined (or may be deleted), based on the
re~nement criterion and on an a-posteriori
estimate of the relevant quantities used in
the refinement criterion·

2. decide whether a grid ~n level l + 1 should
be created, denote the (new) highest level bv
L; •

3. refine the grid and delete obsolete cells on
all levels, from lb up to and including level
L-1;

4. initialise the approximate solution of the newlv
created refine~ents by the application of the·
prolongation P;::+1, for m == lb, ... , L - 1
(similar to the FMC-algorithm):

5. improve the solution on all levels by the ap­
plication of p FAS iterations (first-order d1s­
cretisation), or by p ItDeC-cycles (second­
order discretisation) on the complete sequence
of grids;

6. either apply a refinement cycle on the new
system, or solve the present system of equa­
tions by a sufficient number of (FAS or Jt.
DeC) iteration;

The decision in step (2) of the refinement algo­
rithm may be determined by the answer to the
question whether the grids on all currently present
levels have sufficiently converged, or whether the
highest level allowed has already been reached.
Notice that for newly created cells, the refinement
cycle actually is an application of the nested iter­
ation algorithm FMG, as introduce~ in the previ­
ous section. For the prolongation Pi"t- 1 a bilinear
interpolation is used for newly created cells. In
second-order computations, after initialisation of
the solution for newly created cells, defect correc­
tion is continued, without first applying the non­
linear multigrid scheme to the first-order accurate
system (12). The number of iterations p before
a new refinement cycle is started, in step (5) of
the refinement algorithm, determines to a large ex­
tent the efficiency of the adaptive grid-refinement
method. However, using an insufficient number of
iterations in step (5) may yield a grid too much
distorted by the insufficiently converged numeri­
cal solution. In practice, p = 1 or p = 2 for a
first-order discretisation appears to yield a grid

HemkeretaL
Preconditioning 481

virtually the same as the grid obtained by using a
fully converged solution. For a second-order dis­
cretisation p = 4 or p = 5 appears to be sufficient.

1.3 A scalar implementation

In order to perform Euler-flow computations, ac­
celerated by multigrid with solution-dependent lo­
cal grid refinement, a computer code has been de­
veloped in portable Fortran 77. This code consists
of two modules. One module, called BASIS, is en­
tirely devoted to set up and maintain the data
structure. It is described in (20]. The second part,
called EULER, consists of routines related to the
adaptive multigrid Euler-flow computations. This
module is described in (21]. Recently, it appeared
that the efficiency of the code could benefit essen­
tially from vectorisation(22]. This resulted in an
additional module, called EUVEL, which is pre­
sented in Section 2.

In the code, the (sequence of locally refined)
grids over the domain that is discretised, is com­
posed of so-called patches. A patch consists of a
corner point, and (if not at a top or right side of
a grid) a vertical cell edge, a horizontal cell edge
and a cell interior. If a patch contains a cell, suffi­
cient neighbour patches exist to provide the neces­
sary edges and vertices. On the other hand, each
corner point, each edge and each cell of the geo­
metric structure belong to some patch. The data
in the structure are stored and referenced through
these patches. By the nature of the refinements,
the patches in the data structure are related in a
quad-tree structure. The tree of cells is a genuine
subtree of the tree of patches.

In the linked list that implements the quad-tree
structure, nine pointers are used for each patch.
One pointer is used for the parent of a patch,
four pointers for the kid patches and four pointers
for the neighbours of each patch. In the Fortran
implementation each patch has a unique number,
and the use of pointers in the linked list is em­
ulated by a large, two-dimensional array of type
integer. For each patch the patch-numbers of
its parent, its possible kids and its possible neigh­
bours are stored column-wise in the integer array.
Furthermore, for each patch a set of properties is
kept, which identify the type of the patch: whether
the patch contains a cell, whether the horizontal
cell edge or vertical cell edge is part of the inter­
grid boundary or the boundary of the domain,
whether the cell contained in the patch should

Preconditioning

be refined at the earliest possible occasion, etc ..
These properties are stored column-wise in a two­
dimensional array of type logical, where the col­
umn number corresponds with the unique number
of the patch, and the row with the specific prop­
erty. Finally, the numerical data for the problem
are kept in another two-dimensional array of type
real (or double precision). These data are also
addressed through the unique patch number. For
each patch a total of 18 real numbers is stored.
The data structure handled by BASIS has a much
wider range of applications than Euler-flow com­
putations or cell-centred discretisation schemes.

The actions on the data in the data structure
are performed through a depth-first traversal of
the quad-tree. The subroutines performing the
necessary numerical actions work by the applica­
tion of this tree traversal algorithm.

For each patch visited through this algorithm,
a subroutine is called to perform some action on
the data in the structure. The quad-tree struc­
ture and the use of such a traversal algorithm to
perform any task, is very well-suited for the imple­
mentation of a multigrid algorithm with adaptive
mesh refinement. However, automatic vectorisa­
tion (i.e., vectorisation by a compiler) of a code of
this nature does not gain any performance. There­
fore, in the vector extension library presented in
Section 2, subroutines are provided that collect
pointers to patches contained in the geometric struc­
ture of a single level of refinement. These pointers
are placed in an appropriate order in a separate
array of pointers. The array of pointers makes
the algorithm fit for vectorised processing. Essen­
tially, by using indirect addressing via those point­
ers, instead of tree-traversing, the original subrou­
tines that were called for a single patch to perform
some numerical action, have been replaced by sub­
routines that work on multiple patches. Details
follow in Section 2.

