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Theoretical and experimental convergence results are presented for nonlinear multigrid and 
iterative defect correction applied to finite volume discretizations of the full, steady, 2D, com
pressible Navier Stokes equations. Iterative defect correction is introduced for circumventing 
the difficulty in solving Na vier Stokes equations discretized with a second- or higher-order 
accurate convective part. By Fourier analysis applied to a model equation, an optimal choice 
is made for the operator to be inverted in the defect correction iteration. As a smoothing 
technique for the multigrid method, collective symmetric point Gauss-Seidel relaxation is 
applied with as the basic solution technique: exact Newton iteration applied to a continuously 
difTcrcntiahle, first-order upwind discretization of the full Navier -Stokes equations. For non
smooth flow problems, the convergence results obtained are already competitive with those of 
well-established Navier-Stokes methods. For smooth flow problems, the present method 
performs better than any standard method. Here, first-order discretization error accuracy is 
attained in a single multigrid cycle, and second-order accuracy in only one defect correction 
cycle. The method contributes to the state of the art in efficiently computing compressible 
viscous flows. 1 1990 Acadt!mic Pre:-.:-., Im:. 

I. INTRODUCTION 

1.1. Navier-Stokes Equations 

The Navier-Stokes equations considered are: 
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For a detailed description of the various quantities used, assumptions made, and so 
on, we refer to any standard textbook. Suffice to say here that these are the full 
Navier-Stokes equations with the main assumptions made: zero bulk viscosity and 
constant diffusion coefficients. (So, the flow is assumed to be laminar and its 
diffusion coefficients are assumed to be temperature-independent.) 

1.2. Discreti:ation Method 

The present paper focuses on the solution method, the discretization method 
being given. For a detailed description of the discretization used, we refer to [ 8]. 
In this section, only a summary is given of the discretization characteristics that are 
relevant for the present paper. 

Since we also want to be able to compute Euler flow solutions ( 1/Re = 0) witr 
possibly occurring discontinuities, the Navier Stokes equations ( 1.1) are discretize< 
in their integral form. A straightforward and simple discretization of the integra 
form is obtained by subdividing the computational domain into finite volumes ani 
by requiring that the integral form holds for each finite volume separately. Thi 
discretization requires an evaluation of a convective and diffusive flux vector :: 
each finite volume wall. 
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1.2.1. Evaluation c~( Convective Fluxes 

Because of good experiences with the Euler equations [5, 6, 7, 15], for the 
evaluation of the convective fluxes we prefer an upwind approach. In here, the 
convective flux vector is assumed to be constant along each cell face, and to be 
determined by a uniformly constant left and right state only. For the 1 D Riemann 
problem thus obtained, an approximate Riemann solver is applied. 

The choice of the left and right state, to be used as entries for the approximate 
Riemann solver, determines the accuracy of the convective discretization. First
order accuracy is obtained, in the standard way, by taking the left and right state 
equal to that in the corresponding adjacent volume [5, 6]. Higher-order accuracy 
is obtained by applying low-degree piecewise polynomial functions, using two or 
three adjacent volume states for the left and right state separately [7, 15]. The 
higher-order accurate polynomial function used is Van Leer's K-function [ 10]. This 
function is general in the sense that it contains a variable KE [ - 1, 1 J that can be 
used for choosing any higher-order approximation ranging from central (K = 1) to 
fully one-sided upwind (K = -1 ). A survey of some characteristic K-values and their 
corresponding properties in the case of Euler flow computations has been given in 
[7]. As an optimal value for K in the case of Navier-Stokes flows, we found by 
error analysis: K = ½, for which value we also constructed a new (monotonicity 
preserving) limiter [8]. 

For the approximate Riemann solver, in [8] we consider two possibilities which 
both have continuous differentiability (a prerequisite for our solution method), 
namely Osher's [12] and Van Leer's [9] scheme. Theoretical analysis and numeri
cal experiments show that Osher's scheme is to be preferred above Van Leer's 
scheme for an accurate resolution of shear flows. Therefore, in the present paper, 
we only apply Osher's scheme. 

1.2.2. Evaluation {)j' D(f.lusive Fluxes 

For the evaluation of the diffusive fluxes, the central, second-order accurate 
technique as outlined in [ 13 J is applied. So, for the necessary computation, at each 
volume wall, of Vu, Vv, and Vc2, the technique uses, at the inner volume walls, a 
shifted volume overlying the volume wall considered. 

