
A SIMPLE AND EFFICIENT SPACE-TIME ADAPTIVE GRID
TECHNIQUE FOR UNSTEADY COMPRESSIBLE FLOWS

Jeroen Wackers
junior researcher

Delft University of Technology, Faculty of Aerospace Engineering
P.O. Box 5058, 2600 GB Delft, The Netherlands

Barry Koren
senior researcher

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, and
Delft University of Technology, Faculty of Aerospace Engineering

P.O. Box 5058, 2600 GB Delft, The Netherlands
senior member AIAA

ABSTRACT

A space-time adaptive gridding technique for unsteady
flows is presented. The technique is applied to the 2D un­
steady Euler equations. The method is relatively simple,
computationally very efficient and it can be easily adapted
to other types of fluid flow. It consists of four parts: (i) a
time-stepping algorithm that adapts the grid to the solution
several times per coarse time step, (ii) a second-order ac­
curate discretisation of the flow equations that combines a
limited upwind discretisation of the fluxes with a two-step
discretisation of the time derivatives and is well-suited for
adapted grids, (iii) a simple data structure to store the solu­
tion and the grid geometry, and (iv) a refinement criterion.
Two of these are tested, one based on the first and one on
the second spatial derivative of the density. Results for
two test problems, the classical forward-facing step prob­
lem and the shedding of vorticity from a flat plate, show
that the method is much more efficient than comparable
methods without adaptive gridding.

SYMBOLS

Cap
C82P

Cn

f,g
Fo,Go
l
M
p
q
t
u,v
x,y
z

NOMENCLATURE

gradient p refinement criterion
second derivative p refinement criterion
normal force coefficient normal fo~e

' ½pU2 c

flux vector, horizontal / vertical
Osher's approximate flux vector
level of refinement
maximum level of refinement
pressure
state vector
time
velocity components in x- and y-direction
spatial coordinates
unscaled entropy

1

'Y
t:.t
t:.x, t:.y
p

n
an

SUBSCRIPTS
b, r, a, l
d
i
n
p

ratio of specific heats
time step
cell sizes, x- and y-direction
density
spatial domain, cell or collection of cells
boundary of n

below, right, above, left (value of n)
diagonal
indicates a cell
neighbour
component of state vector

SUPERSCRIPTS
l level of refinement
V virtual cell, virtual state

INTRODUCTION

Adaptive grid refinement is a technique to speed up the nu­
merical solution of partial differential equations by start­
ing the solution on a coarse, uniform grid and refining this
grid locally to accurately resolve areas with e.g. large gra­
dients. All other areas are calculated on coarser grids, so
computation time is saved. Adaptive gridding has been
widely used already for the solution of fluid-flow prob­
lems, both steady and unsteady. For unsteady flow, pi­
oneering work has been done by Berger et al. 1• 2 • Many
others have followed.

Here, a space-time adaptive grid technique for unsteady
flows is presented, which distinguishes itself from exist­
ing techniques by the use of a very simple data structure,
a likewise simple discretisation of the fluid-flow equations
and a time-stepping algorithm that allows a very flexible
and fast adaptation of the grid to the solution. The method
is applied - to start with - to the 2D unsteady Euler equa­
tions of gas dynamics. The discretisation of the flow equa­
tions is largely taken from earlier work at CWI4• 6• 9 and
adapted here for unsteady flow. The data structure and the
algorithm are new developments. A full overview of the

American Institute of Aeronautics and Astronautics

method is given in 12•

This paper describes the different parts of the method
separately. After an overview of the flow equations used,
the philosophy of adaptive gridding and the algorithm that
handles the adapted grid are described in the third sec­
tion. The next section describes the discretisation of the
flow equations, it focuses on the discretisation of the time
derivatives and the extra features needed to make the dis­
cretisation suitable for adapted grids. The following two
sections describe the data structure and give two refine­
ment criteria, which are used to determine where the grid
is refined. Results in the last section are used to prove that
the current method is indeed more efficient than a compa­
rable method without adaptive gridding.

FLOW EQUATIONS

The governing flow equations used in this paper are the 2D
unsteady Euler equations of gas dynamics:

with

The specific internal energy E and enthalpy H are

l p l (2 2) E=---+- u +v ,
, -1 p 2

p
H=E+-.

p
(3)

Integrating equation (1) over a rectangular domain gives

! j j q dx dy - l g dx + 1 f dy
(l /)(lb 80r

+ f g dx - f f dy = 0, (4) Jana Jan,

which says that the time rate of change of the state q in a
rectangular domain is equal to the net inflow over its four
boundaries below, right, above and left.

