
Using Coordination to Restructure Sequential Source Code
into a Concurrent Program *

C.T.H. Everaars, F. Arbab, and B. Koren
Centrum voor Wiskunde en Informatica (CWI)

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Kees.Everaars@cwi.nl, Farhad.Arbab@cwi.nl, and Barry.Koren@cwi.nl

Abstract

A worka.ble approach for modernization of existing
software into parallel/distributed applications is through
coarse-grain restructuring. If, for instance, entire subrou­
tines of legacy code can be plugged into a new structure,
the investment required for the re-discovery of the details of
what they do can be spared. The resulting renovated soft­
ware can then take advantage of the improved performance
offered by modern parallel/distributed computing environ­
ments, without rethinking or rewriting the bulk of their ex­
isting code.

In this paper, we discuss one of our experiments using the
coordination language MANIFOLD to restructure an existing
sequential numerical application written in Fonran 77, into
a concurrent application.

1 Introduction

A key area in software modernization is renovating aging
software systems to take advantage of today's parallel and
distributed computing environments. Interestingly, not all
"aging software" consists of the dusty decks of the so-called
legacy systems inherited from the programming projects of
the previous decades. A good deal of such software is still
being produced today in on-going programming projects
that, for one reason or another, prefer to use a tried and
true language like Fortran 77 with which they have gained
some expertise, rather than to struggle their way through
uncharted territories of parallel and distributed program­
ming tools and languages such as PVM, PARMACS, MPI,
or even High-Performance Fortran. A good deal of both
categories of such software can benefit from a restructuring
that allows them to take advantage of the increased through­
put offered by the modem parallel or distributed computing

• Partial funding for this project was provided by the National Comput­
ing Facilities Foundation (NCF), under project number NRG 98.04.

platforms.
A workable approach for modernization of such exist­

ing software into parallel/distributed applications is through
coarse-grain restructuring. If, for instance, entire subrou­
tines of legacy code can be plugged into a new structure,
the investment required for the re-discovery of the details of
what they do can be spared. The resulting renovated soft­
ware can then take advantage of the improved performance
offered by modem parallel/distributed computing environ­
ments, without rethinking or rewriting the bulk of their ex­
isting code. Our approach is simple and is in fact a cut­
and-paste method. First, we try to identify and isolate com­
ponents in the legacy source code (the cut). Second, we
glue them together by writing coordinator modules (glue
modules) in a coordination language (the paste). We have
used Manifold as the glue language. Manifold is a gen­
eral purpose coordination language especially designed to
express cooperation protocols among components in com­
ponent based systems.

Our point of departure is two different pieces of existing
sequential Fortran code from computational fluid dynamics
(CFO). These two pieces of code were developed at CWI
by a group of researchers in the department of Numerical
Mathematics, within the framework of the BRITE-EURAM
Aeronautics R&D Programme of the European Union. Both
implement a multi-grid solution algorithm (15, 12, 14) for
the Euler equations representing three-dimensional, steady,
compressible flows. In the first piece of code, the prob­
lem is solved using the so-called sparse-grid method, and
the other uses the so-called semi-sparse-grid method [8].
The developers of these programs found their algorithms to
be effective (good convergence rates) but inefficient (long
computing times). As a remedy, they looked for methods
to restructure their code to run on multi-processor machines
and/or to distribute their computation over clusters of work­
stations.

Applying our cut-and-paste method to these two pro­
grams results in one generally applicable coordinator mod­
ule that can restructure both sequential programs into para!-

lei applications (which run on a shared memory machine) as
well as distributed applications (which now run on a cluster
of workstations). We have reported earlier about the restruc­
turing of these Fortran programs [6]. However, the coordi­
nator modules developed there were only able to restructure
the source code into a parallel application.

Clearly, the details of the computational algorithms used
in the original program are too voluminous to reproduce
here, and such computational detail is essentially irrelevant
for our restructuring. Instead, we use a simplified pseudo­
program here that has the same logical design and structure
as the original program

The rest of this paper is organized as follows. In section 2
we give a brief introduction to the MANIFOLD language.
In section 3 we present the simplified pseudo-program as
distilled from the original Fortran 77 program, explore its
structure and try to identify and isolate software compo­
nents in it. This leads us to a new concurrent scheme for the
simplified pseudo-program. In section 4, we describe the
paste phase in the software renovation process and present
our generic gluing modules written in the MANIFOLD coor­
dination language. In section 5 we test those generic gluing
modules with a "toy" example that has the same structure
as the original sequential Fortran code and we also give
some performance results. The actual restructuring of the
two original sequential programs can be found in section 6.
Finally, the conclusion of the paper is in section 7.

2 The Manifold coordination language

In this section, we give a brief overview of MANIFOLD. It
is beyond the scope of this paper to present all the details of
the syntax and semantics of the MANIFOLD language 1.

MANIFOLD is used to develop concurrent software, re­
gardless of whether it runs on a parallel or a distributed
platforms. MANIFOLD is used to develop concurrent soft­
ware, regardless of whether it runs on a parallel or a dis­
tributed platforms. MANIFOLD is not a parallel programming
language; it is a coordination language as opposed to a com­
putation language [11]. MANIFOLD is a complete language
(as opposed to a language extension, like Linda [10]) for
programming the cooperation protocols of concurrent sys­
tems. These protocols describe the routing of the informa­
tion between various processes that comprise a concurrent
application, and the dynamic changes that take place in such
routing networks in reaction to events.

