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1. INTRODUCTION 

In this chapter we give a description of a multigrid method developed for the steady 
Euler and Na vier-Stokes equations. The discretization method is based on cell
centered finite volumes. The solution method, that does not use time stepping, is 
based on nonlinear multigrid iteration (FAS). The method gets many of its good pro
perties by the use of a sequence of first-order discretizations, based on a variant of 
Osher's approximate Riemann solver. Higher-order accuracy is obtained by defect 
correction iteration. 
In this chapter, the method is described for the Euler equations only. However, it 
can be used for the Navier-Stokes equations equally well [16,17]. Recent research 
has shown that the method can be applied for flows ranging from subsonic to hyper
sonic speeds, with some slight modifications only for the latter regime [18,20]. 
In order to establish the notations to be used in this chapter, first we give the equa
tions considered. On a two-dimensional domain g• c lfe, the Euler equations, 
describing the physical laws of conservation of mass, momentum and energy, can be 
written as 

lq:_ + .li.fq}_ + ~ = 0 at ax ay ' (1) 

where 

q =(p,pu,pv,pef, (2a) 

f = (pu, pu 2 + p, puv, puh f, (2b) 

g= (pv,pvu,pv 2 + p,pvhf. (2c) 

Here p, u, v, e and p denote density, velocity in x- and y-direction, specific energy and 
pressure, respectively, whereas h = e + p Ip is the specific enthalpy. For a perfect gas 

p=(y-l)p(e-½(u 2 +v 2)), (3) 

where y is the ratio of specific beats. The unknown vector q (t,x,y) desc_ribes the 
state of the gas as a function of time and space, and f and g are the convective fluxes 
in the x- and y-direction, respectively. . 
Written in the quasi-linear form, the time-dependent Euler equat10ns form a hyper-
bolic system; 
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k + i!il!i.. + !JK.k = o at dq ax dq ay ' (4) 

i.e. the matrix 

(5) 

has real eigenvalues for all directions (k1,k2). These eigenvalues are: k 1u+k2v (a 
double eigenvalue) and k 1u+k 2v±c, where c:::: Vyplp is the local speed of sound. 
The sign of the eigenvalues determines the direction in which the information about 
the solution is canied along the line with direction (k 1, k 2), as time develops. 
Because of the nonlinearity, solutions of the Euler equations may develop discon
tinuities, even if the initial flow (t = t 0) is smooth. To allow discontinuous solutions, 
following Lax [21], eq. (4) is rewritten in its integral form 

;t f qdxc(_y +:(fnx + gny)ds =O, vg en•, (6) 
Q 

where ag is the boundary of g and where (nx,ny) is the outward unit normal at an. 
The form (6) of eq. (4) clearly shows the character of the system of conservation 
laws: the increase of q in 5:2 can be caused only by the inflow of q over art In sym
bolic form, (6) is rewritten as 

a 
-0 j qdxdy+N(q)=O. 

to 
(7) 

The solution of the Euler equations in the weak form (7), is known to be non-unique. 
A unique and physically realistic solution (which is the limit of a solution with van
ishing viscosity) is obtained by imposing the entropy condition. 
Because we are mainly interested in steady flow computations, we can concentrate on 
a solution method for the steady Euler equations: 

N(q)=O. (8) 

Notice that N can be seen as a nonlinear mapping between two Banach spaces, 
N:X➔Y. 

2. A MULTIGRID APPROACH FOR THE FIRST-ORDER DISCRETIZATION 

2.1 THE FIRST-ORDER FINITE VOLUME DISCRETIZATION 

To discretize eq. (8), the domain ~r is divided into disjunct quadrilateral cells Ui,J, in 
a regular fashion such that 

(9) 
i,j 

where Q.i,J is the closure of Qi,J· We restrict ourselves to divisions where each cell 
has (at most) four neighbors, such that gi±l,J and Qi,J±l are the neighboring cells of 
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Oi,j· Further we denote ~e nei!¥lbors of O;,j by Q.i,j,k (k =N,S,E, »'), and a com-
mon wall by f .. k =0· · n Q,. · k The boundary of Q. · is aiven by I,], I,] I,], • 1,) c,• 

aoi,j = U I';,J,k· The restriction to this kind of regular geometry is not neces-
k =N,S,E,W 

sary for the discretization method but leads to a simple data structure when the 
method is implemented. Evaluating eq. (6) over ni,j, we obtain 

aq-. 
A;,JTt + ~ f lfnx + gny)ds =O, (10) 

k r tJ,k 

where A;,J is the area of cell O;,J and where q;,J is the mean value of q over Oi,J· 
Further we introduce the notation 

f lfnx + gny)ds = f;,j,ksi,j,k, 'fli,j, k, (I 1) 
f1,j,k 

where s;,J,k is .!_he Ieng~ of f;,J,k and where Ji,J,k is the mean flux across f;,J,k• out
ward Oi,j· If O;,J and O;',j' are neighbors with a common side (f;,J,k =f;',j',k'), then 
Ji,J,k = - f;,J,k'• The space discretization of eq. (6) is done according to the 
Godunov principle: the state q(t,x,y) is approximated by q;,j(t) for all O;,J and the 
mean fluxes f;,J.k are approximat;d ffom ~~ states in the adjacent cells. For t~s 
purpose, a computed flux f;,j,k(q;,1,q;,J,k) 1s introduced to replace f;,J,k· Here, q;,1 
and qtk are approximations of q at both sides of I';,j,k· Thus we obtain the follow
ing semi-discretization of eq. (6): 

