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An efficient iterative method has been developed for the accurate solution 
of the non-isenthalpic steady Euler equations for inviscid flow. 

First, the system of conservation laws is space-discretized by a first order 
finite-volume Osher-discretization. Without time stepping, the steady equa­
tions are solved by iteration with nonlinear multiple grid cycles, where a Sym­
metric Gauss-Seidel method is used as a relaxation . Initial estimates are 
obtained by the Full Multigrid method. In the pointwise relaxation, the equa­
tions corresponding to each cell are kept in block-coupled form, i.e. a Collec­
tive Symmetric Gauss-Seidel relaxation is used. In this relaxation local lineari­
zation of the equations and the boundary conditions is applied, and one (or a 
few) step(s) of a Newton iteration is (are) used for the approximate solution 
of these small nonlinear systems. The first order Osher-discretization has 
many good properties which foster the efficiency of multigrid iteration. It 
appears that for all meshsizes the discrete system is solved up to truncation 
error accuracy in only a few (I to 3) iteration cycles (3 to 8 work units). 

To obtain higher accuracy, we use second order finite volume schemes (e.g. 
the newly developed superbox scheme [ 3 ]), again based on Osher's approxi­
mate Riemann solver. The more accurate discretizations are less stable, and 
hence harder to solve by relaxation iteration. Therefore, we make use of the 
fact that the solution of the first order scheme can be computed very 
efficiently, and we solve the second order system (up to truncation error) by 
one or a few cycles of a defect correction process. 

I. INTRODUCTION 

For a 2-D domain n•, we solve the system of non-isenthalpic Euler equations 

a a a 
at q + ox f <q> + oy g(q) = 0 • 

[
p 

- pu 
q - pv ' 

pe 

f= 
pu 

pu2+p 
puv 
puH 

g = 
pv 
pvu 

pv2+p 
pvH 

where p , u , v , e, p and H = e + p / p represent density, velocity component 
in x- and y-direction, specific energy, pressure and specific enthalpy. For a 
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perfect gas, ( 1.1) is completed by 

- ( I 2 2 p - y-1) p(e- 2 (u +v )) , 

in which Y is the ratio of specific heats. In symbolic form we write ( 1.1) as 

qt + N(q) = 0. (1.2) 

The steady equations are obtained by the assumption qt = 0. 
To construct a nested sequence of discretizations for our multigrid solution 

procedure, we use the finite volume technique. We divide the domain s-r in 
quadrilateral cells !JiJ, such that a mapping is introduced from a regular and 
rectangular "computational domain" to the irregular "physical domain". By 
regular refinement of the computational domain, this mapping generates the 
coordinates for the cell vertices in a sequence of refining irregular grids. To 
prove the accuracy of the resulting schemes, we take this mapping non-singular 
and sufficiently smooth. 

The discrete approximation qh of q(x,y) is represented by a (vector-) quan­
tity q;1 for each !JiJ. Each % is associated with the mean value of q over O;r 
The space discretization now requires the approximation of 
J (j.nx + g.n_Y) ds , k = N,E,S, W, at the four walls I';Jk of cell OiJ. Each 

r,,1i 
wall f;Jk may be either a common boundary with a neighbouring cell O;Jk or a 
part of the boundary ao·. In both cases the integral is approximated by 
.f<qt,qtk) · meas(f;1k), i.e. at each riJk we approximate fnx + gny by a con­
stant value, only depending on qt and qtk, which are approximations to 
q(x,y) at I';Jk in 0;1 and O;Jk respectively. First and second order schemes are 
obtained by different choices for these approximations. 

