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Abstract. To predict high-frequency oil-flow phenomena in 
hydraulic-shock-absorber designs, a mathematical-physical 
model is proposed. The model consists of the 2-D unsteady 
Euler equations in axial-symmetric coordinates and an appro­
priate equation of state for oil. The main topic of the paper 
is the development of a numerical method for these equa­
tions. A new Osher-type flux-difference splitting scheme is 
derived for it. The mathematical-physical model and its nu­
merical approximation are applied to a simplified part from 
a shock-absorber design. The method is promising as far as 
more realistic computations are concerned. 

1 INTRODUCTION 

1.1 Problem definition 

Hydraulic shock absorbers find their main application in ve­
hicles (trains, cars, motor-cycles, ... ). A major challenge in 
designing new hydraulic shock absorbers is to predict and 
prevent unwanted high-frequency phenomena in the interior 
oil flow. For that purpose, the availability of a state-of-the-art 
computational method for hydro- (i.e. oleo-) dynamics would 
be helpful. At the KONI company, a start has been made 
in developing and applying such a method. The method is 
described in the present paper. 

After a brief outline of construction and principles of a 
typical shock-absorber design (Section 1.2), in Section 2 its 
geometry and oleodynamics are modelled. In Section 3 the 
numerical method is presented: first the space discretiza­
tion method for the system of equations that describe the 
oil flow (Section 3.1) and next the time-integration method 
(Section 3.2). The space discretization is partly new (a novel 
flux-difference splitting scheme for inviscid, compressible oil 
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flow is presented). The time integration is standard (classi­
cal fourth-order accurate, four-stage Runge-Kutta). The pa­
per ends with numerical results (Section 4) and concluding 
remarks (Section 5). 

1.2 Brief outline of a shock-absorber design 

For the typical shock-absorber design depicted in Figure I, a 
quick impression is given of the relevant construction parts 
and working principles. 
The major parts of the shock absorber are a cylinder (3 in 
Figure 1) filled with oil (plus a small fraction of gas), and 
with a piston with rod in it (4 and 1 in Figure 1). The piston 
rod can move through a bearing, the guide (2 in Figure 1). 
With its lower pin the shock absorber can be mounted to e.g. a 
train bogie, in which case the piston rod can be mounted to e.g. 
the passenger cabin. The piston will be set into motion by an 
external axial force experienced by the vehicle. To this force, 
a good shock absorber reacts with an (almost) equally large 
and (almost) equally synchronous counter-force exerted by 
the oil. During an inward piston-stroke (compression stroke), 
the oil flows through orifices in the piston from the lower 
piston-clearance (the compression volume, CV in Figure 1) 
into the upper piston-clearance (the rebound volume, RV in 
Figure 1). The piston orifices are normally shut off by a valve 
(the check valve, Bin Figure 1). To compensate for volume 
occupied by the piston rod during a compression stroke, oil 
flows through orifices in the guide, into the reservoir (R in 
Figure 1) in between the cylinder with piston and a secondary 
outer cylinder. The orifices in the guide are usually shut off as 
well (by the so-called damping valves, A in Figure 1). From 
the reservoir the oil can flow into the compression volume. 
During the compression stroke this will not occur, since then 
the pressure in the compression volume is higher than in the 
reservoir. But during the following outward piston stroke the 
pressure in the compression volume becomes lower than in 
the reservoir and oil will flow from the reservoir through the 
foot valve (C and 5 in Figure 1), back into the compression 
volume. The points and durations of time of the various valve 
movements play an important role in the proper working of 
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Figure 1. Cross-section of a shock-absorber design (@ KONI): 1. 
piston rod, 2. guide, 3. inner cylinder, 4. piston, 5. foot assembly, A. 

damping valve, B. check valve, C. foot valve, CV. compression 
volume, RV. rebound volume, R. reservoir. 

the shock absorber. This holds in particular for the damping 
valves. 

Concerning unwanted high-frequency oil-flow phenomena 
(reaction forces) that may be generated in a shock absorber, 
we hypothesize that these are mainly related to pressure waves 
travelling to and fro in the rebound volume. The waves are sup­
posed to reflect at closed damping and check valves. During 
reflection of the waves, the damping valves may quickly open 
(and close), violating design principles. These spurious move­
ments of the damping valves may cause high-frequency pres­
sure perturbations that may be transmitted directly (through 
construction parts) to the passenger cabin. In the next section 
we propose a mathematical-physical model for oil flow in the 
rebound volume. The model allows a first investigation of the 
pressure-wave hypothesis. 
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2 OIL-FLOW MODELLING IN REBOUND 
VOLUME 

2.1 Geometry 

The rebound volume, as depicted in Figure 1, is almost ax­
ially symmetric. For simplicity, we approximate it as axial­
symmetric. Further we take the damping valve closed and 
the check valve opened. A sketch is given in Figure 2a. A 
difficulty of the geometry in Figure 2a in case of inviscid 
fluid-flow computations is that no unique solution exists for 
it; in its backward-facing-step regions, vortices of arbitrary 
strength are allowed. To ensure uniqueness in the inviscid 
case, we remove all steps, see Figure 2b. 

a. b. 