Equation (4) is discretised on a rectangular grid. A do­
main n is divided into rectangular cells Qi, an average
state Qi is defined in each cell and approximations to the
fluxes in the cell faces are calculated using Osher's ap­
proximate Riemann solver4•8. Then equation (4) is used
to advance the states in the cells one time step.

This discretisation must be conservative. This means
that the flux in a cell face out of one cell must be equal to
the flux into the next cell. But, on an adaptive grid, this
has more implications, as we will see later on.

2

ADAPTIVE GRIDDING

BACKGROUND

Most solutions of the Euler equations have a few areas
where the flow changes rapidly, like shock waves. To
compute an accurate solution in these areas, a very fine
grid is needed. On the other hand, the areas without rapid
changes can be solved with the same accuracy on a much
coarser grid.

The idea behind adaptive gridding is to compute only
the areas with rapid changes on a fine grid and the rest
of the solution on a coarser grid, thus reducing the total
computation time. Here, adaptation through enrichment is
used: the calculation is started on a very coarse basic grid
and this grid is refined by dividing the coarse cells into
four smaller cells when this is required. For stability rea­
sons, the time step for these smaller cells is twice smaller
too, so the grid is adapted in space and time (figure 1). The
smaller cells can be split again to form even smaller cells
and, when the fine grid is not needed anymore, they are
merged into one big cell again.

Figure 1: A big cell is split into four smaller cells with a
smaller time step.

Figure 1 shows that it takes eight times more compu­
tational work to advance the refined cells a single coarse
time step than the basic coarse cell. And for cells that are
n times refined, this is 23n times more computational ef­
fort. So when cells are refined, the total computation time
increases rapidly. Therefore, the grid is adapted to the so­
lution several times per coarse time step, instead of once 11

or less than once 1 • If the grid can change rapidly, wave
patterns can be followed with very narrow strips ofrefined
cells, thus keeping the total number of cells low.

A TIME STEP

The current algorithm is illustrated here with a simple, ID
example. Consider the grid of figure 2a: one unrefined
cell, a cell that is refined once and two cells that are refined
twice. We will say that these cells are on 'level' 0, 1 and 2,
respectively. All fluxes across the cell faces are calculated
(b). The only cells that can be advanced in time now are
the smallest cells (c), because the fluxes into the larger
cells are not yet known for their entire time steps. Then the
fluxes into the smallest cells are calculated again with the

American Institute of Aeronautics and Astronautics

new states in the small cells (d) and the smallest cells are
advanced again (e). But now, the flux out of the level 1 cell
is known: conservation requires that it is the summation of
the fluxes into its smaller neighbour cell, over that cell's
two time steps. So the level 1 cell is advanced too (f). This
whole procedure is repeated (g) and now, the fluxes into
the level 1 cell can be summed to give the flux into the
level O cell, to advance this cell. The coarse time step is
now complete.

a) Four cells b) All fluxes

c) Advance level 2 d) Fluxes level 2

e) Advance level 2 f) Advance level 1

LEI CEI
g) Lvl. 1 advanced twice h) Advance level 0

Figure 2: Advancing the cell states, one coarse time step.

In this example, the grid does not change in time. Let us
consider where the cells can be refined (figure 3). Before
the time step starts, the level O cell can be split into level I
cells (a) or the level 1 cell can be split into level 2 cells (b).
(In the algorithm, this last refinement will not be allowed,
because it gives a level jump of two between neighbour
cells, which causes large errors.) The level 1 cell can even
be refined at another time: after it has been advanced once
(c). Summarizing: a cell can be split after each of its own
time steps. The cells on the highest level allowed (here
level 2) cannot be split. Also, example (c) shows that the
grid can be adapted more than once per coarse time step.

And when may cells be unrefined (figure 4)? Before
the time step starts, the level 2 cells can be merged into
one level 1 cell (a), but the level 1 cell cannot be merged.
It must be merged with another level 1 cell, but there are
two level 2 cells where that cell should be. After one of
their time steps, the level 2 cells cannot be merged (b),
because the resulting level I cell does not fit in the level l
time steps, but after two time steps, the level 2 cells can be
merged (c). Summarizing: cells can also be merged after
each of their own time steps. Only, the cells on the lowest
level that was just advanced (level 2 in (b), level I in (c))
cannot be merged. And all cells to be merged should not
be split again.

