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Lovasz asked whether the following is true for each hypergraph H and natural number k: 
( *) if vk (H') = k · v*(H') holds for each hypergraph H' arising from H by multiplication of 

points, then vk(H)=Tk(H); 
( * *) if 'Tk (H') = k · T*(H') holds for each hypergraph H' arising from H by removing edges, 

then 'Tk (H) = vk (H). 
We prove and generalize assertion ( *) and give a counterexample to ( * *). 

1. Introduction 

Let H = (X, ~) be a hypergraph (i.e. X is a finite set and cg is a family of subsets 
of X; the elements of X and the sets in cg are called the points and edges of H, 
respectively). 

Let vk (H) be the maximum number of edges (possibly taking edges repeated) 
such that no point is contained in more than k of the chosen edges; that is 

vk(H) =max { L m(E) Im: i-z+; L m(E).,:. k for each x EX}. 
BEW Bax 

(1) 

[Z+ and R+ denote the sets of nonnegative integers and real numbers, respec­
tively.] Let -rk(H) be the minimum number of points (again, possibly with points 
repeated) such that no edge contains fewer than k of the chosen points; in 
formula 

-rk(H)=min{:[t(x)lt:X-Z+; Lt(x)';3k foreach EE'if;}. (2) 
xeX xeE 

(We allow H to have empty edges, so these numbers may be infinite.) v1(H) and 
-r1 (H) are usually abbreviated to v(H) and -r(H), respectively. The duality 
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theorem of linear programming implies that the numbers 

v*(H)=max{Im(E)lm:~-+R+; 'z:m(E)~l for each xEX}, 
Ec\!s E3x 

(3) 

and 

are equal. Since the linear programs defining v* and -r* have rational optimal 
solutions it follows that 

J/k (H) . 'Tk (H) 
max --= v*(H) = -r*(H) = mm -- . 

k k k k 
(5) 

Note that for all k and l: 

A large part of the previous and present work on this examines to what extent the 
equality of certain terms in this series of inequalities implies the equality of other 
terms. 

First recall the following definitions. Removing a point x means that we replace 
X by X\ {x} and remove all edges from ~ containing x; the term removing an 
edge speaks for itself. Multiplying a point x by k;;,, 0 means that we replace x by k 

new points x1 , ... , xb at the same time replacing each edge E containing x by the 
new edges (E\{x})U{x1}, •.. ,(E\{x})U{xd. So multiplying x by O agrees with 
removing x. 

Lovasz [ 4] proved: 

and 

if v(H') = v*(H') holds for each hypergraph H' obtained from H by 
removing points, then v(H) = -r(H), (7) 

if -r(H') == -r*(H') holds for each hypergraph H' obtained from H by 
removing edges, then v(H) = -r(H). (8) 

The following result of Berge [1] is a sharpening of (8): 

if -r2(H') == 2-r(H') holds for each hypergraph H' obtained from H by 
removing edges, then v(H) = 'T(H). (9) 

Lovasz [6] showed that under a stronger inheritance a weaker assumption in (7) is 
possible: 

if viH') = 2v(H') holds for each hypergraph H' obtained from H by 
multiplication of points, then v(H) = 'T(H). (10) 
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We may replace in (9) and (10) the indices 2 by any [,i!?:2. Lovasz [7] wondered 
whether the following assertions, generalizing (7) and (8) respectively, would be 
true for each natural number k: 

and 

if vk(H') = kv*(H') holds for each hypergraph H' arising from H by 
multiplication of points, then vdH) = -rk (H), (11) 

if -rk (H') = k-r*(H') holds for each hypergraph H' arising from H by 
removing edges, then vk(H) = -rk(H). (12) 

Fork= 1 they follow from (10) and (8), respectively, and Lovasz [5] proved them 
fork= 2. In [7] Lovasz proved (12) for the case k = 3. Here we shall prove (11) 
for each integer k, and disprove (12) fork= 60. More generally, we shall prove: 

if kv*(H') is an integer for each hypergraph H' arising from H by 
multiplication of points, then kv*(H) = -rk (H). (13) 

This was proved for k = 1 and k = 2 by Lovasz (cf. [7]). By straightforwardly 
adapting the method of proof used by Lovasz [6] to prove (10) the following 
generalization of both (10) and (11) can be proved. 

If v 2 k (H') = 2 vk (H') for each hypergraph H' arising from H by multipli­
cation of points, then vk(H) =-rk(H). (14) 

Again, we may replace in (14) the index 2 by an arbitrary l ,i!?, 2. 
We first give, in Section 2, a counterexample to (12). Section 3 contains the 

proofs and Section 4 some final remarks. For a survey of examples and applica­
tions of these results we refer to Lovasz [7]. 

2. Counterexample 

The following hypergraph H = (X, 'iS) is a counterexample to (12) in the case 
k =60. Let 

X ={1, 2, 3, 4, 5, 6, 7, 8, 9}. 

and 

where E 1 = X\ {l, 3, 5}, E 2 = X\ {1, 4, 6}, E3 = X\ {2, 3, 6}, E4 = X\ {2, 4, 5}, Es= 
X\{7}, E 6 =X\{8}, E 7 =X\{9}. 