1.4 Numerical results

1.4.1 Shock reflection

The problem In this section we consider a shock
reflection problem. This is a gas dynamics prob­
lem of a supersonic flow along a flat solid surface.
The domain of definition is n = {(x, y) l O < x <
4, 0 < y < I}, and the flat surface is located at
y = 0. A shock is impinging from the point (0, 1),
at an angle of 29° with the positive x-direction.

482 Hemker et al

At the inflow boundary x = 0, the boundary con­
ditions for this solution are given by

u(0,y)
v(0,y)

M(0,y)
p(0,y)

=
=
=
=

1,
o,
2.9,
1

(x-velocity)
(y-velocity)
(Mach number)
(density).

(16)

At the inflow boundary y = 1, the flow perpendic­
ular to the horizontal boundary is subsonic, and
we impose three conditions. These are approxi­
mately given by

First-order discretisation The equations re­
sulting from the first-order discretisation, are solved
on an adaptively refined grid. For the highest
level L we take successively L = 4, 5, 6 to study
the convergence behaviour. The number of FAS­
iterations (V-cycles) for each refinement cycle is
two (-y = 2). A cell is refined if the absolute
value of the first undivided difference in either x­
direction or y-direction exceeds 0.05. We consider
refinements to have become obsolete if the abso­
lute value of the first undivided difference of den­
sity drops under 0.025. In Table 1 the number of

u(x, 1) =
v(x, 1) =

M(x, 1) =

0.90322141,
-0.17459319,

2.37807192.
(17) Table 1: Final number of cells used for shock re­

The boundary y = 0 is the solid wall, and we
impose impermeability, given by

v(x, 0) = 0.

The shock is reflected at the solid wall, at an angle
of about 23.279°. The exact solution is known
from shock relations. It is a piecewise constant
function. The impinging and reflected shocks form
the discontinuities of this function.

Refinement The domain n is rectangular. The
coarsest grid used, level l = 0, is a 6 x 2 grid.
The basic level is lb = 1. Since, away from the
shock, the exact solution is a constant function for
both a first-order discretisation and a second-order
discretisation, the local discretisation error is zero
away from the shock. For an adaptive computa­
tion, it is sufficient for this problem to use only
the variation of the solution as the refinement cri­
terion. Grids are refined on the basis of the first
undivided difference of a solution component. Ac­
cording to research on the use of undivided differ­
ences as a general refinement criterion, it is found
that of any component of the solution, the first un­
divided difference of density gives the best results
(23).

Results For this problem, away from the shock,
the discretisation yields equations with local dis­
cretisation error equal to zero. The accuracy of
the results will be determined to a large extent by
the resolution provided by the grid used. In the
following paragraphs we describe the first and the
second order discretisation, respectively.

flection problem; first-order discretisation.
locally refined uniform

L composite total composite total
4 1533 2040 3072 4092
5 3582 4772 12288 16380
6 7797 10392 49152 65532

cells used are given for both the locally refined and
the uniform grids. Note that the number of cells
doubles approximately when going from L to L+ 1.
Figure 1 shows for L = 5 the grid obtained by local
refinement, with iso-plots of the Mach number on
that grid as well as on the corresponding uniform
grid. In Figure 2 the convergence histories are
given for both the adaptive method and the uni­
form method. Along the vertical axis, these figures
show the logarithm of the mean of the four discrete
£ 1 norms of the scaled residual of the first-order
discretisation, defined by (Ai,;)-1{Ni(l)- r 1}Lj•
Along the horizontal axis the figures show the log­
arithm of the number of elementary Newton iter­
ation steps performed (i.e., the approximate solu­
tion of the nonlinear 4 x 4-system used in the point
relaxation). For L = 6 the number of Newton iter­
ation steps to convergence up to machine precision
for the adaptive method is about nine times less
than the number of iterations needed when a uni­
form grid is used, while virtually the same solution
is obtained (see Figure 1 and Figure 2). For L = 5
the number of iterations for the adaptive method
is about five times less and for L = 4 this is about
2.5 times less.

Second-order discretisation We use the second­
order discretisation Nh, with the Van Albada lim­
iter [24), and third-order accurate virtual states as
defined in Chapter 2 of (16]. The refinement de-

Preconditioning 483 Hemkeret al

y

1 2 3 4

X

y

2 3 4

X

y

X

Figure 1: Locally refined grid and iso-lines of the
Mach number for the shock reflection problem on
the locally refined and the uniform grid (from top
to bottom). First-order discretisation; L = 5.

0--,--------------~

-2

-4
IOJog

(residual)
-6

-8
+
+

• • • • . .
• • • • • • • • • •

-10+---.---.-----➔___..i,._-J,...:.+_--!.i.
2 3 4 5 6

LO log(nurnber of local Newton iterations)
7

Figure 2: Residual versus amount of work: conver­
gence histories for adaptively refined and uniform
grids; first-order discretisation; ◊: L = 4; +: L = 5;
□: L = 6; ---: locally refined; - -: uniform.

y :-0 2 3 4

X

'rs;:;?J y

0

2~ 2~

0 1 2 3 4

X

Figure 3: Grid and iso-lines of the Mach number
for the shock reflection problem on a locally refined
grid; second-order discretisation; L = 5.

cision is the same as for the first-order discretisa­
tion. The number of defect-correction iterations
in each refinement cycle is five. It appears that,
after five defect-correction cycles, possible wiggles
in the 'initial' solution have vanished. The final
locally refined grid and iso-lines of the Mach num­
ber for L = 5 are shown in Figure 3. The num­
ber of cells for local refinement with this second­
order discretisation is shown in Table 2. Notice
that the number of cells for levels L = 4, 5, 6 is
much smaller for the adaptive computation with
second-order discretisation than for the computa­
tion with first-order discretisation. For second­
order discretisation some extra refinements may
be introduced, apart from the refinements intro­
duced by the refinement criterion itself. These
extra refinements are introduced in order to let
virtual states for the discretisation on level l de­
pend only on the solution on levels land l-1, and
not on the level l - 2 .