3

I I I
a) Split level O cell

I I I I I
b) Split level 1 cell

I

c) Split level 1 cell, later

Ettl

Figure 3: Refinement possibilities.

I I I aa
a) Merge level 2 cells

m
b) Merge level 2 cells, later

I

c) Merge level 2 cells, later

Figure 4: Unrefinement possibilities.

ALGORITHM

These principles are used in an algorithm, that is given
here in pseudo-code. The operations are performed on the
group of all cells that is currently on a certain level. The
reader is encouraged to follow the previous example with
this algorithm.

Program Sagseo
do k = 1 to k..max call Timestep(M)
end Sagseo

Subroutine Timestep(Lnow)
advance level !..now
if l..now advanced for first time then

do i = !..now to M - 1 refine_check level i
do i = !..now + 1 to M unrefine_check level i
do i = !..now to M fluxes level i
if !..now = 0 return, time step finished
call Timestep(M)

American Institute of Aeronautics and Astronautics

else (second time)
call Timestep(l..now - 1)

end if
end Timestep

SECOND-ORDER DISCRETISATION

A second-order accurate discretisation of the flow equa­
tions is used, an approximate equation in which the aver­
age states in the cells are the only unknowns, which has
a difference of O(h2) with equation (4). The fluxes are
discretised with Osher's approximate Riemann solver4· 8,

combined with a second-order limited approximation to
the states at the cell faces 10 . This procedure is well-known.
This section concentrates on the aspects of the flow equa­
tion discretisation that are special for adaptive gridding:
the time derivative discretisation, the fluxes between large
and small cells and the state in newly refined or unrefined
cells.

TIME DISCRETISATION

For the time-derivative discretisation, a new scheme is
used, based on the two-step Richtmyer scheme, but com­
bined with the limited fluxes:

k+l k (k k) f::..t
qi = qi - F Or - F O l t::..x

(k k) f::..t
- Goa - Gob t::..y'

(5)

The first step is first-order accurate, but the resulting state
is only used to calculate the fluxes for the second step,
which is second-order accurate.

This scheme is better than the related leapfrog scheme:
it is more stable and it is self-starting (no separate equation
is needed for the first time step). The latter is a great ad­
vantage on an adaptive grid, because a 'startup' situation
occurs every time after a cell is split into four smaller cells.
It is also better than the various Runge-Kutta type multi­
stage schemes, which are hard to implement on a grid with
cells that have different time steps.

Due to its two-step structure, the scheme can be easily
combined with the algorithm of the previous section, that
also has a two-step structure. In the algorithm, the first
part of equation (5) is used to advance cells for the first
time and the last part of equation (5) is used when the cells
are advanced for the second time.

For a simplified equation, the stability of the scheme is
proven for CFL numbers Amax f; ::; 0.25.

VIRTUAL STATES

For the second-order accurate calculation of the fluxes, the
limited scheme uses an interpolation between several cells

4

to approximate the state at a cell face. On a uniform grid,
this is relatively straightforward, but problems arise on
an adapted grid, when two neighbour cells have different
sizes (figure 5). To calculate the flux across the face of the
smaller cell, we need the states in the cells that are drawn
with dashed lines. But these cells do not exist. Therefore,
the only way to find these states is by interpolation. For
steady problems, this interpolation has already been used
by Van der Maare17• It is extended here to be suitable for
unsteady problems.

y

.
nj

~---t········· .. ·······-i.
ni

X

Figure 5: Big cell with smaller neighbour and two virtual
cells.

The state in the virtual cell is interpolated between the
big cell ni and a diagonal cell nd (figure 6). For second­
order accuracy, a linear interpolation is used

with x a coordinate of the cell centres. In this equation,
it does not matter if the diagonal cell is smaller, equally
large, or larger than the cell ni. Using the level l of the
cells, equation (6) is rewritten as

Figure 6: Interpolation of a virtual state.