A; j aaq;,; + ~S; J J'; J k(qf j,qf i k) = 0, 'fli,j. (12) 
• t k .. " • • • 

For steady flows, this reduces to 

""'s· · · r. 1. k(qk,. · q~ · k) = 0 'fli,;·, ~ 1,J,ICJ i, , ,J, 1,J, ' (13) 
k 

which we abbreviate as 

(14) 

Notice that Nh can be seen as a mapping between two discrete Banach spaces, 
Nh:Xh➔ Yh-
If the cell D;,J is adjacent to the boundary of O*, i.e. f;,j,k c aO*, then the state q;,j,k 
is not available in general. In that case J;,j,k is computed from q;,j and the boundary 
conditions at I';,J,k· 
The main difficulty in eq. (13) is the evaluation of Ji.J,k(qt1,qt,k) for a given qt and 
qf.J,k · One possible approach is to consider the state q (t,x,y) at t =to as piecewise 
constant over each cell separately, to take qf.j = q;,j and qf.J.k = q;,j,k, and to compute 
the fluxes over the walls as a quasi-one-dimensional problem during a small time 
interval (t o,t O + ~t), by approximately solving the Riemann problem for gasdynam
ics. Approximate Riemann solvers have been proposed by Steger and Warming [34], 
Van Leer [22], Roe [29], Osher [28], and others. (Notice that by taking qf,1=q;,j and 
qf.j,k = q;,j,k the space discretization is first-order accurate.) 
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The possible irregularity of the mesh is easily dealt with by making use of the invari
ance of the Euler equations, under rotation of the coordinate system. Let the normal 
of a skew wall I';,J,k, directed from O;,j to O;,j,k, be given by 
(nx,ny)=(cos1>;,j,k>sin1>;,j,k). Then the simple local rotation 

~:J = [ ~:y :~ J ~J (15) 

reduces the computation of f;,j,k(q;,j,qi,J,k) to 

f;. ·k(q·. q· 'k)==r:-.1. "(T ·kq·. T 'kq· 'k) or ,}, I,)' I,], l,),kJ 1 I,], t,]' I,}, I,], , 

r. · k(q· · q· · k) == r:-.lkfi(T .. kq· · k y .. kq· ·) JI,], I,)' I,), I,], I,), t,J, ' I,], l,] , 

(16a) 

{16b) 

where the rotation matrix T;,J,k transforms the velocity components in q to the coor
dinate system that is associated with the normal to the cell interface. Notice that we 
have either (16a) or (16b), depending on whether q;,j is at the left or right side of 
I';,j,k, respectively. The function f (q 1,q') is called the numerical flux function. We 
see that the quantities s;,j,k and 'Pi,j,k are the only geometrical data about the mesh 
which are needed to set up system (13). (Handling an irregular mesh by this rota
tion approach, the equations simply remain in the form (4).) It is clear that the 
resulting discrete system is conservative, also for the irregular mesh. 

2.2 OSHER'S APPROXIMATE RIEMANN SOLVER 

A convenient numerical flux function J(qo,q1)=j(ql,q') is Osher's approximate 
Riemann solver [28]. In this subsection we give a short description of this function. 
In fact, we may distinguish two strongly related variants: the 0-(original) variant and 
the ?-(physical) variant [10]. Here we restrict ourselves to the P-variant. It is our 
experience that it yields very reliable discretizations. Though being less complex 
than the 0-variant, its main disadvantage still seems to be its supposed complexity 
when compared with other approximate Riemann solvers (such as e.g. those of 
Steger-Warming, Van Leer and Roe). An objective of our present exposition is to 
show that the scheme can be implemented in a simple and straightforward way. 
Further, we need this description to show (in section 2.4) how its linearization is 
obtained. 
According to Osher, the numerical flux function is defined by 

J [ qi iJfJg)_ ] f(qo,q1)= 2 f(qo)+f(q1)- ]I d Jdq, 
qo q 

(17) 

where 

(18) 

with JAi the diagonal matrix of the absolute values of the eigenvalues A of the Jaco
bian df(q)ldq. In eq. (17) the integration path is still to be defined, but we know 
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that the Jacobian has a complete set of eigenvalues "-k, k = 1,2,3,4: A1 =u -c, 
A2 = A 3 = u, 1\4 = u + c, and a set of three corresponding eigenspaces R 1, R 2,3 and R 4 . 

The integral in eq. (17) is computed along a path q=q(s), O,..;;s..:;;l, q(O)=q0 , 

q(l)=q 1• This path is divided into subpaths rk, k=1,2,3, connecting the states 
q (k _ n13 and qk 13 . Each subpath r k is constructed such that the direction of 
dq (s) Ids is tangential to Rm(k) [ 10], the corresponding eigenvector. In the P-variant, 
the choices for Rm(k) are: Rm(l)=R 1, Rm(2)=R2,3, Rm(3),=R4. The states q½ and 
q ½ are computed by means of the Riemann invariants 1/17' (kl(q (s )), l-=/=m, I= 1, 2, 3,4, 
which are constant along r k [ 30]. 
The state q is suitably expressed in the dependent variables c, u, v and z, where 
z=ln(pp--Y) is an entropy function. We obtain directly: z¼=zo, z,s=z1, v½=vo, 
v½=v1 andp½=p,1. Defining 

2 
'1-ro=uo+--1 co, 

y-

2 
'¥1 =u1---c1, 

y-1 

we also find (assuming that no cavitation occurs, '¥o>'1r1): 

_ ..r=-!_ '¥0 -'¥1 
cv,- 2 l+a ' 

u½=uv,=u,1= 
1+a 

The eigenvalues at the points qk/3, k =O, 1,2, 3, are: 

Ao =11.m(1)(qo) = uo - co, 

Av, =Am(1){q ½) = ll ½ - C ½, 

Av,= Am (2)(q ½) =Am(2)(q ½) = U ½ = iq,,, 

I\½= Am (3)(q ,-,) =ti¼+ C ½, 

A1 =Am(3)(q1)=u1 +c1. 

