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Abstract. The paper describes the results of a Community 
research effort aimed at improving accuracy and efficiency of 
flow solvers for aerodynamical applications. Two computa­
tional technologies have been considered which have the po­
tential to lead to a significant step forward in the development 
of future flow solvers. The first, multidimensional upwinding, 
improves on the state-of-the-art space discretization methods 
by using multidimensional physics as the basis for the up­
winding, instead of the dimension-by-dimension application 
of one-dimensional physics ( 1 D Riemann solver). The second 
technology is concerned with the convergence acceleration 
on structured grids. The idea of semi-coarsening to improve 
multigrid efficiency for anisotropic flows like boundary layers 
has been generalized in a consistent and theoretically founded 
way by using all possible nested semi-coarsenings in three di­
rections. During the project, the theoretical framework has 
been developed, and the feasibility of the two approaches has 
been demonstrated by testing on standard airfoil and wing 
testcases in the subsonic and transonic regime. 

1 MULTIDIMENSIONAL UPWINDING 

1.1 Introduction 

The development of inherently multidimensional upwind dis­
cretizations for the convective terms is the first concern of this 
research. It follows from the observation that the present-day 
methods used in two and three-dimensional high resolution 
upwind solvers are merely an extension of one-dimensional 
theory on a dimension-by-dimension basis. 
The basis of these methods is a fundamental contribution 
made by the Russian mathematician Godunov [6], with as 
key ingredient the solution of the Riemann problem, this is the 
one-dimensional flow which results from bringing into con­
tact two fluids at different but constant states, and for which 
an exact solution is known. Godunov applied this theory to 
construct discrete solutions in 2D and 3D: the flow domain 
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is subdivided into a discrete number of finite volumes, each 
having a constant state, and the one-dimensional theory is 
applied along each of the cell faces between two adjacent fi­
nite volumes, thereby neglecting interactions tangential to the 
coordinate direction (the "comer effects"). Subsequently, ap­
proximate Riemann solvers have been developed, e.g. by Roe, 
van Leer, Osher and others. They replace the exact Riemann 
problem solver by an approximate Riemann solver, which is 
computationally less expensive. 
Second-order accurate schemes have been constructed along 
the same principles based on a piecewise linear reconstruction 
of the two states used in the Riemann problem, combined with 
limiting which reduces the scheme to the first-order method 
if oscillations are detected. In this way monotonic profiles are 
preserved over steep gradients like shocks and shears. These 
are the so-called upwind-TYO solvers. 
The new developments considered here are no longer based on 
a dimension-by-dimension extension of the one-dimensional 
theory. Instead, they aim at a truely multidimensional general­
ization of the different concepts used in the one-dimensional 
theory. Typically, the new upwind schemes not only consider 
whether the propagation of signals is arriving from the right 
or from the left at a given mesh point, but they also take into 
account the precise angle of orientation (e.g. the streamline 
for entropy). 
A more numerical concern apart from the lack of multidimen­
sional physics in the system schemes for the Euler equations is 
the following : suppose one applies the Riemann solver tech­
nology to a scalar convection equation (ut +au.,, +buy = 0), 
the most simple case of a hyperbolic equation. Also here, the 
standard scheme reduces to a dimension-by-dimension ap­
plication of the first-order upwind scheme for each of the 
operators au., and buy. It turns out that this is a very bad 
first-order scheme in terms of numerical diffusion, with as 
only merits that it is monotone and simple, although it is the 
best possible monotone scheme for a pure one-dimensional 
equation (ut + au.,, = O). 
To regain optimality in the sense of lowest diffusion while 
maintaining monotonicity, truely multidimensional upwind­
ing in the direction of the convection speed a (with Cartesian 



) 

components a and b) is needed, as shown in the optimal lin­
ear monotonic first-order convection schemes on a structured 
Cartesian grid, discovered by Rice and Schnipke (20) in 2D 
and by Roe and Sidilkover in 3D, and studied in detail in this 
project by Hirsch and Van Ransbeeck [18]. 

1.2 Scalar convection schemes 

The basis of the research in this project are the optimal mono­
tone first-order schemes for scalar convection mentioned be­
fore (18], and their generalization for unstructured grids com­
posed of triangles or tetrahedra developed by Roe, Struijs 
and Deconinck (the N-scheme) [5, 21, 15). These optimal 
scalar first-order schemes show dramatically improved ac­
curacy compared to the first-order dimensionally split finite 
volume scheme, in the unstructured grid case formulated on 
the dual mesh formed by the medians of the triangles (or 
tetrahedra). This is achieved without any addition in compu­
tational cost or loss of robustness; in fact the stencil used is in 
general smaller than for the first-order upwind finite volume 
scheme. 
Starting from these optimal first-order schemes, nonlinear 
monotonic second-order versions have been developed dur­
ing this project [21, 15, 18]. This was obtained through a lim­
iting procedure, which uses multidimensional gradients. As 
a result, the stencil of the second-order scheme remains lim­
ited to the nearest neighbours, as opposed to the dimension­
by-dimension second-order schemes which need a widening 
of the stencil. Basing the limiting on an optimal first-order 
scheme also reduces the nonlinearity of the second-order 
scheme, thus improving robustness as well as accuracy. 