To conclude, the discretization to be considered for the full Navier-Stokes 
equations can be either first-order accurate (first-order convection plus second
order diffusion), or second-order accurate ( second- or third-order convection 
plus-standard-- second-order diffusion). 

L 2. CONVERGENCE OF MULTIGRID 

l 
j The same multigrid method which has been used with success for the first-order 
s discretized Euler equations [5, 6 J is taken as a point of departure for both the first-
.t and second-order discretized Na vier -Stokes equations. The method makes use of 

symmetric point Gauss--Seidel relaxation as a smoothing technique. In here, one or 
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more exact Newton steps are performed for the collective relaxation of the four 
state vector components in each finite volume. ( Usually, the convergence of the 
Newton iteration is so fast that in a substantial majority of all cells, only a single 
Newton step is necessary.) For the first-order discretized Euler equations, point 
Gauss-Seidel relaxation turned out to be a good smoother, thus enabling a good 
multigrid acceleration. However, in general, for higher-order discretized Euler equa
tions the good smoothing property is lost. The cause of this difference is the fact 
that the system of first-order discretized equations is always diagonally dominant, 
whereas the system of higher-order discretized equations is not. Obviously, this 
difference will also exist for Navier-Stokes flows with high Reynolds number. We 
do not yet look for some remedy, but first we investigate how smoothing evolves 
with increasingly dominating convection. 

The first and major change that we propose for going from Euler to full 
Navier-Stokes is to extend both the residual operator and its derivative matrix, 
with the full diffusive part coming from the Navier-Stokes equations. Notice that 
the differential operator ( 8/ou, o/cv, c/cc, o/oz) r, introduced in [ 5 J as a convenient 
differential operator for the Euler equations, is also very convenient for the diffusive 
part of the Navier-Stokes equations. The second change that we propose is to 
replace the piecewise constant correction prolongation by a bilinear prolongation, 
thus satisfying the rule that the sum of the order of prolongation and the order of 
restriction should exceed the order of the differential equation (m r + mr > 2m) [3 ]. 

2.1. Investigation Method 

To investigate the convergence properties of the multigrid method proposed, 
both theoretical and experimental convergence results are presented. The theoretical 
results are obtained by performing a smoothing analysis for a model equation. The 
experimental results are obtained by considering two standard flow problems; a 
problem with a smooth solution and a problem with a non-smooth solution. The 
theoretical analysis and the experimental analysis will be discussed in more detail 
in the next two sections. 

2.1.1. Smoothing Analysis 

Since Fourier analysis cannot be applied to the full, steady, 20 Navier Stokes 
equations, here we can only obtain an indication of the smoothing properties that 
may be expected. For this purpose, we consider the scalar, linear convection 
diffusion equation 

au au (a2u a2u 81u) -+--£ -,+--+-, =0 ox ay ax- ax ay ar ' (2.1) 

for which the relaxation direction and the important weight 1: ( of the diffusive 
operator in relation to that of the convective operator) will be varied. The choice 
of both the convective operator's characteristic direction and the diffusive 
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operator's eigendirection is arbitrary and fixed. The loss of generality by taking 
both directions fixed is compensated for by considering the four extreme relaxation 
directions; the downwind, the upwind, and the two crosswind ones. Rigorous 
convergence studies are supposed to be possible only by performing numerical 
experiments with the full Navier-Stokes equations. Yet, pronounced (negative) 
results obtained by Fourier analysis will be taken sufficiently decisive to refrain 
from such experiments. 

For the integral form of (2.1), for each finite volume Qi,k' j=l,2, ... ,J, 
k = 1, 2, ... , K, we use 

l ,£ (ilu Bu iJu ) y ( un,. + un ,. ) ds - e y :j-: n ,. + :j-: n, + ":)": n.,· d1· = 0, 
.'!21,k c'!J1.k { .\ L\ (,) 

(2.2) 

with c7Qi,k the boundary of Qi.k• The two parts of the Navier-Stokes discretization 
to be modelled further, are: ( i) the upwind treatment of convection, either first- or 
higher-order accurate ( non-limited "= ½ ), and (ii) the central second-order accurate 
treatment of diffusion. Assuming a finite volume grid with cell faces which are 
equidistant and parallel to the x- and y-axis (Llx=Lly=h, Fig. 2.1), the evaluation 
of convective flux terms yields 