(19a) 

(19b) 

(19c) 

(20a) 

(20b) 

(20c) 

(21a) 

(21b) 

(21c) 

(21d) 

(2 le) 

Because ;\1 and ;,.4 are genuinely nonlinear eigenvalues, "-m (k)(q(s)) is monotonous 
along f 1 and r3, and hence it changes sign at most on~e_along f1 and f3. A sonic 
point qs, with "-m(1)(q(s 1))=0 exists on f 1 if AoA½~O. This sonic point 

q5 , = (Cs, , us,, Vs, ,zs, ), is computed from the Ii near system 

(22a) 

(22b) 
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(22c) 

(22d) 

Similarly, a sonic point qs 2 is found on I'3 if Al-JAJ ,e;;;;Q_ Along the complete path 
q(s), Q,e;;;;s~l, Am(k)(q(s)) can change sign only at the points qv,, q½, qs, ~d qs 2 -

We notice th~t f {go,q_1) according to Osher, is a continuous function in all A's and 
we see that A½ <.\.0 <;\.½· Because of this continuity we may neglect the case of a 
zero eigenvalue X and we compute the numerical flux by 

f{qo,q1) = H{'Ao)J(qo) 

+ H(-'Ao>-.0) sign(A½)f(qs,) 

+ H(-A½°il.½)f(q½) 

+ H(-A0A½)/(q½) 

+ H(-A½A1) sign(.\.1) f (qs 2 ) 

+ H(-A1)/(q1), (23) 

where HCA) is the Heaviside unit step fun~tion; H(11.)=0 for 11.<0 and H(A)=l for 
A>O. In_ m2st _sas~s, _many eigenvalues A will have equal signs. If the ordered 
sequence "-o,Ay,,A½,A½,"-I can be split into two parts (possibly empty), the first one 
containing only negative eigenvalues and the second one only positive eigenvalues, 
then a q exists such that simply J(qo,q 1)=/(q). We identify this state q as the state 
of the gas at the cell wall. This situation occurs for instance for fully supersonic or 
fully subsonic cases. If we exclude the unlikely cases u½<O, u 0 -co>O and 
11 ½ >0, u 1 + c 1 <0, the numerical flux near a shock is the only one for which 
j (q0,q 1) is found to be a sum of more (namely three) terms f (q). For more details 
we refer to (1 OJ and in particular to [ 32]. 

2.3 THE NUMERICAL FLUX AT THE BOUNDARY 

The flux f;,J,k at the boundary a~r is partially determined by q;J, the state of the 
flow in the boundary cell, and partially by the boundary conditions [26]. To com
pute f;,J,k at aQ•, first, from q;,J and the corresponding boundary conditions, we 
determine the state qB = q,,J,k at the boundary arr. Then the P-variant of Osher's 
approximate Riemann solver is used to compute the boundary flux. This is com
pletely consistent with the discretization over internal cell walls as described in sec
tion 2.2. 
To satisfy the boundary conditions in system (13), we determine qs, the state at the 
boundary, such that it satisfies the boundary conditions, i.e. B(qs) = 0, as well as the 
equality (assuming that the boundary is at the left): 

(24) 



Defect Correction and Nonlinear Multigrid for Steady Euler Equations 705 

In view of (17), eq. (24) implies 

q;,J !!fM - 91,J !lfM J d dw- j I d ldw, (25) 
98 q 9B q 

i.e. qB should satisfy the boundary conditions and should be connected with q;,J by a 
path q(s) such that 

(26) 

Now only the eigenvectors corresponding to the positive eigenvalues can be used and 
the number of subpaths to be considered depends on the number of in-going charac
teristics. 

2.4 THE LINEARIZATI0N OF OSHER'S SCHEME 

In the multigrid method, see section 2.5, we apply a point relaxation method. In this 
relaxation, locally, a system of four nonlinear equations has to be solved. An 
efficient way of doing this is by Newton iteration. For this we need convenient 
expressions for dNh(qh)/ dqh. From eqs. (13) and (14) we derive 

o(Nh(qh));,j a 
0 -~-"'i,s;,J,k./i,j,k(q;,j, q;,j,k) 

q,,m uq1,m k 

(27a) 

(27b) 

=O otherwise. (27c) 

Now, in view of eqs. (16a) and (16b), the computation of dNh(qh)I dq,. reduces to 
evaluations of 

(28a) 

(28b) 

If in (27a) q;,J,k =qB is a boundary state, then a relation q;,J,k =qB(q;,1) exists and the 
corresponding term in (27a) is (assuming again that the boundary is at the left): 

d d 
S;,J,k~ /;,J,k(q;,J,qi,j,k) =s;,J,k dq· _f;,J,k(q;,1,qa(q;,J)) 

q,,J 1,J 

=s;,J,k d~. [r- 1f(Tqa(q;,J),Tq;,J)] 
q,,1 

=s;,j,k r- 1f(o)(TqB, Tq;,1)T :qq~- +s;,J,kT- 1/(l)(TqB, Tq;,1)T, (29) 
1,J 
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where T denotes T;,J,k as in eqs. (16a) and (16b). The derivative matrix dqB I dqi,J 
depends on the specific boundary conditions imposed and is derived from the rela
tion qB(q;,J). 
We already noticed that the integration paths are easily expressed in the dependent 
variables c, u, v and z. Similarly, the numerical flux and its partial derivatives are 
conveniently expressed in the same variables. The flux vector 
f=(pu,pii2 +p, puv,u(E +p))7 is expressed as a function of q =(c,u, v,z)7 by using 

