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Abstract 

A significant difficulty of standard multigrid meth­
ods for 3D problems, when compared to application 
to 2D problems, is that the requirements to be im­
posed on the smoother are much more severe. As 
a remedy, we investigate three different possibili­
ties of multiple semi-coarsening: full, sparse and 
semi-sparse. Numerical results are presented for a 
standard 3D transonic test case. The good paral­
lel computing properties of the sparse-grid and the 
semi-sparse-grid approaches are also investigated. 
The first speed-up results are promising. The pa­
per contributes to the state-of-the-art in efficiently 
solving 3D fluid-flow equations. 

1 Introduction 

of full-grid-of-grids semi-coarsening is that many 
grid cells are needed in total. With N 3 the total 
number of cells on the finest grid 01max,mmax,nmax, 

in 3D, asymptotically standard multigrid uses !N3 

grid cells versus 8N3 cells for the full-grid-of­
grids approach. An efficiency improvement can be 
achieved by thinning out the grid-of-grids, e.g. by 
deleting fine grids. This may lead to the sparse­
grid-of-grids and the semi-sparse-grid-of-grids ap­
proaches, to be discussed in this paper. 

The contents of the paper is as follows. In Sec­
tion 2, we briefly describe the 3D discrete equations 
and the 3D test case to be considered throughout 
the paper. In Section 3, we describe the four differ­
ent multigrid strategies to be compared: (i) stan­
dard multigrid, (ii) full-grid-of-grids multigrid, (iii) 
sparse-grid-of-grids multigrid and (iv) semi-sparse­
grid-of-grids multigrid. Per type of multigrid strat­
egy, we illustrate the performance for the test case 
chosen. Finally, in Section 4, we exploit the good 
parallelization properties of the sparse-grid and the 
semi-sparse-grid method, a speed-up analysis and 
speed-up results are presented. 

With standard multigrid methods, the total 
amount of work on the coarse grids is relatively 
smaller in the 3D case than in the 2D case. How­
ever, the reverse side is that in 3D only a relatively 
small amount of error components can be annihi­
lated by the coarse-grid corrections. When cells are 
used as grid elements, in 3D, standard coarsening 2 
implies restriction from each set of 2 x 2 x 2 cells to 

Test set 

Equations a single cell only. Because the set of eight cells can 
support more high-frequency errors than the two­
dimensional 2 x 2-set, 3D standard multigrid im­
poses stronger requirements on the smoother than 
2D star_idard multigrid. Standard multigrid may 
not perform satisfactory for 3D generalizations of 
2D problems, for which it does perform well. A 
fix might be found in deriving a more powerful 
smoother, keeping the other components of the nu­
merical method the same. A more natural remedy 
is not to apply standard, i.e. full coarsening, but 
to use multiple semi-coarsening instead (Figure 1). 
When multiple semi-coarsening is applied to solve 
a system of equations defined on the single, finest 
grid Dtmax,mmax,nmax, and when all coarser grids 
01,m,n, level= l + m + n < lmax + mmax + nmax 
contribute to the solution process, we speak of full­
grid-of-grids semi-coarsening [12]. A disadvantage 
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2.1 

The steady, non-isenthalpic, 3D Euler equations of 
gas dynamics are considered. The equations are 
discretized in their integral form. The computa­
tional domain D is divided, in a regular manner, 
into cell-centered finite volumes. These finite vol­
umes are arbitrarily ~haped hexahedra. Following 
the Godunov approach, along each cell face the 
flux vector is assumed to be constant and to be 
determined by a uniformly constant left and right 
state. To solve the resulting 1D Riemann problem, 
we apply the 3D extension of the 2D P-variant [8] 
of Osher's approximate Riemann solver [15]. For 
the left and right cell-face states, we take the first­
order accurate approximations. At a later stage, 
these approximations can be replaced by higher­
order accurate ones, in which case also limiters 
can be introduced. We emphasize that the major 
challenge is to know how to solve first-order accu­
rate discretized, steady 3D Euler equations at ef-
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ficient, grid-independent convergence rates. Once 
this is known, solving higher-order accurate dis­
crete, steady 3D Euler equations can be done by 
a standard procedure, e.g. by a defect correction 
method as outer and the efficient multigrid method 
as inner iteration [10, 11]). 