(2.3a) 

with 
I 

Uj + I ·2. k = 0( I l/ i I. k + 0( 2 U i. k + 0( 3 U i + I, k , 

I 
uj.k + 1/2 = °'1 llj.k I+ rx.2uj.k + rx.3U;.k + 1, 

(2.3b) 

y 
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Fie;, 2.1. Model volume tl,.k with neighbours. 
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and similar expressions for u~ 112.k and u~.k _ 112 (the coefficients r:t.; still free). For the 
diffusive terms we get 

f au [(au) (au) -n.ds= - - -
,'01,k ax -' OX i + 1/2.k ox j 

] h, 
1/2,k 

f au [(flu) (au) - n ,. ds = ~ - -
,10,.k OX c.x j.k + 112 ax j,k 

] h, 
1/2 

(2.4a) 
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1 
=4h(u;+1.k+l[;+1.k+1-u; u-11; 1.k+1l, 
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and similar expressions for (ou/ax); 1 u, (ilu/Dx);.k 112 , and (Du/ily);.k _ 1;2. I 
(2.4b ), iJQJ+ 1.2.k and 8Q;.k + 12 denote the boundary of shifted volume Q1 + 112,k an 
QJ,k + 112, respectively (Fig. 2.2). With the previous flux evaluations we get for eac 
finite volume Q;,k the algebraic equation: 

~ ~ U_;-- l.k + 1 + ( r:l.3 -fi) ll_;,k + I - ~Till;+ 1,k + I 

- r:t. 1 uJ - 2.k + ( r:t. 1 - tx2 - ~) u_; _ 1.k + ( 2r:t. 2 - 2r:t. 3 + 4 i) ll;.k + ( a 3 - Ti) u.i + 1. k 

(2. 
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FIG. 2.2. Shifted volumes. 

with the corresponding stencil: 
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For point Gauss-Seidel relaxation applied to (2.5), as mentioned before, the 
four extreme sweep directions are considered ( downwind, upwind, and twice 
crosswind). Introducing n for the number of sweeps performed, these four 
possibilities can be illustrated as has been done in Fig. 2.3. (In this figure, u;'.t 1 
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denotes the (n + 1 )th iterate of u;.k-) To apply Fourier analysis, we introduce: 
(i) the iteration error 

(2.7, 

with uJ:k the converged numerical solution in Q;,k and (ii) the Fourier form 

(2,8) 

with D constant, fl the amplification factor, and w 1 and w 2 the error frequency in 
j- and k-directions, respectively. The frequencies to be considered are: ( 10 ii. l02l)e 
{ [ 0, 71'.] x [ 0, 71'. J I I 01 I e [ 7!'./2, ir J v I 0 2 I e [ ir/2, 71'.] l, with O 1 = w I h, 0 2 = w 2 h. Results 
of the smoothing analysis are given in Section 2.2. 
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2.1.2. Experiments 

The smooth flow problem considered is a subsonic flat plate flow at Re= 100, for 
which we can use the Blasius solution [ 14 J as a reference solution. The non-smooth 
problem considered is a supersonic flat plate flow at Re= 2.96 x 105, with an obli
que shock wave impinging upon the flat plate boundary layer and inducing flow 
separation there. This problem has been taken from [ 4]. For both flow problems, 
use is made of: y = 1.4 and Pr = 0. 71. 

The geometry and boundary conditions applied for the subsonic flat plate flow 
are given in Fig. 2.4a. As far as convection is concerned, the eastern boundary is 
considered to be an outflow boundary. For diffusion, the northern, southern, and 
eastern boundary are assumed to be far-field boundaries with zero diffusion. For 
this subsonic problem we apply grids composed of square finite volumes. The coar
sest grid applied in all multigrid computations is the 4 x 2-grid given in Fig. 2.4a. 
The finest grid considered is the 64 x 32-grid given in Fig. 2.4b. 

The geometry and boundary conditions for the supersonic flat plate flow are 
indicated globally in Fig. 2.5a. Here, the coarsest grid is a 5 x 2-grid (Fig. 2.5a), and 
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the finest grid a 80 x 32-grid ( Fig. 2.5b ). The grids for the supersonic flat plate flow 
have been optimized for convection by introducing a stretching in }-direction, and 
in particular by aligning them with the impinging shock wave [8]. The supersonic 
problem differs essentially from the subsonic problem, both in flow and in grid 
( (i) non-smooth, supersonic outer flow versus smooth, subsonic outer flow; (ii) thin 
versus thick boundary layer; (iii) separation, flow reversion, and re-attachment 
versus none of these; and (iv) non-equidistant, non-orthogonal grid versus 
equidistant, orthogonal grid.) 