[ 1 l /1 p= ye-zc2 ' 

1 p =-pc2, 
y 

1 
E=pe= ½p(u2 +v 2)+---pc2. 

y(y-1) 

For the variables c, u, v and z, the derivative matrix 

f'(q)= ..E[_= o(pu,pu 2 +p, puv, u(E +p)) 
dq o(c,u,v,z) 

reads 

/3pu I c p 0 - ½{3pu 

f3p(u 2 + c2) / c 2pu 0 - ½/3(pu2 + p) 
f(q)= f3puv I c pv pu - ½{3puv 

f3u(E+p +pc2)!c pu 2 + E +p puv -½/3u(E +p) 

where f3 = 2 / (y- 1). In terms of this derivative matrix, from (23) it follows 

of (qo,q1) = H(Ao) f(qo) 

- - , aq½ 
+ H(-A½A11,)f(q½) -"

uqo 

- - , aq½ + H(-A½A½)f(q21,) -,_-. 
uqo 

(30a) 

(30b) 

(30c) 

(31) 

(32) 

(33) 

The derivatives aq I oqo, q = qs,, q ½,q 21,, are derived from differentiable relations such 
as (19), (20) and (22). Explicit expressions are found in [10]. In this way the 
matrices f(oi(qo,q1) and /'(liCC/o,q1) are readily computed. _It appears that both 
matrices are continuous functions of q0 and q I as long as A½= u ½ = u ,;,,¥=0. An 
efficient implementation is obtained by expressing the fluid state in the Riemann-like 
state variables c, 11, v,z. 
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2.5 MULTIGRID ITERATION 

In order to solve the discrete equations (14), first we slightly generalize them to 

Nh(qh)=rh. 

707 

(34) 

For the solution of (34) we apply then nonlinear multigrid iteration (in the FAS
variant [3]). For this we need a sequence of discretizations 

(35) 

For a regular mesh with size ht-I, we take h1-1 =2h,. For an irregular mesh we 
delete each second line of mesh points to obtain the cells in th':_ coarser grid. 
Further, we introduce grid transfer operators R 2h,h:X1,-X2h and R 2h,h:Yh➔ Y2h 
(restrictions that make a representation onto the level 2h of a grid function at the 
level h), and Ph, 21, :X 21,-X1, (which interpolates a solution-function at level 2h to the 
level h). Now, one iteration cycle of the FAS-algorithm for the solution of eq. (34) 
consists of the following steps: 
0. start with an approximate solution q1,, 
1. improve q1, by application of p (pre-) relaxations to Nh(qh) =rh, 
2. compute the residual N1,(q1,)- rh, 
3. find an approximation of qh at the next coarser grid, say q2h. (For this we use 

either a restricted solution q2h =R21i,hqh, or a previously obtained approxima
tion q21,), 

4. compute r2h =N 2h(q21,) + R2h,h(r1, - Nh(qh)), 
5. approximate the solution of N 2h(q2h)=r21,, by application of a nonlinear mul-

tigrid cycles. The result is q2h, 
6. correct the current solution by qh = qh + Ph, 2!,(q2h - q21,), 
7. improve q1, by application of q (post-) relaxations to N1,(q1,)=r1,. 
The steps 2-6 in this process constitute the coarse grid correction. These steps are 
skipped at the coarsest grid h 0 . For the solution of the nonlinear system (14), the 
FAS-algorithm is applied with r1, =O at the finest grid. During the FAS-iteration, at 
the coarser grids, non-zero right-hand sides appear. In order to complete the 
description of the FA~cyc!e we need to be explicit about: (i) the choice of the 
operators N21,, Ph,2h, R21i,h and possibly R2h,h, (ii) the FAS-strategy, i.e. the 
numbers p,q, a, (iii) the nonlinear relaxation method, and (iv) the computation of an 
initial guess for the FAS-iteration. These subjects will be treated in the following 
paragraphs. 

2. 5.1 A nested sequence of Gal erk in discretizations. For the operators P1,, 2h and R 2h,h 
we make a choice that is consistent with the concept of our finite volume discretiza
tion. The discretization is essentially a weighted residual method, where the solution 
is approximated by a piecewise constant function (on cells Q;,J) and where the resi
dual is weighted by characteristic functions on fi,-,1. From this point of view, it is 
natural to u~ a piecewise cons~nt interpolation for Ph, 2h and to use addition over 
sub cells for R 2h.h · Notice that R 2h,h is the adjoint of P1,, 2h • With these choices it is 
clear that 
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(36) 

i.e. the coarse grid finite volume discretization is a formal Galerkin approximation of 
the fine grid finite volume discretization. By the superscript l (starting from eq. 
(36)) we indicate explicitly that the discretization used is first-order accurate. Apply
ing (36) on all different levels we obtain a nested s~uence of discretizations. 
The effect of the Galerkin approximation N1h=R21,,hNhPh,2h on the approximate 
solution qh obtained after a coarse grid correction is the following. If we take 
q2h=R21,,hqh in step 3 of the algorithm, with R2h,h such that R2h,hPh,2h=l21, is the 
identity operator on X 2h, and if N2h(q21,)=r2h is solved exactly, then 