2.2 Flow problem 

As test case we consider the ONERA-M6 half-wing 
at M00 = 0.84, a = 3.06°. The grids used are of 
C-0-type. (Graphs are given in (12].) The wing 
as well as the grids are symmetric with respect to 
the plane through the wing's leading and trailing 
edges. In the results to be presented hereafter, the 
finest grid considered is a 64 x 16 x 16-grid. 

3 M ultigrid methods and re-
sults 

3.1 Standard multigrid 

3.1.1 Method 

First we briefly describe the standard 3D multigrid 
algorithm. The multigrid methods to be described 
hereafter are based on it. We use the 3D general­
ization of the optimal 2D multigrid approach, that 
was originally described in [7, 8]. As the smoothing 
technique for the first-order discrete Euler equa­
tions, collective symmetric point Gauss-Seidel re­
laxation is applied. The four different symmetric 
relaxation sweeps that are possible on a regular 3D 
grid, are performed alternatingly. At each volume 
visited during a relaxation sweep, the system of five 
nonlinear equations is solved by Newton iteration. 

As standard multigrid method we apply the non­
linear version (FAS, (3]), preceded by nested itera­
tion (FMG, [3]). For this we construct a nested set 
of grids such that each finite volume on a coarse 
grid is the union of 2 x 2 x 2 volumes on the next 
finer grid. Let no, 01' ... ' nAmax be the sequence of 
such nested grids, with no the coarsest and nAmax 
the finest grid. Then, nested iteration is applied 
to obtain a good initial solution on nAmax' whereas 
nonlinear multigrid is applied to converge to the 
solution on the finest grid, qAmax. The first iterand 
for the nonlinear multigrid cycling is the solution 
obtained by nested iteration. We proceed by dis­
cussing both stages in more detail. 

repeated until the highest level (finest grid 0>-.maJ 
has been reached. 

Nonlinear multigrid iteration Let N>-.(q;.) = 
0 denote the nonlinear system of first-order accu­
rate discretized equations on 0>-., then a single non­
linear multigrid cycle is recursively defined by the 
following steps: 

1. Improve on O;. the latest obtained solution q;. 
by application of npre relaxation sweeps. 

2. Compute on the next coarser grid n>-.-i 
the right-hand side r;._1 = N;._ 1 (q>-.-i) -
1;-1 N>-.(q;.), where 1{-1 is a restriction op­
erator for right-hand sides. 

3. Approximate the solution of N;._ 1 (q;._ 1 ) = 
T>-.-1 by the application of nFAS nonlinear 
multigrid cycles. Denote the approximation 
obtained as ih-1-

4. Correct the current solution by: q>-. = q;. + 
-).. -;_ 
J>-.-i (<h-1 - q>-.-1), where J>..-i is a prolonga-
tion operator for solutions. 

5. Improve again Q>.. by application of npost re-
laxations. 

Steps (2),(3) and (4) form the coarse-grid correc­
tion. The restriction operator 1t1 and the prolon­
gation operator 1;_1 are the usual operators that 
are consistent with the piecewise constant approx­
imation (for more details, see [12]). 

3.1.2 Results 

Convergence results are given in Figure 2. In 
both graphs, the residual ratio is defined as 
IIRi ll1,/IIR1 IIL,, where Riis the mass defect of the 
discrete Euler equations and where i refers to the 
status after the i-th iteration. For the standard 
multigrid convergence results presented in Figure 
26, we took npre = 0, npost = 1, i.e. sawtooth­
cycles. Though - of course - to a lesser extent than 
the single-grid convergence results (Figure 2a), the 
standard multigrid method's convergence results 
appear to be rather grid-dependent (Figure 2b). 
As mentioned in Section 1, the expected cure is 
to apply multiple semi-coarsening instead of stan­
dard, i.e. full coarsening. In the next sections we 
proceed by discussing this alternative coarsening. 