Figure 2. Schematiud rebound volumes. a. Axial-symmetric, 
with damping valve closed and check valve opened. b. Without 

forward and backward facing steps. 

2.2 Oil-flow equations 

To investigate the effects of propagating pressure waves, an 
inviscid model suffices. To include nonlinear effects (shocks) 
and to facilitate future extensions of the flow model, as govern­
ing equations we take the Euler equations, in axial-symmetric 
coordinates (Figure 2b) given by: 

8q + 8/(q) + 8g(q) = _!_S(q), (l) 
8t ax 8r r 
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Here u and v denote the velocity components in axial (x-) and 
radial (r-) direction, respectively, and p denotes the density 
and p the pressure. 

The system is completed by the equation of state, for which 
we take 

p - po= K (:0 - 1), (5) 

with K a fluid constant, and p0 and po the reference pressure 
and density, respectively. In fact (5) is a linearized version 
of Tait's equation of state [10]. The equation of state (5) 
implies isentropy. Hence, it may be substituted into the general 

definition of the speed of sound: c = /ITT,, yielding 

c=co= [!. (6) 

2.3 Boundary and initial conditions 

System (1)-(5) is hyperbolic with respect to time. Therefore 
the number of conditions to be imposed at a boundary should 
equal the number of characteristics entering the domain at 
that boundary. Two types of boundaries occur in the rebound 
volume's geometry as depicted in Figure 2b: (i) solid im­
permeable wall and (ii) subsonic inflow. Interpreting a solid 
impermeable wall as the limit of subsonic outflow, the number 
of boundary conditions to be imposed there should equal one. 
(As is standard, a zero normal velocity component will be 
imposed.) Across a subsonic inflow boundary, for the present 
system of three equations, two characteristics enter the do­
main, which implies that the number of boundary conditions 
to be imposed there should be two. In the present case, by 
these two subsonic inflow conditions the opening and clos­
ing of the check valve should be modelled. We refrain from 
introducing a complete model of the valve's dynamics. Only 
the check valve's kinematics is modelled and merely implic­
itly, viz. by specifying the velocity component normal to the 
boundary as a function of time: u(x = O,r;t) = Uin(t), given 
in Figure 3. 

(u1.,) max·· ·•···· 

L----------t 

Figure 3. Sawtooth-type inflow velocity. 

The valve's closing is simply taken as a discontinuity in time: 
at t = ti, Uin drops instantaneously from (uin)max to zero. The 
values of (Uin)max and t1 can be varied by the user. As the 
second condition at the inflow boundary, we simply impose a 
zero tangential velocity component: v(x = O,r;t) = 0, t 2:'.: 0. 
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All boundary conditions imposed concern the oil's kine­
matics only; pressure (or density) is not imposed at any bound­
ary. The pressure is put on a proper value through the initial 
conditions. As the initial solution we take the hydrostatic one: 
u(x,r;t = 0) = v(x,r;t = 0) = 0 andp(x,r,t = 0) = po, where 
po can be chosen by the user. 

3 NUMERICAL METHOD 

To allow for discontinuous solutions, following Lax [4], equa­
tion (1) is rewritten in the integral form 

/1 ~qdxdr+ J (f(q)cos¢,+g(q)sin¢,)ds 
a• ut ho• 

= ff -~S(q)dxdr, (7) 
o• r 

where n• is an arbitrary subdomain of the computational do­
main Q, 8Q* the boundary of Q*, and cos ,fa and sin ¢, the x­

and r-components of the outward unit normal on 80.*. For 
the present low-subsonic oil-flow computations, use of the 
integral form is not as mandatory as in e.g. supersonic gasdy­
namics. However, no reasons exist for not applying it. In the 
discretization of (7) we follow the method-of-lines approach, 
so the spatial discretization and the temporal integration are 
considered separately. 

3.1 Space discretization 

A straightforward space discretization is obtained by subdi­
viding Q into quadrilateral, cell-centred finite volumes. Per 
finite volume we need to evaluate the net flux of mass and mo­
mentum across each cell face, and the source term integrated 
over the cell. 