Then -r60(H') = 60-r*(H') for each hypergraph H' arising from H by removing 
edges. To see this, first observe that if we remove two of the edges E1, E 2 , E3, E4 
or one of the edges Es, E 6 , E 7 , then one of the points of X is in all edges of the 
remaining hypergraph H', and hence v(H') = 1 = -r(H'); in particular -r60(H') = 
60-r*(H'). So there remains to consider only the hypergraphs H and H' = 
(X, 'l \ {E1}), without loss of generality. 
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First we consider this last hypergraph. Taking, in (4), 

t(2) = t(4) = t(6) = 0 and t(l) = t(3) = t(5) = t(7) = t(S) = t(9) = ½ 

shows T*(H'):,;;;; t taking, in (3), 

m(E2 ) = m(E3 ) = m(E4 ) = m(E5) = m(E6 ) = m(E7) =½ 
shows v*(H');;;,::~. Hence v*(H')=~=T*(H') and, since these values fort all are 
multiplies of ½, 5T*(H') = T5 (H'); this last implies, by (6), 60T*(H') = T60(H'). 

Finally look at the hypergraph H itself. Taking 

t(l) = t(2) = t(3) = t( 4) = t(5) = t( 6) = n, t(7) = t(S) = t(9) = ¾, 

m(E1) = m(E2) = m(E3) = m(E4 ) = ½, m(E5 ) = m(E6 ) = m(E7 ) = ¼, 

shows that v*(H) =¾ = T*(H), and that 60T*(H) = T60(H). These values form are 
the only admissible ones attaining the value ¾; since ½ is not a multiple of 6~ we 
know that v60(H)=;c60v*(H). 

3. Proofs 

We shall prove (13) and (14), from which (11) follows. The proof of (13) is 
based on the following observation (suggested by the proof methods of Lovasz [3] 
and Edmonds and Giles [2]). 

Lemma 1. Let P be a convex polyhedron in Rn. If for each vector w E zn the number 
min { wx I x E P} is an integer, or ±oo, then each vertex of P has integers as 
coordinates. 

[ wx denotes the usual inner product of w and x.] 

Proof. Suppose P satisfies the premiss of the lemma, and let x 0 be a vertex of P; 
assume the ith coordinate of x0 is not an integer. Since x0 is a vertex there exists a 
vector w E zn such that both min { wx I x E P} and min { w' x I x E P} are attained at 
x0 , where w' arises from w by adding 1 to the ith coordinate of w and leaving 
the remaining coordinates unchanged. So wx0 and w'x0 are integers; hence also 
w'x0 -wx0 , the ith coordinate of x0 , is an integer, contradicting our assumption. 

Edmonds and Giles [2] proved that, more generally, the premiss of the lemma 
implies that each face of P contains integer-valued points. A straightforward 
adaptation of the proof of Lemma 1, or an equally simple replacement of P by 
kP = {kx Ix E P}, for k E Z, yields 

Lemma 2. Let P be a convex polyhedron in Rn. If for each vector w EZn the 
number min { wx I x E P} is a multiple of If k, or ± 00, then all vertices of P have 
Ilk-multiples as coordinates. 
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Proof. As before. 

Evidently, also the Edmonds and Giles extension of Lemma 1 can be 
generalized in a similar way. Now we arrive at the proof of (13). 

Theorem 1. If kv*(H') is an integer for each hypergraph H' arising from H by 
multiplication of points, then kv*(H) = Tk(H). 

Proof. Suppose H satisfies the conditions. Let P be the convex polyhedron in Rx 
consisting of all functions t: X - R+ such that 

I t(x);;,:1 
XEE 

for all EE ~- We show that P satisfies the premiss of Lemma 2. To this end choose 
w E zx. It is clear that if one of the coordinates of w is negative, then min { wt I t E 

P} is not finite. So we may assume that w E Z~. Let H' be the hypergraph arising 
from H by multiplying every vertex x by w(x). From the definition of multiplica­
tion one sees v*(H') = T*(H') = min {wt It E P}, and so this is, by assumption, a 
multiple of 1/k. Hence, by Lemma 2, each vertex of P has 1/k-multiples as 
coordinates; in particular, since each face of P contains a vertex, 

T*(H) = min { L t(x) It E P} 
xEX 

is attained by some t with Ilk-multiples as values. Therefore 

kv*(H) = b*(H) = Tk (H). 

Lovasz's result (10) can be extended easily to (14), which is repeated in the 

following theorem. 

Theorem 2. If v2k(H') = 2vk(H') for each hypergraph H' arising from H by 
multiplication of points, then vk(H) = Tk(H). 

Proof. Adapt straigthforwardly Lovasz's [6] proof of (10). 