1.3 The system of Euler equations 

Once satisfactory scalar multidimensional schemes were de­
veloped, the key remaining and most difficult issue was their 
extension to a non-commuting system of hyperbolic equa­
tions. On the other hand, this extension is almost trivial for 
the case of the standard first-order upwind scheme thanks 
to the dimension-by-dimension approach leading to a one­
dimensional Riemann problem in each coordinate direction. 
Such a system generalization has been searched in two differ­
ent directions, which can be used in combination : 

1. A first direction tries to avoid (or at least to minimize) the 
problem by converting the system in a series of scalar wave 
equations (with eventual remaining coupling terms being 
considered as source terms). Different mechanisms such 
as the use of simple wave solutions [3, 21] or approximate 
diagonalization [19, 14) of the system have been investi­
gated, with good success, at least in 2D. The most recent 
results of the work carried out in this context (hyperbolic­
elliptic splitting, Paillere ( 16] and Mesaros [ 10)) happen to 
be very close to the work on local preconditioning of the 
Euler system (e.g. by Merkle, Turkel and van Leer) [23], 
initially intended to reduce disparities in wavespeeds. In­
deed, also in this context an optimal decoupling of the 

equations is sought to allow a separate timestep restriction 
for the different characteristic contributions. For example, 
for 2D steady supersonic flow the equations in character­
istic variables reduce to convection of entropy and total 
enthalpy along the streamline, and two acoustic variables 
along the Machlines, i.e. a set of four scalar convection 
equations. In subsonic flow however, (and even for su­
personic flow in 3D) coupling tenns cannot be avoided 
and strict control of monotonicity is lost when a mono­
tonic scalar convection scheme is applied. Nevertheless, 
excellent results were obtained in 2D by Paillere (14] and 
Mesaros [10), both for subsonic and transonic flow. 

2. More recently in this project, an algebraic generalization 
of the optimal first-order scheme was achieved by van 
der Weide (matrix N-scheme) (22), applicable to general 
non-commuting hyperbolic systems, and reducing to the 
optimal scalar scheme applied to each of the decoupled 
equations, in case the system is diagonizable. This scheme 
has been shown by Barth to be energy stable for a linear 
hyperbolic system when combined with Euler explicit time 
marching, an.d application to the Euler equations in 2D by 
van der Weide and 3D by Bonfiglioli [l ], compares very 
favorably in accuracy with the standard system first-order 
finite volume scheme (e.g. using Roe's Riemann solver) 
on the same mesh, without losing robustness and without 
increase of the stencil. Nonlinear limited second-order ex­
tensions have been developed and good results in terms of 
accuracy and monotonicity have been obtained [22]. Ap­
plications in turbomachinery cascades have been studied 
in [2]. However, satisfactory robustness and convergence 
still fail and are the subject of current research. 

Due to the compactness of their stencil in space (at most the 
Galerkin FE stencil), the multidimensional upwind schemes 
are well suited for multigrid acceleration as developed in this 
project by Napolitano and coworkers [3]. Also implicit time 
integration, application of Newton's method for steady state 
computations and parallelization [8] strongly profit from the 
compactness of the stencil. Application to the incompressible 
Euler equations was studied in this project by Michelsen [11]. 

