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ABSTRACT 

Discretizations of two-fluid fl.ow problems in conservative 
formulation generally exhibit pressure oscillations. In this 
work we show that these pressure oscillations are induced 
by the loss of a pressure-invariance property under dis­
cretization, and we introduce a non-oscillatory conserva­
tive method for barotropic two-fluid flows. The conserva­
tive formulation renders the two-fluid flow problem suit­
able to treatment by a Godunov-type method. We present 
a modified Osher scheme for the two-fluid flow problem. 
Numerical results are presented for a translating-interface 
test case and a shock/interface-collision test case. 

INTRODUCTION 

Flows of two immiscible contiguous fluids occur in a mul­
titude of physical sciences and engineering applications, 
e.g., water underlying air in ship hydrodynamics, gaseous 
bubbles in cavitating liquids and fumes in petrolea. Such 
two-fluids can be construed as a single medium sustaining 
a discontinuity at the interface. In the absence of viscosity, 
a two-fluid fl.ow is then described by a system of hyper­
bolic conservation laws. The numerical treatment of two­
fluid flows as a system of hyperbolic conservation laws is 
referred to as interface capturing. For examples of inter­
face capturing see, for instance, Refs. 6• 16• 20• 

A common objection to conservative interface capturing 
is the occurrence of so-called pressure oscillations. These 
pressure oscillations expose the loss of certain invariance 
properties of the continuum problem under discretization. 
Several correctives have been proposed to avoid pressure 
oscillations, e.g., (locally) non-conservative discretization 
methods 1• 14• 15• 23 , correction methods 13 and the ghost­
fluid method 7• For an overview of these correctives, and 
of their merits and deficiencies, see 2 and, for homentropic 

1 

flows, Ref. 17 • A characteristic of these methods is that 
at the interface the conservative formulation is abandoned. 
Hence, these methods are generally non-conservative. Re­
cently, enhancements of the ghost-fluid method have been 
proposed, which retain conservation; see Refs. 8• 21 • How­
ever, the interface treatment of these methods is not trivial 
and further investigation is warranted. 

It is commonly assumed that the loss of the aforemen­
tioned invariance properties is inherent to any conserva­
tive formulation; see, e.g., Refs. 2•24• However, since the 
invariance properties are intrinsic to the continuum equa­
tions, irrespective of their form, we conjecture that it is 
possible to devise conservative numerical schemes that in­
herit the necessary invariance properties. 

The interface-capturing approach requires that the em­
ployed numerical techniques remain robust and accurate 
in the presence of discontinuities. If one adheres to the 
conservative form of the equations, then Godunov-type 
schemes 9 are particularly useful in these circumstances. 

The present work considers the interface-capturing ap­
proach to solving two-fluid flow problems. We investigate 
the pressure oscillations that are commonly incurred by 
discrete approximations of two-fluid fl.ow problems, and 
we present a non-oscillatory, conservative Godunov-type 
method for barotropic fluids. Moreover, we set up a mod­
ified Osher-type flux-difference splitting scheme for the 
approximate solution of the two-fluid Riemann problems. 
The novelty of our method is its pressure invariance in 
combination with a formulation of the two-fluid fl.ow prob­
lem as a system of hyperbolic conservation laws. It is gen­
erally accepted that methods based on such a formulation 
necessarily exhibit pressure oscillations; our results refute 
this. 

Two-FLUID FLOWS 

The basic notion underlying the interface capturing 
method, is that a flow of two contiguous, inviscid com-
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pressible fluids can be construed as a flow of a single 
medium sustaining a discontinuity at the interface. In this 
section we derive the two-fluid Euler equations from the 
Euler equations for the separate fluids and the interface 
conditions. 

CONSERVATION LAWS 

We consider flows of two contiguous inviscid compress­
ible fluids. For convenience, we arbitrarily designate one 
of the fluids as the primary fluid and the other as the sec­
ondary fluid. For our purposes, it suffices to consider a 
single spatial dimension. We refer to the corresponding 
spatial coordinate as x and to the temporal coordinate as 
t. The fluids occupy an open bounded space/time domain 
n c { (x, t) E R 2 }, which is the union of the disjoint open 
sets nP and ns, containing the primary and secondary 
fluid, respectively, and the inte,face r := f2p n f28 (the 
overbar denoting closure); see Figure 1. 

n. 

X 

Figure I: The space/time domain n := nP Un.Ur. 

In both fluids the flow is characterized by the state vari­
ables p : n ...... R+ and V : n ...... R, representing density 
and velocity, respectively. To facilitate the presentation of 
the governing equations, we introduce the notation: 

and f(q) := ( 2 /q2+ ) , 
Q2 Q1 p 

(1) 

where prefers to the pressure. Eq. (1) must be furnished 
with equations of state for the primary and secondary 
fluid. Under the assumption that the fluids are barotropic 
(see, e.g., Ref. 29), these equations of state have the form 
p := Pp(P) and p := p.(p). In a proper functional set­
ting, conservation of mass and momentum in the fluids is 
expressed by the variational statement 

1n Wt•q+w,,f(q) dxdt = 0, \:/w E [Ccf'(npun.)]2, 
(2) 

where C8° ( G) denotes the space of functions that have 
continuous partial derivatives of all orders k = 0, I, 2, ... 
and that have compact support in G. 