This virtual state is only correct when the state in the big
cell is known at the same time as the state in the smaller
neighbour cell ni. But the smaller cell has smaller time
steps, so this is not true when the smaller cell is advanced
once (figure 7). In this case, the virtual state is found by
time-stepping the virtual state from equation (7). But it is
easier, and still second-order accurate, to make half a time

American Institute of Aeronautics and Astronautics

step for the big cell and to add this to the virtual state:

Note that the first-order accurate Euler discretisation is
used for LlqY, but for a single Llq of O(Llt) this discreti­
sation gives an error of O(Llt2), which is small enough.

t -· - '

Figure 7: Virtual state that requires a time step.

INITIALISING STATES

When a cell is split into four, or when four cells are merged
into one, then states must be chosen in these new cells
and these new states must be second order accurate. But
they must also be conservative: no mass etc. may disap­
pear when the cells are split or merged.

When a cell is split into four smaller cells, then it is
a logical choice to use the virtual states from the previ­
ous section to set the states in the small cells. But these
virtual states are not necessarily conservative, because all
four states are set with different interpolations. This is
solved by setting the states in two opposite diagonal cells
from the same linear interpolation: first, the virtual state
from equation (7) is calculated for both cells and then, for
each component qP of q, the cell is selected in which the
virtual state has the smallest absolute difference from qf.
That state is kept and the state in the other cell is set as

<fot11er cell = 2qf - <lone cell· (9)

When this is done for both diagonals, then the average of
the four new states is equal to qi, so the interpolation is
conservative.

When four cells are merged into one cell, then the state
in this new big cell is set by simply averaging the four old
states.

GRID DATA STRUCTURE

To store an adapted grid and a solution on such a grid, a
special data structure is needed. Adapted grids are irreg­
ular, therefore they cannot be stored in normal i, j-arrays.
And for unsteady problems, the grid changes in time, so
the storage space has to change in time too.

5

Here, the cell data (like the cell state, the fluxes and
geometrical information) are stored in 1D arrays. In each
array, the same position corresponds to the same cell, but
the cells are distributed in the arrays at random. The arrays
are bigger than the total number of cells and a list is kept of
all the array locations that are 'free'. When a cell is split,
three locations are taken from this 'free' list and used for
three of the four new cells. The memory location of the
original coarse cell is used for the fourth new cell. When
four cells are merged again, then the three locations that
are not used anymore are added to the 'free' list, ready to
be used again.

y

X

Figure 8: Four neighbour pointers for a cell with smaller
neighbours.

The grid geometry is defined by six integer arrays per
cell, that give a cell's relation to other cells. These are:

- the cell level.

- four neighbour pointers, one for each cell face. If the
neighbour cells on a cell face are smaller, then we
store (figure 8)

- below: the leftmost cell,

- right: the highest cell,

- above: the rightmost cell,

- left: the lowest cell.

With this arrangement, it is easy to find the other cells
on that face. Consider, e.g., the right face. The high­
est cell on this face has the neighbour pointer. The
neighbour below of this neighbour cell is the left­
most cell below it, so it also lies next to the big cell.
And this works for all other faces too. The neighbour
pointers, together with the cell levels, are enough to
reconstruct the entire grid geometry.

- one mother pointer to the cell from which the cell was
split. When a cell is split into four, then the cell below
left keeps the mother pointer from the big cell, the
other three cells get a mother pointer to this cell (fig­
ure 9). The mother pointers are used when cells are
merged, to make sure that the four cells to be merged
were once split from the same cell. We find these
cells as follows:

1. Find a cell whose left neighbour is equal to its
mother. Then we know that this cell was the
cell below right when it was split and that the
mother cell is not split again.

American Institute of Aeronautics and Astronautics

2. From these cells, select those for which the cell,
the left neighbour, the neighbour above and the
left neighbour of the neighbour above have the
same level. Then we know that none of these
four cells is split again, so they can be merged.

===> m
Figure 9: Mother pointers of a big cell and four refined
cells.

REFINEMENT CRITERIA

The goal of an adaptive gridding procedure is to refine the
grid locally, based on the solution. So far, we have seen
how such an adapted grid is handled and how a solution
is calculated on an adapted grid. But we also need some
way to determine where the grid should be refined, based
on the solution. This is done with a refinement criterion.

The ultimate goal of a refinement criterion is to provide
the user with the best possible solution at the lowest possi­
ble computational costs. But the properties of a 'best solu­
tion' depend on what the user wants to see, like flow phe­
nomena or force and moment data. Therefore, the choice
of the refinement criterion must be made by the user.