3. 1. 1 Flux evaluation 

For the present problem, a numerical flux function needs to be 
chosen which accurately models the propagation of pressure 
waves. In our opinion, for this purpose upwind schemes are 
better suited than central schemes. As type of upwind scheme, 
we prefer a 1-D flux-difference splitting one. As shown in [6], 
flux-difference splitting schemes render well-resolved shear 
layers (particularly contact discontinuities). As specific flux­
difference splitting scheme, we prefer the Osher-type [8] since 
it directly gives a physically proper boundary-condition treat­
ment. For the present set of equations, (1) - (5), the corre­
sponding Osher-type scheme does not yet exist. It will be 
constructed hereafter. 

An Osher-type scheme for 2-D isentropic Eulerian oil flow 
In Osher-type schemes, the numerical flux function F( q1,q,) 
is defined as 
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f(q,) -lq, clf(q) + dq = 
q, dq 

lq, clf(q) 
1/2 (f(q,) + J(q,)) - 1/2 I ciq I c1q, 

Ill 

(8) 

where ~- is the negative eigenvalue part of ~, ~ + 

the positive eigenvalue part, and where I ~ I= ~ + -
~ - . Osher has proposed integration paths in state space 
(f~r the integrals in (8)) that make the integration trivial. For 
theoretical background and an impression how an Osher-type 
scheme is constructed, see [8]. (There the construction is done 
for the hyperbolic systems that describe 1-D non-isentropic 
Lagrangian gas flow, 1-D non-isentropic Eulerian gas flow 
and 2-D isentropic Eulerian gas flow.) To construct an Osher­
type scheme for the present 2-D Eulerian oil flow described 
by (1) - (5), only the homogeneous quasi-linear form 

8q + clf(q) 8q = O 
8t dq 8x 

(9) 

needs to be considered. With q according to (2),/( q) accord­
ing to (3), p(p) according to (5), and the speed of sound co 
according to (6), for the Jacobian 9lJ:1 it follows then 

The eigenvalues of the Jacobian are 

The fact that the eigenvalues vary with u only (since co is 
constant) means that steepening of solution gradients (i.e. 
the nonlinearity) comes from u only. The eigenvectors corre­
sponding with the above eigenvalues are 

R, = ( + ) · R, = ( D · ~ = ( + ) 
(12) 

The eigenvectors are linearly independent. Referring to the 
theory in [8], R2 is linearly degenerate, and R1 and R3 are 
genuinely nonlinear. Hence, R1 and R3 should correspond with 
simple waves (compression or expansion waves), andR2 with 
a contact discontinuity. We consider now the integration path 
in state space. Osher has proposed to take a path built up of 
subcurves, where each subcurve is tangential (in state space) 
to one of the eigenvectors. With the present three eigenvectors, 
according to Osher the integration path is as depicted in Figure 
4a. In this path the ordering of eigenvectors, when going from 
q, to q, is R3,R2,R1. The reverse (R1,R2,R3 in going from 
q, to q,) is also possible (Figure 4b). The idea of reversion 
stems from Hemker & Spekreijse [l], who (for the 2-D non­
isentropic perfect-gas Euler equations) named the ordering 
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a. 

Figure 4. Two variants of Osher-path in state space. a. 0-variant 
b. P-variant. 

proposed by Osher the O(riginal)-variant and their own the 
P(hysical)-variant. 
The advantage of the P-variant over the 0-variant is its bet­
ter computational efficiency, particularly for subsonic flow 
computations. This can be explained as follows. With the 
integration path tangential to the eigenvectors, the integral 
evaluation boils down to ordinary flux evaluations at a few 
points along the integration path. Because two of the three 
eigenvalues are nonlinear, and one linearly degenerate, this 
number of points is five at a maximum. For the fully subsonic 
flows to be considered here, with the P-variant it is only one 
(!): F(q,,q,) = f(q113). (With the 0-variant this would be 
three: F(q,,q,) = J(q,) - f(q213) + f(q,).) Given the fact that 
the present computations are fully subsonic, here one can take 
full advantage of the P-variant. 

To evaluate Osher's numerical flux function, the intersec­
tion states q113 and q2t3 need to be known. They follow from 
the Riemann invariants vt k = 1,2,3, l = 1,2,3, l -=/: k valid 
along the subcurves. The Riemann invariants satisfy 

V,pf · Rk = 0, k = 1,2,3, l = 1,2,3, l -=/: k, (13) 

( 8 8 8) 
V = 8q1' 8q2' 8q3 . 

