
AIAA-97-2029

Multiple Semi-Coarsened Multigrid for 3D CFD

B. Koren~ P.W. Hemker, C.T.H. Everaars
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

A significant difficulty of standard multigrid meth­
ods for 3D problems, when compared to application
to 2D problems, is that the requirements to be im­
posed on the smoother are much more severe. As
a remedy, we investigate three different possibili­
ties of multiple semi-coarsening: full, sparse and
semi-sparse. Numerical results are presented for a
standard 3D transonic test case. The good paral­
lel computing properties of the sparse-grid and the
semi-sparse-grid approaches are also investigated.
The first speed-up results are promising. The pa­
per contributes to the state-of-the-art in efficiently
solving 3D fluid-flow equations.

1 Introduction

of full-grid-of-grids semi-coarsening is that many
grid cells are needed in total. With N 3 the total
number of cells on the finest grid 01max,mmax,nmax,

in 3D, asymptotically standard multigrid uses !N3

grid cells versus 8N3 cells for the full-grid-of­
grids approach. An efficiency improvement can be
achieved by thinning out the grid-of-grids, e.g. by
deleting fine grids. This may lead to the sparse­
grid-of-grids and the semi-sparse-grid-of-grids ap­
proaches, to be discussed in this paper.

The contents of the paper is as follows. In Sec­
tion 2, we briefly describe the 3D discrete equations
and the 3D test case to be considered throughout
the paper. In Section 3, we describe the four differ­
ent multigrid strategies to be compared: (i) stan­
dard multigrid, (ii) full-grid-of-grids multigrid, (iii)
sparse-grid-of-grids multigrid and (iv) semi-sparse­
grid-of-grids multigrid. Per type of multigrid strat­
egy, we illustrate the performance for the test case
chosen. Finally, in Section 4, we exploit the good
parallelization properties of the sparse-grid and the
semi-sparse-grid method, a speed-up analysis and
speed-up results are presented.

With standard multigrid methods, the total
amount of work on the coarse grids is relatively
smaller in the 3D case than in the 2D case. How­
ever, the reverse side is that in 3D only a relatively
small amount of error components can be annihi­
lated by the coarse-grid corrections. When cells are
used as grid elements, in 3D, standard coarsening 2
implies restriction from each set of 2 x 2 x 2 cells to

Test set

Equations a single cell only. Because the set of eight cells can
support more high-frequency errors than the two­
dimensional 2 x 2-set, 3D standard multigrid im­
poses stronger requirements on the smoother than
2D star_idard multigrid. Standard multigrid may
not perform satisfactory for 3D generalizations of
2D problems, for which it does perform well. A
fix might be found in deriving a more powerful
smoother, keeping the other components of the nu­
merical method the same. A more natural remedy
is not to apply standard, i.e. full coarsening, but
to use multiple semi-coarsening instead (Figure 1).
When multiple semi-coarsening is applied to solve
a system of equations defined on the single, finest
grid Dtmax,mmax,nmax, and when all coarser grids
01,m,n, level= l + m + n < lmax + mmax + nmax
contribute to the solution process, we speak of full­
grid-of-grids semi-coarsening [12]. A disadvantage

• Member AIAA.
Copyright © 1997 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

2.1

The steady, non-isenthalpic, 3D Euler equations of
gas dynamics are considered. The equations are
discretized in their integral form. The computa­
tional domain D is divided, in a regular manner,
into cell-centered finite volumes. These finite vol­
umes are arbitrarily ~haped hexahedra. Following
the Godunov approach, along each cell face the
flux vector is assumed to be constant and to be
determined by a uniformly constant left and right
state. To solve the resulting 1D Riemann problem,
we apply the 3D extension of the 2D P-variant [8]
of Osher's approximate Riemann solver [15]. For
the left and right cell-face states, we take the first­
order accurate approximations. At a later stage,
these approximations can be replaced by higher­
order accurate ones, in which case also limiters
can be introduced. We emphasize that the major
challenge is to know how to solve first-order accu­
rate discretized, steady 3D Euler equations at ef-

892

ficient, grid-independent convergence rates. Once
this is known, solving higher-order accurate dis­
crete, steady 3D Euler equations can be done by
a standard procedure, e.g. by a defect correction
method as outer and the efficient multigrid method
as inner iteration [10, 11]).

2.2 Flow problem

As test case we consider the ONERA-M6 half-wing
at M00 = 0.84, a = 3.06°. The grids used are of
C-0-type. (Graphs are given in (12].) The wing
as well as the grids are symmetric with respect to
the plane through the wing's leading and trailing
edges. In the results to be presented hereafter, the
finest grid considered is a 64 x 16 x 16-grid.