Two different refinement criteria have been studied.
They are described here, their behaviour is given in the
next section.

GRADIENT p CRITERION

A simple, straightforward choice for a refinement criterion
is to refine the grid in the neighbourhood of strong gradi­
ents in the solution. Here, the gradient of the density p,
the first component of the state vector, is used, because the
density changes in almost every type of flow pattern. Fur­
thermore, it is the only state component that is the same
for a stationary wave and a running wave with the same
strength.

If the grid size is taken inversely proportional to the gra­
dient of p, then 8 e£!"' and 8 e£:y should be more or less
constant in the entire computational domain. So we define
a refinement criterion as the maximum gradient in a cell,
estimated from the cell and its four neighbours, divided by
the cell size,

C;; = max (IPn - Pil) (IO)
p n=b,r,a,l ½ + 2!;-1,.-1 .

This is, in fact, the undivided difference of p between the

6

cells, corrected for a possible smaller or larger neighbour
cell.

A maximum and minimum value are defined for Cap­
When Cap in a cell becomes higher than the maximum,
the cell is refined. And if Cap drops below the minimum
in four cells, then these are unrefined.

SECOND DERIVATIVE p CRITERION

It is an interesting idea to base a refinement criterion on an
estimate of the local truncation error. For first-order dis­
cretisations of linear equations, this error is proportional
to the second spatial derivative of the solution. And as the
local solution error for a limited flux scheme has the shape
of a first-order error (because the limiter adds numerical
viscosity), the second derivative of the solution is a good
choice for a refinement criterion. For the same reasons as
before, pis used.

The second derivative criterion is defined as the maxi­
mum of two directions, horizontal and vertical,

½+21;- n-1 ½+2';-t'(n+2) i (
p,.-~, + P>-Pcn+2))

Co2 = max
P n=b,r 2-l;.6_x (1 + 21;-l,.-l + 21;-lcn+2J-l) '

(11)
where n + 2 denotes the opposite neighbour of n. This is
the well-known central discretisation of the second deriva­
tive, divided by the cell size. It is corrected to allow cells
of different sizes. A maximum and minimum are defined
as for the Cap criterion.

Two CELLS PER LEVEL

It is undesirable to have neighbour cells with a level dif­
ference of two or more, as this may cause large errors and
programming difficulties. To keep the grid smooth, some
extra cells have to be refined sometimes where the refine­
ment criterion is not yet too high. More precisely, extra
cells are refined such that each band of cells at the same
level is at least two cells wide:

Assume that a level difference of two is not allowed.
Then, when a cell has a larger and a smaller neighbour
and when it has just had the first of two time steps, that
cell cannot be refined: if it was refined, then the larger cell
has to be refined too and this is impossible, because it has
only had half a time step. But when the smaller neighbour
is refined, then the cell must be refined. This situation may
never occur, so a cell may never have a larger and a smaller
neighbour. When all groups of cells at the same level are
at least two cells wide, this does not happen.

RESULTS

In this section, results are given for two test problems. One
is the forward-facing step problem, known from the work
of Woodward and Colella 13 • The other is a new problem,
the shedding of vortices from a suddenly started flat plate.
With these two problems, the features of the algorithm
and the refinement criteria are illustrated. Furthermore,

American lnstitute of Aeronautics and Astronautics

they prove that the current method is more efficient than a
method on a uniform grid.

FORWARD-FACING STEP

This first problem is used to validate the method and to
compare the performance of the two refinement criteria.
Therefore, the solutions obtained with the adaptive grid­
ding algorithm are compared with solutions on a uniform
grid that has the same grid size as the smallest cells in
the adapted grid. These solutions are made with the same
method as the adapted solutions, but with the grid adap­
tation turned off, so everything except the grid adaptation
procedure is the same.

The forward-facing step problem was introduced by
Emery3 and later used, among others, by Woodward and
Colella 13 • The problem starts with a Mach 3 flow in a wind
tunnel section. At t = 0, a forward-facing step material­
izes in the floor of the section. A bow shock develops in
front of this section. Later on, this shock reflects from the
top surface.