For both flow problems, multigrid iteration is applied, using V-cycles with one 
symmetric pre- and post-relaxation per grid level. 

2.2. Results 

2.2.1. First-Order Discreti::ecl Equations 

For the first-order accurate model discretization we have a 1 = a 3 = 0, o: 2 = 1. With 
this the general 11-point stencil ( 2.6) reduces to the following 9-point stencil 

k+l 
J B E 1 /; 
-- -- ---
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--- --
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j-1 j j+I 

Using the iteration error (2.8) we obtain the smoothing results given in Fig. 2.6. In 
Fig. 2.6a, for each of the four possible sweep directions, the smoothing factor 
µ_,.=sup\µ({\, 02 )1 is given as a function of e/h. In Fig. 2.6b, for e/h= 1, the corre
sponding distributions 1µ(0 1, 0 2 )1 are given. (All four distributions are point
symmetric with respect to e 1 = 0, 02 = 0.) Clearly visible in Fig. 2.6a is the good 
smoothing for any value of E/h and any convection direction, when sweeping alter
natingly in all four different directions (for instance, by applying symmetric sweeps 
and by using a different diagonal sweep direction in pre- and post-relaxation). 

For the subsonic flat plat flow, the multigrid method's behaviour is illustrated in 
Fig. 2.7 by a graph of the residual ratio '"f,; 1 l(F1,(q;;));l/'"f,;_ 1 I (Fh(q7,)); I versus the 
number of cycles performed. Here, l(F1,(q;;));I denotes the summation---over all 
finest grid volumes-of the absolute values of the ith component in the first-order 
Navier-Stokes defects, with q~ the nth iterate and q;: the approximate solution 
obtained by the nested iteration [6]. The measure of grid-independence of the 
multigrid method is illustrated by convergence histories obtained on a 16 x 8-. a 
32 x 16-, and a 64 x 32-grid. For the flow considered, the method appears to he 
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64 X 32, single grid 

··-.···... /1'64X32, multigrid (mp= I) 

·· .. / I 64X 32'1 
-~:~ 32 X J 6J·. multigrid (mp= 2) 
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JO l"i 2C, 

c~cles 

FIG. 2.7. Multigrid behaviour for the subsonic Oat plate flow, first-order discretized Navier-Stokes 

equations. 

nearly grid-independent. In the same figure, the multigrid effectiveness is illustrated 
by giving the convergence history for a single-grid computation on the 64 x 32-grid, 
with one (single-grid) cycle being defined as a symmetric relaxation sweep. Further, 
in the same figure, the influence of the higher-order accuracy of the correction 
prolongation is illustrated by also giving the convergence history for a multigrid 
strategy with mP = 1 (so violating the rule mr + m, > 2m [3 J ). Already for this 
moderately convection dominated flow (Re= 100), the positive influence of the 
second-order prolongation appears to be negligible. Using the Blasius solution as 
a reference, in Fig. 2.8 it is shown that only a single FAS-cycle is sufficient for 
converging to discretization error accuracy. (In Fig. 2.8c, the multigrid effectiveness 
is illustrated once more by giving single-grid results.) 

For the supersonic flat plate flow, similar convergence results are shown in 
Figs. 2.9 and 2.10 for a 20 x 8-, a 40 x I 6-, and a 80 x 32-grid. Here we used the first
order prolongation only. The deterioration of the multigrid method's convergence 
behaviour for the 80 x 32-grid case, as most clearly visible in Fig. 2.10c, is probably 

¥'---- -·,-----···- .. ,---- ,·. 
0.2 0.1 o.s o.e 1 o 0.2 o., o.6 o.e 

ulu, u!u 1 

a. On 16X 8-grid b. On 32 X 16-grid c. On 64 X 32-grid 

FIG. 2.8. Velocity profiles at x = 0 for the subsonic Oat plate flow, first-order discretized 
Na vier-Stokes equations (----: Blasius solution, 0: after 1 FAS-cycle, I I: after 20 FAS-cycles). 
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80 X 32, single grid 