MANIFOLD is based on the JWIM (Idealized Worker Ide­
alized Manager) model of communication [1]. The basic
concepts in the IWIM model (and thus also in MANIFOLD) are
processes, events, ports, and channels (in MANIFOLD called
streams). In IWIM, a process can be regarded as a worker

1 For more infonnation, refer to our html pages located at
http://www.cwi.nl/projects/manifold/manifold.html.

process or a manager (or coordinator) process. An applica­
tion is built as a (dynamic) hierarchy of worker and manager
processes. Lowest in the hierarchy are pure worker pro­
cesses that do not do any coordinating activities. Highest in
the hierarchy are pure coordinators. A process between the
lowest and highest level may consider itself a worker doing
a task for a manager higher in the hierarchy, or a manager
coordinating processes lower in the hierarchy.

Programming in MANIFOLD is a game of dynamically cre­
ating process instances and (re)connecting the ports of some
processes via streams (asynchronous channels), in reaction
to observed event occurrences. Its style reflects the way one
programmer might discuss his interprocess communication
application with another programmer on a telephone (let
process a connect process b with process c so that c can get
its input; when process b receives event e, broadcast by pro­
cess c, react to that by doing this and that; etc.). As in this
telephone call, processes in MANIFOLD (in this case b and c)
do not explicitly send to or receive messages from other pro­
cesses. Processes in MANIFOLD are treated as black-boxes
that can only read or write through the openings (called
ports) in their own bounding walls. It is the responsibil­
ity of a worker process to perform a (computational) task.
A worker process is not responsible for the communication
that is necessary for it to obtain the proper input it requires
to perform its task (it simply reads this information from
its own input port), nor is it responsible for the communi­
cation that is necessary to deliver the results it produces to
their proper recipients (it simply writes this information to
its own output port). In general, no process in !WIM is re­
sponsible for its own communication with other processes.
It is always the responsibility of a third party-a coordina­
tor process or manager-to arrange for and to coordinate
the necessary communications among a set of worker pro­
cesses. This third party sets up the communication channel
between the output port of one process and the input port
of another process, so that data can flow through it. This
setting up of the communication links from the outside (ex­
ogenous coordination) is very typical in MANIFOLD and has
several advantages. One important advantage is that it re­
sults in a clear separation between the modules responsible
for computation (the workers) and the modules responsi­
ble for coordination (the managers). This strengthens the
modularity and enhances the re-usability of both types of
modules (see [3, 1, 4]).

A MANIFOLD application consists of a (potentially very
large) number of processes that run as threads bundled
up (automatically or under user control) in one or more
operating-system-level processes (called task instances in
MANIFOLD). The different task instances in a MANIFOLD ap­
plication can run on a network of heterogeneous hosts, some
of which may be parallel systems. Processes in the same
application may be written in different programming Ian-

guages. Some of them (the so-called non-compliant atomic
processes) may not know anything about MANIFOLD, nor the
fact that they are cooperating with other processes through
MANIFOLD in a concurrent application.

The MANIFOLD system consists of a compiler called
Mc, a runtime system library, a number of utility pro­
grams, libraries of built-in and predefined processes [2], a
link file generator called MLINK and a runtime configura­
tor called CONFIG. MLINK uses the object files produced by
the (MANIFOLD and other language) compilers to produce
link files needed to compose the application-executable files
for each required platform. At runtime of an application,
coNFIG determines the actual host(s) where the processes
which are created in the MANIFOLD application will run.

The system has been ported to several different platforms
(e.g., IBM RS60000 AIX, IBM SPl/2, Solaris, Linux, Cray,
and SGI). The system was developed with emphasis on
portability and support for heterogeneity of the execution
environment. It can be ported with little or no effort to any
platform that supports a thread facility functionally equiv­
alent to a small subset of the Posix threads [13], plus an
inter-process communication facility roughly equivalent to
a small subset of PVM (9].

The MANIFOLD system automatically takes care of the
data conversion necessary for communication in a heteroge­
neous environment. These conversions are only done when
the receiving process really attempts to use the data. When
data is simply to be passed on to another process on an­
other machine, conversion is not necessary and does not
take place.

For an introduction to the MANIFOLD language see [5].

3 The Cut

progr- SBQ_CODI:
begin

P-le•
- some initialization work
- Some initial sequential computations

Beavy ccaputational job,
for i ; 1 to N

- Heavy computations that can in principle be done concurrently
... Heavy computations that cannot be done concurrently

endfor

Poatalllblea
- Some final sequential computations
- Printing of results

end

Figure 1. The schema of the sequential code

The simplified pseudo-code as distilled from the original
Fortran 77 program is shown in figure 1. The heavy com­
putations that, in principle, can be done concurrently repre­
sent the original Fortran version's pre- or post-Gauss-Seidel
relaxations on all the cells of a certain grid [8]. Because
the relaxation subroutine reads and writes data concerning

progr- CClllC_COIIB
begin

Pn>amble:
- Some initialization work
- some initial sequential computations

Bea-vy -t•tional jol,:
for i = l to N

- Heavy computations that are done by a number of workers
in a workers-pool that run concurrently

work to be done
by worker-pooli

- Heavy computations that cannot be done concurrently
end.for

Poatamble:
- Some final sequential computations
- Printing of results

Figure 2. The schema of the concurrent code

its own grid only, the relaxations can in principle be done
concurrently for all the grids to be visited at a certain grid
level. In figure 2, we show the concurrent version of the
simplified pseudo-code. There, we create, inside a loop, a
workers-pool consisting of a number of workers to which
we delegate the relaxations of the different grids. Note that
in figure 2 the number of workers in a workers-pool is not
fixed, but depends on the index i of the loop.