3 M ultigrid methods and re-
sults

3.1 Standard multigrid

3.1.1 Method

First we briefly describe the standard 3D multigrid
algorithm. The multigrid methods to be described
hereafter are based on it. We use the 3D general­
ization of the optimal 2D multigrid approach, that
was originally described in [7, 8]. As the smoothing
technique for the first-order discrete Euler equa­
tions, collective symmetric point Gauss-Seidel re­
laxation is applied. The four different symmetric
relaxation sweeps that are possible on a regular 3D
grid, are performed alternatingly. At each volume
visited during a relaxation sweep, the system of five
nonlinear equations is solved by Newton iteration.

As standard multigrid method we apply the non­
linear version (FAS, (3]), preceded by nested itera­
tion (FMG, [3]). For this we construct a nested set
of grids such that each finite volume on a coarse
grid is the union of 2 x 2 x 2 volumes on the next
finer grid. Let no, 01' ... ' nAmax be the sequence of
such nested grids, with no the coarsest and nAmax
the finest grid. Then, nested iteration is applied
to obtain a good initial solution on nAmax' whereas
nonlinear multigrid is applied to converge to the
solution on the finest grid, qAmax. The first iterand
for the nonlinear multigrid cycling is the solution
obtained by nested iteration. We proceed by dis­
cussing both stages in more detail.

repeated until the highest level (finest grid 0>-.maJ
has been reached.

Nonlinear multigrid iteration Let N>-.(q;.) =
0 denote the nonlinear system of first-order accu­
rate discretized equations on 0>-., then a single non­
linear multigrid cycle is recursively defined by the
following steps:

1. Improve on O;. the latest obtained solution q;.
by application of npre relaxation sweeps.

2. Compute on the next coarser grid n>-.-i
the right-hand side r;._1 = N;._ 1 (q>-.-i) -
1;-1 N>-.(q;.), where 1{-1 is a restriction op­
erator for right-hand sides.

3. Approximate the solution of N;._ 1 (q;._ 1) =
T>-.-1 by the application of nFAS nonlinear
multigrid cycles. Denote the approximation
obtained as ih-1-

4. Correct the current solution by: q>-. = q;. +
-).. -;_
J>-.-i (<h-1 - q>-.-1), where J>..-i is a prolonga-
tion operator for solutions.

5. Improve again Q>.. by application of npost re-
laxations.

Steps (2),(3) and (4) form the coarse-grid correc­
tion. The restriction operator 1t1 and the prolon­
gation operator 1;_1 are the usual operators that
are consistent with the piecewise constant approx­
imation (for more details, see [12]).

3.1.2 Results

Convergence results are given in Figure 2. In
both graphs, the residual ratio is defined as
IIRi ll1,/IIR1 IIL,, where Riis the mass defect of the
discrete Euler equations and where i refers to the
status after the i-th iteration. For the standard
multigrid convergence results presented in Figure
26, we took npre = 0, npost = 1, i.e. sawtooth­
cycles. Though - of course - to a lesser extent than
the single-grid convergence results (Figure 2a), the
standard multigrid method's convergence results
appear to be rather grid-dependent (Figure 2b).
As mentioned in Section 1, the expected cure is
to apply multiple semi-coarsening instead of stan­
dard, i.e. full coarsening. In the next sections we
proceed by discussing this alternative coarsening.

Nested iteration The nested iteration starts 3.2 Full-grid-of-grids multigrid
with a user-defined initial estimate for qo, the so- Method
lution on the coarsest grid. To obtain an initial 3·2·1

solution on a finer grid fl,x+1, first the solution on Pioneering work has been done by Mulder (13], who
the coarser grid fl>.. is improved by a single nonlin- has introduced multiple semi-coarsening as a fix
ear multigrid cycle. Hereafter, this solution is pro- to the poor convergence results observed in com­
longated to the finer grid n>-.+1. These steps are puting nearly grid-aligned flows governed by the

893

steady, 2D Euler equations. In [16], Radespiel and
Swanson embroider on Mulder's approach for the
steady, 2D Euler equations. Here we consider mul­
tiple semi-coarsened multigrid for the steady, 3D
Euler equations, and pay particular attention to
the prolongation operators.