Thus, the discretization of the steady equation ( 1.2) is the set of nonlinear 
equations 

Nh(qh) I i,J : = ~ /(qt,qtd meas(f;1k) = 0. (1.3) 
k =N,E,S,W 

for all (i,j) with OiJ CO*. 
By the rotation invariance of the Euler equations, we can relate/ (. , . ) to a 

local coordinate system, rotated such that it is aligned with f;Jk· Then we find 
/ (qt, qtk) = T;1k1 f( T;Jk qt, T;Jk qtk). Here, the operator T;Jk takes care of the 
local rotation of the coordinate system at f;Jk and f (. , . ) is a numerical flux 
function, independent of the orientation of I';Jk· For/(.,.) we use the numeri­
cal flux function as proposed by Osher [6] . For details see [4] . 

2. THE FULLY IMPLICIT NONLINEAR MULTIGRID METHOD 

Most methods developed so far for the solution of the steady equations 
(1.1) are based on integrating the equation (1.2) in time until a steady state is 
reached. We disregard the time-dependence, and assume that a suitable space 
discretization takes into account the proper characteristic directions in O*, and 
that for h-+0 the discrete solution qh approaches an (existing) steady solution 
q (x,y) that satisfies the entropy condition. Hence, we restrict ourselves to the 



direct solution of the nonlinear system 

Nh(qh) = 0. 
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For this solution we apply the nonlinear multiple grid (FAS-) algorithm. 

(2.1) 

We construct the nested set of refining grids, such that each set of 2 X 2 cells 
in a fine mesh forms a single cell in the next coarser mesh. 

Slightly generalising the equation (2.1) to 

Nh(qh) = rh, (2.2) 

where rh denotes a possible correction term, we select a (nonlinear) relaxation 
procedure 

(2.3) 

for its iterative solution. 
The coarser grids are used to accelerate this basic procedure. For this a 

coarse grid correction is used: starting with an approximation q~k) on the fine 
mesh and some approximation q~d on the next coarser, an approximate solu­
tion for the coarse grid problem 

N 2h(qrf,w) = N 2h(q~1d) - R. 2h,h(Nh(q~k) - rh) ; (2.4) 

is computed. Then the value q~kJ is updated by 

q~k + I) = q~k) + Ph. 2h(qrf,w _ qtd) . 

The equations (2.4) and (2.5) describe the coarse grid correction step. 
Our FAS-cycles for the solution of (2.2) consist of the following steps: 
(0) Start with an approximate solution qh . 
( 1) Improve qh by application of a (pre-) relaxation sweep (2.3). 

(2.5) 

(2) If the present grid is the coarsest, skip to (3); otherwise improve qh by 
application of one coarse-grid-correction step, where the approximate 
solution of (2.4) is effected by application of a single FAS-cycle to this 
coarser grid problem. 

(3) Improve qh by another (post-) relaxation sweep (2.3). 

For the FAS-procedure, we obtain an initial estimate by the Full Multi-Grid 
(FMG-) technique [2] : the initial estimate is obtained by interpolation from 
the approximate solution on the next coarser grid. For many problems this 
process gives very good results, even if one starts with rough approximations 
on a really coarse grid [ 5 ]. 

With a particularly simple restnct1on R 2h,h and prolongation Ph. 2h as 
transfer operators between the coarse and fine grids, the coarse discrete opera­
tor N 2h is a Ga/erkin approximation to the (first-order) fine grid discretization 
Nh. Viz. with Ph, 2h the piecewise constant interpolation over cells, and R. 2h,h 
the summation of the residual over 2 X 2 fine mesh cells to form a residual on 
the corresponding coarse cell, we find 

(2.6) 
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This formula has an interesting implication for a coarse grid correction. Viz. if 
(2.~)-(2.5) transform the approximation qh into qh, the residual of qh generally 
satisfies 

R2h.h [rh-Nh(qh)l = {9(1 lqh - qh I 12 ). 

This means that after the coarse grid correction step the residual mainly con­
tains high frequency components. 