In a program built according to the schema in figure 2,
none of the computational processes actually runs concur­
rently until it reaches a concurrent region. Then the mul­
tiple workers (i.e., the parallel or distributed threads) in
the workers-pool begin, and the program runs concurrently.
When the program exits a concurrent region, only one sin­
gle computational process continues (now we run sequen­
tially) until the process again enters a concurrent region and
the process repeats. See figure 3 for this multiple-mode ex­
ecution model.

4 The Paste

The crux of our restructuring is to allow the computa­
tions done in the relaxations on every single visited grid, be
to carried out in separate processes. These processes can
then run concurrently in MANIFOLD as separate threads exe­
cuted by different processors on a multi-processor hardware
(e.g., a multi-processor SGI machine), or in different tasks
on a distributed platform (e.g., a network of workstations),
or a combination of the two.

We have organized the restructuring according to a mas­
ter/worker protocol in which the master performs all the

.a.

11 ~tial

~
g g ~ i

11 11 11 I I oor-=urrent

n n n u
ll
I t sequential

~
g g ~ 4

11 11 11 11 oor-=urrent

n n n u
ll
11 sequential

~
g ll ll i
11 11 l I 11 ootcurrent

n n n n
4
11 ~tial

.a.

Figure 3. Execution of a typical program with
sequential and concurrent parts.

computations of the sequential source code except the re­
laxations, which are done by the workers. In MANIFOLD, we
can easily realize this master/worker protocol in a generic
way, where the master and the worker are parameters of the
protocol. In this protocol we describe only how instances of
master and worker process definitions should communicate
with each other. For the protocol, it is irrelevant to know
what kind of computations are performed in the master and
the worker. What is indeed important for the protocol is
that the input/output and the event behavior of the master
and the worker comply with the protocol. E.g., the mas­
ter should write the data needed by the worker to its own
output port and the worker, connected by a third party (a
manager) to this port, should read this information from its

own input port. Also, the coordinator can create a worker
only when the master abides by the protocol and raises an
event to request for its creation.

Due to space limitation, we give only an informal de­
scription of the master/worker protocol in section 4.1 and a
short description of its implementation in section 4.2. For
a detailed discussion of the behavior interface of the master
and the worker and the way they are tuned to each other and
to the protocol ProtocolMW we must refer to the official
report of the NCF project [7].

4.1 The Glue

The master/worker protocol we use can be described as
follows. In a coordinator process we create and activate
a master process that embodies the computations, except
the relaxations, of the main Fortran program of the se­
quential version. Each time the master arrives at a pre- or
post-relaxation, it delegates this work to the workers in a
workers-pool. The master makes its wish known to the co­
ordinator by raising an event (create_poo1)2• The co­
ordinator reacts on this event by jumping to a state where it
waits for requests coming from the master to create a worker
for the workers-pool. Each time the master needs an­
other worker for the workers-pool it raises an event (ere -
ate_worker) to signal the coordinator to create one. Be­
cause the master wants to use the worker, it needs to know
its identity. The coordinator makes this identity available
to the master by sending its reference via a stream. The
master waiting for its workers, receives this reference of
the worker, activates it and takes care that the worker re­
ceives all necessary information so that it can do its job .
The master writes this information on its output port which
is connected by the coordinator to the input port of the
worker, so that the latter can read it from this port. In this
way, a pool of workers, created by the coordinator, is set
to work by the master, each worker performing a relaxation
computation. Before the master can continue its work, it
must wait until all the workers are done with their relax­
ations and are ready to die, which they signal by raising
an event (dead_worker). The master does not want to
count those events by itself, but delegates the organization
of this rendezvous (i.e., a synchronization point) by rais­
ing an event (rendezvous) to signal the coordinator to
make the proper arrangements. In the meantime, the mas­
ter takes a nap and waits for the event (a..rendezvous)
raised by the coordinator (which is now responsible for
counting the events (dead..worker)) to acknowledge the
successful rendezvous. After this rendezvous, the master
reads (if necessary, as we will see) from its input port the
computational results of the workers. This is made possible

2We give the names of the events used in the MANIFOLD source code
in parentheses.

by the coordinator which has set up a stream between the
output port of the worker and the input port of the master.
Hereafter, the master proceeds with its sequential work (i.e.,
the index i of the loop in figure 2 is incremented by one) un­
til it again arrives at a point where it needs a workers-pool
to delegate the relaxations to.

With this description we have covered the most impor­
tant part of the master/worker protocol. There are, how­
ever, some other things we must consider too, which lead
to the introduction of some more events (x, xx, and xxx).
This has to do with the following. Separating the computa­
tion into a number of concurrent processes means that the
information contained in the global data structure used in
the relaxation subroutine must be supplied to each process,
and that the results produced by each process must be col­
lected. The simple way to accomplish this is to arrange for
the MANIFOLD coordinators to send and receive the (proper
segments of the) global space through streams. However,
there are more efficient ways to do this wherein we exploit
the way shared memory is used in multi-threaded executa­
bles and the fact that we can divide the data structure of
our Fortran application in two parts. We clarify this by the
following two points.

• As noted before, most MANIFOLD processes run as
threads bundled up in one or more MANIFOLD task in­
stances (i.e., multi-threaded executables). It is a prop­
erty of thread programming that threads, housed in the
same multi-threaded executable, always share a global
data space. For the communication between the mas­
ter and a worker, this means that the latter does not
need to receive its own individual copy of the space,
as long as this worker runs in the same task instance
where the master runs. In this case, it is sufficient for
the worker to know the information that indicates on
which grid (i.e., the indices that identify the grid) it
must perform its operations. With this information,
the actual data of the grid can be read from the shared
global data space of the task instance. Also, there is
no need in this case to send the computed results of the
workers through streams back to the master. A worker
can directly write its results into the shared global data
space. We call workers of this type local workers. A
local worker raises event x to inform the master that
the communication must take place via shared mem­
ory as just described.