Also in the case of the semi-coarsened multi­
grid method we use FAS as the basic multigrid
algorithm, and on each grid collective symmet­
ric point Gauss-Seidel relaxation is applied as the
smoothing technique. As mentioned in Section 1,
in the semi-coarsened multigrid method, the se­
quentially ordered set of grids nA, >. = 0, ... , Amax,
is replaced by a partially ordered set of grids
01,m,n, l = 0, 1, ... , lmax, m = 0, 1, ... , mmax,
n = 0, 1, ... , nmax, with Oo,o,o the coarsest and
f21max,mm..x,nmax the finest grid. In the full-grid-of­
grids variant of multiple semi-coarsening, all grids
01,m,n play a role in the solution process. The nest­
ing and the semi-coarsening relation between these
grids and more data structure aspects are described
in [9].

Nested iteration Also with semi-coarsening,
nested iteration (FMG) is applied to obtain a good
initial solution on the finest grid. We proceed to
discuss the present nested iteration and nonlinear
multigrid iteration in more detail. The nested it­
eration starts with a user-defined initial estimate
on the coarsest grid, 0 0,0,0 , which is improved by
relaxation. To continue, the following two options
exist:

• The approximate solution Qo,o,o is prolongated
to all grids up to and including level 3, with
the 3D prolongation according to formula (37)
in [6] (see [12] for the implementation in the
present 3D Euler context). Next, the solution
Q1,i,1 is improved by a single nonlinear multi­
grid cycle and prolongated to all grids up to
and including level 6. For simplicity, we as­
sume that lmax = mmax = nmax· Then, the
above process can be repeated in a straightfor­
ward manner up to and including level 3lmax•
Notice that solution improvements are only
made at Oo,o,o, 01,1,1, 02,2,2, ...

• The approximate solution Qo,o,o is prolongated
to the three grids 01,0,0, Oo,1,0 and Oo,0,1 on
the next level, with the same 3D prolongation
as mentioned above. Next, the three solutions
Q1,o,o, Qo,1,0 and Qo,0,1 are first improved by
a single nonlinear multigrid cycle and then
prolongated to all six grids on level 2. The
above process is repeated up to and including
level lmax + mmax + nmax· Notice that here,
as opposed to the previous strategy, solution
improvements are made on all grids, level-by-_

Nonlinear multigrid iteration A single non­
linear multigrid cycle on level l + m + n is recur­
sively defined by the following steps:

1. Compute the same right-hand sides as in stan­
dard multigrid, on all grids at the next coarser
level (l+m+n)-1, but use as restriction oper­
ator the natural one described in [12] (natural
because it just sums defects over the sub-cells).

2. Approximate the solutions on the coarser level
(l + m + n) - 1 by the application of a single
nonlinear multigrid cycle.

3. Correct the current solutions on level l+m+n
by one of two alternative correction prolonga­
tions. The first prolongation can be seen as
an extension to 3D and to systems of equa­
tions, of the prolongation due to Naik and Van
Rosendale [14]. It uses prolongation weights
that are proportional to the absolute values of
the restricted defect components. The second
correction prolongation is the hierarchical one
proposed in [6], equation (36). It has a-priori
known prolongation weights + 1 and -1.

4. Improve the solutions on level l + m + n by the
application of npost relaxation sweeps.

3.2.2 Results

We first compare the two correction prolongations
just mentioned: the one with defect-dependent
weights and the one with fixed hierarchical weights.
The nested iteration applied is the first one de­
scribed in Section 3.2.1. Convergence results are
shown in Figure 3. In the two graphs, the residual
ratio is defined as IIRiFAsll1)IIR1 ll11 , where RiFAs
is the first component (i.e. the mass component)
of N1max,fflmax,nm.,,_(qfFAS m n) and where iFAS
refers to the status mcrliet'rhemi;As-th FAS-cycle.
Similar as for the standard multigrid convergence
results (Figure 2b), here we also used sawtooth cy­
cles (npre = 0, npost = 1). The improvement of
both semi-coarsened multigrid methods with re­
spect to the standard multigrid method is signif­
icant. Of both methods, the one with the fixed
hierarchical prolongation weights (Figure 3b) per­
forms better than the one with defect-dependent
prolongation weights (Figure 3a).