R2h,h rh-Nh(Ph,2hR2h,hqh) =R2h,h Niqh)-Nh(Ph,2hR2h,hqh) , - [ I ~]- [I 1 ] (37) 

or, for the restriction of the residual 

- [ J~] - [[ I 1 ] R 2h,h rh - Nh(qh) =R2h,h N h(qh)- Nh(Ph, 2hR 2h,hqh) 

- [Nh(qh)- Nh(Ph, 21,R2h,h9h)] ]- (38) 

In the neighborhood of a solution, the difference qh-qh will be small and Nh will 
approximately behave as a linear operator: the restriction of its residual will be very 
small; 8( I I qh -qh I 12 ). For a sufficiently differentiable operator N h, this implies 

R2h,h [rh-Nh(qh)] =0(1 lqh-qh I 12). (39) 

Because R lh,h is an addition over four neighboring cells, this means that the residual 
mainly contains high-frequency components. A small restriction of the residual 
implies that large residuals cancel over neighboring cells. Because the residual is 
varying rapidly, local relaxation methods should be able to eliminate such residuals 
efficiently. 

2.5.2 M11ltigrid strategy. Experience with multigrid algorithms in other contexts 
shows that p =q=a= l (i.e. a multigrid V-cycle with a single pre- and post
relaxation sweep) may be a good choice for a successful strategy. It is the standard 
choice in our computations. Other choices, with small values for p, q and a, can be 
made. What is best depends much on the relaxation used, and research can be made 
for seeking the most efficient combination. However, the result may depend on the 
particular problem solved. Up to now, it appears that different (p, q, a)-strategies are 
not much different in efficiency. A smaller convergence factor is usually compen
sated by a corresponding amount of additional work. 

2.5.3 Relaxation. The important feature for a relaxation method in a multiple grid 
context (both for linear and nonlinear problems) is its capacity to damp the high
frequency components in the error. Therefore, the difference scheme should be 
sufficiently dissipative. The first-order upwind schemes usually are. An advantage of 
these schemes over central difference schemes is that their numerical dissipation is 
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well-defined and independent of any parameter, this as opposed to central difference 
schemes. For the relaxation method several alternatives are available. For nonlinear 
multigrid methods most experience exists for methods of the collective Gauss-Seidel 
type. Here, all the cells in the computational domain are scanned in a well-defined 
order, and when a cell is visited, the four state variables (c, u, v,z) are updated simul
taneously. For the solution of the corresponding system of four nonlinear equations, 
one or more steps of a Newton iteration are used until the local residual is reduced 
below a specified amount. In almost all cases it appears to be most efficient to take 
this tolerance so crude that usually no more than a single iteration step per cell is 
performed. Possible relaxations are: (i) Gauss-Seidel-relaxation with lexicographical 
ordering (GS), (ii) symmetric Gauss-Seidel-relaxation from north-west to south-east 
and vice versa (SGS]), (iii) the same but going from north-east to south-west and 
vice versa (SGS2), (iv) checkerboard- (or red-black-) relaxation (RB). In almost all 
cases the same relaxation can be used in both the pre- and post-relaxation. Another 
good choice is SGS3: to use SGS] for the pre- and SGS2 for the post-relaxation. In 
[9], some of these relaxations are compared in combination with a uniform grid. 
There, also the effect of other (p,q, o)-strategies is considered. For a standard model 
problem (transonic flow in a channel with circular-arc bump) on a non-uniform grid 
and with SGS3, the following convergence rates per multigrid cycle are obtained: 
0.38 for p=q=l,a=l; 0.23 for p=q=l,a=2; and 0.17 for p=q=2,a=1. The 
smoothing behavior of the different possible relaxation methods can be analyzed by 
local mode analysis, but we should notice that the smoothing factor as used for com
mon elliptic problems, has no significant meaning for the Euler equations because we 
have to take into account (unstable) characteristic modes. Here, a local mode 
analysis should follow more the lines used for elliptic singular perturbation problems, 
see e.g. [ 13]. Jespersen has published some results [ 12], in which he shows that for a 
subsonic and a supersonic case SGS has a reasonably good smoothing behavior, 
when applied to a first-order scheme. Of course, the non-symmetric GS-relaxation is 
only effective if the direction of the relaxation sufficiently conforms with the direc
tion of the characteristics. Although there is no proof, experience shows that for 
transonic flows the convergence rate for FAS-iteration, with SGS as pre- and post
relaxation, is almost grid-independent. 