INTERFACE CONDITIONS 

To present the interface conditions for the two-fluid flow, 
we define 

(x,t)± := lim(x ± €, t), (x, t) E f, (3) 
t!O 
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i.e., (x, t)- and (x, t)+ are at the interface in the primary 
and secondary fluid, respectively. The interface conditions 
for the two-fluid flow prescribe that the velocity and pres­
sure are continuous across the interface. In particular, 

l(x,t)+ 
V =0, 

(:z:,t)-
(x,t) Er, (4a) 

l(:z:,t)+ 
p =0, 

(:z:,t)-
(x,t) E f. (4b) 

Eq. (4b) is referred to as the dynamic condition. Further­
more, the interface motion must comply with a kinematic 
condition. To express this kinematic condition, we iden­
tify the interface by a level set: 

r := {(x, t) En: 8(x, t) = O}, 

with 8 E C 00 (f2) a suitably chosen function. We assume 
that 8(f!p) > 0 and 8(fls) < 0. The kinematic interface 
condition is stated: 

(x, t) En. (4c) 

Eq. (4c) implies that the interface moves with the local 
flow velocity and thus ensures imrniscibility. Recall that 
the velocity at the interface is uniquely defined by virtue 
of(4a). 

Two-FLUID EULER EQUATIONS 

To formulate the two-fluid Euler equations, it is impor­
tant to note that the interface conditions (4) imply that the 
Rankine-Hugoniot condition for discontinuities in hyper­
bolic systems (see, for instance, Ref. 27) is satisfied at the 
interface: 

s( q(x, t)+ - q(x, t)-) = f( q(x, t)+) - f( q(x, t)-), 
(x, t) E f, (5) 

with s the shock speed. In particular, for the interface, 
s = v(x, t) for (x, t) E r. The variational statement (2) 
subject to (5) is equivalent to 

Note that the functions w in (6) can have support across 
the interface, in contrast to (2). The equivalence is founded 
on the classical principle that a piecewise continuous so­
lution is a valid weak solution if and only if it satisfies the 
Rankine-Hugoniot condition at discontinuities. 

To obtain a conservative formulation of the two-fluid 
Euler equations, we must replace the nonconservative, ad­
vective form of the kinematic condition (4c) by a conser­
vative equivalent. Under the conditions imposed by (6), an 
appropriate replacement for ( 4c) is: 

'ef>. E Ccf' (f2), 

(7a) 
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with 0 - g(0) a strictly monotone map with the property 
that for all,\ E C8° (0) and for all admissible (p, pv) there 
exists aw E C8°(0) such that 

In WtP + Wx pv dx dt = In (>-.t g(0) +-\g'(0) 0t) p+ 

(-\xg(0)+>-.g'(0)0x)Pvdxdt. (7b) 

If g is a C00 map then >-.g(0) E C 00 (fl) and the iden­
tity (7b) follows by setting w = ,\g(0) and invoking par­
tial differentiation. However, even if g is less regular, e.g., 
piecewise C 00 , then the condition can still be satisfied if 
the derivatives are understood in a generalized sense. To 
establish that (6) and (7a) imply (4c), we note that by (6) 
and (7b) 

In Atpg(0) +Axpg(0)vdxdt+ 

In Axpg'(0) (0t + v0x) dxdt = 0, V>-. E C0 (fl). 

(8) 

By virtue of (7a), the integrals in (8) must vanish sepa­
rately. Therefore, Eq. (6) and (7a) imply (4c) weakly. 

To conclude the setup of the two-fluid Euler equations, 
we note that the interface conditions (4) are identical to the 
continuity conditions for contact discontinuities; see, e.g., 
Refs. 27•29 . Therefore, the two-fluid flow problem can be 
condensed into the variational statement 

where 

with the provision that 0 can only change sign across a 
contact discontinuity, i.e., that the interface coincides with 
a contact discontinuity. In the following we shall show 
that (9) indeed complies with the latter requirement. 

Eq. (9) must be equipped with a compound equation of 
state of the form p := p(p, 0) with the property: 

p(p, 0) := {Pp(p) '.f 0 > 0, (lO) 
Ps(P) tf0 < 0. 

One may note that in (9)-(10), 0 only acts as an intermedi­
ary between g and p. Therefore, 0 does not have to appear 
explicitly in the formulation. 

PRESSURE OSCILLATIONS 

A common objection to interface capturing is the occur­
rence of pressure oscillations. These pressure oscillations 
expose the loss of the pressure-invariance property of the 

3 

continuum problem under discretization. Below, we ex­
emplify the pressure oscillations and we derive a pressure­
invariance condition for discrete approximations to two­
fluid flow problems. Furthermore, we construct a non­
oscillatory conservative discretization for barotropic two­
fluid flows. 

EXEMPLIF1CATION 

The ensuing exemplification has appeared in similar form 
in, e.g., Refs. 2• 17•24 and is merely included here for com­
pleteness. 