The convergence results may still be further im­
proved. In Figure 4 we present results for the same
solution strategy as that of Figure 3b, but now with
V-cycles (npre = npost = 1) and with the more
elaborate, level-by-level nested iteration described
in Section 3.2.1.

level. 894

3.3

3.3.1

Sparse-grid
semi-sparse-grid multigrid

Methods

and

As mentioned in Section 1, a disadvantage of full­
grid-of-grids semi-coarsening is that 8N3 grid cells
are needed in total (N3 being the number of
grid cells on Dtmax,mmax,nmaJ· An efficiency im­
provement can be achieved by deleting fine grids.
Then, if no finest grid is available anymore, ac­
curate approximations can still be constructed ei­
ther by extrapolation or by the use of hierarchical
bases. Most ambitious is the sparse-grid-of-grids
approach. With the full grid-of-grids depicted as a
cube in Figure 5a, the corresponding sparse grid­
of-grids is the subset given in Figure 5c, only grids
D1,m,n, level::; lmax contribute. The reduction in
the numbers of grid cells is enormous. The compu­
tational complexity of the sparse-grid-of-grids ap­
proach is O(Nlog2 N), i.e. almost the complexity
of a 1D problem only! Theoretically, the sparse­
grid-of-grids approach has the best ratio of discrete
accuracy over number of grid points used [5], the

the sparse-grid approach, is that the 3D extrapo­
lation rule can be applied for all remaining grids
to be filled, including the grids along the bound­
aries of the grid-of-grids. In the sparse-grid ap­
proach this is not possible. There, for all boundary
grids in between lmax and 2lmax one has to make
a compromise, for instance by applying a 2D or
even a lD combination extrapolation, which will
inevitably result in some additional loss of accu-
racy.

In the Figures 6a-c we give an impression of
the accuracy of the numerical solutions, obtained
by the three different grid-of-grids approaches de­
picted in Figure 5. The reference solution is the
fully converged O(h) finest grid solution (Figure
6a). It has been obtained on a 64 x 16 x 16 C-0-type
grid, it is the target for both solutions presented in
Figures 6b and 6c. Of course, the semi-sparse grid
solution (Figure 6b) comes closer to the reference
solution. The sparse-grid solution (Figure 6c) is
far off, but it has been obtained at extremely low
computational cost as compared to both the semi­
sparse-grid approach and the full grid-of-grids ap­
proach. In Table 1 we give the relative computing
times used.

loss of accuracy is only a logarithmic factor when
compared with the full-grid-of-grids approach. In
practice, although very fast, the accuracy of the
sparse-grid approximations is slightly disappoint- 4
ing. It appears that more accurate approximations Parallelization of sparse­

grid and semi-sparse-grid
multigrid

are obtained not by only increasing the number of
levels, but also by dropping the cells with extreme
aspect ratios. This leads to the compromise of
the semi-sparse grid-of-grids. This uses the family
of grids D1,m,n, level::; 2lmax, max(l, m, n) ::; lmax
(Figure 5b), which (asymptotically) still has a com­
putational complexity which is smaller than that of
the single-grid approach, viz. O(N2 logN), i.e. al­
most the complexity of a 2D problem. So, though
to a lesser extent than the genuine sparse-grid ap­
proach, it still is a cure to cubic complexity, the
'curse of 3D'.

3.3.2 Results

The numerical ingredients of both approaches are
identical to those in the full-grid-of-grids approach
applied in obtaining Figure 4. Exactly the same
method is applied, with as the only difference
that in the sparse-grid case the multi-level semi­
coarsening solver stops its work at level lmax· From
there the solution is prolongated to the very finest
grid at level 3lmax· The prolongation is done by
the 3D extension of the combination extrapolation
given on p. 290 in [17]. In the semi-sparse-grid ap­
proach the semi-coarsened multi-level algorithm is
only stopped at level 2lmax and from there, by the
same combination technique, the finest-grid solu­
tion at 3lmax is computed. A particular advantage
of the semi-sparse-grid approach as compared to

4.1 Natural concurrency
methods

of both

The pre- and post-relaxations, steps 1 and 5 in
the nonlinear multigrid iteration (Section 3.1.1),
are done by a procedure (subroutine scanlv, see
[4]) for performing a user-defined operation on all
grids 01,m,n at grid level l + m + n. In this case the
user-defined procedure is the point Gauss-Seidel re­
laxation on all cells of grid 01,m,n· Because the re­
laxation subroutine only reads and writes data con­
cerning its own grid, the relaxations can be done
directly in parallel for all grids visited at a certain
grid level. Given the fact that almost all computing
time consumed by the total program, is used in the
relaxations, parallel implementation is expected to
pay off.

4.2 The Manifold coordination lan­
guage

Parallelization is done through the MANIFOLD co­
ordination language. MANIFOLD is a language
for managing complex, dynamically changing in­
terconnections among sets of independent, con­
current, cooperating processes [l]. MANIFOLD is
based on the IWIM model of communication [2].

895

The basic concepts in the IWIM model are pro­
cesses, events, ports and channels [4].

A MANIFOLD application consists of a (poten­
tially very large) number of processes running on
a network of heterogeneous hosts, some of which
may be parallel systems. Processes in the same ap­
plication may be written in different programming
languages.