We refer to the task instance in which the master runs
as the master task instance and to the other task in­
stances as remote task instances. Furthermore, we re­
fer to the global data spaces in these task instances
as, respectively, the global master space and global
remote spaces. It is clear now that, when a worker
is performing its computations in a remote task (this
task instance has its own uninitialized global space and

knows nothing of the global master space) it is not suf­
ficient to send it the indices that identify the location of
a grid in the global master space. In this case we must
send the complete data segment of the grid from the
global master space to that remote worker and commu­
nicate the results of that worker back to the master. We
call workers of this type remote workers. A worker can
determine whether it is a local or a remote worker by
calling a function that indicates whether or not it runs
in the master task instance. A remote worker always
raises event xx to inform the master that the commu­
nication must take place via distributed memory as de­
scribed. This inter-task communication is, of course,
more expensive that the intra-task communications in
shared memory.

• The global data space used in the Fortran program es­
sentially consist of two parts. One part contains all
those data segments the workers use in their relax­
ation computations and which they can read and up­
date (write) independently of each other. We call this
part of the global data space the non-fixed pan. The
other part (containing grid connectivity data and geo­
metric data) remains constant after the sequential com­
putations in the preamble of figure 2, and is only read
by the workers. We call this part of the data space
the fixed pan. The proper segment in the global mas­
ter space that a remote worker needs in order to do its
job consists of data from both the fixed part as well as
the no-fixed part. Because th~ data from the fixed part
needed by remote workers have a considerable overlap
and because the fixed part part does not change after
the sequential computations in the preamble, it is more
efficient to communicated the complete fixed part of
the global master space as one big chunk to remote
task instances. We have arranged such that the first
remote worker in a new remote instance is responsi­
ble for the initialization of the fixed part in its remote
global space. Therefore, such a worker always raises
an event xxx to inform the master to supply the fixed
part. This is done in the usual MANIFOLD way: the mas­
ter writes the data to its own output port which is con­
nected, by a third party via a stream to the input port
of the worker, which promptly reads it and does the
initialization.

4.2 The Implementation

The MANIFOLD source code of our protocol is given be­
low. See [5] for the MANIFOLD terminology we use.

l / / prot.ocolMW.m
2
3 #include •MBL.h•
4
S #include "rdid.h•
6
7 #include •protocolMW.h"

8
9 #define IDLE terminated(void)

10
11 /*********** •••• *********** ***** • ••**** 1t "* ***** •••••••• ** •• ** I
12 manner Create_Worker_Pool (

process master <input, dataport I output, error>,
13 manifold Worker(event, event, event, event))
14 (
15 save •.
16 ignore death.
17
18 auto process now is variable (O) .
19 auto process t is variable(O).
20
21 event death_worker.
22
23 priority create_worker > rendezvous.
24
25 begin: (MES("begin"), preemptall, IDLE).
26
27 create_worker: {
28 hold Worker.
29
30
31
32
33
34
35
36
37
38

process worker is Worker (death_worker, x, xx, xxx) .

stream KK worker -> master.dataport.

begin: now = now + l;
(MES("create_worker: begin"),

} • &worker -> master -> worker -> master ,d.atapQrt, IDLE) .

39 rendezvous: (
40 begin: (preemptall, IDLE) .
41
42
43
44
45
46
47
48
49

).

death_worker: t = t + l;
if {t < now) then {

post (begin)
) else (

post (end)
).

SO end: (MES ("rendezvous acknowledged"),

51)
52

raise(a_rendezvous)).

53 / * *** * *** * ** * * ** * * •• * • •• *** • * ** * * *** * * * * * • * * * • •• "** * ** * • * * /
54 export manner ProtocolMW (

55
56 (
57
58
59
60
61
62
63
64
65
66)

save *.

manifold Master <input, dataport I output, error>,
manifold Worker(event, event, event, event))

auto process master is Master.

begin: terminated(master) .

create_pool: Create_Worker_Pool (master, Worker) ; post (begin) .

finished: halt.

We first discuss the manner ProtocolMW (lines 54-66)
followed by the manner Create_Worker_Pool (line 12-
51) which is used by the first.

The actual manifold (named Main) that does the restruc­
turing of the sequential source code invokes (as we will see
in section 5) the ProtocolMW manner in its begin state.
As a result, we enter the block of this manner (lines 56-
66). Upon entering a block, first the statements in its lo­
cal declaration part are petformed (lines 57-59). Line 57
states that we can switch only to states in this block (i.e.,
the begin, create_pool or finished states respec­
tively on lines 61, 63, and 65). Other possible event oc­
currences are saved. Line 59 defines a process instance of
the formal manifold argument Master (line 54), calls it
master, and states (through the keyword auto) that this
process instance is to be automatically activated upon cre­
ation, and deactivated upon departure from the scope (i.e.,
departure from the block on line 66) in which it is defined
(lines 56-66).