The solution is studied at t = 4 (figure 10). At this
moment, the shock has reflected three times and the first
reflection has developed into a Mach stem with a normal
shock and a trailing contact discontinuity. An expansion
fan above the step interacts with the shocks. This fan is
slightly overexpanded, so it ends in a weak shock. This
oblique shock crosses the first reflected shock and merges
with the second, causing a very weak trailing contact dis­
continuity.

A plot of the entropy (figure 10) reveals some aspects
of the solution that are not visible in the density plot. Of
course, the shocks show up, but especially the contact
discontinuity is well visible. In this contact discontinu­
ity, we see a slightly wavy pattern. These waves, known
as Kelvin-Helmholtz instability, are a physical feature, al­
though they are triggered by small numerical oscillations.
On the surface above the step, a numerical boundary layer
is visible, despite a correction that is applied above the
step: in the first few cells behind the comer, the entropy
and enthalpy are reset to the values in the last cell before
the comer12. 13 • Because of this correction, the boundary
layer does not influence the shock reflection much.

The density solution with adaptive gridding is given in fig­
ure 11, both for the Cap and the Ca2p criterion. If we
compare these with the uniform solution of figure 10, we
see that they are comparable in accuracy. The shocks are
sharp and well visible everywhere, as is the contact dis­
continuity. From the position of the shocks, it is seen that
the Ca2p criterion performs slightly better. The normal
shock is longer and placed a little more forward, which
corresponds better to the uniform-grid solution.

In the entropy solutions (figure 12), differences in the
numerical boundary layer can be seen. For the Cap crite­
rion, the strength of the boundary layer is actually reduced
before the shock reflection, so this solution is even better
here than the uniform-grid solution. Further back, there is

7

an erroneous 'curl' in the entropy solution. The Kelvin­
Helmholtz instability is visible in both solutions, but it is
damped and smeared more for the Ca2p criterion.

The adapted grids at t = 4 reveal much about the nature
of the refinement criteria. The shocks are fully refined for
both criteria, but the refinements are broader for the Ca2p
criterion. This happens because the first derivative of p is
high in the middle of a shock, while the second derivative
is higher near the sides.

The expansion is refined more for the Cap criterion, be­
cause an expansion usually has a large gradient, but not
much curvature. The last part of the contact discontinuity
is not refined for the Ca2p criterion, which explains why
the contact discontinuity is smeared there. None of the two
criteria refines the second, weak contact discontinuity.

The expansion fan shows a weakness of the Ca2p cri­
terion: its high sensitivity to small disturbances in the
solution. Especially the refinement and unrefinement of
cells causes errors. These errors are very small, but they
cause peaks in the second derivative estimate, so the grid
is refined more (or again). This 'self-induction' causes a
ragged grid, which can be seen in the expansion fan.

CPU times for these solutions are measured on a SUN
E250 workstation, see table 1. These times include all
computations but no input or output. The uniform-grid
computation has some unnecessary overhead for the need­
lessly complex data structure, but no refinement or unre­
finement checks are done•.

uniform grid
Cap criterion
C a2 criterion

CPU time (s)
43,184

8554
8981

% ofunif.

20
21

Table 1: Forward-facing step, CPU times for the solution
on a uniform grid and refined grids, with the Cap and the
Ca2p refinement criterion.

The table shows that, for these settings of the upper and
lower limit, both criteria require about the same compu­
tation time. The results above confirm that both solutions
are comparable in accuracy to the uniform-grid solution,
although the Ca2p solution is slightly better. So, in this
case, the adaptive gridding method delivers this compara­
ble accuracy at five times lower computational costs.

FLAT PLATE

As a second test problem, the subsonic flow around a flat
plate is calculated. No results are known in advance from
the literature, so in this sense, the problem resembles prac­
tice. The key question here is, whether the solver works
under these conditions. Furthermore, it is a problem from
an interesting new flow regime, with vortices, rather than

• It is estimated that the uniform-grid computation time can be re­
duced to about 8()')1, of its current value if the code is rewritten for uni­
form grids.

American Institute of Aeronautics and Astronautics

a)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

X

b)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

0 0
X

Figure 10: Forward-facing step, solution at t = 4 computed on a uniform grid with D.x = 1/160 and D.x/ D.t = 12.5.

Iso-lines for the density p (a) and unscaled entropy z = ln (ffe) (b).

a)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

00
X

b)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

00
X

Figure 11: Forward-facing step, the density pat t = 4, computed on an adapted grid with the Cap criterion (a) and the
C82P criterion (b). The basic coarse grid has D.x = 1/20 and !::i.x/ D.t = 12.5. Maximum level of refinement is 3.