The MANIFOLD system consists of a compiler, a
run-time system library, a number of utility pro­
grams, libraries of built-in and pre-defined pro­
cesses, a link file generator called MLINK and a
run-time configurator called CONFIG. The sys­
tem has been ported to several different plat­
forms (e.g. SGI 5.3, SUN 4, Solaris 5.2, and IBM
SP /1). MLINK uses the object files produced by
the (MANIFOLD and other language) compilers
to produce link files needed to compose the exe­
cutable files for each required platform. At the run
time of an application, CONFIG determines the ac­
tual host(s), where the processes (created in the
MANIFOLD application) will run.

The library routines that comprise the inter­
face between MANIFOLD and processes written in
other languages (e.g. C), automatically perform the
necessary data format conversions when data are
routed between various different machines.

4.3 Restructuring of the sequential
3D CFD code

The restructuring of the original sequential code
can be described in a kind of master/slave pro­
tocol. In a coordinator process [4] we create and
activate a master process that embodies the com­
putations of the main program of the sequential
version. When we arrive in the master process at a
pre- or post-relaxation, the master delegates the re­
laxations to a separate slave process, for each single
grid visited. Each time the master needs a slave, it
raises an event to signal the coordinator to create
the slave. In this way a pool of slaves is set at work
for the master. The coordinator makes the identifi­
cation of the slave known to the master by sending
a reference of it to the master. With this informa­
tion the master can activate the slave. Before the
slave can really work, it should know on which grid
(identified by the grid-of-grid coordinates n, m, l)
it should perform the relaxation. The master has
these coordinates available and writes them on its
own output port. The coordinator takes care that
the slave can read this information from its input
port by setting up a stream between the output
port of the master and its own input port. The
master process continues its work and makes again
a request for the creation of a slave process. When
all the slaves are created and activated in this way,
the master waits until the slaves are ready with

the relaxation and are going to die. After this ren­
dezvous, the master continues its sequential work
until it again arrives at a point where it wants to
use a pool of slaves to delegate the relaxations to.

In MANIFOLD we can easily realize the mas­
ter/slave protocol described above in a general way
in which the master and slave are parameters of the
protocol. In this protocol we only describe how in­
stances of the master and slave process definitions
should communicate with each other. For the pro­
tocol it is irrelevant to know what kind of com­
putations are performed in the master and slave.
What is indeed important for the protocol is that
the in/output and the event behavior of the master
and slave are tuned to the protocol. E.g., the proto­
col manifold is only able to create a slave when the
master requests for its creation by raising an event.
Also, the master should write the data needed by
the slave, on its own output port and the slave
should read this information from its own input
port, etc. For a stepwise description of the be­
havior interface of the master and slave manifold,
and other details about the restructuring of the
sequential code, we refer to [4]. In the next two
sections we proceed by giving a speed-up analysis
and speed-up results.

4.4 Speed-up analysis

All experiments have been run on a single multi­
processor machine in a real contemporary comput­
ing environment, i.e. an environment in which it
cannot be gua!"anteed that one is the only user.
In such an environment, care should be taken in
interpreting speed-up numbers. This is shown in
the following multi-user, single-machine analysis,
in which we make these assumptions:

• the only processes which are significant with
respect to the use of CPU time are computing
processes,

• all computing processes get equal time slices
from the scheduler of the machine and they
totally consume these,

• the computational work embodied in a sequen­
tial program can be completely and equally
distributed over parallel processes.

Then, with n the number of processors in a ma­
chine (n 2: 1), m 1 the number of processes our
own application consists of (m1 2: 1; m1 = 1 rep­
resenting the sequential application) and m2 the
number of processes from other users (m2 2: 0), we
can write as expression for the investment of CPU
power p in our own application:

(1)

896

if m1 +m2 > n
if m1 + m2 :S n

With the investment of CPU power inversely pro­
portional to the elapsed computing times needed,
from (1), expressions for various speed-up factors
can be derived. As examples, we look at two of
these factors.

The first speed-up factor relates the computing
times of our parallel application run on a multi­
processor machine (n > 1, m1 > 1), to those of the
sequential version run on a single-processor from
that machine (n = 1, m1 = 1), both runs with
the same number m2 of other processes. For the
corresponding speed-up factor, to be denoted by
Sn,m1 , it follows

_ p(n > l,~1 > l,m2)
Sn,mi = p(n = 1, m1 = 1, m 2) =

{ n(l + m2) m1~1m2,

m1(l+m2),
ifm1 +m2 > n
if m1 + m2 ~ n ·

(2)

Note that for the multi-user (m2 > O) situation,
the speed-up sn,m1 can be much larger than the
number of processors n for the case m 1 + m 2 > n,
and is always larger than the number of processes
m1 for the case m1 + m2 ~ n. In Figure 7, dis­
tributions of sn,m 1 are depicted for a 4-,8- and 16-
processor machine, respectively. (Of course, the
speed-up factors are defined at the integer points
(m 1 , m2) only, the iso-lines as drawn in between
these points are only meant to help in recognizing
the discrete speed-up patterns.)

