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1. Introduction 
Multi-D upwind discretizations for the steady Euler equations are studied, with the 
emphasis on both accuracy and solvability. The multi-D upwind schemes to be consid
ered here use neither decoupling of the Euler equations as in [2, 7], nor rotated fluxes 
as in [1, 5]. The schemes are only based on a rotated interpolation of the left and right 
cell face states. Per cell face, just as with grid-aligned upwind schemes, only a single 
numerical flux is computed: the one normal to the cell face. First-order accurate 
versions of these rotated-interpolation schemes have already been investigated in [3]. 
In the present paper we make an extension to second-order accuracy for a first-order 
accurate scheme from [3], which has good solvability properties. We try to maintain 
these properties. 

2. Extension to monotone, second-order accuracy 
We consider the linear, scalar, 2-D model equation 

(1) 

The extension to second-order accuracy is made for the first-order accurate, four-point 
compact, rotated-interpolation scheme, with the stencil: 

0 < 0 < ~- - 2 (2) 

Note that the scheme is nine-point compact for the entire 0-range [0, 27r]. The scheme 
is differentiable, also at the angles where it switches (0 = 0, ~,'71', 3;). Further, the 
scheme's crosswind diffusion is significantly lower than that of the standard, grid
aligned, first-order accurate upwind scheme, whereas it is still positive [3]. If we stick 
to nine-point schemes which use nearest points only, the natural second-order accurate 
extension of scheme (2) is the central, rotated-interpolation scheme with stencil: 
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0 < 0 < ~- - 2 (3) 
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To make scheme (3) monotone, while maintaining second-order accuracy, we first 
introduce a non-smooth limiter. Next, to even allow successful application of a 
multigrid-Newton method, we also introduce a smooth limiter. To derive both lim
iters, consider the following blend of schemes (2) and (3): 

atb [ -(l -w.(rhor))a2 (1-w(rhor))a2 + (1-w(~skew))ab + (1 - w(rver))b2 :_] + 
-(1- w(rskew))ab -(1 - w(rver))b2 

0::;; w(r) ::;; 1, 

( 4a) 
with w(r) the limiter function and rhor, rskew and rver the following ratios of consecutive 
solution gradients: 

( 
(rhor)i,j ) ( (ui+l,j - U;,j)/(u;,j - Ui-1,Jl ) 

(rskew)i,j = (ui+l,j+l - Ui,J)/(u,,j - 1Li-l,j-l) · 
(rver),,J (u,,j+l - Ui,j)/(u,,j - lli,j-1) 

(4b) 

Note that in the monotonicity theory of e.g. Sweby [8], a blend is taken of the grid
aligned, first-order accurate upwind scheme and the grid-aligned, second-order accu
rate, fully one-sided upwind scheme (i.e. the K = -I-scheme in terms of Van Leer [4]). 
In the present paper we follow more the lines of Yee's symmetric TVD approach [9]. 
However, the novelty is that we also consider a ratio of consecutive solution gradients 
which is not grid-aligned (rskew ). A second difference with the existing, symmetric 
TVD approach is that we consider ratios of consecutive solution gradients which are 
defined per cell center and not per cell face. (The pursuit of compactness requires a 
cell-center approach, instead of a cell-face approach.) An apparent drawback of this 
cell-centered way to compute the ratios of consecutive solution gradients, is loss of 
conservation. However, it can be easily shown that this loss is only O(h2 ). 

We proceed by deriving the limiters. With (4b), blended scheme (4a) can be cast 
into the four-point compact form 

where 

t(rhor)a2 + t(rskew)ab + t(rverJb2 
-~(r ver )b2 

1 
t(r) = 1 + -w(r)(r -1). 

2 

l (5a) 

(5b) 

The coefficients in (5a) are then required to satisfy the rules of positivity and finity 
(0::;; t(r) < oo). Together with the requirement w(r) E [O, l], this may be combined 
to 

(6) 

The accuracy requirements that we impose are 

( w(l) ) ( 1 ) 
w'(l) = 0 . (7) 
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A proper monotonicity function which satisfies (6) and (7) is e.g. 

w(r) = max [min(~1, l),min(l, :)] , 1 < m < oo, (8) 

where m can be chosen arbitrarily in the indicated range. For all r, limiter (8) simply 
is the upper bound of the monotonicity domain. The limiter is such that the resulting 
scheme is centered scheme (3) for all r in the range [-1, m]. (By choosing a higher 
value of m, the limited scheme equals scheme (3) over a wider range of r.) In Fig. la 
we depict the limiter and monotonicity domain, which result for m = 2. Because of 
its non-differentiability, limiter (8) is not suited for a Newton-type solution method. 

The second limiter to be presented now is differentiable. We assume the form 

1 
w(r) = ar2+f3r+,' (9) 

where a, /3, 1 E lR are unknown constants. By imposing requirements (6) and (7), we 
get the limiter 

4m(m -1) 
w(r)- --------,----,--- 1 < m ~ 2, 

- r2 - 2r + 4m( m - 1) + 1 ' 
(10) 

where m can be chosen freely in the indicated range. (For m > 2 the limiter no longer 
satisfies -1 ~ rw(r) for all r.) In Fig. lb we depict a simple example of the present 
smooth limiter (4m(m - 1) = 1), together with the corresponding, most tight-fitting 
monotonicity domain. 