After petfonning the local declaration part of the entered
block (lines 57-59) we automatically switch to the begin

state. In the begin state (line 61) we wait until the al­
ready active process instance master terminates. Because
we have mentioned master (as argument of the termi­
nate primitive) in the state body, we also have made this
state sensitive to events that are raised by master. Because
master does not terminate, the net result of the action in
the begin state is that we wait there until there is an event
occurrence for which we have a matching event label. Be­
cause master, which is a process wrapper around the For­
tran code (excluding the relaxations), after some sequential
computation work arrives at the pre- and post-relaxations, it
raises an event named create_pool to signal that it needs
a workers-pool. This event pre-emptes the begin state
and causes a state transition to the create_pool state
(line 63). In this state the manner Create_Worker_Pool
(lines 11-51) is called with the process instance mas­
ter (created and activated on line 59), and the manifold
Worker (which the protocol manner ProtocolMW itself
has received as parameter on line 54) as its actual param­
eters. The manner Create_Worker_pool conducts the
workers in the pool and takes care that they can do their re­
laxation computations properly. When the workers in the
pool are done, they die and the manner returns. Afterwards
(denoted by the semicolon on line 63) we post the begin
event so that we jump again to the begin state (line 61)
where we wait for events. Another event will arrive because
following some sequential computation, master either de­
cides that it needs another workers-pool, (in which case, it
raises the create_pool event, again), or it decides that it
is done and raises the event finished. The finished
event causes a state transition to the finished state (line
65), in which the primitive action halt effectively returns
the flow of control from the manner to its caller.

The manner Create_Worker_Pool (lines 11-51)
called on line 63 works as follows. Upon entering its
block, first the statements in its local declaration part are
petfonned (lines 15-23). Line 15 is a declarative state­
ment which states that we can switch only to states spec­
ified in this block (lines 14-51). Line 16 is another declar­
ative statement which states that death events can be re­
moved from the event memory of the executing manifold
instance, upon departure from the block (at line 51). On
lines 18-19 we create and activate two process instances,
respectively named now and t, of the predefined manifold
variable, and initialize them with 0. We use these vari­
ables respectively for counting the nwnber of created in­
stances of the Worker manifold (we count them on line
34) and for counting the number of dead workers (by count­
ing their death_worker events on line 42). On line 21,
a local event named death_worker is declared. Because
it can happen that both the events create_worker and
rendezvous are available in the event memory of the ex­
ecuting manifold instance which calls this manner, we state

with the priority declarative statement that jumping to
the crea te_worker state has a higher priority than jump­
ing to the rendezvous state.

The first state we visit in this manner is the begin state
(line 25). There, we do the following: we print the mes­
sage "begin" on the screen to indicate that we are in this
state; we state by the primitive action preemptal 1 that
all events for which we have a handling state label can pre­
empt the begin state; and we wait for events. An event
will come soon, because master is expected to raise the
event create_worker every time it wants another worker
in the workers-pool. This event pre-empts the begin state
and causes a state transition to the create_worker state.

In the create_worker state (lines 27-37) a number of
workers are set to work in a workers-pool. The body of this
state is a block. In its local declaration, we use the hold
statement on line 28 so that we can handle events coming
from Worker instances outside the scope in which those
instances are known; otherwise, the instances of Worker
are known only in the block in which they are defined (lines
27-37). On line 30, we create a process named worker.
The four parameters used in the instantiation are respec­
tively the local event dea th_worker (line 21) and the
global events x, xx, and xxx, defined in the header file
protocolMW. h (line 7). The declarative statement on
line 32 states that all stream connections between the output
port of worker and the input port the master (this input
port is named da taport) must be of type KK (i.e., Keep­
Keep). In the begin state of the state create_worker,
the stream configuration on line 36 is constructed and we
wait for events from the master (create_worker and
rendezvous are possible events). In the stream configu­
ration we see that the process identification of worker (de­
noted by &worker) is sent through a stream (the first--> on
line 36) to master. The master receives this reference
to worker and sends all the information worker requests
(by raising the x, xx, and xxx events) through a stream (the
second --> on line 36) to worker. The worker process
promptly reads the information it receives from master,
does its job, and if it is a remote worker, sends its the com­
puted results through a stream (the third--> on line 36) to the
dataport port of master. The master process reads
this and stores the results in the global master space. Due
to the word IDLE (line 36) we stay in the state on line 34
until master again raises a crea te_worker event. This
event pre-emptes this begin state (line 34) which disman­
tles the streams in this state and causes a state transition to
the create_worker state where the whole sequence start
again. Dismantling of the streams means, in this case, that
all the streams on line 36 are broken at their sources (be­
cause they have the default type BK) with the exception of
the stream for which the worker is the source; this stream
is KK (see line 32) and must stay intact because when the

worker is a remote worker this stream is used to transport
its computed results to the master. This is how all workers
are created and set to work in the pool.

The next event to be handled is the rendezvous event.
This event is raised by master after it reads the computed
results of the remote workers and causes a state switch to the
rendezvous state which has two (sub)states: the begin
state (line 40) and the death_worker state (line 42). In
its begin state, we wait for the dea th_worker events.
Each time a death_worker is detected, it is counted (line
42). As long as we have less death_worker events than
the number of created workers (i.e., the value of now on line
34) we post the begin event (line 44) which causes a state
switch back to the begin state (line 40) where we wait
for other dea th_worker events. Otherwise, we post end
(line 46) which causes a state switch to the end state (line
50). In this state we print a message on the screen, raise the
event a_rendezvous, and the Create_Worker_Fool
manner returns.

5 The Test

In this section we test the protocol with a toy application.
We can arrange the computation in this application accord­
ing to the schema in figure 2. Also for this application, we
have chosen a global space that consist of two parts: a fixed
part (an array of length three, initialized as 1, 2, and 3) and
an non-fixed part (also an array of length three initialized in
the same way). We have defined the following operations
on the non-fixed array:

(a) Add to each element of the non-fixed part array its pre­
vious element of the same array. For the first element,
add the last element.

(b) Element-wise add the fixed-part array to the non-fixed
part array.