Convergence histories for locally refined and
uniform grids are given in Figure 4. This figure

Preconditioning 484 Hemker et al

Preconditioning

Table 2: Final number of cells used for shock re­
flection problem; second-order discretisation.

locally refined uniform
L composite total composite total
4 924 1228 3072 4092
5 2004 2668 12288 16380
6 4707 6272 49152 65532

Table 3: CPU-time required per Newton iteration
step for the shock reflection problem.

adaptive-grid code uniform
locally uniform grid
refined code

FAS 0.96 0.93 0.84
ItDeC/FAS 1.14 1.03 0.84
The numbers denote CPU-time: ms/iteration.

485 HemkeretaL

O·~-------------~

-1

-2
1010g

(residual)
-3

-4

3 4 5 6 7
10 log(number of local Newton iterations)

Figure 4: Residual versus amount of work: conver­
gence histories for defect correction and second­
order discretisation on uniform and locally refined
grids; o: L = 4; +: L = 5; □: L = 6; ---: locally
refined; - -: uniform.

shows the logarithm of the mean of the four dis­
crete L1 norms of the second-order discretisation
versus the logarithm of the number of Newton it­
eration steps. We did not consider L = 6 and a
uniform grid. (The latter problem is so large that
it caused our workstation to start swapping pieces
of memory to disk, resulting in a very large pro­
cessing time.)

Apparently, the defect-correction process does
not converge for uniform grids. The reason for
this is possibly the following. On a uniform grid
with finest level L, many more Fourier modes can
be represented than on the refined grid with finest
level L. Especially low-frequency modes can be
represented very well on the uniform grid, better
than on the locally refined grid. In [25) an am­
plification factor g ~ 1 for low-frequency Fourier
modes is found, in case of the linear convection
problem in two space dimensions. However, it
should be stressed that for this linear convection
problem this high amplification factor corresponds
to functions that are constant in the characteristic
direction of the problem.

The defect-correction algorithm for locally re­
fined grids does converge. For second-order dis­
cretisation and defect correction, discretisation on
a locally refined grid yields a more robust algo­
rithm for this problem.

Execution time In order to get an idea of the
execution time, for this problem we give CPU-

times of our scalar Fortran research code on an
SGI IRIS INDIGO XS workstation. Optimisation
was done automatically by the compiler. In Ta­
ble 3 we give the average CPU-time per Newton
iteration step. Note that these Newton iterations
are again local Newton iterations, used in the non­
linear point Gauss-Seidel relaxation. Table 3 also
shows the average CPU-time for another (scalar)
multigrid code, developed to work with uniform
grids only. This non-adaptive code, called EU­
LER 7, implements the same multigrid and defect­
correction algorithms as used in the code for adap­
tive computations (see e.g. [8)). The FAS-algorithm
on a locally refined grid appears to be only three
percent more expensive than on a uniform grid
with the adaptive code. The iterative defect cor­
rection appears to be about 18% more expensive.
For the FAS-algorithm, the adaptive code with lo­
cal grid refinement, appears to be about 14% more
expensive than the non-adaptive code EULER7.
For iterative defect correction, the adaptive-grid
code is about 34% more expensive than EULER7.

1.4.2 Transonic airfoil flow

In this section we consider transonic flow around
the N ACA0012-airfoil. The flow conditions at the
far-field boundary are: M00 = 0.8, angle of attack
a = 1.25°, p00 = 1 and (u2 + v 2) 00 = l. The com­
putational domain extends to about 100 chords to
all sides.

As second-order operator, Nfr, we use the Van
Albada limiter scheme [6, 24]. Again, third-order
accurate computation of virtual states is applied
(see Chapter 2 of [16] for details). The limiter
scheme is used because spurious wiggles in the so­
lution are expected if a non-limited, second-order
scheme is used.

In the refinement criterion we use first undi­
vided differences of the density, in both strearnwise
direction and the perpendicular direction. Two
thresholds are used, one for each direction. This

Preconditioning 486 HemkeretaL

prevents the algorithm from refining in the neigh­
bourhood of a shock only. It allows the algorithm
also to find the contact discontinuity, and to re­
solve the expansion region. Then, we not only get
a good resolution of the shock, but also a good
resolution of the expansion. This in turn is im­
portant for the accurate computation of the lift
and drag coefficients. The use of a single thresh­
old value only (i.e., the same threshold for both
criteria) would be inefficient for a small threshold
value (too many refinements). On the other hand,
a larger threshold value only refines at strong dis­
continuities.