Nested iteration The nested iteration starts 3.2 Full-grid-of-grids multigrid 
with a user-defined initial estimate for qo, the so- Method 
lution on the coarsest grid. To obtain an initial 3·2·1 

solution on a finer grid fl,x+1, first the solution on Pioneering work has been done by Mulder (13], who 
the coarser grid fl>.. is improved by a single nonlin- has introduced multiple semi-coarsening as a fix 
ear multigrid cycle. Hereafter, this solution is pro- to the poor convergence results observed in com­
longated to the finer grid n>-.+1. These steps are puting nearly grid-aligned flows governed by the 

893 



steady, 2D Euler equations. In [16], Radespiel and 
Swanson embroider on Mulder's approach for the 
steady, 2D Euler equations. Here we consider mul­
tiple semi-coarsened multigrid for the steady, 3D 
Euler equations, and pay particular attention to 
the prolongation operators. 

Also in the case of the semi-coarsened multi­
grid method we use FAS as the basic multigrid 
algorithm, and on each grid collective symmet­
ric point Gauss-Seidel relaxation is applied as the 
smoothing technique. As mentioned in Section 1, 
in the semi-coarsened multigrid method, the se­
quentially ordered set of grids nA, >. = 0, ... , Amax, 
is replaced by a partially ordered set of grids 
01,m,n, l = 0, 1, ... , lmax, m = 0, 1, ... , mmax, 
n = 0, 1, ... , nmax, with Oo,o,o the coarsest and 
f21max,mm..x,nmax the finest grid. In the full-grid-of­
grids variant of multiple semi-coarsening, all grids 
01,m,n play a role in the solution process. The nest­
ing and the semi-coarsening relation between these 
grids and more data structure aspects are described 
in [9]. 

Nested iteration Also with semi-coarsening, 
nested iteration (FMG) is applied to obtain a good 
initial solution on the finest grid. We proceed to 
discuss the present nested iteration and nonlinear 
multigrid iteration in more detail. The nested it­
eration starts with a user-defined initial estimate 
on the coarsest grid, 0 0,0,0 , which is improved by 
relaxation. To continue, the following two options 
exist: 

• The approximate solution Qo,o,o is prolongated 
to all grids up to and including level 3, with 
the 3D prolongation according to formula (37) 
in [6] (see [12] for the implementation in the 
present 3D Euler context). Next, the solution 
Q1,i,1 is improved by a single nonlinear multi­
grid cycle and prolongated to all grids up to 
and including level 6. For simplicity, we as­
sume that lmax = mmax = nmax· Then, the 
above process can be repeated in a straightfor­
ward manner up to and including level 3lmax• 
Notice that solution improvements are only 
made at Oo,o,o, 01,1,1, 02,2,2, ... 

• The approximate solution Qo,o,o is prolongated 
to the three grids 01,0,0, Oo,1,0 and Oo,0,1 on 
the next level, with the same 3D prolongation 
as mentioned above. Next, the three solutions 
Q1,o,o, Qo,1,0 and Qo,0,1 are first improved by 
a single nonlinear multigrid cycle and then 
prolongated to all six grids on level 2. The 
above process is repeated up to and including 
level lmax + mmax + nmax· Notice that here, 
as opposed to the previous strategy, solution 
improvements are made on all grids, level-by-_ 

Nonlinear multigrid iteration A single non­
linear multigrid cycle on level l + m + n is recur­
sively defined by the following steps: 

1. Compute the same right-hand sides as in stan­
dard multigrid, on all grids at the next coarser 
level (l+m+n)-1, but use as restriction oper­
ator the natural one described in [12] (natural 
because it just sums defects over the sub-cells). 