To illustrate the pressure oscillations that are generally 
incurred by conservative discretizations of two-fluid flow 
problems, we consider (9) on fl := C x ]0, oo[, with C 
an open bounded subset of JR. We assign g as the primary 
volume fraction. In particular, this implies 

g(0) := {1 if0 > ?, 
0 otherwise. 

(11) 

The compound equation of state is specified accordingly 
as 

p(p, 0) = g(B)pp(P) + (1 - g(B))p.(p), (12) 

with Pp (p) and Ps (p) the equations of state for the primary 
and secondary fluid. In fact, (12) provides a definition of 
the volume fraction in terms of p and p. We allude to the 
fact that 0 can be removed from the formulation and we 
suppress the dependence of g on 8 below. 

The spatial interval C is subdivided into open intervals 
Ci :=]xj, XJ+J [ with j = 1, ... , n and (9)-(12) is supple­
mented with the initial conditions 

p(x,0) = pJ, v(x,0) = V, g(x,0) = gJ, 

x E]xj, xi+d, j = 1, ... , n, (13a) 

with V an arbitrary positive constant and pJ and gJ con­
stants such that 

for some constant P. The equations (9)-(13) represent a 
two-fluid flow in which the velocity v is uniform and in 
which the density p and the primary volume fraction g are 
such that the pressure pis uniform as well. 

The obvious solution to (9)-(13) is given by 

q(x, t) = q(x - Vt, 0). (14) 

The pressure p(x, t) corresponding to (14) follows from 
the compound equation of state: 

p(x, t) = g(x, t) Pp(p(x, t)) + (1 - g(x, t)) Ps(p(x, t)). 
(15) 

By (14)-(15), 

p(x - Vt, 0) = g(x - Vt, 0) Pp(p(x, t))+ 

(1- g(x - Vt, 0)) p8 (p(x, t)), (16) 
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and it follows that p( x, t) = P. In conclusion, if the ini­
tial velocity and pressure are uniform, then the pressure is 
invariant under (9). 

To illustrate the loss of the pressure-invariance prop­
erty, we consider the discretization of (9)-(13) on the grid 
{(xj,tk) : j = l, ... ,n,k = 1,2, ... } (to = 0 and 
tk < tk+1) by means of the discontinuous Galerkin finite 
element method with piecewise constants: 

qj+1-qj + f(qj,qj+1)-f(qj_1,qj) =0. (17) 
tk+l - tk Xj+l - Xj 

This discretization is a first-order forward Euler finite­
volume discretization. We specify the initial conditions 
qJ = (pj,pjV,pJgJ)T,inconfonnitywith(l3). ln(l7), 
f(qj, qJ+1) refers to the numerical flux (see, e.g., Ref. 11 ) 

between the elements .Cj and .Cj+l· The grid function qj 
is a piecewise constant approximation to q(x, tk) accord­
ing to (14) in the interval .Cj. 

The states qj and qJ+i (j = 1, ... , n - 1) are con­
nected by a contact discontinuity with velocity V. The 
corresponding Godunov flux becomes: 

f(qJ,qJ+1) = V (1~) + (~). (18) 
pjgj 0 

Expression (18) is also valid for any approximate Riemann 
solver that features an exact representation of contact dis­
continuities, such as Osher's scheme. From Eqs. ( 17)-( 18) 
it follows that 

1 o C( o o ) qj = qj - qj - qj-1 , (19a) 

with 
C := V(t1 - to)/(x;+1 - xj), (19b) 

the local CFL-number. From Eqs. (19) and (13b) we ob­
tain, successively, 

with 
* . o C( o o ) gj .= gj - gj - gj-1 . (20b) 

Comparing (20) to ( 13 b ), we infer that a necessary and suf­
ficient condition for pressure invariance of the discrete ap­
proximation is gJ = gJ. However, conversely, from (13b) 
and (19) we obtain 

1 f32Pp + (f31 - f32)Ps 
g- = ' 

3 f31Pp + (l -f31)Ps 

with 
!31 = (1- C)gJ + CgJ_ 1, 

!32 = (1 - C)(gJ)2 + C(gJ_ 1 )2, 

(21a) 

(21b) 

(21c) 

with Pp/• := Ppfs(P). In general, gJ f:. gJ and, hence, 
the discrete approximation from (17) lacks the pressure­
invariance property of the continuum equations (9). Trivial 
exceptions are: C = 0 (⇒ q 1 = qJ), C = 1 (⇒ q} = 

qJ-1), gJ = gJ-1 (⇒ qJ = qJ-1) and Pp = Ps• 
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It is noteworthy that if (pg)t + (pgv)x = 0 in (9) is 
replaced by 

gt + Vg:,: = 0, X E .C, t ~ 0, (22) 

then, subject to the initial conditions (13), the first-order 
forward Euler discretization yields 

(23) 

Hence, gJ = g;, and pressure invariance is maintained. 
However, Eq. (22) is in non-conservative form. The pres­
sure invariance is in this case achieved at the expense of 
the conservative form of the equations. 

PRESSURE-INVARIANCE CONDITION 

The implications of the above exemplification are re­
stricted: The analysis does not imply that pressure oscil­
lations are inherent to conservative discretizations of two­
fluid flow problems. It merely implies that discrete ap­
proximations to two-fluid flow problems do not necessar­
ily inherit the pressure-invariance property of the contin­
uum equations. 