The grid used is an O-type grid. The coarsest
grid is a 5 x 8 grid. The highest level is L = 5.
The uniform grid at level l = 1 is shown in full and
in detail in Figure 5. A cell is refined if the first

-1.5 ,-..c>---~--...._-~--~
-1 -0.5 0 0.5

X

Figure 5: Uniform grid of level = 1, around
NACA0012 airfoil.

undivided difference of density in flow direction is
larger than 0.02, or if this difference in the direc­
tion perpendicular to the flow is larger than 0.004.
The final adaptively refined grid, with L = 5, is
shown in Figure 6. In Figure 7 the Mach number
distributions are shown both for an adaptively re­
fined grid and a uniform grid. The pressure dis­
tributions for the uniform grid and for the locally
refined grid are shown in Figure 8. For the lift
and drag coefficient on the adaptively generated
composite grid we find c1 = 0.3480, Cd = 0.0235.
On the non-adaptive grid we find c1 = 0.3512 and
cd = 0.0235. The difference between these val­
ues is less than 10% of the scatter found between
different reference results listed in [26]. This refer­
ence gives c1 = 0.3632 and cd = 0.0230, obtained
on a grid of 20480 cells by Schmidt and Jameson

y 0

- 1.5 '--"--'---"'--'-:::...,.-l...l_...L..J'"""---'----'-~'--1

-1 -0.5 0 0.5
X

Figure 6: Locally refined grid with L = 5, around
NACA0012 airfoil.

0.8 0.8

-1.5 l.------'----..J..--------<
-1 0 2

X

0.8 0.8

-1.5 l.------'----...,_ ___ ___,2
-1 0

X

Figure 7: Iso- line plots of the Mach number for the
transonic flow around a NACA0012 airfoil; o: =
1.25°; M00 = 0.8; locally refined grid: L = 5;
uniform grid: L = 4.

Preconditioning 487 Hemker et aL

-1.s~---------------,

-1.0

LS+---------,--------,'
0 0.5

:t

Figure 8: Pressure distribution for adaptively re­
fined and uniform grids for transonic flow around
a NACA0012 airfoil; a = 1.25°; M00 = 0.8;
---: locally refined grid, L = 5; - -: uni­
form grid, L = 4.

o~--------------~

. -2

-4
io log

(residual)
-6

-8 relined

-104---------"----~-----l
0 2 4 6

106 number of local Newton iterations

Figure 9: Residual versus amount of work: con­
vergence histories of defect correction and second­
order discretisation for NACA0012 airfoil flow;
a = 1.25°; M00 = 0.8; locally refined grid: L = 5;
uniform grid: L = 4.

[26). The number of cells on the adaptively gen- vectorisation. In Section 2.2 we describe the vec­
erated composite grid is 7876 and a total number torisation of some of the EULER subroutines. To
of 10488 cells was used in the computation. The
non-adaptive grid uses 10240 cells on the finest
grid and a total number of cells of 13640. The con­
vergence histories of both the adaptive and non­
adaptive case are shown in Figure 9. The adap­

enhance the vectorisation of the relaxation pro­
cess, Osher's flux-difference splitting scheme [29]
was replaced by Van Leer's flux-splitting scheme
[30].

tive computation takes about three tdimes less wdork 2.1 Extensions to BASIS
than the computation on the non-a aptive gri .

The solution-adaptive multigrid method appears A strict definition of the data structure is found in
to be an efficient tool for detailed studies of singu- [20). In the following subsections we briefly sum­
lar flow phenomena as well (see [27, 28)). marise the data structure, possibly repeating some

2 EUVEL: An EULER
Vector Extension Library

In this section we describe the EUler Vector Ex­
tension Library (EUVEL), which contains a set
of vectorised subroutines for the same algorithm
as used for the original subroutines in BASIS and
EULER. Since the implementation of the original
subroutines in BASIS and EULER is inherently
scalar and since the greatest performance gain on
a ma.chine as the Cray Y-MP is expected from vec­
torisation and not from parallelisation, we focus
our attention on vectorisation of the original EU­
LER code, using the same data structure. By the
typical tree structure of the data structure used,
it can be expected that parallelisation of the code
will be more straightforward. In Section 2.1 we
describe an extension of BASIS to facilitate the

information given in preceding sections. The com­
putational domain n is partitioned into a finite
number of quadrilateral cells. For the adaptive
multigrid algorithm different levels of refinement
of the grid are used. Each cell of the grid 0 1 on
level l > 0 is a member of a division of a cell of
n1- 1 , into a set of 2 x 2 smaller cells. We call the
cell on n1- 1 the parent cell and the four smaller
cells of the subdivision on 0 1 the NE-kid, SE-kid,
SW-kid, and NW-kid cell, respectively (using the
compass to denote the direction). The data struc­
ture is ordered by patches: the union of a point
with possibly a horizontal cell edge, a vertical cell
edge and a cell interior. The data structure con­
sists of a quad-tree of such patches (i.e., at most
four new branches at each node). With each cell
(or node), a patch as well as a number of pointers,
properties, coordinates and numerical values are
associated.

The kernel of EULER is a BASIS subroutine

Preconditioning 488 Hemker et al

called Scan, which accomplishes a depth-first quad- diagonal d of lev J k b £ d · h
t t 1 · k" e can e oun m t e range
ree raversa , mvo mg an external subroutine (Do It)

which is passed as argument to Scan, for every ' NDiag(d,k,0) : NDiag(d,k, 1)
patch found. Another argument of Scan is an
INTEGER array Order (1 : 4) which contains a per­
mutation of the directions NE, SE, SW, NW: the
order in which the four kid cells (branches in the
tree) are visited. Since Do It is called separately

of LevelW. These index arrays are all generated
by a subroutine, SortLv, and they must be up­
dated only when the cell structure (the mesh) has
changed.

for every patch found we hardly find any perfor­
mance gain by automatic vectorisation. On the 2·2
other hand, the data structure is ideally suited for