(14) 

Hence, ,pf, l = 1,3 simply have to satisfy 

81/i 
-8 1 = 0, l = 1,3. 

q3 
(15) 

These Riemann invariants follow directly, in conservative 
variables: ,t,~ = q1, 1/JJ = q2, or in primitive variables: 
,pf = p, ,µJ = u. (In case of a linearly degenerate eigenvalue 
one of the Riemann invariants is identical to that eigenvalue.) 
The Riemann invariants ,pf, l = 2,3 along the first subcurve 
have to satisfy 

o,p1 8,p1 8,p1 
q,-;,-1-+(q2-coq1)-8 

1 +q3-8
1 =0, 1=2,3. (16) 

vq1 q2 q3 

The partial differential equation for the Riemann invariants 
along the third subcurve is almost identical to (16); it only 
differs in a sign in the second coefficient. (As a consequence, 
one of the corresponding Riemann invariants ,pf, l = 1,2 
will probably also have a difference with ,pf, l = 2,3 in a 
single sign only.) Given the fact that both primitive variables 
p and u are constant along the second subcurve, they are no 
candidates for being a Riemann invariant along the first and 
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third subcurve. The remaining primitive variable v is; sub­
stitution of "Pi = ii. into ( 16) learns that it is a Riemann 
invariant indeed. So qfar, there is a good resemblance with the 
2-D Eulerian gas case from [8]. Expecting a further resem­
blance, for the remaining Riemann invariant along the first 
subcurve we try 1/J} = u + Q(p) = ~ + Q(q1). Substitu­
tion into (16) yields the simple ordinary differential equation 
_gQdqd = £a.. Integration yields Q = co(lnp + C), with Can 

J 91 . 
integration constant. We take C = - In po, leading to the 

Riemann invariant 'if; j = u + co In (;;) . It can be directly 

seen that along the third subcurve the Riemann invariants are: 

v,,f = v, ,/;] = u - co In (;;). The resulting Osher path is 

summarized in Figure 5. 

"5=u+Q:Jln(p/ ~ A. 

Vi=v 1 

Figure S. P-variant Osher-path for 2-D isentropic Eulerian oil 
flow. 

For the intersection states q1; 3 and q2; 3 it follows: 

where 
!'.C!!. 

Pl/2 = PIPre co , (18) 

u1;2 = J/2(u1 + ur) + 1/2co In(;:). (19) 

This concludes the construction of the present Osher scheme 
for given left and right cell-face states. 

The Osher-type boundary-condition treatment for 2-D 
isentropic Eulerian oil flow If the cell face coincides with 
the boundary of the computational domain, in case of a left 
or right boundary, qI or qr, respectively, does not exist; it 
is outside the computational domain. Just at the boundary 
is the state qb. This boundary state qb can be determined 
by ingoing and outgoing characteristic information (i.e. by 
proper boundary conditions and Riemann invariants, respec­
tively). An upwind treatment of boundary conditions fits well 
in Osher-type schemes. The theoretical basis for Osher's han­
dling of boundary conditions is given in [7]. Following the 
same approach as in the foregoing section, here we will also 
mainly restrict ourselves to reinterpreting this theory in terms 
of the Osher-path. The reinterpretation will be done for the 
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types of boundaries that we have to deal with here: subsonic 
inflow and solid impermeable wall. 

Subsonic inflow In the present application we only have 
to deal with the case of a subsonic inflow boundary at the left 
(Figure 6a). For completeness, the case with boundary at the 
right (Figure 6b) is also considered. 

a. 
Cf 

b. 

Figure 6. The two cases of subsonic inflow boundary. a. Boundary 
at the left (0 < Ur < Cr). b. Boundary at the right (-c1 < uI < 0). 

In both cases the Osher-path is reduced in the sense that one 
subcurve disappears (Figures 7a,b). The vanished subcurve 
corresponds with the outgoing characteristic. 

Figure 7. Reduced Osher-paths (P-variant) for subsonic inflow 
boundary. a. Boundary at the left (0 < Ur < Cr). b. Boundary at the 

right (-q < U[ < 0). 

In both cases two of the three components of qb should be 
given by boundary conditions. In Section 2.3 it has been de­
cided to impose Ub and Vb- The remaining unknown com­
ponent of qb can be determined, together with the unknown 
state q213 (left boundary) or q113 (right boundary), by using 
the corresponding Riemann invariants (v,,J,1P}.1Pi,'I/JJ for the 
left-boundary case and ,/;4, 1/Jj, '1/JJ, 1/Jj for the right). For the 
left-boundary case we find 

~ 
P1;2 = Pre '0 

Pl/2 ) 
Uin(t) , 

Vr 

(20) 

(21) 

and for the right (which is not in the present shock-absorber 
model): 

uc-uin 

P1;2 = pie '0 • (23) 

729 Koren etal. 



Solid impermeable wall In the present rebound-volume 
model both a left and a right wall (Figures 8a,b) occur. 

p 
a. 

rl. 
~ 

Figure 8. The two cases of solid impermeable wall boundary. a. 
Boundary at the left. b. Boundary at the right. 