2. Approximate the solutions on the coarser level 
(l + m + n) - 1 by the application of a single 
nonlinear multigrid cycle. 

3. Correct the current solutions on level l+m+n 
by one of two alternative correction prolonga­
tions. The first prolongation can be seen as 
an extension to 3D and to systems of equa­
tions, of the prolongation due to Naik and Van 
Rosendale [14]. It uses prolongation weights 
that are proportional to the absolute values of 
the restricted defect components. The second 
correction prolongation is the hierarchical one 
proposed in [6], equation (36). It has a-priori 
known prolongation weights + 1 and -1. 

4. Improve the solutions on level l + m + n by the 
application of npost relaxation sweeps. 

3.2.2 Results 

We first compare the two correction prolongations 
just mentioned: the one with defect-dependent 
weights and the one with fixed hierarchical weights. 
The nested iteration applied is the first one de­
scribed in Section 3.2.1. Convergence results are 
shown in Figure 3. In the two graphs, the residual 
ratio is defined as IIRiFAsll1)IIR1 ll11 , where RiFAs 
is the first component (i.e. the mass component) 
of N1max,fflmax,nm.,,_(qfFAS m n ) and where iFAS 
refers to the status mcrliet'rhemi;As-th FAS-cycle. 
Similar as for the standard multigrid convergence 
results (Figure 2b), here we also used sawtooth cy­
cles (npre = 0, npost = 1). The improvement of 
both semi-coarsened multigrid methods with re­
spect to the standard multigrid method is signif­
icant. Of both methods, the one with the fixed 
hierarchical prolongation weights (Figure 3b) per­
forms better than the one with defect-dependent 
prolongation weights (Figure 3a). 

The convergence results may still be further im­
proved. In Figure 4 we present results for the same 
solution strategy as that of Figure 3b, but now with 
V-cycles (npre = npost = 1) and with the more 
elaborate, level-by-level nested iteration described 
in Section 3.2.1. 
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3.3 

3.3.1 

Sparse-grid 
semi-sparse-grid multigrid 

Methods 

and 

As mentioned in Section 1, a disadvantage of full­
grid-of-grids semi-coarsening is that 8N3 grid cells 
are needed in total (N3 being the number of 
grid cells on Dtmax,mmax,nmaJ· An efficiency im­
provement can be achieved by deleting fine grids. 
Then, if no finest grid is available anymore, ac­
curate approximations can still be constructed ei­
ther by extrapolation or by the use of hierarchical 
bases. Most ambitious is the sparse-grid-of-grids 
approach. With the full grid-of-grids depicted as a 
cube in Figure 5a, the corresponding sparse grid­
of-grids is the subset given in Figure 5c, only grids 
D1,m,n, level::; lmax contribute. The reduction in 
the numbers of grid cells is enormous. The compu­
tational complexity of the sparse-grid-of-grids ap­
proach is O(Nlog2 N), i.e. almost the complexity 
of a 1D problem only! Theoretically, the sparse­
grid-of-grids approach has the best ratio of discrete 
accuracy over number of grid points used [5], the 

the sparse-grid approach, is that the 3D extrapo­
lation rule can be applied for all remaining grids 
to be filled, including the grids along the bound­
aries of the grid-of-grids. In the sparse-grid ap­
proach this is not possible. There, for all boundary 
grids in between lmax and 2lmax one has to make 
a compromise, for instance by applying a 2D or 
even a lD combination extrapolation, which will 
inevitably result in some additional loss of accu-
racy. 