80X32} 
40X 16 multigrid 
20X8 

lC lS .!C 

c~cles 

FIG. 2.9. Multigrid behaviour for the supersonic flat plate flow, first-order discretized Navier-Stokes 
equations. 

due to essential differences between this fine grid solution and the underlying 
coarser grid solutions. If desired, application of sophisticated grid transfer operators 
might be efficacious for matching the smooth problem's convergence rates. 
(Throughout the complete domain, the solution prolongation in the nested itera
tion is simply bilinear, and the correction prolongation in the nonlinear multigrid 
iteration is simply piecewise constant. Just as with the Euler equations, restriction 
of the solution is even omitted; we simply take the latest solution obtained.) Despite 
the deterioration with respect to the subsonic flat plate flow, the multigrid method's 
performance for this problem is already competitive with two well-established 
solution methods for the full Na vier-Stokes equations: those of Beam and Warming 
[1 J and Maccormack [11]. Using a CDC 7600, Beam and Warming and 
Maccormack convergence to steady state for 32 x 32- and 32 x 45-grids, respec
tively, in 100 and 256 iterations, and 46 and 40 ms per grid point, respectively. 
Using a (single-pipe) CDC Cyber 205, with the present multigrid method we need 
for the 80 x 32-grid: 5 iterations (FAS-cycles) and 23 ms per finite volume, without 

---,------~----1 
0.2 0.1 0.6 0.8 l 0 I 0 0.2 O.i 0.6 0.8 

u/ui ulu~ 

a. On 20 X 8-grid b. On 40X 16-grid c. 0n 80 X 32-grid 

F1u. 2.10. Velocity profiles at x = I for the supersonic flat plate flow, first-order discretized 
Na vier-Stokes equations ( 0: after I FAS-cycle, l. l: after 20 FAS-cycles). 
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optimization for vectorization. Though the Beam-Warming and MacCormack 
methods are supposed to be somewhat more prone to vectorization, for finer and 
finer discretizations, the present multigrid method will be more and more efficient 
than these methods, due to its better grid-independence. Yet, the main advantage 
of the present method lies in the significantly smaller number of iterations required. 
For large-scale computations for which all data cannot be kept in core, a small 
number of iterations required results in a small number of out-of-core data trans
ports. Since, in particular, for large-scale Navier-Stokes flow computations, 
IO-times rather than CPU-times may be the hampering factor, this property is an 
important advantage of the present multigrid method. In relation to this, it should 
be emphasized that though the present method is fully implicit, it imposes very mild 
computer memory requirements due to the fact that the relaxation is only 
point-wise. (No large matrices are stored.) 

2.2.2. Second-Order Discretized Equations 

For the second-order accurate model discretization we have a 1 = - ¼, cx 2 = ¾, 
a3 = ½. With these values, (2.6) becomes 

k+l 
1 e 1 i:: 1 f; 
--
4h 3 h 4h 

k 
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-( 1 +i) 
e 1 [; 

- 1+4- ---
6 h 3 h (2.10) 
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I e 

-( 1 +f) 1 f; 
--

4h 4h 

k-2 
1 
-
6 

j-2 j-1 j j + 1 

For the four extreme sweep directions, this yields the smoothing results given in 
Fig. 2.11. Only for e/h > 1 there is some acceptable smoothing. For problems which 
are locally convection dominated, the present smoothing factors are unacceptable, 
except for those belonging to the purely downwind sweep. Since purely downwind 
relaxation sweeps are not feasible in practice and since no specific alternation of 
sweep directions is supposed to suffice, another remedy has to be found. A standard 
method would be to explicitly add some artificial diffusion, to ensure diagonal 
dominance. But, of course, adding artificial diffusion reduces the accuracy. Further. 
adding the proper amount of diffusion may require much trial and error. Since we 
want to avoid both, we solve the unimpaired system of higher-order discretized 
equations by iterative defect correction. This implies the repeated solution of some 
lower-order system with diagonal dominance guaranteed, with the higher-order 
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target operator working via the right-hand side. This approach has already proved 
to be successful for the steady Euler equations [7]. For the steady Navier-Stokes 
equations now, the big difference with the Euler equations in applying iterative 
defect correction is the much greater freedom in the choice of the lower-order 
operator to be inverted, a freedom that may be exploited. Making a favourable 
choice for this operator is the main topic of Section 3. 