As mentioned in Section 2.3 only one component of Qb is 
prescribed by a boundary condition. The remaining two com­
ponents are determined from the two Riemann invariants in 
the reduced Osher-path: 1/Jf and ,t;? in the left-boundary case 
(Figure 9a), and 1/!4 and ,µJ in the right-boundary case (Figure 
9b). For the left-boundary case we find 

( 
Pb )- ( p,e=f/:- ) 
Ub - 0 • 
Vb Vr 

(24) 

and for the right-boundary case 

(25) 

Figure 9. Reduced Osher-paths (P-variant) for solid impermeable 
wall boundary. a. Boundary at the left. b. Boundary at the right. 

This completes the boundary-condition treatment necessary 
for our application. Other types (subsonic outflow with pres­
sure or outflow velocity specified, supersonic in- or outflow, 
... ) can be quickly constructed. 

The Interpolation for the left and right cell-face states 
Besides for the numerical flux function F(q1,q, ), a choice also 
needs to be made for its two arguments q1 and q,. Both cell­
face states are determined by higher-order accurate state inter­
polation. (The interpolation is done in a 1-D fashion, which is 
consistent with the application of a 1-D flux-difference split­
ting scheme.) To avoid spurious non-monotonicity, a limiter 
function is applied, viz. the one from [3), in the notations of 
Sweby [9): 

</>(r) = max(0, min(2,; min(J /3 + 2/ 3,;2))). (26) 
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This limiter is such that inside Sweby's monotonicity domain 
it coincides to the maximum extent with the for accuracy 
reasons favourable K = 1 / 3-scheme, see [5). 

3.1.2 Source-term evaluation 

The way of evaluating the source-term integral occurring in 
(7) is straightforward. S(q) is taken piecewise constant over 
each finite volume rliJ, which directly leads to 

where A;J is the area of finite volume rl;J. 

3.2 Time integration 

For the time discretization of the semi-discrete equation 

(28) 

where R;J( . .. ,q;J, ... ) denotes the total space-discretization 
contribution in finite volume rliJ (consisting of both the dis­
crete flux and source-term contributions just discussed), we 
take the standard explicit four-stage Runge-Kutta scheme. 

Formally, the time step is subjected to restrictions imposed 
by accuracy, stability and monotonicity. For a short overview 
of theory on monotonicity bounds for the time step, see [2). 
The stability bound imposed on the time step is the CFL­
condition. The accuracy bound on the time step is determined 
by the requirement that the sawtooth inlet velocity profile 
(Figure 3), particularly the jump at t = ti, is imposed suffi­
ciently accurate. Of all three bounds, the one for accuracy is 
the most severe. 

4 NUMERICAL RESULTS 

Here a quick impression is given of the performances of the 
mathematical-physical model and the numerical method. The 
results have been obtained for the geometry given in Figure 
2b, and for po = 1 bar and po = 870 kg/ m3. 

In Figures IO and 11 the beginning of a pressure history is 
depicted as computed along the piston rod and at the middle 
of the rebound volume's upper boundary, respectively. The 
first pressure wave given in both figures is directly caused by 
the check valve's opening. 'The second pressure wave is the 
reflection of the first wave. 'The graph shows the start of the 
travelling to and fro of pressure waves in the rebound volume. 
The negative pressures that are found are not believed to be 
a numerical artefact, but - instead - an illustration of the still 
existing shortcomings of the physical model, such as the zero 
diffusion and the lack of a cavitation model. 

A noticeable fact is that the pressure variations are large; 
unwanted opening of the damping valves may easily be the 
result. 
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Figure 10. Beginning of pressure history along the piston rod. 
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Figure 11. Beginning of pressure history in the middle of the 

rebound volume's upper boundary. 

5 CONCLUSIONS 

From the viewpoint of shock-absorber design, many conclu­
sions can be drawn, but here we restrict ourselves to the ob­
servation that the predicted pressure variations are large and 
may easily cause spurious opening and closing of valves. 

Our ideas for future work are: (i) to take the geometry 
closer to that given in Figure 1, (ii) to use an equation of 
state which takes into account multiphase behaviour, (iii) to 
introduce a cavitation model, and (iv) to extend the present 
Euler equations with viscous terms. 
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