A necessary property of a relaxation method in a multiple grid context is the 
capability to damp high frequency components in the residual. To ensure this, 
the discretization should be sufficiently dissipative. For the first order scheme, 
well-known and simple nonlinear relaxation procedures such as Collective 
Symmetric Gauss-Seidel work well. ("Collective" means that the 4 variables 
corresponding to a single cell are relaxed simultaneously.) In most applica­
tions we use CSGS in one diagonal direction as pre- and CSGS in the other 
diagonal direction as post-relaxation. The smoothing behaviour of the relaxa­
tions can be analyzed by local mode analysis. If we study plots of reduction 
factors of Fourier components (spectral radii, or norms for the error or resi­
dual amplification operator), we see that two CSGS-sweeps are usually 
sufficient for a significant reduction of the high frequencies (Hemker, unpub­
lished results). For second order schemes the smoothing rates are not satisfac­
tory. 

Wanting at least second order accuracy, we start with a first order approxi­
mation qhl), obtained by a single sweep of the FMG-process, and improve the 
accuracy by a defect correction process (DCP) [1, 3] 

Nh(qhn + I)) = Nh(qhn)) - N~(q~n)), (2.7) 

Here Nt p = 1,2, denotes the p-th order discretization. For smooth solutions a 
single step of (2.7) is sufficient to obtain the higher order of accuracy [2] . 
But also, for solutions with discontinuities (where the formal order of conver­
gence has no practical meaning) it is seen that one or a few steps of (2. 7) 
improve the accuracy of the solution significantly, even if the new iterands are 
approximated by only a few FAS-cycles [3, 5] . The first iterand q~2> of (2.7) 
can also be approximated by application of one additional FMG-sweep that 
reduces the error by another factor h. This means that only two FMG-sweeps 
may solve the second order equations sufficiently accurate. 

3. RESULTS 
As standard testcases we consider the NACA0012-airfoil at M 00 =0.63, 

a= 2° (subsonic flow), and at M 00 = 0.8. o: = 1.25° (transonic flow with shock). 
As a finest grid we use a 128 X 32 O-type mesh with an outer boundary at 
approx. 100 chord lengths away from the airfoil (fig. I). At the outer boundary 
we impose unperturbed flow. As 2nd order scheme we use the ~uperb~x 
scheme [3, 5] . In fig.2 and 3 we present results and make a companson with 
solutions from [7] . 

In fig.2a and 3a, the convergence histories of the lift and drag co~ffice:1t are 
shown. As starting point, qhl), we use a single-FAS FMG-approXImation of 
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the first order scheme. The lift and drag as published in [7] are spread over 
the shaded areas. Clearly visible is the excellent improvement of the drag 
which is obtained in the first DCP-cycle. Talcing the results from [7] as a 
standard, we see that we need 3 DCP-cycles for the subsonic flow, and only 1 
DCP-cycle for the transonic flow with a shock. 

In fig.2b and 3b, the left graphs show the pressure distributions obtained 
after the 3rd DCP-cycle, the right graphs are taken from [7] . For the sub­
sonic flow the good agreement is evident. Due to scattering in shock position, 
this agreement is less for the transonic flow with shock. For the latter the 
superbox scheme yields solutions of good quality in the smooth parts of the 
flow, but (being non-TYO) it introduces some spurious non-monotonicity. 

For the multigrid computation of airfoil flows with the steady Euler equa­
tions, DCP is found to be an efficient solution method for stable 2nd order 
discretizations. It appears that it is sufficient to perform only a few DCP­
cycles in which all sub-problems (2.2) are solved by a single FAS-cycle. 
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Fig.I: 128 X 32-grid NACA0012-airfoil. 

a. Convergence history lift (square) b. Surface pressure distributions 
and drag (circular) coefficient 

Fig.2: Results for NACAOO 12-airfoil at M 00 = 0.63 and a= 2°. 
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a. Convergence history lift (square) b. Surface pressure distributions 
and drag (circular) coefficient 

Fig.3: Results for NACA0012-airfoil at M 00 =0.8 and a= l.25°. 