To avoid pressure oscillations, discrete approximations 
of two-fluid flow problems must comply with a pressure­
invariance condition. This condition is also mentioned 
in Ref. 24 in the context of a not-strictly-conservative 
method for multi-fluid flows with a stiffened-gas equation 
of state; see also 3• 25• 26 • Below we formulate the pressure­
invariance condition for strictly conservative hyperbolic 
systems conform (9), provided with a compound equation 
of state of the form p(p, 0). We do not yet attach a specific 
connotation to g. 

The pressure-invariance condition for discretizations 
of (9) is stated: If vj = V, with V ~ constant, and pj 
and 0j satisfy 

p(pj,0j) = P, (24a) 

for some constant P, then pis invariant under the charac­
teristic mapping of the discretization, i.e., 

(24b) 

In fact, gJ = gJ with g; according to Eq. (20b) is an 
implementation of the pressure-invariance condition for a 
compound equation of state conform (12) and the first­
order forward Euler discretization ( 17). 

A NON-OSCILLATORY CONSERVATIVE SCHEME 

To set up a pressure-invariant discretization for two-fluid 
flow problems, we consider two distinct compressible flu­
ids with barotropic equations of state Pp (p) and Ps (p). For 
given density and pressure, the primary volume fraction o 
is implicitly defined by 

p(x, t) = a(x, t)pp(p(x, t)) + (1- a(x, t))p.(p(x, t)). 
(25) 

Under the assumption pp(P) -f. p8 (p), Eq. (25) uniquely 
defines o. However, o does not appear in our final formu­
lation and we do not rely on its unicity. 
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We also require the primary and secondary partial den­
sities, defined as: 

respectively. In terms of these partial densities, conserva­
tion of mass, for each fluid separately, is expressed by 

Furthermore, the compound density satisfies p = p~ + p~. 
Hence, if we assign g as the primary mass fraction, 

g := p~/p, (28) 

then conservation of mass, for each of the fluids separately, 
and conservation of momentum can be condensed into the 
form (9). 

The compound equation of state associated with g ac­
cording to (28) is implicitly given by 

pg= O:pp(p), 

p - pg= (I - o:)ps(p). 

(29a) 

(29b) 

Eq. (29) follows from pg= p~ and p - pg = p~ and (26). 
Elimination of o: yields the convenient form 

1 g I - g - =--+--. 
P Pp(P) Ps(P) 

(30) 

The first-order forward Euler discretization of (9) with 
the compound equation of state (29) or (30) satisfies the 
pressure-invariance condition. To corroborate this asser­
tion, we note that if vj = V and p (pj, gJ) = P, i.e., 

pjgj = o:jpp(P), (31a) 

pj - pjgj = (1 - o:j)p.(P), (31b) 

for all j = 1, ... , n, then the forward Euler discretiza­
tion (17) with the numerical flux (18) yields 

(32a) 

(32b) 

with C defined by (19b). From (31)-(32) it follows that 

pj+1gJ+1 = o:j+1Pp(P), (33a) 

pj+1 _ pj+1gj+l = (1- o:j+1)p.(P), (33b) 

with 
(33c) 

The compound equation of state (29) thus 
yields p(pj+1, gj+l) = P. 

Summarizing, we conclude that if g represents the pri­
mary volume fraction and the compound equation of state 
is specified accordingly as (12), then the discretization 
does not comply with the pressure-invariance condition. 
In contrast, if g is the primary mass fraction and the com­
pound equation of state is given by (30), then the pressure­
invariance condition is satisfied. 

5 

A MODIFIED, Two-FLUID OSHER SCHEME 

By virtue of its conservative form, the above pressure­
invariant formulation, based on the mass fraction, is ide­
ally suited to treatment by Godunov-type methods. To 
avoid the computational expenses of solving the associated 
Riemann problems, below we set up an approximate Rie­
mann solver for the two-fluid flow problem. The approx­
imate Riemann solver is of Osher type. As a digression, 
we show that the interface indeed appears as a contact dis­
continuity, both in the exact Riemann solution and in the 
rarefaction-waves-only approximation that underlies Os­
her' s scheme. 

We emphasize that the choice of the approximate Rie­
mann solver does not affect the pressure invariance; the in­
variance is ensured by the specific choice (28) for g and the 
corresponding compound equation of state (30). Any other 
approximate Riemann solver that resolves contact discon­
tinuities exactly could have been selected here, e.g., Roe's 
scheme or the AUSM scheme. 

THE TWO-FLUID RIEMANN PROBLEM 

We consider (9) provided with a compound equation of 
state of the form p := p(p, g ), e.g., Eq. (30). The formal 
dependence of g on 0 in (9) can be ignored. The corre­
sponding Riemann problem is defined on the half-space 
n := { -oo < x < oo, 0 < t < oo} and is obtained by 
imposing the discontinuous initial conditions 

( ) {
qL if X < 0, 

q x,O := . 
qR otherwise, 

(34) 

for certain constant left and right states qL and qR. 
The properties of the Riemann problem and its solution 

are classical; see, e.g., 27 • This paragraph serves to collect 
the essentials for the ensuing presentation and contains the 
specifics for the two-fluid flow problem. 