2.5.4 Initial estimates. For the nonlinear multigrid method as just described, it is 
important to start with reasonably good initial estimates. These can be obtained by 
nested iteration. Here the solution is first approximated on the coarsest grid. Then 
the solution is interpolated onto the next finer grid, where a few FAS-cycles are per
formed. This procedure is repeated until the required finest grid has been reached. 
In many cases, for starting the nested iteration, a very crude initial estimate on the 
coarsest grid can be used. As soon as the solution on the coarsest mesh is approxi
mated with sufficient accuracy, it is interpolated to the finer grid. It can be shown 
that, for all finer levels, a small, fixed number of multigrid iterations is sufficient to 
obtain truncation error accuracy. 
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THEOREM Consider a sequence of discretizations Nh,(qh)=rh,, l=O, 1,2, ... ,L. with 
h1 _ 1 I h1 >C 1• If the discrete equations are relatively convergent of order p, i.e. if 

I IP1,1-1q1-1 -qil lo;;;Cohf-1, (40) 

and the convergence of the iteration cycle is independent of h, i.e. for the iterates q7 
in the iterative solution process we have 

llq7+ 1 -q1llo;;;C2llq7-q,II, (41) 

then, with N cycles on each level, the result qh = qi{ of the nested iteration process 
satisfies 

CP.CN 
11- 11< 1 2 C hP. 

qh-qh 1-cqctllPII o i, 
(42) 

assuming that cqcr11Pll<l, where IIPll=s~pllP1,1-1II- □ 

Hence, the interpolation used to obtain the first guess on each level should be of 
sufficiently high order to comply with the accuracy of the discretization. In our case, 
where the discretization is first-order accurate, the first-order prolongation Ph, ih as 
used in the Galerkin approximation is not accurate enough, and a second-order 
interpolation is necessary. 

2.6 CONCLUSION 

We have seen that for many steady Euler flow computations, good multi grid 
efficiency can be obtained (9, 10, 15, 19]. A good sequence of first-order discretizations 
is obtained by the consistent use of the finite volume technique. It yields a conserva
tive discretization and it induces both the prolongations and the restrictions for the 
multigrid algorithm. The result is a nested sequence of Galerkin discretizations. 
Probably the most important ingredient in the finite volume discretization is the 
choice of a good numerical flux function. The flux function chosen (Osher's) allows 
a completely consistent treatment of the interior and the boundary of the domain. 
Both at the domain boundary and in the interior, Riemann invariants are used for 
transferring information across cell faces. Further, Osher's numerical flux function 
has smooth derivatives, which allows the use of Newton's method in the relaxation. 
A slight variant of Osher's approximate Riemann solver (the P-variant) leads to a 
favorable efficiency. 
By the use of nested iteration, sufficiently accurate initial estimates can be obtained 
(for the cost of about l ½ FAS-cycle). Already for some practically interesting prob
lems, only a single FAS-cycle (with p =q =a= 1 and SGS3-relaxation) appears to be 
sufficient for obtaining truncation error accuracy. This means that the (non
isenthalpic) steady Euler equations can be solved by an amount of work that is 
equivalent with about 1 ½ X 2 symmetric Gauss-Seidel relaxation sweeps. 
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3. DEFECT CORRECTION FOR HIGHER-ORDER EULER COMPUTATIONS 

3.1 SECOND-ORDER DISCRETIZATION 

The first-order discretization introduced in section 2.1 has a number of advantages: 
it is conservative, monotonous and it gives a sharp representation of discontinuities 
(shocks and contact discontinuities), as long as these are aligned with the mc>sh. 
Further, it allows an efficient solution of the discrete equations by a multigrid 
method. Disadvantages are: the low order of accuracy (many points are required to 
find an accurate representation of a smooth solution) and the fact that it is highly 
diffusive for oblique discontinuities. (Oblique discontinuities are smeared out over a 
large number of cells.) For a first-order (upwind) scheme these are well-known facts 
which have led to the search for higher-order methods. 
A key property of the first-order discretization, that we also want to have in a 
second-order scheme, is the conservation of q. Conservation allows discontinuities to 
be captured as weak solutions of (6) and avoids the necessity of a shock fitting tech
nique. Therefore, we consider only schemes that are still based on (12), and we 
select a new f;,J,k(q7,1,qL,k) such that we get a better approximation to (11) than 
with (16). 
Higher-order discretizations can be obtained in two different ways. Higher-order 
interpolation can be performed either for the states (i.e. in Xh) or for the fluxes (i.e. 
in Yh ). The first approach, called the MUSCL-approach, is used in e.g. [2,4,23), the 
second approach in e.g. [27,33). In the MUSCL-approach, in (12), qt and CJ,7.J,k are 
obtained by some interpolation in qh={q1,1}. In the other approach,f;,J,k(q,:1,q~J,k) 
is obtained by some interpolation in /h = {f;,J,k(q1,1,q;,J,k)}. In the following we res
trict ourselves to the more common MUSCL-approach. 
From the point of view of finite volume discretization, a straightforward way to form 
a more accurate approximation is to replace the first-order approximation (16) with 
its piecewise constant approximation q(x,y) over cells, by a piecewise bilinear func
tion q(x,y) on a set of 2 X 2 cells (a superbox). Such a superbox at the h-level 
corresponds with a single cell at the 2h-level. Across the boundaries of the superbox, 
q(x,y) can be discontinuous. In the superbox q(x,y) is determined by q2i, 2J, 

q2; + 1,2J, q21, 2J + 1, q2; + 1,2J +I· Using such a bilinear function, we see that the cen
tral difference approximation is used for flux computations inside the superboxes. 
At the superbox boundaries, interpolation is made from the left and the right, and 
the approximate Riemann solver is used to comfute the flux at the boundary. We 
denote the corresponding discrete operator by N h. lt is easily shown that the super
box scheme is second-order accurate in the sense that 

(43) 