1.4 Numerical results 
Two example calculations for flow over a NACA00 12 airfoil 
are given. 

1.4.1 Subcritical NACAOOJ2 airfoil 

The subcritical flow (M00 = 0.63, 2° angle of attack) over 
a NACA0012 airfoil has been computed on a very coarse 
mesh, with only 489 nodes, and 60 nodes on the body, Fig­
ure l(a). The solution (Figure 1) is computed with the 'hy­
perbolic/elliptic' splitting, applying the compact nonlinear 
second-order N-scheme on the hyperbolic part and the sys­
tem SUPG-scheme on the elliptic part. The solution has very 
low false entropy production and the aerodynamic coefficients 
CL = 0.323, CD = 0.004 compare well with fine-mesh re­
sults found in the literature, despite the coarseness of the mesh 
used. 
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1.4.2 Transonic NACA0012, M00 = 0.85, a = 1 ° 
This computation has been made with the new monotone sys­
tem distribution schemes, the linear system N-scheme and 
the second-order compact limited system N-scheme. The un­
structured mesh (Figure 2) has 2355 nodes of which 140 on 
the airfoil. First, the convergence history (Figure 3) is shown 
based on a Newton iterative solver [8]. The first-order system 
N-scheme shows full Newton convergence in 25 iterations. 
The computation with the second-order matrix N-scheme is 
started from the first-order solution, and the residual stagnates 
after about 6 orders of reduction (40 nonlinear iterations). 
Mach number isolines for the system limited N-scheme, ap­
plied to the preconditioned Euler equations are given in Fig­
ure 4(a). In Figure 4(b), the entropy distribution on the body 
for the limited N-scheme applied to the full Euler equations is 
compared with the entropy distribution for the same scheme, 
applied to the preconditioned equations (hyperbolic/elliptic 
splitting, HE). It is clear that the entropy production in the 
nose region is lower for the hyperbolic/elliptic splitting. Note 
that the entropy for both solutions remains perfectly mono­
tonic in the shock. The most significant difference between 
both solutions however is found in the total enthalpy distri­
bution: for the solution with hyperbolic-elliptic splitting total 
enthalpy remains perfectly constant, also in the shock profile 
and at the leading edge, as shown in Figure 4(c). 

2 MULTIPLE SEMI-COARSENING 
MULTIGRID 

2.1 Introduction 

A difficulty of standard multigrid methods in solving 3D 
problems, as compared to solving 2D problems, is that the 
requirements imposed on the smoother are more severe. On a 
structured grid in 3D, standard coarsening implies restriction 
from 2 x 2 x 2 cells to a single cell only. Because a 2 x 2 x 2-
set of cells can support more high-frequency errors than a 
2 x 2-set, 3D standard multigrid imposes stronger require­
ments on the smoother than 2D standard multigrid. Therefore, 
standard multigrid generally works fine for 2D problems, i.e. 
gives (nearly) grid-independent convergence rates, but for 3D 
problems this may not be the case. This is illustrated in Figure 
5, showing the convergence results for the ONERA-M6 wing 
at transonic flow conditions, as obtained with the standard 
multigrid method. The convergence is clearly grid dependent. 
A fix might be found in deriving a more powerful smoother, 
keeping all other components of the numerical method the 
same, but the type of smoother then depends on the dimen­
sion of the problem. A more natural approach followed in 
this project is to apply multiple semi-coarsening (Figure 6b) 
instead of standard (i.e. full) coarsening (Figure 6a). Though 
multigrid with semi-coarsening is expected to be most fruitful 
for 3D problems, (as far as we know) applications of semi­
coarsening only existed in 2D, before the start of this project. 
The pioneering work in 2D has been done by Mulder [12], 

who introduced semi-coarsening as a fix for the poor con­
vergence results observed in computing nearly grid-aligned 
flows governed by the steady, 2D Euler equations. In [l 7], 
Radespiel and Swanson embroider on Mulder's approach for 
the steady, 2D Euler equations, paying particular attention to 
the prolongation operators. 
In a first phase of this project, investigation of semi-coarsened 
multigrid for second-order elliptic (Poisson-type) equations 
has been carried out by De Zeeuw [ 4 ], based on the 2D work 
of Naik and Van Rosendale [13]. Just as in [17], much at­
tention was paid to specific prolongation operators for semi­
coarsening. 
In a second step, semi-coarsened multigrid for the steady, 3D 
Euler equations was developed [9], with particular attention 
for the prolongation operators as well. 

2.2 Semi-coarsened multigrid method 

As the smoothing technique for the first-order discretized 
Euler equations, simple collective symmetric point Gauss­
Seidel relaxation is applied, combined with the nonlinear 
multigrid (FAS) scheme. Let 01,m,n, l = 0, 1, ... , lmaz, 

m = 0, 1, ... , mmax, n = 0, 1, ... , nmax be the set of 
semi-coarsened, nested grids, with no,o,o the coarsest and 
01max,mmax ,nmax the finest grid. 
Then, nested iteration (FMG) is applied to obtain a good initial 
solution on the finest grid. The nested iteration starts with a 
user-defined initial estimate on the coarsest grid, Oo,o,o, which 
is improved by relaxation. The improved solution qo ,o ,o is pro­
longated (level-by-level) to all grids up to and including level 
3, with a specifically developed 3D prolongation [7]. Next, 
the solution q1, 1,1 is improved by a single nonlinear multigrid 
cycle and prolongated to all grids up to and including level 
6. For simplicity, we assume that lmax = mmax = nmax• 

Then, the above process can be repeated in a straightforward 
manner up to and including level 3 x lmax• 

A single nonlinear multigrid cycle from level l + m + n is 
recurrently defined by the following steps: 

I. Compute on all grids at the next coarser level, (l + m + 
n) - 1 the same right-hand sides as in standard multi grid, 
using a specific restriction operator developed during the 
project. 