4. Some further observations 

It can be considered as a main goal of Section 3 to give properties of the 
following sets of nonnegative integers: 

R = { k E Z+ I Tk (H') = k · T*(H') for each hypergraph H' arising from H 
by multiplication of points}, (15) 
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S = {k E Z+ I vk(H') = k · v*(H') for each hypergraph H' arising from H 
by multiplication of points}. (16) 

Observe that, by Theorem 1, 

R = { k e Z+ I kv*(H') is an integer for each hypergraph H' arising from 
H by multiplication of points}. (17) 

Therefore S ~ R (which is equivalent to (11)). Also define the following set. 

T = { k E Z+ I vk (H') = L kv* (H') J for each hypergraph H' arising from H 
by multiplication of points}, (18) 

where LxJ denotes the lower integer part of a real number x. Clearly S ~ T; but in 
general Si: T. E.g., if H has, as edges, all bases of a matroid, then 1 ET (this is 
the content of Edmonds' matroid base packing theorem), but in general 1 e S. The 
following theorem gives more properties of and relations between the sets R, S 
and T, partially derived from results of previous sections. 

Theorem 3. (i) 01= S =Rn T; 
(ii) the set R is closed under taking multiples and greatest common divisors; 
(iii) the set T, and hence the set S as well, is closed under taking multiples. 

Proof. (i) From (16), (17) and (18) above it follows directly that S =Rn T. To 
show that S1= 0, define the polyhedron 

P={t:X-R+I Lt(x);a,:1 forall Ee<jg}. 
xeE 

(19) 

Let t1, ••• , tm be the vertices of P, and, for i = 1, ... , m, let Z, be the set of all 
functions w : X - R+ such that w as objective function over P attains the 
minimum in t., that is such that min { wt I t E P} is attained in vertex ti. So each 
function w : X - R+ is in at least one of the Zi. Note that each Zi is a closed 
convex cone. Let, for each w : X....,. Z+, W be the hypergraph obtained from H 
by multiplying each point x by w(x). Then, as in the proof of Theorem 1, 
v*(Hw) = min { wt I t E P}. So, for integer-valued w E Z., v*(Hw) = wt,, and hence 
v*(Hw) works additively on the elements of Z, (for each i = 1, ... , m). 

Now choose i = 1, ... , m, and let w1 , ••• , wr be integer-valued vectors in Zi 
such that each integer-valued vector in Z; can be written in the form A1 w1 + · · · + 
AiW1 with nonnegative integers A1, ••• , A1 (this is possible since there are integer­
valued vectors X1, ••• , x, such that Z; = a: Aixi I Ai ;a,: O}; e.g. take as w 1, ••• , w1 all 
integer-valued vectors contained in li:Aixi I O ::s;; Ai ::s;; 1}). Since 

v*(W)=max{Im(E)lm:i-R+; Im(E)::s;;w(x) for all xex}, 
Ee'it Be>x 

(20) 
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and since this function works additively on integer-valued elements of Zi, each 
integer-valued vector w in Z;, being a sum of elements from w1 , .•. , wz, attains 
the maximum of (20) in the corresponding sum of fuctions m1 , •.. , mz, attaining 
the maximum of (20) for w 1, ••• , w1• Hence there is an integer k; such that each 
integer-valued w E Z; attains the maximum of (20) in a function m with 1/ki­
multiples as values; this means that k;v*(W) = vk;(Hw) for integer-valued w E Zi. 
Since there are only a finite number of sets Z; there is a number k such that 
kv*(Hw) = vk (W) for all w E Z!, and so k ES, implying the nonemptiness of S. 
(We thank Lovasz for some useful hints.) 

(ii) is evident, using (17). 
(iii) Using the notation Hw as in the proof of (i) we have that, if k E T and 

!~1, then 

Vk1(Hw) = vk(H1w) = Lkv*(H1w)j = lklv*(Hw)j 

for each w : X - Z+, and hence kl E T. 

We do not know whether S is always closed under taking greatest common 
divisors. Unlike in previous cases general linear programming techniques will not 
help to prove this: it is not true that for each rational-valued m x n-matrix A the 
set 

U = {k E Z+ I for each vector w E Z~ the maximum max {I;: 1 Yi I y ER'.;.', 
yA :s;;; w} is attained by a vector y with 1/k-multiples as coordinates} 

(21) 

is always closed under taking g.c.d. 's. (If we take for A the incidence matrix of H 
the set U equals S.) If 

(A.E. Brouwer's example), then 2 and 3 are elements of U, but 1 is not, showing 
that U is not closed under taking g.c.d.'s. Clearly, Sis closed under taking g.c.d.'s 
for all hypergraphs H, if and only if U is closed under g.c.d.'s for all (0, 1)­
matrices A. 

The second author conjectured in [8] that if 1 ER, then g.c.d. (S),;;;; 2 and 
gave an example with 1 ER and 2 ¢. S; thus this conjecture would imply that S is 
not always closed under g.c.d.'s. On the other hand, the first conjecture on p. 198 
of [9] would imply that 1 ES if g.c.d. (S) = 1. 
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