Instead of the finite volume superbox scheme, we can adopt a finite difference 
approach. Interpolation from the left and right can be used to obtain the states qtj,k 
and qi,J,k at the left and right cell faces, respectively. The simplest second-order 
scheme is the central differencing scheme. Here the interpolation leads to a loss of 
all upwind properties. It simply leads tof(q1,q')=j(½(l+q')) for the numerical 
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flux function. In contrast with the first-order scheme, the central difference scheme 
may even be anti-diffusive, which may lead to instabilities. When a central scheme is 
used alone, an additional diffusion (dissipation) term should be added to stabilize the 
solution method [11]. 
To improve the stability behavior, it is better to take into account the domain of 
dependence of the solution (the direction of the characteristics) and to distinguish, at 
each cell face, between interpolated values from the left and from the right. For sim
plicity of notation we shall exemplify this only for the one-dimensional case. Gen
eralization to two dimensions is straightforward. In the one-dimensional case, eq. 
(13) reduces to Ji+½-Ji-½=O, where /i+v, = f(ql+v,,q'i+½)- Introducing 
Aq; + ½ = q; + 1 - q;, we find for the second-order upwind interpolated values ql + ½ 
and q'i+v,: 

q/+½ =q;+½Aq;-½, (44a) 

q1+½ =q;+I -½Aq;+I½• (44b) 

Notice that on a non-equidistant grid, second-order accuracy for h➔O is guaranteed 
only if the grid is sufficiently smooth. 
Though stability properties of these one-sided approximations are better than those 
of central approximations, stability and monotonicity are still not guaranteed. The 
usual way to force monotonicity is by introducing for each k-th state vector com
ponent (k = 1,2, 3,4) a limiting function [31,35], and to interpolate by 

q/ ffh = qfk) + ½ti,,/ .naqfkl ½ 

qr: (k) =q(k) _ ½,I,,: (k) Aq(k) 
1-fl I -'1'1-½L.l I+½, 

(45a) 

(45b) 

where the limiting functions t/11 (k) =i.[J(R (k)) and 1,/J' (k) = t/J(l / R (k)) are chosen, 
delending on the ratio R (k) = Aqfk) ½ I Aqf~ ½, such that q'i ikJ lies between qf~ 1 and 
qf , and ql ih between qfk) and qfk) 1 [31,35]. One possible choice is the Van 
Albada limiter [ 1 ]: 

(46) 

In [23], Van Leer proposes still another higher-order discretization; a linear combina
tion of the one-sided and central interpolation. Parametrized by ,cit reads 

qi+½ =q;+ ¼ [(1-,c)Aq;-½ +(1 +,c)Aq;+½], (47a) 

q'i-½ =q;- ¼ [(1- ,c)Aq; + ½ + (1 + ,c)Aq;-½ ]- (47b) 

This general formula contains e.g.: (i) the one-sided second-order scheme (44) 
(,c= -1), (ii) Fromm's scheme (,c=0), (iii) a third-order accurate, upwind biased 
scheme (,c= ½), and (iv) the central difference scheme (,c= I). In the one-dimensional 
case, the superbox scheme, Nt corresponds to the use of ,c= + 1 for odd i, and 
,c= -1 for even i. 
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The interpolations (45) and (47) are well-defined in the interior cells of the domain. 
In the cells near the boundary a~2*, one of the values 6.q;±J /2 is not defined, by· the 
absence of a value q; corresponding to a point outside O*. Here, some sort of super
box approximation may be used. 
In conclusion: with the MUSCL-approach, here we have constructed a higher-order 
accurate semi-discretization of (7): 

a f i -a qhdxdy +Nh(qh)=O. 
to 

(48) 

3.2 THE SOLUTION OF THE HIGHER-ORDER DISCRETE SYSTEM 

One possible way to find the solution of the steady state equations 

Ni(qh)=O, (49) 

is to take an initial guess and to solve the semi-discretized equation (48) for t➔ oo, 
i.e. to compute the time-dependent solution qh(t) until initial disturbances have died 
out sufficiently. However, this process may be slow. Just as for the first-order 
discretized equations, we take the fully implicit approach and try to solve the system 

Nt(qh)=rh (50) 

directly. However, if we try to solve the higher-order system (49) in the same 
manner as we solve the first-order equations, we may expect difficulties because the 
nonlinear equations (49) are less stable. The higher-order discretizations are less 
diffusive, and (as already mentioned) in the case of central differences they may even 
be 'anti-diffusive'. This may lead not only to non-monotonous solutions, but it can 
also cause a Gauss-Seidel relaxation not to reduce the rapidly varying error com
ponents. A local mode analysis of the smoothing properties of GS-relaxation for 
first- and higher-order upwind Euler discretizations can be found in [12]. There, the 
flux splitting upwind scheme of Steger and Warming is analyzed. Similar results 
apply for Osher's scheme. Further numerical evidence that convergence of a relaxa
tion process for a higher-order upwind discretization is slower than for a first-order 
upwind discretization, is found in [24,25], where Van Leer's flux splitting is applied. 
To obtain higher-order accurate solutions, we do not solve the system Ni(qh)=O as 
such. We use the first-order operator N1 as described in section 2, to find a higher
order accurate approximation in a defect correction iteration: 

Nh(qh)=O, 

n =1,2, ... ,N. 