Vectorisation of some of the EU­
LER subroutines

a self-adapting mesh. So, we decided to leave the
We have restricted vectorisation to the most time-

data structure unchanged and to add a pointer .
t t · d t ll t • t· consummg subroutines. All subroutines adapted

s rue ure 1n or er o a ow vec onsa ion. • • all • 1 d . were ongm y imp emente usmg Scan
Each patch has an 'arbitrary' identification num- ·

ber. Therefore, two successive patch numbers can
be related to patches that have nothing in com- 2.2.1 Computation of the flux, transport
mon. All information concerning patches and their and their derivatives
relations is stored in three large two-dimensional
arrays:

PNTR - an INTEGER array,

To enhance the performance of the vectorised re­
laxation routines, it appeared that the P-variant of
Osher's flux-difference splitting scheme ([5]) could

PPTY - a LOGICAL array, be replaced by Van Leer's flux-splitting scheme.
DATA - a REAL (or DOUBLE PRECISION) array. The relaxation process is responsible for approxi-

These arrays have MNOP (Maximum Number Of Patcheshiately 80-90% of the total CPU-time. The vector
columns. To prevent tree-wise scanning of the length used in the relaxation will be at most the
patche_s each tim:, we _oper~te o~ patches of whic~ number of cells in a diagonal of the finest grid.
the ~01n~ers are hste~ m various mdex arrays._ Which However, since we are dealing with an adaptively
spe:ific mdex array 1s used depends on the kmd of refined grid, in many cases this vector length will
action. not be very large. The motive for preferring Van

First of all, pointers to patches that belong to Leer's scheme above Osher's scheme is its smaller
the same level are gathered and stored into an number of branchings. In Osher's scheme there
array LevelW (0: MNOP). Array LevelW (combined are 16 different possibilities, whereas in Van Leer's
with INTEGER array NLev (0: MNOL), where MN0L scheme there appear to be only 4. In fact, the main
denotes the Maximum Number Of Levels), tells us problem in vectorising is not the number of con­
where we can find patches of level k: the array ditions, but the small number of patches that sat-
segment isfy a particular condition in the upwind scheme.

LevelW(1: NLev(O)) Moreover, this number of patches in a diagonal de-
contains pointers to patches on level l = 0, whereas creases during the relaxation process, because the
the segment number of Newton-steps needed on the individual

LevelW(NLev(k-1)+1: NLev(k)) patches may differ. It is clear that the 16 possi-
contains pointers to patches on level l = k. bilities in Osher's scheme would result in smaller

The collective symmetric point Gauss-Seidel vector lengths than the 4 possibilities in Van Leer's

relaxation can be vectorised by using a diagonal scheme.
ordering. For this purpose, the elements of LevelW, The original subroutine FTA computes the Flux,
referring to patches, are stored such that their di- the Transport and the left and right transport deriva­
agonal number (being the sum of the {- and r,- tives on a single patch. We created a generic
coordinates) is in monotonously non-descending source (to be pre-processed by c~p, t~e C lan­
order. The INTEGER array NDiag(O :MNOD, 0 :MN0L, guage pre-processor~ with the functionality of F'TA.
0: 2) 1 , informs about the position of the diagonal It operates on multiple patches (passed as ,an ar­
elements within the array LevelW. The patches on ray of patch numbers), and i~ h_as Van ~eer s flu~-

splitting scheme completely mimed. ~1th cpp s1~
different versions are generated, workmg on multi-1 Here MNOD denotes the Maximum Number Of Diagonals,

Preconditioning 489
Hemker et aL

ple patches, but with different variants for horizon­
tal and vertical cell edge; in addition, left or right
derivatives are computed if necessary. It saves us
from passing some original arguments, and -more
important- it saves us from the resulting con­
ditions in the generated subroutines. For exam­
ple, one of the variants, FTAHLS, replaces FTA on
Horizontal cell edge computing Left derivatives and
it operates on multiple patches (a Subset). Inside
an FTA variant, lists of patch numbers are pre­
computed satisfying the subsonic and supersonic
flow conditions considered in the Van Leer scheme;
this is done completely vectorised. Next, the flux,
the transport and the derivatives are computed
(completely vectorised) using indirect addressing
via the pre-computed lists.

2.2.2 Right-hand side computation

Originally, the right-hand sides were constructed
using Scan over all patches that build up the grid.
Vectorisation by looping over all patches on one
level is not feasible because too many actions must
be performed for each patch. Fluxes must be cal­
culated and sent to the memory locations in DATA.
Then, the residuals of the kids are collected, or,
when there are no kids, a source term is evalu­
ated. For the vectorisation it is better to split up
the actions and to perform them on all patches re­
siding on the same level. The new structure of the
subroutine MkRhs, which computes the right-hand
side, looks as follows:

call ZRhsV (. . .)
if (lev .eq. TopLev) then

call MkRhsTV()

else
call MkRhsKV()
call MkRhsHV()
call MkRhsVV()

end if

These subroutines operate on multiple patches,
listed in an index array, and they perform one of
the following subtasks:

ZRhsV - initialises the right-hand sides in
DATA on a given level;

MkRhsTV - evaluates the source term on the
highest level and assigns the value
to the corresponding DAT A memory
location;

MkRhsKV - adds the right-hand sides of the kids
or, when there are no kids, a source
term is evaluated and assigned;

MkRhsHV - calculates the horizontal fluxes and
adds them to corresponding DATA
memory locations of the cells and/or
their (southern) neighbour;

MkRhsVV - calculates the vertical fluxes and
adds them to corresponding DATA
memory locations of the cells and/ or
their (western) neighbours.