Though iterative defect correction is well-developed as far as it concerns the 
mathematical concept [2, 3 ], it is underdeveloped as far as it concerns applications. 
The present application to the steady Navier Stokes equations, for instance, is a 
novelty. An important property of iterative defect correction is that it allows con
vergence to second-order accuracy in only one iteration [3]. Given the availability 
of efficient inner solution method(s ), the efficiency of a method with defect correc
tion as outer iteration may be hard to beat. 

3. CONVERGENCE OF ITERATIVE DEFECT CORRECTION 

The iterative defect correction (IDeC-) method can be written as 

F1,(q;;) = o, 
F1,(q7, +I)= F1,(11;:)-<0F1,(q;:), 11 = 0, I, .... N, 

(3.1) 

with the superscript n denoting the iteration counter and w a possible damping 
factor. (The standard value for w is w = I.) The discrete operators considered are 
(i) the higher-order accurate target operator F1, which for the model equation i1 
defined by (2.10) and (ii) the approximate operator 'f\. the operator to be inverted 
A requirement to be fulfilled by F1,, as seen in Section 2.2.2, is that it must have 1 

first-order accurate convective part. The choice of the diffusive part is still free 
Two, in this sense, extreme possibilities are already available: (i) the operate 
without diffusive terms as used for the Euler equations [7 J and (ii) the opera to 
with second-order accurate diffusion as considered in Section 2.2.1. The advantag, 
of the first approximate operator is its greater simplicity. For the second operate 
this is its closer resemblance to the target operator F1,. It complies with the theor 
that for sufficiently smooth problems, the solution will be second-order accurat 
after a single IDeC-cycle only. As an intermediate alternative we also consider th 
approximate operator which neglects mixed derivatives. This operator combines, i 
some intermediate way, simplicity and good resemblance. 

As in Section 2, both theoretical and experimental results are presented. Tr 
theoretical results are obtained by Fourier analysis for the same model equatio 
as in Section 2. (The analysis is made for both the outer and inner iteratio1 
conv~rgence and smoothing analysis, respectively.) The experimental results a, 
obtained for the same two flow problems as in Section 2. 
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3.1. Theoretical Results 

Concisely written, the three approximate operators to be considered are: ( i) the 
first-order accurate convection operator 

k -1 2 

(3.2) 
k-1 -1 

j-1 j 

(ii) the zeroth-order accurate convection-diffusion operator 

k+I 
E 

--
h 

k -(1+fi) e f, 

2+4- --
h h (3.3) 

k-1 -(1+i) 
j-1 j j+1 

(iii) the first-order accurate convection-diffusion operator (2.9 ). 

For the model equation (2.1 ), iteration (3.1) is rewritten as 

F1,(u\;l = o, 
F11 (u;: t- 1) = (f';, - wF1, )(u;; ), n=0,1, ... ,N. 

(3.4) 

Introducing as before the iteration error (2.7) in its Fourier form (2.8 ), we can write 
for the convergence factor p: 

(3.5) 

For w = 1, convergence results are given in Fig. 3.1. In Fig. 3.1 a, for each of the 
three approximate operators (3.2), (3.3 ), and (2.9), the convergence factor 
11,=suplp(0 1,0 2 )I, w=I, (l/! 11,l02 l)E{[0,n]x[0,n]} is given as a function of 
1:/h. In Fig. 3.1 b, for r,/h = 4/9, c:/h = 1, and r/h = !XJ, the corresponding distributions 
of 111(0 1, /! 2 )1 are given. From Fig. 3.la it appears that for small values of c:/h, the 
approximate operator (3.2) yields the best convergence rate. However, as was to be 
expected, for increasing i:/h its convergence starts to deteriorate (from e/h = 4/9) 
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' . ' 
.-------- 3-point-operator 

_ .r- 5-point-operator f'-,, 
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;:. 
. I 

I 
I 

--+ 
' 419 

€/h =419 

~ 9-point-operator 

a. Versus €/ h 

€th=\ 

I 

I ,, ...,, 

b. For £lh =419, £/h = I and £/h = oo 

!lh = oo 

F1G. 3.1. Convergence factors iterative defect correction, second-order discretized model equation. 
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k 

ci 9-point operator 

'--~-- 5-point operator 

downwind 

9-point operator 

5-point operator 

upwind 

k ,---- 9-point operator 

5-point operator 

crosswind 

. 
• \>::::-------~9-point operat~r 

£_ ---- '== 5-point operator 

crosswind ---- --..,.....-----·------------' . " c/h 

FIG. 3.2. Smoothing factors point Gauss-Seidel relaxation, zeroth- and first-order discretized model 
equation. 
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and finally turns into divergence (at e/h = 2/3 ). Even for high-Reynolds number 
flows, local regions with diffusion dominating convection may arise. Therefore, 
approximate operator (3.2) has to be rejected. As far as the convergence rate of the 
two remaining operators is concerned, the 9-point operator (2.9) clearly is to be 
preferred above the 5-point alternative ( 3.3 ). 