To obtain the Riemann solution for the two-fluid Euler 
equations, we need the Jacobian A ( q of f ( q): 

A(q) := 8~~) = 

with 

c1(p,g) := Jap(p,g)/8p, c2(p,g) := Jop(p,g)/og. 
(35b) 

Its eigenvalues are 
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and the corresponding eigenvectors are 

The eigenpairs (>..k, rk) are genuinely nonlinear fork = 
1, 3 and linearly degenerate for k = 2 (cf. Ref. 18 for a 
definition of these classifications). The genuinely nonlin­
ear eigenpairs are related to rarefaction waves and shock 
waves. The linearly degenerate eigenpair corresponds to a 
contact discontinuity. 

For any admissible state qA we associate two paths in 
state space with each eigenpair: the k-shock path and the 
k-rarefaction path. The k-shock path is defined as 

Sk(qA):={qEJR.3 : s(q,qA)(q-qA)=f(q)-f(qA), 

s(q,qA)-+>..k(qA) as q-+qA}, (38) 

where s( q, qA) is referred to as the k-shock speed. The 
k-rarefaction path is defined as 

with h(~) the solution to the ordinary differential equation 

h'(~) = rk(h(e))/,B(h(~)), subject to h(>..k(qA)) = qA, 
(39b) 

with ,8 := 8q>..k( q) • rk( q) for the genuinely nonlinear 
eigenpairs and ,8 := 1 for the linearly degenerate eigen­
pair. Note that >..k(h(e)) = e for the genuinely nonlinear 
eigenpairs. 

The Riemann solution can be constructed by means of 
the shock and rarefaction paths. The solution is constant in 
four (possibly empty) disjoint subsets of n. The constant 
states are denoted by qk13 , k = 0, 1, 2, 3. Furthermore, we 
set q0 := qL and q 1 := qR. We refer to q 113 and q2; 3 

as intermediate states. By connecting each pair of con­
secutive states by either a shock or a rarefaction path, we 
can connect q0 to q 1 . The unique sequence of paths that 

satisfies Ak ( q(k-1)/3) > Ak ( qk/3) if Q(k-1)/3 and qk/3 
are connected by Sk and >..k(4(k-J)/3) :::; >..k(qk;3) if 
4(k-l)/3 and qk/3 are connected by Rk corresponds to 

the Riemann solution. If >..k(Q(k-l)/3) = >..k(qk/3) then 
the shock and rarefaction paths coincide and we opt for a 
rarefaction-path connection. This situation occurs for the 
contact discontinuity. 

Recalling that the Riemann solution assumes the simi­
larity form q(x, t) = q(x/t) (see, e.g., Ref. 27), we obtain 

{

Qo 

q(x, t) := q(x/t) = qk/3 

hk(x/t) 

Q1 

ifx/t<o-t, 

ifO"°i: < x/t < O't, 
ifO"t_ 1 < x/t < ak, 
ifx/t>a3, 

(40a) 

6 

where hk := h according to (39b) with qA := 4(k-l)/3 
and 

+ _ {Ak+i(qk/3), if Ak+i(qk/3):::; Ak+1(4(k+l)/3), 
ak -

sk+l, otherwise, 

(40b) 

if )..k(qk/3) ~ Ak(Q(k-1)/3), 

otherwise. 

(40c) 

An example of the solution (40) is presented in Figure 2. 

+ -U1 = 0'2 

>-2(q,;3) = A2(q2;3) 

Figure 2: Illustration of a two-fluid Riemann solution: An 
expansion fan (shaded) connects q0 to q113, a contact dis­
continuity (dashed) connects q 1; 3 to q213 and a shock dis­
continuity (solid) connects q2; 3 to q 1 . 

RIEMANN INVARIANTS 

To each k-rarefaction path corresponds a set of Riemann 
invariants, i.e., functions which are invariant on Rk. 
These Riemann invariants allow us to conveniently deter­
mine the intermediate states in the rarefaction-waves-only 
approximation to the Riemann solution that underlies Os­
her's scheme. Moreover, by means of the Riemann invari­
ants and a simple argument for shocks, we can show that 
the interface indeed appears as a contact discontinuity. 

Consider the eigenvectors (37). A k-Riemann invariant 
for the two-fluid Euler equations (9) is any continuously 
differentiable function "Pk : JR.3 1-+ JR. with the property 

(41) 

There are at most two such k-Riemann invariants with lin­
early independent partial derivatives. Note that for the lin­
early degenerate eigenpair the eigenvalue is a Riemann in­
variant. 