(51a) 

(51b) 

Both theory (5] and practice [6] show that if the problem is smooth enough, already 
qt is second-order accurate. If the solution is not smooth (i.e. when higher-order 
derivatives are dominating), there is no reason to expect the solution of (49) to be 
more accurate than the solution of (51a). Nevertheless, in [6,7,8,14] evidence is given 
that only a few defect correction steps may improve the (non-smooth) solution 
significantly. 
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In fact, we may use qh + 1 - ~h as an error indicator. In the smooth parts of the solu
tion qh-qh+n=0(h) and q'jj-q~+n=0(h 2 ). Where these differences are larger, i.e. 
0(h 0), the solution is not smooth (relative to the the grid used). There grid adapta
tion is to be considered rather than the choice of a higher-order method, if a more 
accurate solution is wanted. Eq. (51b) describes an iterative process, in which a 
first-order system has to be solved (iteratively) in each step. In practice the inner 
iteration can be kept restricted to a single FAS-cycle [14]. 
In a multigrid context, where solutions on more grids are available, it is also natural 
to consider other approaches for computing higher-order solutions, such as: (i) 
Richardson extrapolation, and (ii) T-extrapolation. Both extrapolation methods can 
well be used to find a more accurate solution if the solution is smooth [6]. A draw
back is that both methods rely on the existence of an asymptotic expansion of the 
truncation error for h ➔O, and (in general) no a-priori information exists about the 
validity of such an assumption. Another disadvantage is that the accurate solution 
(for Richardson extrapolation) or the estimate for the truncation error (for T

extrapolation) is obtained at the one-but-finest level. Because we want not only a 
higher order of accuracy, but also a more accurate representation of possible discon
tinuities, it is advised to use Richardson extrapolation ( only) as a cheap means to 
find a higher-order initial estimate for the iteration process (51 b ). Since the evalua
tion of N~(qh) is hardly more expensive than the evaluation of Nh(qh), the costs to 
compute the defect in (51b) are of the sam~ order as the evaluation of the relative 
truncation error T2h,h(qh) = N1h(R 2h,hqh)- R 2h,hNh(qh)- This makes us to prefer 
defect correction, rather than T-extrapolation. 

3.3 Till: COMPLETE MULTIGRID ALGORITHM 

We aim at the efficient computation of the approximate solution qh of the second
order discretized Euler equations (49) on a given mesh with h =hL, where we assume 
that a number of L coarser meshes exists, for which h1,::::::,2L -lhL. We denote the 
level of multigri<l refinement again by /, and the approximate solution at level l again 
by q1• As explained in section 2.5.4, the coarser grids, / <L, are also used in the 
construction of the initial estimates for the iteration processes. With FASCYCLE 
(N,q,=r1) denoting a single FAS-cycle as described in section 2.5, the algorithm used 
to obtain the initial estimate and further iterates in the defect correction process, is 
as follows: 
0. start with an approximation for q0 ; 

la. l: =O; 
I b. for j from I to k1 do F ASCYCLE (N} q1 = 0) enddo; 
2. for I from O to L - 1 do 
2a. q, + 1 : =Pr+ 1,1q1; 

2b. for j from l to k1+1 do FASCYCLE (NJ+ 1q1+ 1 =0) enddo; 
2. enddo; 
3. qL:=qL +PL,L-dRl-1,LqL-qL-1); 
4. for n from l to N do 
4a. rL:=Nl(qL)-N'i._(qL); 
4b. for j from l to k" do FASCYCLE (NlqL =rL) enddo; 
4. enddo 
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Stage 1 is an FAS-iteration process to obtain a first-order accurate initial estimate at 
level 0. Stage 2 is the nested iteration to obtain the solution of N h(qh) =O up to 
truncation error accuracy. The prolongation Pr+ 1,1 is a bilinear interpolation pro
cedure and, hence, accurate enough to retain the first-order accuracy on the finer 
mesh. Asymptotically, the discretization error for q1 is bounded by Ch1=0(2L-lh) 
for hL =h➔O. Now the theorem in section 2.5.4 shows that, for a fixed k1=k at all 
levels, the iteration error at level 1 is ~ch1µk I (1- 2µk), where µ is an upper bound 
for the FAS-convergence factor. Therefore, to obtain a first-order accurate initial 
estimate for iteration (51b) it is not necessary to reduce the iteration error in q1 by a 
factor much smaller than µk ~½. This means that in stage 2, for all />0, only a sin
gle FAS-step may be sufficient: k = l. Not being sure about the validity of the 
asymptotic assumption, in practice we set k =2. Stage 3 is a Richardson extrapola
tion step to (eventually) find a second-order initial estimate for iteration (51b). The 
prolongation PI,L _ 1 and the restriction Rl- l,L are piecewise bilinear interpolation 
over suf erboxes and averaging over cells, respectively, such that 
Rl- I.LP L,L -1 = h -1 is the identity operator, and Pt,L -1Rl-1,L a projection 
operator. With the asymptotic expansion for the error e in qh as 

qh=Rhq+hPRhe+0(hP+ 1), (52) 

where q is the exact solution, for p = 1 we obtain the second-order extrapolation 

R2hq=2R2h,hqh-q2h+fJ(h 2). (53) 

We find the extrapolated value of qh in stage 3 as the sum of (53) and 
(h-PI,L- 1Rl-u)q1.EKer(R 2h)- We notice that formally the approximation of 
qL after stage 3 is still fJ(h), unless qL- l is an IS(h 2 ) approximation, and unless stage 
2 can reduce the (smooth) error component Rhe by a factor 0(h). Nevertheless, in 
practice we see that already for small values of k, the Richardson extrapolation can 
reduce the error significantly [ 6]. Stage 4 finally, is the defect correction iteration 
(51 b ). If this iteration starts with a first-order initial approximation, for second
order accuracy it may be sufficient to take N = 1. This necessitates an improvement 
of the error by a factor 0(h) in the iteration 4b, i.e. we need kd=e(log(h)). How
ever, since the FAS-iteration is the expensive part of the computation in stage 4, for 
most purposes we take kd= 1 and a sufficiently large number for N. 
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