The computation of the fluxes is bounded by many
restrictions: distinction should be made between
green cell edges (i.e. edges at fine-coarse grid inter­
faces), boundary edges, and ordinary edges. More­
over, it should be known whether the patches have
kids or not. Fortunately, the computation of the
horizontal and vertical fluxes can be done indepen­
dently, minimising the number of conditions for a
patch.

Again it turns out to be convenient to use in­
dex arrays in order to save tests on properties of
patches and to make vectorisation easier.

The flux transport computation across ordi­
nary cell edges has been completely vectorised.
For the green and boundary cell edges the flux
computation required a slightly different approach.
However, as soon as the left and right states have
been computed for all green and boundary edges,
the process can proceed analogous to the 'ordi­
nary' case, i.e., completely vectorised. The fluxes
are computed by the vectorised subroutines de­
scribed in Section 2.2.1. Finally, sending of the
flux values to the patches and/or their neighbours
can be done in a straightforward way.

2.2.3 The residual

The computation of the residual on the composite
grid (i.e., the grid consisting of all cells that have
not been refined) corresponds to the previously
discussed computation of the right-hand sides of
the equations. First-order fluxes in horizontal and
vertical direction must be computed. Again, it
is possible to separate the horizontal and vertical
part. For both directions index arrays are gener-

Preconditioning 490 Hemker et al.

ated for the composite grid. The computational
complexity for the residual computation and the
right-hand side evaluation is roughly the same.

Originally, after the residual was computed,
another Scan through the data structure was made
to construct the £1 and £ 00-norms of the residual
fields. The weighting is done by a multiplication of
the residual by a factor 4 -! , where l is the level on
which the cell resides. This implies, that for each
patch its weighting factor must be computed. Op­
erating along the index array LevelW has the ad­
ditional advantage of a constant weighting factor
for each level.

Both norms can be calculated at vector speed
using the BLAS subroutines SASUM and ISAMAX,
respectively. Originally, the norms were computed
simultaneously; in the modified code these norms
are computed separately for each residual field.

2.2.4 The relaxation

Collective symmetric point Gauss-Seidel relaxation
is used as the relaxation procedure in EULER.
Point refers to the property that during the update
of a state vector on a patch all other state vectors
are kept fixed. Collective refers to the property
that the update of the state vector on a patch is
done for all of its four components simultaneously.
Symmetric means that after a relaxation sweep a
new sweep is made with the reverse ordering. For
each cell visited during a relaxation sweep a sys­
tem of four nonlinear equations is approximately
solved by Newton iteration, the differential oper­
ator being (8/8u,8/8v,8/8c,8/8zf; see [5) for
definitions and details. We consider two possibili­
ties for vectorising the relaxation:

1. Replacing symmetric Gauss-Seidel by a red­
black ordering. This leads to an essentially
worse convergence factor (based on other ex­
periments we expect to loose a factor 5).

we keep exactly the algorithm as used in the orig­
inal EULER code. It can be easily seen that the
original relaxation, using Scan with (SW, NW, SE,
NE)-ordering, corresponds to the lexicographical
ordering, which in turn is identical to the diagonal
ordering because all non-linear systems on a di­
agonal are completely decoupled. In Section 2.1,
we already described how an additional pointer
structure has been added to facilitate working on
diagonals.

We still have to describe how the decoupled
non-linear systems on a diagonal are solved. First,
the linearised (4 x 4) systems are constructed by
use of the previously described flux, transport and
derivatives subroutines. Next, a single Newton it­
eration step is performed, in which a 4 X 4 linear
systems must be solved. For this, a subroutine was
developed which contains one completely vectoris­
able loop, in which the loop body solves a 4 X 4
linear system using Gaussian elimination with par­
tial pivoting. In order to vectorise this loop and
to enhance the vector and even the scalar perfor­
mance, the Gaussian elimination code for the solu­
tion of the 4 x 4 system is completely unrolled. A
problem is that one or more of the linear systems
might be singular. This is taken care of by replac­
ing the matrix-diagonal elements by '1' and sepa­
rately marking the systems singular. Finally, we
notice that we do not know beforehand, how many
Newton iteration steps are to be performed. After
a Newton step on the patches in a grid-diagonal,
we test whether the specified accuracy is reached,
and then the patch numbers are collected of the
non-linear systems that did not reach the required
accuracy. The Newton process is continued on this
probably much smaller subset. The iteration pro­
cess is finished if either the subset becomes empty
or a certain number of Newton steps has been per­
formed.

2. Staying with symmetric Gauss-Seidel, but 2.2.5 Some other vectorised subroutines
using a diagonal ordering (since the non-linear . .

t 'd d' 1 l t l Finally, we discuss some other mterestmg subrou-sys ems on a gn - 1agona are comp e e y . .
d l d) d l · 0 h , ch b tines that have been vectorised, viz., RstSol, BckUp ecoup e an rep acmg s er s s eme y .
V: L , h Th' lt · 1 and AddPl. The first, RstSol computes a restnc-an eer s sc eme. 1s resu s m onger .

t b th b f h • · th tion of the solution on a given level, and sends vec ors, ecause e num er o c 01ces 1n e . .
· d h d f l6 t 4 it to the memory locations of the solution on an-upwm sc eme re uces rom o . .

other level. BckUp makes a copy from the solution.
A comparison of both choices shows a better effi- AddP1 interpolates and adds the correction from
ciency for the latter approach. This means that, one level to another. The Scan approach origi­
except for the replacement of Osher's flux-difference nally used being too expensive, in the new imple­
splitting scheme by Van Leer's flux-splitting scheme, mentation the actions are performed directly for

Preconditioning Hemker et aL

Table 4: Speed-up achieved with EUVEL on shock Table 5: Speed-up achieved with EUVEL on airfoil
reflection problem. The CPU time is given in sec- problem. The CPU time is given in seconds.
onds.