In the Figures 6a-c we give an impression of 
the accuracy of the numerical solutions, obtained 
by the three different grid-of-grids approaches de­
picted in Figure 5. The reference solution is the 
fully converged O(h) finest grid solution (Figure 
6a). It has been obtained on a 64 x 16 x 16 C-0-type 
grid, it is the target for both solutions presented in 
Figures 6b and 6c. Of course, the semi-sparse grid 
solution (Figure 6b) comes closer to the reference 
solution. The sparse-grid solution (Figure 6c) is 
far off, but it has been obtained at extremely low 
computational cost as compared to both the semi­
sparse-grid approach and the full grid-of-grids ap­
proach. In Table 1 we give the relative computing 
times used. 

loss of accuracy is only a logarithmic factor when 
compared with the full-grid-of-grids approach. In 
practice, although very fast, the accuracy of the 
sparse-grid approximations is slightly disappoint- 4 
ing. It appears that more accurate approximations Parallelization of sparse­

grid and semi-sparse-grid 
multigrid 

are obtained not by only increasing the number of 
levels, but also by dropping the cells with extreme 
aspect ratios. This leads to the compromise of 
the semi-sparse grid-of-grids. This uses the family 
of grids D1,m,n, level::; 2lmax, max(l, m, n) ::; lmax 
(Figure 5b), which (asymptotically) still has a com­
putational complexity which is smaller than that of 
the single-grid approach, viz. O(N2 logN), i.e. al­
most the complexity of a 2D problem. So, though 
to a lesser extent than the genuine sparse-grid ap­
proach, it still is a cure to cubic complexity, the 
'curse of 3D'. 

3.3.2 Results 

The numerical ingredients of both approaches are 
identical to those in the full-grid-of-grids approach 
applied in obtaining Figure 4. Exactly the same 
method is applied, with as the only difference 
that in the sparse-grid case the multi-level semi­
coarsening solver stops its work at level lmax· From 
there the solution is prolongated to the very finest 
grid at level 3lmax· The prolongation is done by 
the 3D extension of the combination extrapolation 
given on p. 290 in [17]. In the semi-sparse-grid ap­
proach the semi-coarsened multi-level algorithm is 
only stopped at level 2lmax and from there, by the 
same combination technique, the finest-grid solu­
tion at 3lmax is computed. A particular advantage 
of the semi-sparse-grid approach as compared to 

4.1 Natural concurrency 
methods 

of both 

The pre- and post-relaxations, steps 1 and 5 in 
the nonlinear multigrid iteration (Section 3.1.1), 
are done by a procedure (subroutine scanlv, see 
[4]) for performing a user-defined operation on all 
grids 01,m,n at grid level l + m + n. In this case the 
user-defined procedure is the point Gauss-Seidel re­
laxation on all cells of grid 01,m,n· Because the re­
laxation subroutine only reads and writes data con­
cerning its own grid, the relaxations can be done 
directly in parallel for all grids visited at a certain 
grid level. Given the fact that almost all computing 
time consumed by the total program, is used in the 
relaxations, parallel implementation is expected to 
pay off. 

4.2 The Manifold coordination lan­
guage 

Parallelization is done through the MANIFOLD co­
ordination language. MANIFOLD is a language 
for managing complex, dynamically changing in­
terconnections among sets of independent, con­
current, cooperating processes [l]. MANIFOLD is 
based on the IWIM model of communication [2]. 
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The basic concepts in the IWIM model are pro­
cesses, events, ports and channels [4]. 

A MANIFOLD application consists of a (poten­
tially very large) number of processes running on 
a network of heterogeneous hosts, some of which 
may be parallel systems. Processes in the same ap­
plication may be written in different programming 
languages. 

The MANIFOLD system consists of a compiler, a 
run-time system library, a number of utility pro­
grams, libraries of built-in and pre-defined pro­
cesses, a link file generator called MLINK and a 
run-time configurator called CONFIG. The sys­
tem has been ported to several different plat­
forms (e.g. SGI 5.3, SUN 4, Solaris 5.2, and IBM 
SP /1). MLINK uses the object files produced by 
the (MANIFOLD and other language) compilers 
to produce link files needed to compose the exe­
cutable files for each required platform. At the run 
time of an application, CONFIG determines the ac­
tual host(s), where the processes (created in the 
MANIFOLD application) will run. 