To derive the 1-Riemann invariants, we first solve the 
system of ordinary differential equations 

h'W = rk(h({)), subject to h(0) = h0 , (42) 

withk=l: 

(43a) 

(43b) 

(43c) 
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with c1(w) := c1 (h1(w), h3(w)/h1(w)). The !-Riemann 
invariants can be obtained by constructing e-independent 
functions of hj(e), j = 1, 2, 3. The invariants thus ob­
tained are presented in (48). Note that by virtue of the 
similitude of r1 and ra, the 3-Riemann invariants can be 
chosen identical to the 1-Riemann invariants with c1 re­
placed by -c1, 

To derive the 2-Riemann invariants, we solve (42) for 
k = 2. Obviously, 

h1(e) = h~ee, and h2(e) = hgee. (44) 

To determine h3(e). we recall that C1 and c2 are defined 
by (35b). Therefore, Eq. (42) yields 

h;D2p + Dip - h3D2p = 0, (45) 

where Dj denotes differentiation with respect to the j-th 
argument. Moreover, from p := p( h1, h3/ h1) we obtain 

dp _ h' (D h3D2p) h' D2p 
di.- 1 1P-~ + a,;;-· (46) 

Eqs. (44)-(46) imply that dp/dl. = 0, i.e., p is a 2-
Riemann invariant and ha(e) is implicitly specified by 

From (44)-(47) we infer that p and q2/q1 are 2-Riemann 
invariants. Indeed, the linearly degenerate eigenvalue 
>.2 := q2/q1 is a 2-Riemann invariant. 

Summarizing, we can associate the following Riemann 
invariants with the two-fluid Euler equations (9) with a 
compound equation of state of the form p := p(p, g): 

1/J? = V + '1f(p,g), tt,~ = V, tt,~ = V- iJ!(p,g), 

,;,i =g, ¢~ =p, ¢~ =g, 
(48a) 

where 
iJ!( ) •- 1P Ct (w, g) dw p,g .- ' 

pO W 
(48b) 

with P° an arbitrary positive real constant. 
It is important to note that g is a Riemann invariant for 

the genuinely nonlinear eigenpairs (k = 1, 3) and that p 
and v are Riemann invariants for the linearly degenerate 
eigenpair (k = 2). In the absence of shocks, this implies 
that the change in g associated with the fluid transition at 
the interface can only occur across the contact disconti­
nuity and, moreover, that the interface conditions (4) are 
indeed satisfied. 

To demonstrate that g is also invariant across genuine 
(non-degenerate) shocks, we note that 

S (p - PA) = pv - PAVA => 
S (P9A - PAgA) = pgAV - PAgAVA, (49) 

for any constant gA. From (38) and (49) we can infer that 
there exist two shock paths on which g is invariant. More­
over, the shock path and rarefaction path of the degenerate 
shock (k = 2) coincide. Because g is not a 2-Riemann 
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invariant, g can vary on the 2-shock path. Therefore, the 
shock paths on which g is invariant must be the 1- and 
3-shock paths. These paths correspond to genuine shocks. 
The invariance of g on the 1- and 3-shock paths implies 
that the fluid transition at the interface cannot occur across 
a genuine shock. 

RAREFACTION• WAVES-ONLY APPROXIMATION 

In the foregoing it was shown that the intermediate states 
in the Riemann solution are connected by shock and rar­
efaction paths. A rarefaction-waves-only approximation is 
obtained by replacing the shock paths by rarefaction paths. 
Shock discontinuities in the Riemann solution are then 
approximated by so-called overturned rarefaction waves; 
see, e.g., Ref. 19• 

The intermediate states in the rarefaction-waves-only 
approximation can be conveniently determined by means 
of the Riemann invariants. Supposing the approximate 
intermediate states ci.ci-t)/n and <ii/n are connected by 
'Rk(l), with k : { 1, 2, 3} - {l, 2, 3} a bijection, 

1Pk(t)(<'i.(l-1)/3) = ¢k(l)(<i113), l,m = 1,2,3, m =/: k(l), 

with q0 := qL and q1 := qR. (50) 

Usual choices for the ordering of the paths are the 
O-variant k(l) := 4 - l (see Ref. 22) and the P-variant 
k(l) := l (see Ref. 10). The O-variant and the P-variant 
have mutually reversed orderings. Throughout, we pre­
sume a P-variant ordering. 

Eq. (50) represents a system of nonlinear equations, 
from which the approximate intermediate states ci.113 and 
q213 have to be extracted. Using the expressions for the 
Riemann invariants (48), it is easy to show that the Jaco­
bian matrix corresponding to (50) is nonsingular. There­
fore, by the inverse function theorem, Eq. (50) is indeed 
solvable. 

To establish the accuracy of the approximate intermedi­
ate states from (50), we recall from 27 that the change in 
the k-Riemann invariants across a k-shock with strength 
µ is 0(µ3) asµ --+ 0, with the k-shock strength defined 
as the change in the eigenvalue Ak across the shock. It 
follows that for sufficiently weak shocks, i.e., if µ := 
supk=l,3 (>-.k( q(k-l)/3) - Ak( qk;3)) is sufficiently small, 
the error in the approximate intermediate states is only 
0(µ3) as well. Moreover, in the absence of shocks, the 
approximation according to (50) is even exact. If strong 
shocks impair the accuracy of the numerical solution, 
then an approximate Riemann solver which is suitable for 
shocks, or even an exact Riemann solver, should be ap­
plied. 