CPU time CPU time Speed I
routine original EUVEL up

AddP1 0.0107 0.0009 12
BckUp 0.0079 0.0002 40
MkRhs 0.2070 0.0279 7.4
Relax 2.1587 0.5294 4.1
RstSol 0.0106 0.0006 18
FAS 2.3949 0.5590 4.3

Res 0.1707 0.0208 8.2
Norm.RP 0.0275 0.0008 34

multiple patches and can be vectorised, including
the IF-tests on the patch properties. Additional
index arrays are not necessary.

2.3 Vector Performance

We consider the same two test problems that were
used in Section 1.4. In this section, our main in­
terest is the performance improvement obtained
by vectorisation.

2.3.1 Shock reflection

The first test problem is the shock reflection prob­
lem considered in Section 1.4.l. Here the finest
grid has dimensions 128 x 64, so the maximal di­
agonal length (being the maximal vector length)
in the relaxation process is 64. The vector speed­
up, measured for one FAS-cycle, can be found in
Table 4. The total cost of maintaining the addi­
tional data structure, which allow vectorisation is
0.0142 CPU seconds, being only 2.5% of the total
execution time.

2.3.2 Transonic airfoil flow

The second problem is the transonic flow prob­
lem around the NACA0012-airfoil, shown in Sec­
tion 1.4.2. Beside the replacement of Osher's flux­
difference splitting scheme by Van Leer's, the so­
lution method differs for this problem due to the
O-type grid. In this case the diagonal ordering no
longer corresponds with the original lexicographi­
cal ordering. For the solution a cylindrical grid (a
rectangular grid with coinciding lower and upper

CPU time CPU time Speed

subroutine original EUVEL Up

AddP1 0.0229 0.0019 12

BckUp 0.0167 0.0004 40

MkRhs 0.4193 0.0641 6.5

Relax 4.4489 0.9914 4.5

RstSol 0.0427 0.0025 17

FAS Total 4.9510 1.0605 4.7

Res 0.3396 0.0347 9.8

NormRP 0.0500 0.0015 33

boundaries) is used: the d-th diagonal, having d
as sum of the ~- and 17-coordinates, extends over
the lower boundary to the diagonal in the rect­
angular grid having d + NY as sum of the ~- and
7)-Coordinates. (NY is the number of points in the
7)-direction). In fact, the diagonals on the rect­
angular grid render into spirals on the cylindrical
grid. In Table 5, we can find the vector speed-up
for this problem.

2.4 Conclusions

Whereas, at first sight, the quad-tree data struc­
ture used for the self-adaptive algorithm seems not
suitable for use on a vector computer, we have
vectorised the EULER code, obtaining a vector
speed-up factor of 4-5. To judge this speed-up we
must bear in mind, first, the indirect addressing,
necessary for the adaptive grid, and second, the
relatively small average vector length due to the
adaptive grid. Furthermore, the use of adaptive
grids instead of uniformly refined grids has already
decreased the amount of computational work by a
factor 5-10 for realistic problems. We could ob­
tain slightly higher vector speeds by changing the
refinement criterion. However, in that case, the in­
crease of computational work is not compensated
by the increased vector speed.

The price to be paid for vectorising the origi­
nal Euler code is the replacement of Osher's flux­
difference splitting scheme by the somewhat less
accurate Van Leer flux-splitting scheme. This is a
relatively low price, because it is possible to com­
pensate for this by applying defect correction with
Osher's flux-difference splitting scheme.

Preconditioning 492 HemkeretaL

As indicated in the introduction, vectorisation
instead of parallelisation of the code was a well­
considered approach; the greatest performance gain
on a Cray Y-MP was expected from vectorisation.
Parallelisation is still possible using domain de­
composition or, chopping up the quad-tree. Com­
pared to our vectorisation efforts, parallelisation
should be relatively easy.

Requests for the modules BASIS, EULER and
EUVEL can be directed to one of the e-mail ad­
dresses: barry@cwi.nl or walter@cwi.nl.

References

[1] B. KOREN, Multigrid and Defect Correction
for the Steady Navier-Stokes Equations, Ap­
plication to Aerodynamics, CWI Tracts, 14,
CWI, Amsterdam, 1990.

[2] P. W. HEMKER AND G. M. JOHNSON,
Multigrid approaches to the Euler equations.
In S. F. McCormick, editor, Multigrid Meth­
ods, Volume 3 of Frontiers in Applied Math­
ematics, pages 57-72. SIAM, Philadelphia,
PA, USA, 1987.

[3] K. BOHMER, P.W. HEMKER, AND H.J.
STETTER, The defect correction approach,
In: Defect Correction Methods, Comput.
Suppl., 5 (K. Bohmer and H.J. Stetter, eds.),
Springer, Wien, 1984, pp. 1-32.

[4] P.W. HEMKER AND S.P. SPEKREIJSE,
Multigrid solutions of the steady Euler equa­
tions, In: Notes on Numerical Fluid Me­
chanics, 11 (D. Braess, W. Hackbusch and
U. Trottenberg, eds.), Vieweg, Braunschweig,
1985, pp. 33-44.

[5] P.W. HEMKER AND S.P. SPEKREIJSE, Mul­
tiple grid and Osher's scheme for the efficient
solution of the steady Euler equations, Appl.
Numer. Math., 2, 1987, pp. 475-493.