The library routines that comprise the inter­
face between MANIFOLD and processes written in 
other languages ( e.g. C), automatically perform the 
necessary data format conversions when data are 
routed between various different machines. 

4.3 Restructuring of the sequential 
3D CFD code 

The restructuring of the original sequential code 
can be described in a kind of master/slave pro­
tocol. In a coordinator process [4] we create and 
activate a master process that embodies the com­
putations of the main program of the sequential 
version. When we arrive in the master process at a 
pre- or post-relaxation, the master delegates the re­
laxations to a separate slave process, for each single 
grid visited. Each time the master needs a slave, it 
raises an event to signal the coordinator to create 
the slave. In this way a pool of slaves is set at work 
for the master. The coordinator makes the identifi­
cation of the slave known to the master by sending 
a reference of it to the master. With this informa­
tion the master can activate the slave. Before the 
slave can really work, it should know on which grid 
(identified by the grid-of-grid coordinates n, m, l) 
it should perform the relaxation. The master has 
these coordinates available and writes them on its 
own output port. The coordinator takes care that 
the slave can read this information from its input 
port by setting up a stream between the output 
port of the master and its own input port. The 
master process continues its work and makes again 
a request for the creation of a slave process. When 
all the slaves are created and activated in this way, 
the master waits until the slaves are ready with 

the relaxation and are going to die. After this ren­
dezvous, the master continues its sequential work 
until it again arrives at a point where it wants to 
use a pool of slaves to delegate the relaxations to. 

In MANIFOLD we can easily realize the mas­
ter/slave protocol described above in a general way 
in which the master and slave are parameters of the 
protocol. In this protocol we only describe how in­
stances of the master and slave process definitions 
should communicate with each other. For the pro­
tocol it is irrelevant to know what kind of com­
putations are performed in the master and slave. 
What is indeed important for the protocol is that 
the in/output and the event behavior of the master 
and slave are tuned to the protocol. E.g., the proto­
col manifold is only able to create a slave when the 
master requests for its creation by raising an event. 
Also, the master should write the data needed by 
the slave, on its own output port and the slave 
should read this information from its own input 
port, etc. For a stepwise description of the be­
havior interface of the master and slave manifold, 
and other details about the restructuring of the 
sequential code, we refer to [4]. In the next two 
sections we proceed by giving a speed-up analysis 
and speed-up results. 

4.4 Speed-up analysis 

All experiments have been run on a single multi­
processor machine in a real contemporary comput­
ing environment, i.e. an environment in which it 
cannot be gua!"anteed that one is the only user. 
In such an environment, care should be taken in 
interpreting speed-up numbers. This is shown in 
the following multi-user, single-machine analysis, 
in which we make these assumptions: 

• the only processes which are significant with 
respect to the use of CPU time are computing 
processes, 

• all computing processes get equal time slices 
from the scheduler of the machine and they 
totally consume these, 

• the computational work embodied in a sequen­
tial program can be completely and equally 
distributed over parallel processes. 

Then, with n the number of processors in a ma­
chine (n 2: 1), m 1 the number of processes our 
own application consists of (m1 2: 1; m1 = 1 rep­
resenting the sequential application) and m2 the 
number of processes from other users (m2 2: 0), we 
can write as expression for the investment of CPU 
power p in our own application: 

(1) 
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With the investment of CPU power inversely pro­
portional to the elapsed computing times needed, 
from (1), expressions for various speed-up factors 
can be derived. As examples, we look at two of 
these factors. 