2. Approximate the solutions on the coarser level ( l + m + 
n) - 1 by the application of a single nonlinear multigrid 
cycle. 

3. Correct the current solutions on level l + m + n by one 
of two alternative correction prolongations also developed 
during this project. 

4. Improve the solutions on level l + m + n by the application 
of npost post-relaxations. 

So, as nonlinear multigrid cycles, here we also use saw­
tooth cycles. Whereas in the standard multigrid method one 
may also apply pre-relaxations, in the present semi-coarsened 
multigrid technique this is not possible in fact. Pre-relaxation 
leads to incoherent right-hand side representations. For an 
explanation of this we refer to [4]. 
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2.3 Numerical results 

As test case we consider the ONERA-M6 wing at the transonic 
conditions M00 = 0.84, a = 3.06°. The grids used are 
of C-O-type (Figures 7). The wing as well as the grids are 
symmetric with respect to the plane through the wing's leading 
and trailing edges. 
In the convergence results given in Figure 8, the finest grid 
considered is the 64 x 16 x 16-grid. In all four graphs, the con­
vergence measure is the density residual on the finest mesh, 
non-dimensionalized by the value at the start of the compu­
tation. The improvement of both semi-coarsened multigrid 
methods [9] with respect to the standard multigrid method is 
significant. Of both semi-coarsened methods, the one with the 
fixed prolongation weights (Figure 8d) performs best. 

2.4 Outlook : sparse grid multigrid 

A disadvantage of full-grid-of-grid semi-coarsening is that 
very many points are needed. With N the total number of 
points on the finest grid, asymptotically standard multigrid 
uses ¾N grid points versus 8N points for the full-grid-of­
grid approaches. An efficiency improvement is obtained by 
thinning out the grid of grids. Most ambitious in this respect 
is the sparse-grid-of-grids approach (see [7] and the further 
references in there). The efficiency gain by the reduction of 
the numbers of grid points is enormous. 
Future research will be directed to modifying the full-grid­
of-grids technique into the direction of a sparse-grid-of-grids 
technique, maintaining as far as possible the solution accu­
racy on the finest grid. Theoretically, the sparse-grid-of-grids 
approach has the best ratio of discrete accuracy over number 
of grid points used. In the ideal case the full grid-of-grids will 
be completely replaced by a sparse grid-of-grids. 

3 CONCLUSION 

It is anticipated that multiple semi-coarsening multigrid and 
multidimensional upwinding discretizations could form the 
heart of a new generation of superior solvers for high Reynolds 
number compressible flows. Although more effort will be 
needed before this goal will be reached, especially in 3D, the 
results of this project show the potential. 
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Figure 1. Subcritical NACA00l2 airfoil: unstructured mesh with 
489 nodes (of which 60 on the body), and Mach numberisolines 

obtained with the hyperbolic/elliptic splitting. PSI scheme on 
hyperbolic equations and SUPG scheme on elliptic equations. 
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Figure 2. Mesh for transonic NACA0012 airfoil (2355 
rneshpoints, 140 on airfoil). 

50. 75. 
# iten1.tions 

Figure 3. Convergence history for the HE splitting for the 
transonic NACA0012 airfoil (Af 00 = 0.85, a = 1 °) for the system 
N- (first part) and for the system limited N-scheme (second part) . 
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(a) Mach number isoline, 
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Figure 4. Transonic NACA0012 airfoil,Moo = 0.85, a= 1 °. 
System limited N-scheme. (a): Mach numberisolines for the HE 
splitting. (b),(c) : Entropy and Total enthalpy distribution on the 

airfoil for the preconditioned (symbols) and full (solid line) Euler 
equations. 
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2345678910 

cycles 

Figure 5. Convergence behavior of standard multigrid method for 
ONERA-M6 wing at transonic conditions, M 00 = 0.84, ec = 3.06° 
(dashed: single grid 16 x 4 x 4, solid: multigrid, with as finest grid, 

from below to above: 16 x 4 x 4, 32 x 8 x 8, 64 x 16 x 16) 

Figure 6. (a) full coarsening (b) semicoarsening 
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a. Upper side wing. 

b. Far-field boundary. 

Figure 7. Views of 128 x 32 x 32 C-O-type grid for 
ONERA-M6 wing 
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c. Semi-coarsened MG (1). 
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d. Semi-coarsened MG (2). 

Figure 8. Convergence behavior of different solution methods for 
ONERA-M6 wing at transonic conditions, M 00 = 0.84, 

a = 3.06°. Semi-coarsened multigrid (MG) results using two 
different prolongation weights, (I) defect dependent, (2) fixed 

(finest grid in all four graphs, from below to above: 16 x 4 x 4, 
32 X 8 X 8, 64 X 16 X 16). 
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