The second speed-up factor to be considered re­
lates the computing times of our application when
run on a machine with other processes running si­
multaneously, to those run on the same machine,
but with no other processes. For the corresponding
speed-up factor, to be denoted by Sm2 , it follows

p(n,m1,m2 = 0)
8m 2 = p(n,m1,m2 > 0) =

All our experiments have been done during quiet
periods of the system (m2 ~ 0). Therefore, since
we mostly had m1 > n, in our case Sm2 ~ 1 holds.

4.5 Speed-up results

All experiments have been run on an SGI Chal­
lenge L with four 200 MHZ IP19 processors, each
with a MIPS R4400 processor chip as CPU and a
MIPS R4010 floating point chip for FPU. This 32-
bit machine has 256 megabytes of main memory,
16 kilobytes of instruction cache, 16 kilobytes of
data cache, and 4 megabytes of secondary unified
instruction/data cache. The machine runs under
IRIX 5.3, is on a network, and is used as a server
for computing and interactive jobs. Other SGI ma-
chines on this network function as file servers.

Computations have been done for both the
sparse- and the semi-sparse grid approach. For the
sparse-grid approach, the finest grid levels consid­
ered are: 1,2 and 3, for the semi-sparse-grid ap­
proach, these are: 2,4 and 6. (For both approaches,
the dynamic creation of slaves in different work
pools is shown in [4].)

The results of our performance measurements for
the sparse- and the semi-sparse grid approach are
given in Tables 2 and 3, respectively. They show
the elapsed time versus the grid level. To even
out such unpredictable effects as network traffic
and file server delays, etc., we have run the two
versions of the application on each of the three
levels close to each other in real time, and for
each version of the application, five times on each
level. From Tables 2 and 3, it appears that the
MANIFOLD version takes good advantage of the
parallelism offered by the four processors of the ma­
chine. For the sparse-grid and the semi-sparse-grid
application, the MANIFOLD-code times are about
3.25 and 3.75 times smaller, respectively, than the
sequential-code times. So, in both cases we have

m1 ' { ~ m1+m2
n ,

if m1 > n
if m 1 ~ n and m1 + m2 > n
if m1 + m2 ~ n

(3) obtained a nearly linear speed-up.

1,

In Figure 8, distributions of Sm2 are depicted for a
4-,8- and 16-processor machine, respectively. For­
mula (3) may be practically relevant in compara­
tive studies. With (3), from elapsed times mea­
sured in an environment in which a known num­
ber of other processes have been running simul­
taneously, one may approximately calculate the
corresponding times in a hypothetical single-user
(m2 = 0) environment. With the theoretical Sm2

computed from (3) and with the real (elapsed) time
trea1(m2 > O) measured, we may estimate the cor­
responding elapsed time in single-user (m2 = 0)
environment by

5 Conclusions

The intrinsically low computational complexity of
sparse-grid and semi-sparse-grid techniques, plus
the additional gains in computing time by paral­
lelization, make both methods challenging for very
computing-intensive work.

An interesting possibility for future research is
the application of local 3D semi-refinement. For
this, the relative truncation errors that are avail­
able between all grids on two consecutive grid
levels, can serve in the grid-adaptation criterion.
Work in this direction is in progress.

References

(1] ARBAB, F.: Coordination of massively con­
current activities, Report CS-R9565, CWI,
Amsterdam (1995). Available on-line at
http://www.cwi.nl/ftp / CWireports/IS / CS­
R9565.ps.Z.

(2] ARBAB, F .: The IWIM model for coordina­
tion of concurrent activities, in: Coordination
Languages and Models, Proceedings of Coor­
dination '96 (CIANCARINI, P. AND HANKIN,
C., EDS.), Lecture Notes in Computer Science,
1061, 34-56, Springer, Berlin (1996).

[3] BRANDT, A.: Guide to multigrid devel­
opment, in: Multigrid Methods, Proceed­
ings, Koln-Porz, 1981 (HACKBUSCH, w. AND
TROTTENBERG, u., EDS.), Lecture Notes in
Mathematics, 960, 220-312, Springer, Berlin
(1982).