3. Numerical results 
Although the accurate, non-smooth limiter (8) is not suited for our purposes (a 
multigrid-Newton method for the Euler equations), to have a reference for smooth 
limiter (10), we still examine limiter (8)'s performance for the known, rotating cone 
problem (see e.g. [6]). This problem is governed by a linear, scalar convection equation 
on a square domain, where the wind field is a given, steady solid-body rotation around 
the square's center. The exact solution on a uniform, 129 x 129 finite-volume grid is 
given in Fig. 2a. Applying an explicit, fourth-order accurate, four-stage Runge-Kutta 
scheme ( with the time step sufficiently small to ensure that the time discretization 
error is negligible with respect to the space discretization error), we obtain the nu
merical results given in Figs. 2b - 2d. Non-smooth limiter (8), with m = 2, appears 
to yield monotonicity (Fig. 2c), without reduction of the solution accuracy to that of 
the rotated, first-order accurate scheme (Fig. 2b). In Fig. 2d we present the solution 
obtained by smooth limiter (10), with 4m(m - 1) = 1. It appears that this smooth
limiter-solution is only slightly less accurate than the non-smooth-limiter solution 
given in Fig. 2c. 

Next, smooth limiter (10), with 4m(m - 1) = 1, is applied to a steady, 2-D Euler 
flow with oblique contact discontinuity. The exact solution on a uniform, 32 x 32 
finite-volume grid is given in Fig. 3a; the numerical results are given in Figs. 3b and 
3c. Just as for the rotating cone problem, also for this Euler flow problem, the smooth 
limiter appears to lead to monotonicity (Fig. 3c), without reduction of the solution 
accuracy to that of the rotated, first-order accurate scheme (Fig. 3b). 
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It can be concluded that compact, monotone, second-order accurate, rotated
interpolation schemes: (i) are easily implemented, and (ii) may be solved directly 
by multigrid-Newton iteration. 

References 
[1] S.F. DAVIS, 'A rotationally biased upwind difference scheme for the Euler equa

tions', J. Comput. Phys., 56, 65-92 (1984). 
[2] CH. HIRSCH, C. LAC0R AND H. DEC0NINCK, 'Convection algorithms based 

on a diagonalization procedure for the multidimensional Euler equations', AIAA 
Paper 87-1163 (1987). 

(3] B. KOREN AND P.W. HEMKER, 'Multi-D upwinding and multigridding for 
steady Euler flow computations', Proceedings of the Ninth GAMM Conference 
on Numerical Methods in Fluid Mechanics, Lausanne, 1991, Notes on Numerical 
Fluid Mechanics (A. Rizzi and I.L. Ryhming, eds.), Vieweg, Braunschweig (to 
appear). 

[4] B. VAN LEER, 'Upwind-difference methods for aerodynamic problems governed 
by the Euler equations', Proceedings of the 15th AMS-SIAM Summer Seminar 
on Applied Mathematics, Scripps Institution of Oceanography, 1983, Lectures 
in Applied Mathematics, 22, Part 2, 327-336 (B.E. Engquist, S.J. Osher and 
R.C.J. Somerville, eds.), American Mathematical Society, Providence, Rhode 
Island ( 1985). 

[5] D.W. LEVY, K.G. POWELL AND B. VAN LEER, 'An implementation of a grid
independent upwind scheme for the Euler equations', AIAA paper 89-1931 (1989). 

(6] S.A. ORSZAG, 'Numerical simulation of incompressible flows within simple 
boundaries: accuracy', J. Fluid Mech., 49, 75-112 (1971). 

(7] P .L. ROE, 'Discrete models for the numerical analysis of time-dependent multi
dimensional gas dynamics', J. Comput. Phys., 63, 458-476 (1986). 

(8] P .K. SWEBY, 'High resolution schemes using flux limiters for hyperbolic conser- ◄ 
vation laws', SIAM J. Numer. Anal., 21, 995-1011 (1984). t 

[9] H.C. YEE, 'Construction of explicit and implicit symmetric TVD schemes and 
their applications', J. Comput. Phys., 68, 151-179 (1987). 

3 3 

-3 -2 -1 0 2 3 -3 -2 -1 0 2 3 

r r 
a. Non-smooth limiter b. Smooth limiter 

w(r) = max [minC.1 , 1), min(l, ~)). w(r) = (r-/)2+1. 

Figure 1: Non-smooth limiter, smooth limiter and monotonicity domains. 
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b. First-order scheme. 
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c. Higher-order scheme, 
with limiter from Fig. la. 
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d. Higher-order scheme, 
with limiter from Fig. lb. 

Figure 2: Solutions rotating cone problem, after a single rotation. 
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Figure 3: Mach number distributions oblique contact discontinuity. 
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