[6] S.P. SPEKREIJSE, Multigrid solution of
monotone second-order discretizations of hy­
perbolic conservation laws, Math. Comput.,
49, 1986, pp. 135-155.

[7] S .P. SPEKREIJSE, Multigrid Solution of the
Steady Euler Equations, CWI Tracts, 46,
CWI, Amsterdam, 1988.

[8] B. KOREN, Defect correction and multigrid
for the efficient and accurate computation of
airfoil flows, J. Comput. Phys., 17, 1988, pp.
183-206.

[9] B. KOREN, Euler flow solutions for transonic
shock wave - boundary layer interaction, Int.
J. Numer. Meth. Fluids, 9, 1989, pp. 59-73.

[10] P.W. HEMKER, Defect correction and higher
order schemes for the multi grid solution of
the steady Euler equations, In: Hackbusch
and Trottenberg [31], pp. 149-165.

[11) S.P. SPEKREIJSE, Second order accurate up­
wind solutions of the 2D steady Euler equa­
tions by the use of a defect correction method,
In: Hackbusch and Trottenberg [31], pp. 285-
300.

[12) H.T.M. VAN DER MAAREL, Adaptive multi­
grid for the steady Euler equations, Comm.
Appl. Numer. Meth., 8, 1992, pp. 749-760.

[13) W. HACKBUSCH, Multi-Grid Methods and
Applications, Springer Series in Computa­
tional Mathematics, 4, Springer, Berlin, 1985.

[14) P.W. HEMKER, On the order of prolonga­
tions and restrictions in multigrid procedures,
J. Comput. Appl. Math., 32, 1990, pp. 423-
429.

[15) P. WESSELING, An Introduction to Multigrid
Methods, Wiley, Chichester, 1991.

(16] H.T.M. VAN DER MAAREL, A Local Grid
Refinement Method for the Euler Equations,
CWI Tracts, CWI, Amsterdam (to appear).

[17] A. BRANDT, Multilevel adaptive computa­
tions in fluid dynamics, AIAA J., 18, 1980,
pp. 1165-1172.

[18] A. BRANDT, Guide to multigrid develop­
ment, In: Multigrid Methods, Lecture Notes
in Mathematics, 960 (W. Hackbusch and U.
Trottenberg, eds.), Springer, Berlin, 1982, pp.
220-312.

[19] K.G. POWELL, M.A. BEER AND G.W.
LAW, An adaptive embedded mesh procedure
for leading-edge vortex flows, AIAA Paper
89-0080, 1989.

Preconditioning 4'3 Hemker et al.

[20] P.W. HEMKER, H.T.M. VAN DER MAAREL
AND C.T.H. EVERAARS, BASIS: A data
structure for adaptive multigrid computa­
tions, Report NM-R9014, CWI, Amsterdam,
1990.

[21] H.T.M. VAN DER MAAREL, P.W. HEMKER,
AND C.T.H. EVERAARS, EULER: An adap­
tive Euler code, Report NM-R9015, CWI,
Amsterdam, 1990.

[22] W.M. LIOEN, AND M. LOUTER-NOOL, EU­
VEL: An EULER Vector Extension Library,
Report NM-R9318, CWI, Amsterdam, 1993.

[23] J. F. DANNENHOFFER, III, Adaptive grid em­
bedding for complex two-dimensional flows,
In: Adaptive Methods for Partial Differential
Equations (J.E. Flaherty, P.J. Paslow, M.S.
Shephard and J.D. Vasilakis, eds.), SIAM,
Philadelphia, 1989, pp. 68-82.

[24] G.D. VAN ALBADA, B. VAN LEER AND
W.W. ROBERTS, A comparative study of
computational methods in cosmic gas dynam­
ics, Astron. Astrophys., 108, 1982, pp. 76-84.

[25] J.-A. DESIDERI AND P.W. HEMKER, Anal­
ysis of the convergence of iterative implicit
and defect-correction algorithms for hyper­
bolic problems, SIAM J. Sci. Comput. (to ap­
pear, 1995).

[26] H. VIVIANO, Numerical solu-
tions of two-dimensionAl reference test cases,
In: AGARD-AR-211, AGARD, Neuilly sur
Seine, 1985, pp. 6-1-6-68.

[27] B. KOREN AND H.T.M. VAN DER MAAREL,
On steady, inviscid shock waves at continu­
ously curved, convex surfaces, Theor. Com­
put. Fluid Dyn., 4, 1993, pp. 177-195.

[28] H.T.M. VAN DER MAAREL AND B. KO­
REN, Spurious, zeroth-order entropy genera­
tion along a kinked wall, Int. J. Numer. Meth.
Fluids, 13, 1991, pp. 1113-1129.

[29] 8. OSHER AND F. SOLOMON, Upwind differ­
ence schemes for hyperbolic systems of con­
servation laws, Math. Comput., 38, 1982, pp.
339-374.

[30] B. VAN LEER, Flux-vector splitting for the
Euler equations, In: Proceedings Eighth In­
ternational Conference on Numerical Meth­
ods in Fluid Dynamics, Lecture Notes in

[31]

Preconditioning 494

Physics, 170 (E. Krause, ed.), Springer,
Berlin, 1982, pp. 507-512.

W. HACKBUSCH AND U. TROTTENBERG
(EDS.), Multigrid Methods II, Proceedings of
the 2nd European Conference on Multigrid
Methods, Cologne, 1985, Lecture Notes in
Mathematics, 1228, Springer, Berlin, 1986.

Hemker et al