The first speed-up factor relates the computing 
times of our parallel application run on a multi­
processor machine (n > 1, m1 > 1), to those of the 
sequential version run on a single-processor from 
that machine (n = 1, m1 = 1), both runs with 
the same number m2 of other processes. For the 
corresponding speed-up factor, to be denoted by 
Sn,m1 , it follows 

_ p(n > l,~1 > l,m2) 
Sn,mi = p(n = 1, m1 = 1, m 2) = 

{ n(l + m2) m1~1m2, 

m1(l+m2), 
ifm1 +m2 > n 
if m1 + m2 ~ n · 

(2) 

Note that for the multi-user (m2 > O) situation, 
the speed-up sn,m1 can be much larger than the 
number of processors n for the case m 1 + m 2 > n, 
and is always larger than the number of processes 
m1 for the case m1 + m2 ~ n. In Figure 7, dis­
tributions of sn,m 1 are depicted for a 4-,8- and 16-
processor machine, respectively. ( Of course, the 
speed-up factors are defined at the integer points 
(m 1 , m2) only, the iso-lines as drawn in between 
these points are only meant to help in recognizing 
the discrete speed-up patterns.) 

The second speed-up factor to be considered re­
lates the computing times of our application when 
run on a machine with other processes running si­
multaneously, to those run on the same machine, 
but with no other processes. For the corresponding 
speed-up factor, to be denoted by Sm2 , it follows 

p(n,m1,m2 = 0) 
8m 2 = p(n,m1,m2 > 0) = 

All our experiments have been done during quiet 
periods of the system (m2 ~ 0). Therefore, since 
we mostly had m1 > n, in our case Sm2 ~ 1 holds. 

4.5 Speed-up results 

All experiments have been run on an SGI Chal­
lenge L with four 200 MHZ IP19 processors, each 
with a MIPS R4400 processor chip as CPU and a 
MIPS R4010 floating point chip for FPU. This 32-
bit machine has 256 megabytes of main memory, 
16 kilobytes of instruction cache, 16 kilobytes of 
data cache, and 4 megabytes of secondary unified 
instruction/data cache. The machine runs under 
IRIX 5.3, is on a network, and is used as a server 
for computing and interactive jobs. Other SGI ma-
chines on this network function as file servers. 

Computations have been done for both the 
sparse- and the semi-sparse grid approach. For the 
sparse-grid approach, the finest grid levels consid­
ered are: 1,2 and 3, for the semi-sparse-grid ap­
proach, these are: 2,4 and 6. (For both approaches, 
the dynamic creation of slaves in different work 
pools is shown in [4].) 

The results of our performance measurements for 
the sparse- and the semi-sparse grid approach are 
given in Tables 2 and 3, respectively. They show 
the elapsed time versus the grid level. To even 
out such unpredictable effects as network traffic 
and file server delays, etc., we have run the two 
versions of the application on each of the three 
levels close to each other in real time, and for 
each version of the application, five times on each 
level. From Tables 2 and 3, it appears that the 
MANIFOLD version takes good advantage of the 
parallelism offered by the four processors of the ma­
chine. For the sparse-grid and the semi-sparse-grid 
application, the MANIFOLD-code times are about 
3.25 and 3.75 times smaller, respectively, than the 
sequential-code times. So, in both cases we have 

m1 ' { ~ m1+m2 
n , 

if m1 > n 
if m 1 ~ n and m1 + m2 > n 
if m1 + m2 ~ n 

(3) obtained a nearly linear speed-up. 

1, 

In Figure 8, distributions of Sm2 are depicted for a 
4-,8- and 16-processor machine, respectively. For­
mula (3) may be practically relevant in compara­
tive studies. With (3), from elapsed times mea­
sured in an environment in which a known num­
ber of other processes have been running simul­
taneously, one may approximately calculate the 
corresponding times in a hypothetical single-user 
(m2 = 0) environment. With the theoretical Sm2 

computed from (3) and with the real (elapsed) time 
trea1(m2 > O) measured, we may estimate the cor­
responding elapsed time in single-user (m2 = 0) 
environment by 

5 Conclusions 

The intrinsically low computational complexity of 
sparse-grid and semi-sparse-grid techniques, plus 
the additional gains in computing time by paral­
lelization, make both methods challenging for very 
computing-intensive work. 