8
American Institute of Aeronautics and Astronautics

a)
0.9

0.8

0.7

0.6 .J>
► 0.5 9

s:,~

0.4 .,
9" :::-----.......

0.3

0.2 ~
0.1

00
X

2 3

b)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

X

Figure 12: Forward-facing step, the unscaled entropy z at t = 4, computed on adapted grids with the CtJp criterion (a)
and the Cr:J2p criterion (b).

a)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

X

b)
0.9

0.8

0.7

0.6

► 0.5

0.4

0.3

0.2

0.1

00
X

Figure 13: Forward-facing step, the adapted grids at t = 4 for the solution in figures 11 and 12. CtJp refinement criterion
(a) and Caip refinement criterion (b).

9
American Institute of Aeronautics and Astronautics

shocks, expansion waves and contact discontinuities. This
section describes the method used to solve the flat plate
problem.

PROBLEM DEFINITION A flat plate is placed at rest in
a flow at rest, under an angle of attack a. At t = 0, the
plate is instantaneously accelerated to Mach 0.5 and after
t = 0, the speed is kept constant. This problem is modeled
on a rectangular grid with a cut in it to represent the flat
plate. Initially, a flow with an angle of attack a is specified
in the whole domain.

CONVERGENCE STUDY Because the problem is new, a
convergence study is done on uniform grids, on a small
domain (7 x 6 chord lengths) and on a short time interval
(t = 3). Three grids are used, with L).x = L).y = 1/16,
1/32 and 1/64 chord length. These tests show that, after
some time, the flow separates from the leading edge. But
until this separation, the flow is independent of the grid
size and is converged for L).X = 1/64. For a low angle of
attack, a = 5°, separation occurs quite late, so sensible
results can be obtained after t = 3.

o.e1 -----r---------;:;=====::::;7

0.4

0.3

0.2

2

uniform

d6 0.12

d6 0.08

d, 0.04

3

Figure 14: Flat plate, development of the normal force co­
efficient Cn for three settings of the upper and lower limit
for the refinement criterion. The upper limit d8 is shown,
the lower limit is always 0.4d8 •

REFINEMENT CRITERION A gradient criterion is the
most robust and stable choice for a refinement criterion,
but Cap is not suitable because the density does not change
much in this subsonic flow. Therefore, a gradient crite­
rion is based on the second component of q, the momen­
tum term pu. A test is done with this criterion, on the
same small domain' as the convergence test. The upper
and lower limit for the criterion are set by comparing the
solution with different limits with the uniform solution.

The development of the normal force coefficient Cn on
the plate in time is given in figure 14 for the case studied
(a: = 5 °, maximum level of refinement 5 on a L).x = 1 / 2
basic grid, which corresponds to L).X = 1 / 64 for the small­
est cells). The lowest value for the limit gives a solution
that matches the uniform solution well, especially in the

10

beginning. Therefore, this value is selected.

a)
2

► 0

-1

b)
2

I
I
I

► 0

I - a ~e-I ~

I H

I H

-r
-1

el '

0 X 2 4

Figure 15: Flat plate, solution at t = 4. The flow speed
✓u2 + v2 (a) and the adapted grid (b). The plate lies on
the x-axis between x = 0 and x = 1.

RESULTS With the settings found for the refinement cri­
terion, a representative solution is calculated on a large
domain (12 x 12 chord lengths) fort = 0 to t = 9. As
an example, the solution is shown at t = 4 in figure 15.
At this moment the starting vortex, which was created at
the trailing edge from t = 0 to t = 0.75, has fully de­
veloped and moves downstream. The speed distribution in
figure 15a shows this vortex and the wake with which it
is connected to the plate. Also, the regions of suction and
compression, above and below the plate, can be seen. The
grid (figure 15b) shows refinements around the plate, the
starting vortex and the wake.

A vector plot of the velocity, shown relative to the undis­
turbed air, clearly shows the starting vortex (figure 16). A
region of vorticity is seen, with high speeds around it. Fur­
ther away from the vortex core, the speed becomes lower.
The wake contains vorticity too: the nonnal components
of the velocity vectors do not change across the wake, but
the tangential components do. The wake is moved down­
ward by the starting vortex.