[4] EVERAARS, C.T.H. AND KOREN, B.: Using
coordination to parallelize sparse-grid meth­
ods for 3D CFD problems, CWI-Report, CWI,
Amsterdam (to appear).

[5] GRIEBEL, M., ZENGER, C. AND ZIMMER,
S.: Multilevel Gauss-Seidel-algorithms for full
and sparse grid problems, Computing, 50,
127-148 (1993).

(6] HEMKER, P.W.: Sparse-grid finite-volume
multigrid for 3D-problems, Advances in Com­
putational Mathematics, 4, 83-110 (1995).

[7] HEMKER, P.W. AND KOREN, B.: A
non-linear rnultigrid method for the steady
Euler equations, in: Proceedings of the
GAMM-Workshop on the Numerical Simula­
tion of Compressible Euler Flows, Rocquen­
court, 1986 (DERVIEUX, A., LEER, B. VAN,
PER'IAUX, J. AND RIZZI, A., EDS.), Notes
on Numerical Fluid Mechanics, 26, 175-196
Vieweg, Braunschweig (1989).

[8] HEMKER, P.W. AND SPEKREIJSE, S.P.:
Multiple grid and Osher's scheme for the ef­
ficient solution of the steady Euler equations,
Applied Numerical Mathematics, 2, 475-493
(1986).

[9] HEMKER, P.W. AND ZEEUW, P.M. DE: BA­
S1S3, a data structure for 3-dimensional sparse
grids, in: Euler and Navier-Stokes Solvers Us­
ing Multi-Dimensional Upwind Schemes and
Multigrid Acceleration (DECONINCK, H. AND
KOREN, B., EDS.), Notes on Numerical Fluid
Mechanics, 57, 443-484, Vieweg, Braun­
schweig (1997).

(10) KOREN, B.: Defect correction and multi­
grid for an efficient and accurate computa­
tion of airfoil flows, Journal of Computational
Physics, 77, 183-206 (1988).

[11] KOREN, B.: Multigrid and defect correc­
tion for the steady N avier-Stokes equations,
Journal of Computational Physics, 87, 25-46
(1990).

(12] KOREN, B. HEMKER, P.W. AND ZEEUW,
P. M. DE: Semi-coarsening in three directions
for Euler-flow computations in three dimen­
sions, in: Euler and Havier-Stokes Solvers Us­
ing Multi-Dimensional Upwind Schemes and
Multigrid Acceleration (DECONINCK, H. AND
KOREN, B., EDS.), Notes on Numerical Fluid
Mechanics, 57, 547-567, Vieweg, Braun­
schweig (1997).

[13] MULDER, W.A.: A new multigrid approach
to convection problems, Journal of Computa­
tional Physics, 83, 303-323 (1989).

(14] NAIK, N.H. AND ROSENDALE, J. VAN:
The improved robustness of multigrid ellip­
tic solvers based on multiple semicoarsened
grids, SIAM Journal on Numerical Analysis,
30, 215-229 (1993).

[15] OSHER, S. AND SOLOMON, F.: Upwind dif­
ference schemes for hyperbolic systems of con­
servation laws, Mathematics of Computation,
38, 339-374 (1982).

[16] RADESPIEL, R. AND SWANSON, R.C.:
Progress with multigrid schemes for hyper­
sonic flow problems, Journal of Computational
Physics, 116, 103-122 (1995).

(17] RUDE, U.: Multilevel, extrapolation, and
sparse grid methods, in: Multigrid Meth­
ods IV, (HEMKER, P.W. AND WESSELING,
P. W. , EDS.), Proceedings of the Fourth Euro­
pean Multigrid Conference, Amsterdam, 1993,
International Series of Numerical Mathemat­
ics, 116, 281-294, Birkhauser, Basel (1994).

898

Table 1: Complexity and cost (of the ONERA M6 case) for the three types of grid-of-grids.
grid-of-grids method full semi-sparse sparse
complexity O(N3) O(N2 log"' N) O(Nlog~ N)
(scaled) CPU time 150 35 1

Table 2: The elapsed times (in hours:minutes:seconds) for the sparse-grid-of-grids approach.
level 1st time 2nd time 3rd time 4th time 5th time

1 11.09 11.22 11.23 11.28 13.20
sequential 2 1:35.54 1:35.87 1:36.56 1:39.82 1:41.22

3 9:14.00 9:14.73 9:15.53 9:16.42 9:28.44
1 5.73 5.78 5.81 5.94 7.02

parallel 2 33.19 33.25 34.11 34.82 35.58
3 2:45.52 2:46.28 2:47.62 2:48.29 2:51.30