It is clear that the operation (a) cannot be done concurrently
element-wise, whereas the operation (b) can easily be done
element-wise by different workers in a concurrent fashion,
each worker adding a fixed-part array element to its cor­
responding non-fixed part array element. With these two
operations, it is simple to write a little program according
to the schema given in figure 1. The initialization in the
preamble (see figure 1) consists of the initializations of the
fixed-part and non-fixed-part arrays. For the "heavy com­
putations that cannot be done concurrently" (see again fig­
ure 1) we use operation (a). All other computations in that
figure are (b) operations. In our test example we set the ar­
ray length to three and the Nin figure 1 is set to four (so we
perform successively the operations (a, b, a, b, a, b, a, b, a, b,
a, a) on the non-fixed-part array). Running this simple toy
application and printing the initial values of the non-fixed
array and its result after each operation gives the following
output.

4
5

17
18
58
59

187
188
593

1867

6
8

25
27
85
87

274
276
869

2736

9
12
37
40

125
128
402
405

1274
4010

Below, we give the MANIFOLD program in which we use
the master/worker protocol ProtocolMW of section 4.2 in
order to restructure the sequential version of our toy appli­
cation into a concurrent one.

1
2
3
4

// ptest.m

/ /pragma include •ptest .ato.h•

5 #include •protocolMW.h"
6
7
8
9

10
11
12

manifold wo(event, event, event, event) atomic {internal.}.

manifold ma{) port in input. port in dataport.
port out output. port out error.

atomic {internal. event create_pool, create_worker,
rendezvous, a_rendezvous, finished, x, xx, xxx.}.

13 /***************** "*** * **** ********"'** ** ··••**** ****** * *** "'** /
14 manifold Main
15 (
16
17

begin: ProtocolMW{ma 1 wo).

We briefly explain this source code. On lines 7 and 9 we
declare respectively the worker manifold wo and the master
manifold ma which are both written in ANSI C. We have
implemented the master and the worker in such a way that
they fully comply with ProtocolMW. Lines 14-17 define
the manifold named Main, which has only one state: the
begin state. In this state, an instance of the ProtocolMW
manifold (its prototype is stored in the header file on line 3)
is created and activated just by calling ProtocolMW, with
the master and the worker as its actual arguments.

After this, the instance of Main terminates, and the in­
stance of the protocol ProtocolMW, the instance of mas­
ter ma and all the necessary instances of the worker wo, run
concurrently.

The mapping of process instances into task instances (the
so-called task composition stage) and the mapping of tasks
to hosts (the so-called run-time configuration stage) are con­
sidered to be separate stages in the application construction.
The mapping of process instances into task instances is de­
scribed in a file which is the input for the MANIFOLD linker
MLINK. For our toy application, we specify this file such
that each worker is housed in a different task instance. The
mapping of tasks to hosts is also described in a file which
is the input for the MANIFOLD runtime configurator CONF1G.
For our toy application, we have the following file:
(host hostl pont .cwi .nl}
{host host2 opduwer.cwi.nl
{host host3 sampan.cwi .nl}
{ locus ptest $hostl $host2 $host3}

Here, we define three variables hostl, host2, and
host3, which we set to, respectively, pont. cwi. nl,
opduwer. cwi . nl, and sampan. cwi. nl. These are
the names of computers located at different places and con­
nected via a network. The last line in the file states that the
instances (in our case three) of the task named ptest can
be started on any of these three machines.

Note that the different mappings in the task composition
stage and the run-time configuration stage do not affect the
semantics of the MANIFOLD source code.

We have run this example on the above cluster of work-
erstations. The output is below3•

sampan 262155 113 ptest ma ptest.ato.c 68 -> l 2 3
sampan 262155 113 ptest ma ptest.ato.c 68 -> 4 6 9
sampan 262155 87 ptest Create_worker_Pool:

ProtocolMW: Main protocolMW.m 25 -> begin
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
sampan 262155 263 ptest wo ptest .ato.c 215 ->

I am a local worker
sampan 262155 87 ptest Create_Worker_Pool:

Protocol.MW: Main protocolMW.m 35 -> create_worker: begin
opduwer 786437 64 ptest wo ptest.ato.c 224 ->

I am a. remote worker
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
pont 524289 64 ptest wo ptest.ato.c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_Worker_Pool: ProtocolMW:

Main protocolMW .m 50 -> rendezvous acknowledged
sampan 262155 113 ptest ma ptest.ato.c 68 -> 5 8 12
sampan 262155 113 ptest ma ptest.ato.c 68 -> 17 25 37
sampan 262155 87 ptest Creace_Worker_Pool:

ProtocolMW: Main protocolMW.m 25 -> begin
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
sampan 262155 936 ptest wo ptest.ato.c 215 ->

I am a local worker
sampan 262155 87 ptest Create_Worker_eool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
opduwer 786437 83 ptest wo ptest.ato.c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_Worker__Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
pont 524289 83 ptest wo ptest.ato.c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_worker_Pool: ProtocolMW:

Main protocolMW.m 50 -> rendezvous acknowledged
sampan 262155 113 ptest ma ptest.ato.c 68 -> 18 27 40
sampan 262155 113 ptest ma ptest.ato.c 68 -> 58 85 125
sampan 262155 87 ptest Create_worker_Pool:

ProtocolMW: Main protocolMW.m 25 -> begin
sampan 262155 87 ptest Create_worker_eool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
sampan 262155 1609 ptest wo ptest .ato.c 215 ->

I am a local worker
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
opduwer 786437 102 ptest wo ptest .ato.c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_worker_eool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
pent 524289 102 ptest wo ptest.ato.c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_worker_Pool:

ProtocolMW: Main protocolMW.m 50 -> rendezvous acknowledged
sampan 262155 113 ptest ma ptest.ato.c 68 -> 59 87 128
sampan 262155 113 ptest ma ptest.ato.c 68 -> 187 274 402
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 25 -> begin
sampan 262155 87 ptest Create_worker_Pool:

ProtocolMW; Main protocolMW'.m 35 -> create_worker: begin
sampan 262155 2282 ptest wo ptest.ato.c 215 ->

I am a local worker
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
opduwer 786437 121 ptest wo ptest.ato,c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_Worker_Pool:

ProtocolMW: Main protocolMW.m 35 -> create_worker: begin
pont 524289 121 ptest wo ptest.ato.c 224 ->

I am a remote worker
sampan 262155 87 ptest Create_worker_Pool:

ProtocolMW: Main protocolMW .m 50 -> rendezvous acknowledged
sampan 262155 113 ptest ma ptest.ato.c 68 -> 188 276 405
sampan 262155 113 ptest ma ptest.ato.c 68 -> 593 869 1274
sampan 262155 113 ptest ma ptest.ato.c 68 -> 1867 2736 4010

Each of these output lines has the following structure.
It starts with a long label followed by a - > before the ac­
tual message. The label shows, respectively, the machine
on which the task instance runs, the identification of the
task instance, the identification of the process instance, the
name of the task, the name of the manifold, the name of the
MANIFOLD source file, and the line number where the mes­
sage is produced. With such a label in front of an actual

3Due to the two-colwnn format of this paper, an indented line fonns a
whole with the previous line.

message, we always know who is printing what and where.
In the MANIFOLD source code an actual message is given as
the argument of a MES call. In the source code of pro­
tocolMW, we use MES to make the state transitions visible
(see lines 25, 35, and 50). In the ANSI C code of the master
and worker (stored in a file namedptest. ato. c) we also
produce some messages. The worker produces a message in
which it tells if it is a local or remote worker, and the master
informs us about the values in the non-fixed part array. As
we can verify, the computational results of this distributed
run are the same as in the sequential version.

It is clear that when the time spent executing a parallel al­
gorithm is long compared to the time required to coordinate,
the cost of the coordination is no problem. But if the time
required for the computation is not so long, then the time
spend on coordination becomes very important. Because
in our example the work to be done is exactly one floating
point operation, we cannot expect the concurrent version to
be faster than the sequential one. To give some performance
results, we increased the number of floating point operation
in the workers to a more realistic level (1010).

We ran our example on an SGI Origin 2000 multi­
processor machine with 32 processors, and also on a clus­
ter of three SGI 02 single-processor machines. In the Ori­
gin 2000 we have 32 MIPS Rl2000 processors as CPUs
plus MIPS Rl2010 and MIPS Rl2010 floating point co­
processors. In the 02 we have a MIPS R5000 processor as
CPU plus a floating point co-processor. The performance
results are in table 1. All experiments were done in quiet

Table 1. The elapsed times (in minutes) for the
different versions on different machine types.

machine type sequential concurrent

multi-processor machine 86m 32m
cluster of workstations 115m 41m

periods during normal working days. This means that we
do not have a guaranty that we are the only user, which is
a realistic assumption in any real comtempory computing
environment. However, this also means that we should be
careful to draw firm conclusions from these measurements.
The different elapsed times for the sequential version on the
multi-processor machine and on the cluster of workstations
(in this case the cluster consist of a single machine) is due to
the quicker hardware of the multi-processor machine. Dur­
ing the run on the multi-processor machine the weighted
cpu percentages measured 270% which means that our ap­
plication (with three workers processes) kept 2.7 of the 32
processors busy working. Because 32m * 2. 7 ~ 86m, this
suggests that MANIFOLD can coordinate our toy application
on the multi-processor machine without much overhead.

6 The Restructuring

Using the coordination module ProtcolMW, we can
construct the following two MANIFOLD programs. These two
programs change the original sequential code of our sparse­
grid and semi-sparse-grid applications to their respective
concurrent versions.

l / / sparse_model .m
2
3
4
5
6
7
8
9

lO
ll
12

//pragma include •aw.h•

tinclude •protocolMW.h"

manifold w_pointgsgr(event. event, event, event) atomic {intemal.}.

manifold w_sparse () port in input. port in dataport.
port out output. port out error.

atomic {internal. event create_pool, create_worker,
rendezvous, a_rendezvous, finished, x, xx, xxx.}.

13 / •"' ** **** * * * ***** ** * • • • ** *"' * * •• * ** • ••• • * ** * * ••• * * • ****"' •• * *** /
14 manifold Main
15 (
16 begin: ProtocolMW(w_sparse, w_pointgsgr).
17 l

1 // semi_sparse_model .m
2
3
4
5
6
7
8
9

10
ll
12

//pragma include •aw.h ..

#include •protocolMW.h"

manifold w_pointgsgr (event, event, event, event) atomic (internal.}.

manifold w_semi_sparseO port in input. port in dataport.
port out output. port out error.

atomic {internal. event create_pool. create_worker,
rendezvous, a_rendezvous, finished, x, xx, xxx.}.

13 I***•************•***** •• ******* •• • ••• •• •••••• ••*****•******* I
14 manifold Main
15 {
16 begin: ProtocolMW(w_semi_sparse, w_pointgsgr).
17 l

The master and worker manifolds used as parameter of the
protocol are both C functions (wrappers) that call the orig­
inal Fortran subroutines (8000 lines) of the sequential pro­
gram. The master and the worker behave in such a way
that fully complies with the protocol ProtocolMW. For a
stepwise description of their behavior see [7].

The object file obtained by compiling this MANIFOLD pro­
gram must be linked with the object files obtained from
the Fortran code and the C code to produce an executable
file. The result of running this executable (on a single
and/or multi-processor machine) is identical to the output
produced by the original sequential Fortran code.