From (48) and (50) we obtain 

91/3 = gL, 92/3 = 9R, and i\;3 = V2/3 =: i'J1;2, 
(51) 

and, in tum, 

- 1Pl/3 C1 (p, gL) 
V112 + --- dp = VL, 

PL p 
(52a) 
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- 1P21a c1 (p, 9R) 
V1/2 - --- dp = VR, 

PR p 

P(Pl/3, gL) = P(P2j3, 9R), ( =: P1;2)-

(52b) 

(52c) 

For a compound equation of state of the formp := p(p, g), 
e.g., Eq. (30), these conditions for the intermediate states 
can be cast in a convenient form. To derive this form, we 
use Eq. (35b) and the transformation p := p(p, 8) to ob­
tain, successively, 

1Pb C1(p,g) 1Pb 1 
--dp= -

P■ p ~ p 
8p(p, g) dp = 

8p 

for any Pa, Pb E IR+ and corresponding Pa, Pb• Eqs. (52)­
(53) imply 

1fi112 1 

PL p(p,gL) 
8p(p, gL) dp+ 

8p 

1Pt/2 1 

PR p(p, 9R) 
Bp(p,gR) dp = VL - vn. (54) 

8p 

Equation (54) presents a concise condition for the inter­
mediate pressure f>1; 2. Once the intermediate pressure has 
been extracted from (54), the intermediate densities follow 
from the compound equation of state and ii1; 2 is obtained 
from (52a) or (52b) in a straightforward manner. 

It is noteworthy that (54) is well suited to treatment 
by numerical approximation techniques. In particular, the 
derivatives of the integrals with respect to jj1; 2, which are 
required in Newton's method, are simply the integrands 
evaluated at jj112 . Moreover, for a given approximation to 
jj1;2, the integrals can be evaluated by a standard numeri­
cal integration method (see, e.g., Ref. 12). 

THE M0DIF1ED OSHER SCHEME 

The numerical flux in Osher's scheme 22 , is determined by 

with 

(55b) 

where h( ~) refers to a parametrization of the section of the 
k(l)-rarefaction path between CJ.(!-l)/3 and CJ.1; 3 and 

IA( q) I := (r1, r2, r3)-diag(l>-1 I, l>-21, l>-3l)·(r1, r2, r3f 1, 
(55c) 

with the eigenvalues and eigenvectors according to (36) 
and (37), their dependence on q being suppressed for 
transparency. The numerical flux (55) approximates 
f(q(0)), with q(x/t) the Riemann solution in similarity 
form according to (40). 
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From Eqs. (55b)-(55c) it follows that 

d1 = fo 1 
sign(>-k(l)(h(e))) A(h(e)) •rk(!J(h(e)) df 

(56) 
If Ak(l) in (56) does not change sign on the integration 
interval, then the integral evaluates to 

d1 = sign(Ak(!)(<I(!-1)/n)) (f(<i1;n) - f(q(!-1)/n)), 
(57) 

whereas if Ak(l) changes its sign once, say at q* (i.e., 
Ak(l) ( q*) = 0), then 

d1 = sign(>-k(!)(<I(!-1)/n)) 

( (f(q*) - f(q(l-1)/n)) - (f(<i1;n) - f(q*))). (58) 

Under the condition O < >-2(<i1;3) = >-2(42;3) < 
A3(q213 ), .\3( qi), we can then derive three generic cases 

if >-1(<io) < 0 < >-1(<i1;3), 

if >-1 ( q0) < >-1 ( <i1;3) < 0, 

if >-1(<io) > 0 > >-1(<11;3). 
(59) 

Comparison to the corresponding f ( q ( 0)) shows that 
fo(qL, 4n) is accurate in the first two cases, in partic­
ular, the error is then O(µ,3), and inaccurate in the third 
case, the error then being 0(µ,); see also 4• This failure 
ofOsher's scheme is exemplified by means of the Burgers 
equation in 19 • 

To avoid the aforementioned deficiency of Osher's 
scheme, we propose a modification of the scheme. 
The rarefaction-waves-only approximation is maintained. 
However, the overturned-rarefaction-wave representation 
of shocks in the approximate Riemann solution is avoided. 
Instead, the intermediate states from (50), with a presumed 
P-variant ordering of the subpaths, are used to construct 
the approximate Riemann solution: 

(60a) 

where hk := h according to (39b) with qA := Cf(k-1)/3 
and 

at := {~k+l ( Qk/3) if>-k+I ( qk/3) ::; Ak+l ( q(k+l)/3), 
sk+l otherwise, 

(60b) 

if Ak(Qk/3) :2: Ak(Q(k-1)/3), 
otherwise, 

(60c) 

(60d) 
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P~ 'f/s "Is 

1 3000 7 10-3 0 7/5 

Table 1: Constants in Tait's equation of state (61). 

The numerical flux is subsequently computed as 
foM(qL, qR) := f(q(0)). 

Comparison of the approximate Riemann solution (60) 
with the exact Riemann solution (40) shows that Bk acts 
as an approximation to the shock speed. In Ref. 27 it is 
proved that the speed of a shock with strength µ is equal 
to the average of the eigenvalues on either side of the shock 
and a remainder of 0(µ 2), asµ ..... 0. 