From these results, it is concluded that the adaptive
gridding method is suitable for the analysis of practical
unsteady flow problems. A great reduction of computa­
tional costs is achieved: table 2 shows that the computa­
tional costs are estimated to be 80 times lower than for a
uniform-grid solution.

American Institute of Aeronautics and Astronautics

0.5

0.25 , ,

>

-0.5

-0.75 o~..___._...._..._~0.1:--5 __,____,_---+---'--'-'--"---:"1.s

X

Figure 16: Flat plate, vector plot of the velocity at t = 4.
In this plot, the undisturbed air is at rest and the flat plate
moves (it is now to the left of the y-axis).

CPU time (s) % of unif.
uniform grid 121,000
adapted grid 1448 l.2

Table 2: Flat plate, CPU time for the solution on a refined
grid. Large problem, a = 5°. The uniform-grid time is
estimated from the CPU times for the smaller convergence
problem.

CONCLUSION

Results in the previous section show that the current adap­
tive gridding method can be used for practical applications
and that it is substantially faster than comparable meth­
ods without adaptive gridding. The adaptive gridding al­
gorithm gives a very fast and efficient adaptation of the
grid to the solution and the entire procedure is easy to im­
plement.

The method is tested here with the 2D Euler equa­
tions, but most of the method does not depend on these
equations, so the method can be changed easily to solve
other hyperbolic conservation laws. Extension to 3D is
straightforward too, only the data structure needs some
real changes.

Concluding, the current method is a useful technique
for a wide range of unsteady problems and an interesting
alternative for more complex solution-adaptive methods.

REFERENCES

1 M.J. Berger and P. Colella. ''Local Adaptive Mesh Re­
finement for Shock Hydrodynamics:• J. Comp. Phys.
82 (1989), pp. 64--84.

2 M.J. Berger and J. Oliger. "Adaptive Mesh Refine­
ment for Hyperbolic Partial Differential Equations." J.
Comp. Phys. 53 (1984), pp. 484-512.

11

3 A.F. Emery. ''An Evaluation of Several Differencing
Methods for Inviscid Fluid Flow Problems." J. Comp.
Phys. 2 (1968), pp. 306-331.

4 P. W. Hemker and S.P. Spekreijse. "Multiple Grid and
Osher's Scheme for the Efficient Solution of the Steady
Euler Equations." Applied Numerical Mathematics 2
(1986), pp. 475-493.

5 W. Hundsdorfer, B. Koren, M. van Loon and J.G. Ver­
wer. "A Positive Finite-Difference Advection Scheme."
J. Comp. Phys. 117 (1995), pp. 35-46.

6 B. Koren. "Multigrid and Defect Correction for the
Steady Navier-Stokes Equations, Application to Aero­
dynamics". CWI Tract 7 4, Centre for Mathematics and
Computer Science, Amsterdam, 1991.

7 H.T.M. van der Maarel. "A Local Grid Refinement
Method for the Euler Equations". PhD Thesis, Univer­
sity of Amsterdam, Amsterdam, 1993.

8 S. Osher and F. Solomon. "Upwind Difference
Schemes for Hyperbolic Conservation laws". Math.
Comput. 38 (1982), pp. 339-374.

9 S.P. Spekreijse. "Multigrid Solution of the Steady Eu­
ler Equations". CWI Tract 46, Centre for Mathematics
and Computer Science, Amsterdam, 1988.

10 P.K. Sweby. "High Resolution Schemes Using Flux
Limiters for Hyperbolic Conservation Laws." SIAM J.
Num. Anal. 21 (1984), pp. 995-1011.

11 R.A. Trompert. "Local Uniform Grid Refinement for
Time-Dependent Partial Differential Equations". PhD
Thesis, University of Amsterdam, Amsterdam, 1994.

12 J. Wackers. "An Adaptive-Gridding Solution Method
for the 2D Unsteady Euler Equations". CWI Note
MAS-N0301, Centre for Mathematics and Com­
puter Science, Amsterdam, 2003. (Available from
www.cwi.nl.)

13 P.R. Woodward and P. Colella. 'The Numerical Sim­
ulation of Two-Dimensional Fluid Flow with Strong
Shocks:' J. Comp. Phys. 54 (1984), pp. 115-173.

American Institute of Aeronautics and Astronautics