Table 3: The elapsed times (in hours:minutes:seconds) for the semi-sparse-grid-of-grids approach.
level 1st time 2nd time 3rd time 4th time 5th time

2 50.07 50.26 50.47 50.55 52.20
sequential 4 17:56.17 17:59.29 18:02.62 18:04.39 18:06.74

6 4:33:03.59 4:33:07.66 4:37:07.13 4:38:10.83 4:51:59.52
2 26.47 26.50 27.70 27.80 28.48

parallel 4 5:42.72 5:53.15 5:59.63 6:03.39 6:12.96
6 1:13:34.67 1:13:54.51 1:15:04.86 1:15:12.74 1:23:22.07

899

a. Full coarsening. b. Multiple semi-coarsening.

Figure 1: Two types of 3D coarsenings.

0 7""':-===--=-.::~::~~~~~~--=3-•

2

1

2 4 6 10

relaxation cycles

a. Single-grid.

~"'
O I
..., ., _, .,
;:l
-0
·- <O "'I

Cl) ...
~ .,,
0"' -,

3

2

1

2 4 6 8

FAS-cycles

10

b. Standard multigrid.

Figure 2: Convergence behaviors of two solution methods, ONERA-M6 half-wing at M 00 = 0.84,
0: = 3.06°, !1Amax = (8 X 2 X 2) X 2Amax_grid, Amax = 1, 2, 3.

0 0

~"' ~"'
0 I
..., .,
-; I 3
;:l

2 -0 ·-.,
"' I
Cl)

-.::. ..
0"' 1 - I

0

I

0 2 4 6 10

FAS-cycles

a. With defect-dependent prolongation
weights.

O I
...,
"
-;. I

;;
-0
·- (0 "' I

Cl)

..::,
,0
0 ., - I

0

I

0

3

2

1

2 4 6 8 10

FAS-cycles

b. With fixed prolongation weights.

Figure 3: Convergence behaviors of two semi-coarsened multigrid methods, ONERA-M6 half-wing at
Moo= 0.84, 0: = 3.06°, olmo.x,mmax,nmax = (8 X 21max) X (2 X 2mmax) X (2 X 2nmax)-grid, lmax = ffimax =
nmax = 1, 2, 3.

900

0

~"'
0 I
.., .,
'- ...
';;; I

::,
'C -~"'
"' I

'" '-
~ ..
0"' - I

0

I

a 2 4 6

FAS-cycles

3

2

1

10

Figure 4: Convergence behavior of semi-coarsened multigrid method with fixed prolongation weights.
V-cycles and level-by-level nested iteration, for ONERA-M6 half-wing at M00 = 0.84, a = 3.06°,
nlmox,mmax,nmax = (8 x 21m•x) x (2 x 2mmax) x (2 x 2nmax)-grid, lmax = ffimax = nmax = 1, 2, 3.

0

C\l

ID

ci

0

c::i

a. Full.

n

t
' ' ' ' '

/ max

b. Semi-sparse.

' ' 0'0
,'0',

, ' , ' , '
l max ,.,_,_, -----'-°'" / ma,

/7 ~Ill

c. Sparse.

Figure 5: Cubic, full grid-of-grids and the corresponding sparse and semi-sparse grid-of-grids.

0 ~ ---·-·-------·-··
Cl.l C\l

~ ~
....... ,, ~ I

>-,~ >-,~

I /J

I '1 ~ 'A ~ 1.00 I
0 0 , I

I I '
I I

0.95 I 10.95
~ ~
0 0

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0

X X X

,1. Full. b. Semi-sparse. c. Sparse.

Figur<' G: ::--.Iac-h nmttl>C'r distributions on upper half-wing surface for the three types of grid-of-grids.

901

1.5

1 20

a. n = 4.

0
N

0

1

b. n = 8.

20

0
N

0

1 20

c. n = 16.

Figure 7: Distributions of speed-up factors which can be expected when running a code containing m 1

parallel processes on a multi-processor machine (n > 1), instead of running the sequential version of
that code on a single processor from that machine (n = 1, m 1 = 1), both applications with m2 other
processes running simultaneously.

0
N

0

1

I

:./'' I ·o,

20

a. n =4.

0
N

0

1 20

b. n= 8.

0
N

0

1 20
m1

c. n = 16.

Figure 8: Distributions of speed-up factors which can be expected when running a code containing
m1 parallel processes together with m 2 other processes (m2 > 0), instead of with no other processes
(m2 = 0), both runs on an n-processor machine.

902