Due to space limitation, for a detailed discussion of the
performance of the restructured application we refer to [7]
which is available online.

7 Conclusions

Our cut-and-paste restructuring essentially consists of
picking out the computation subroutines in the original For­
tran 77 code (the cut), and gluing them together with co­
ordination modules written in MANIFOLD (the paste). No
rewriting of, or other changes to, these subroutines is nec­
essary: within the new structure, they have the same in­
put/output and calling sequence conventions as they had

in the old structure, and still manipulate the same global
Fortran-common data arrays. The MANIFOLD glue modules,
representing a master/worker protocol, are separately com­
piled programs that have no knowledge of the computation
performed by the Fortran modules - they simply encapsu­
late the protocol necessary to coordinate the cooperation of
the computation modules running in a parallel/distributed
computing environment.

It is remarkable that we can realize the master/worker
protocol in such a generic way where the master and the
worker manifolds themselves are parameters of the proto­
col. With the possibility of using different manifolds as
actual values for the fonnal manifold parameters of an­
other manifold, we can easily build meta coordinators in
MANIFOLD.

The unique property of MANIFOLD which enables such
high degree of modularity is inherited from its underlying
IWIM model in which the communication is set up from
the outside. The core relevant concept in the IWIM model
of communication is isolation of the computational respon­
sibilities from communication and coordination concerns,
into separate, pure computation modules and pure coordi­
nation modules. This is why the MANIFOLD modules in our
example can coordinate the already existing computational
Fortran subroutines, without any change. The master and
worker manifolds used in the concurrent version only call C
functions which are in fact (wrappers around) Fortran sub­
routines of the sequential program.

It is not so remarkable that sequential programs having
a similar structure, but performing different algorithms (in
our case the sparse-grid algorithm, semi-sparse-grid algo­
rithm, and our toy algorithm) can be coordinated in a sim­
ilar fashion. What is more interesting, as illustrated in our
examples, is that we are able to abstract away the details of
the computations; that it is possible to focus on the invariant
(hidden) properties of seemingly very different programs,
and that we can compile those invariant properties as coor­
dination patterns in MANiroLD. In fact, we compile struc­
ture. As in our examples, this same coordination structure
(compiled MANIFOLD coordinators) can transparently run the
same computation modules on parallel shared-memory or
distributed cluster of workstation platforms. The nice thing
in this distillation process is that we end up with one tangi­
ble piece of code that represents the common coodination
structure. Such glue modules (coordinators) can then be
compiled separately and stored in what we may call a "pro­
tocol library", ready for reuse.

References

[1) F. Arbab. The IWIM model for coordination of concurrent
activities. In P. Ciancarini and C. Hankin, editors, Coordina­
tion Languages and Models, volume 1061 of Lecrure Notes

in CDmpfller Science, pages 34-56. Springer-Verlag, April
1996.

(2] F. Arbab. Manifold version 2: Language reference
manual. Technical report, Centrum voor Wiskunde
en Informatica, Kruislaan 413, 1098 SJ Amster­
dam, The Netherlands, 1996. Available on-line
http://www.cwi.nl/flplmanifoldlrefman.ps.Z.

{31 F. Arbab. The infuence of coordination on program struc­
ture. In Proceedings oftM 301" Hawaii International Con­
fert1tee on System. Sciences. IEEE, January 1997.

[4} F. Arbab, C. Blom, F. Burger, and C. Everaars. Reusable
coordinatcr modules fer massively concurrent applications.
So{twart: Practice and Experience, 28(7):703-735, June
1998. Extended version.

{5] C. Everaars and F. Arbab. An Introduction into IM Coor­
dinaJion Language Manifold. CW!, Amsterdam. K.ruislaan
413, 1098 SJ Amsterdam, The Netherlands, 2001. to appear.

{6] C. Everaars, F. Arbab, and 8. Koren. Dynamic process com­
position and communication patterns in irregularly struc­
tured applications. Concurrmcy: Practice and Experience,
spring 2000. Extended version.

(71 C. Everaars, F. Arbab, and 8. Koren. Parallel, distributed­
memory implementation of sparse-grid methods for
three-dimensional fllid-tbw computattions. Tech-
nical Report SEN-R0039, Centrum voor Wiskunde
en Informatica. Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands, December 2000. Available on­
line http://www.cwi.nVstaticJpublications/reports/SEN-
2000.html.

[8] C. Everaars and 8. Koren. Using coordination to parallelize
sparse-grid methods for 3D CFD problems. Parallel Com­
puting, 24(7):1081-ll06, July 1998. special issue on Coor­
dination languages for parallel programming.

[9} A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderarn. PYM 3 user's guide and reference man­
ual. Technical Report ORNUTM-12187, Oak Ridge Na­
tional Laboratory, September 1994.

[10) D. Gelernter. Generative communication in Linda. ACM
Tran.sactio,u on Programming Languages and Systems,
7(1):80-112, 1985.

[11] D. Gelernter and N. Camero. Coordination languages and
their significance. C()tnm.Unication of the ACM, 35(2):97-
107, February 1992.

[12) W. Hackbusch. Multi-Grid Methods and Applications.
Springer, Berlin, 1985.

(13] B. Nicols, D. 8uttlai-, and J.P. Farrell. Pthreads Program­
ming. O'Reilly & Associates, Inc., Cebastopol, CA, 1996.

[14] U. Trottenberg, C. Oosterlee, and A. Schilller. Multigrid.
Academic Press, San Diego, 2001.

(15] P. Wesseling. An Introduction to Mulrigrid Methods. Wiley,
Chichester, 1992.