An interesting possibility for future research is 
the application of local 3D semi-refinement. For 
this, the relative truncation errors that are avail­
able between all grids on two consecutive grid 
levels, can serve in the grid-adaptation criterion. 
Work in this direction is in progress. 
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Table 1: Complexity and cost (of the ONERA M6 case) for the three types of grid-of-grids. 
grid-of-grids method full semi-sparse sparse 
complexity O(N3 ) O(N2 log"' N) O(Nlog~ N) 
(scaled) CPU time 150 35 1 

Table 2: The elapsed times (in hours:minutes:seconds) for the sparse-grid-of-grids approach. 
level 1st time 2nd time 3rd time 4th time 5th time 

1 11.09 11.22 11.23 11.28 13.20 
sequential 2 1:35.54 1:35.87 1:36.56 1:39.82 1:41.22 

3 9:14.00 9:14.73 9:15.53 9:16.42 9:28.44 
1 5.73 5.78 5.81 5.94 7.02 

parallel 2 33.19 33.25 34.11 34.82 35.58 
3 2:45.52 2:46.28 2:47.62 2:48.29 2:51.30 

Table 3: The elapsed times (in hours:minutes:seconds) for the semi-sparse-grid-of-grids approach. 
level 1st time 2nd time 3rd time 4th time 5th time 

2 50.07 50.26 50.47 50.55 52.20 
sequential 4 17:56.17 17:59.29 18:02.62 18:04.39 18:06.74 

6 4:33:03.59 4:33:07.66 4:37:07.13 4:38:10.83 4:51:59.52 
2 26.47 26.50 27.70 27.80 28.48 

parallel 4 5:42.72 5:53.15 5:59.63 6:03.39 6:12.96 
6 1:13:34.67 1:13:54.51 1:15:04.86 1:15:12.74 1:23:22.07 
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a. Full coarsening. b. Multiple semi-coarsening. 

Figure 1: Two types of 3D coarsenings. 
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b. Standard multigrid. 

Figure 2: Convergence behaviors of two solution methods, ONERA-M6 half-wing at M 00 = 0.84, 
0: = 3.06°, !1Amax = (8 X 2 X 2) X 2Amax_grid, Amax = 1, 2, 3. 
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b. With fixed prolongation weights. 

Figure 3: Convergence behaviors of two semi-coarsened multigrid methods, ONERA-M6 half-wing at 
Moo= 0.84, 0: = 3.06°, olmo.x,mmax,nmax = (8 X 21max) X (2 X 2mmax) X (2 X 2nmax)-grid, lmax = ffimax = 
nmax = 1, 2, 3. 
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Figure 4: Convergence behavior of semi-coarsened multigrid method with fixed prolongation weights. 
V-cycles and level-by-level nested iteration, for ONERA-M6 half-wing at M00 = 0.84, a = 3.06°, 
nlmox,mmax,nmax = (8 x 21m•x) x (2 x 2mmax) x (2 x 2nmax )-grid, lmax = ffimax = nmax = 1, 2, 3. 
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Figure 5: Cubic, full grid-of-grids and the corresponding sparse and semi-sparse grid-of-grids. 
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Figure 7: Distributions of speed-up factors which can be expected when running a code containing m 1 

parallel processes on a multi-processor machine (n > 1), instead of running the sequential version of 
that code on a single processor from that machine (n = 1, m 1 = 1), both applications with m2 other 
processes running simultaneously. 
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Figure 8: Distributions of speed-up factors which can be expected when running a code containing 
m1 parallel processes together with m 2 other processes (m2 > 0), instead of with no other processes 
(m2 = 0), both runs on an n-processor machine. 
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