NUMERICAL EXPERIMENTS AND RESULTS 

To test the non-oscillatory conservative scheme, equipped 
with the modified Osher scheme, for the numerical fluxes, 
we consider two test cases. The first test case is a Rie­
mann problem in which the initial velocity and pressure 
are uniform. Its solution corresponds to a translation of 
the interface. This test case serves to verify the pressure 
invariance of the method. The second test case concerns a 
Riemann problem associated with the collision of a shock 
with the interface. As a result of the interaction of the 
shock and the interface, both the conservation properties 
and the pressure invariance of the method are relevant in 
this case. 

TEST CASE I 

We consider the two-fluid Euler equations (9), provided 
with the compound equation of state (30). The primary 
and secondary fluid comply with Tait's equation of state 
(see, e.g., Ref. 28): 

P,,/.(,P) ,= P~/• ( (p/;; ::/• ) ,,-,,,,,, (61) 

with p0 (:= 1) an appropriate reference pressure, pg/s the 
corresponding densities of the primary and secondary fluid 
and 'f/p/s ~ 0 and 'Yp/s > 1 fluid-specific constants. The 
constants used in the numerical experiments are listed in 
Table 1. These constants are chosen such that the primary 
fluid models water and the secondary fluid models air in 
homentropic flow. Appropriate constants for other fluids 
are provided in 28 • 

Test case I concerns a Riemann problem with 

So, p(x, 0) = 1 and v(x, 0) = 100 for all x, i.e., the pres­
sure and velocity are uniform. The solution then corre­
sponds to a translation of the interface. 
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The two-fluid flow problem is discretized by means of 
a Godunov-type finite volume method, with the numeri­
cal fluxes based on the modified Osher scheme. Instead of 
a first~order discretization conform (17), we use a limited 
second order scheme with the minmod limiter (see, e.g., 
29). The intermediate pressure f>1; 2 is solved from (54) by 
means of Newton's method. The integrals in (54) are ap­
proximated by 16-point Gauss quadrature. We use a uni­
form grid with mesh width h = 2-6 • The time step is set 
tor= 2-9h. 

Figure 3 plots the results for test case I. The initial po­
sition of the interface is set at x = 0. The results confirm 
the pressure invariance of the scheme. 

p 

1-10-9 
----.----.,.....---........ --

0.5 

pg 

-2 -1 0 
X 

0 1.,......--~~-.-,---......;!!==~ 
-2 -1 0 X 1 2 

2 

Figure 3: Test case I: Computed result (markers only) and 
exact solution (solid line)at t = 0.01. Above: pressure. 
Below: density. 

TEST CASE II 

Test Case II is illustrated in Figure 4. The equation of state 
of the primary and secondary fluid is specified by (61), 
with the same constants as in Test Case I (Table 1). The 
states q 0, q 1 and q 1 are determined by 

(p) (1.000427 .. ·) 
V .- 0.062~42. . . , 
g 0 

and 

(63) 
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The pressure corresponding to q 0 is Pp(po) = 10. The 
states q 0 and q 1 in the primary fluid (water) are connected 
by a 3-shock with speed sp = 145.062002 ... and q 1 is 
connected to q 1 by a steady contact discontinuity, repre­
senting the interface. At time t = 0, the shock collides 
with the interface, which is set at x = 0 (see Figure 4). 
The states q0 and q 1 are then contiguous and, hence, the 
collision induces a Riemann problem. The corresponding 
Riemann solution assumes the form of a reflected rarefac­
tion wave, a moving interface and a transmitted shock with 
speed s8 = 37.491063 ... ( = aJ = a-;-). 

X 

x=O 

Figure 4: Test case II: The shock/interface collision at t = 
0 induces a Riemann problem. 

The details of the set up of the numerical experiment for 
test case II are identical to test case I. In figure 5 we have 
plotted the results for test case IL The numerical results 
exhibit good agreement with the exact Riemann solution. 
We also monitored the mass-conservation errors for the 
two fluids separately and the momentum-conservation er­
ror for this test case: these errors are indeed of the order 
of the machine precision (results not displayed). 

CONCLUSIONS 

We presented a non-oscillatory method for barotropic two­
fluid flows, founded on a formulation of the two-fluid 
flow problem as a system of hyperbolic conservation laws. 
The conservative form of the two-fluid flow problem is 
well suited to treatment by a Godunov-type method. We 
considered an approximate Riemann solver for barotropic 
two-fluid flows, based on the rarefaction-waves-only ap­
proximation that underlies Osher's scheme. 

Numerical results were presented for two Riemann 
problems, viz., a translating-interface test case and a 
shock/interface-collision test case. The first test case con­
firms the pressure invariance of the method. The sec­
ond test case confirms its conservation properties. In both 
cases, the computed results agree well with the exact Rie­
mann solution. 

10 

10 1--, 

5 

p 

2 
' 

:, 

-2 -1 0 
X 

2 

100 

p 

10-3 -l,-~--,---~~~~~~=~ 
-2 

0.15 

0.1 

pv --,I 

0.05 

0.5 

pg 

-2 

-2 

-1 

-1 

-1 

0 
X 

2 

0 
X 

2 

0 
X 

2 

Figure 5: Test case II: Computed result (markers only) and 
exact solution (solid line) at t = 0.01. From above to be­
low: pressure (log-scale), density (log-scale), momentum, 
and primary partial density. 
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