However, the 5-pointer might behave better in the inner iteration (point 
Gauss-Seidel accelerated by multigrid ). In Fig. 3.2, for the four extreme sweep 
directions, its smoothing factors µ, are given as a function of r./h. For comparison, 
the smoothing factors for the 9-point operator ( Fig. 2.6) have been added. It 
appears that both operators nearly have the same good smoothing behaviour, the 
5-pointer being only slightly better. Because of its superior behaviour in IDeC 
(Fig. 3.1 ), we prefer the 9-pointer as operator to be inverted. ( Its relative complexity 
is taken for granted.) 

3.2. Experimental Results 

For the subsonic flat plate flow, results are shown in Fig. 3.3. Given for the 
16 x 8-, 32 x 16-, and 64 x 32-grid is the velocity profile obtained on the middle of 
the plate after 1 IDeC-cycle and 50 IDeC-cycles (full convergence). In all cases we 
performed a single FAS-cycle per IDeC-cycle only. In agreement with theory [3], 
only a single IDeC-cycle appears to be sufficient for obtaining second-orde1 
accuracy. 

In the same way, for the supersonic flat plate flow we also show velocity profile 
on three successive grids (Fig. 3.4 ). Per IDeC-cycle we apply again one FAS-cycle 
The velocity profile considered is that at x = I (where the shock wave impinges th 
plate in case of inviscid flow). As was to be expected, here we also observe som 
deterioration of the convergence rate for the 80 x 32-grid case. For this case, fo 

0.2 0.1 D.S. O.B I D 0.2 O.i 0.6 0,8 I 0 0.2 Q.t 0.6 a.e 

ulua 

a. On 16X8-grid b. On 32 X 16-grid c. On 64 X 32-grid 

. FIG._ 3.3. Ve_locity profiles at x = 0 for the subsonic flat plate flow (non-limited) second-or 
d1scret1zed Nav1er-Stokes equations (0: after l IDeC-cycle, 11: after 50 IDeC-cycles). 
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f1u. 3.4. Velocity profiles at .\=I for the supersonic flat plate flow, (limited) sewnd-ordcr 
discretized Navicr Stokes equations (, ': after I IDeC-cycle, 1 I: after 50 IDcC-cydes). 

which we also give the velocity profile as obtained after 2, 5, 10, and 25 IDeC-cycles 
( Fig. 3.4c), we had to use the limiter and to take w = ½-

4. CONCLUSIONS 

For the computation of smooth flow problems with the steady Navier Stokes 
equations, nonlinear multigrid and iterative defect correction appear to be very 
efficient tools. For these problems, the ultimate muitigrid goal, convergence in a few 
work units only, is attained for both the first- and second-order discretized equa-
tions; the latter without introduction of anything artificial. It appears that even for 
moderately convection dominated (Re= 0( I 0 2 )) smooth flow problems, it is not 
necessary to satisfy the multigrid rule which requires the sum of order of prolonga
tion and restriction to exceed the order of the Navier-Stokes equations. The most 
essential element for the success of the multigrid technique is the collective sym
metric point Gauss Seidel relaxation with inside that: exact Newton iteration 
applied to the continuously differentiable, first-order discretized, full Navier Stokes 
equations. The most essential clement for the success of the iterative defect correc
tion technique is the first-order upwind Na vier- Stokes operator as the approximate 
operator. An additional advantage of the present method, as it stands for smooth 
flow prohlems, is that it is completely parameter-free; it needs no tuning of 
parameters. 

For non-.1·11100/h problems the convergence properties arc not yet as good as those 
for smooth problems, though already competitive with those of wel!-estahlishcd 
methods. 

ier A general advantage of the method is that, though it is fully implicit, it imposes 
very low computer memory requirements. 
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