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SUPEREXTENSIONS WHICH ARE HILBERT CUBES

by
J. VAN MILL (Amsterdam) and A. SCHRIJVER (Amsterdam)

Abstract

It is shown that each separable metric, not totally disconnected, topological
space admits a superextension homeomorphic to the Hilbert cube. Moreover, for simple
spaces, such as the closed unit interval or the n-spheres S,,, we give easily described sub-
bases for which the corresponding superextension is homeomorphic to the Hilbert cube.

1. Introduction

In [6], pE Groor defined a space X to be supercompact provided that it
possesses a binary closed subbase, i.e., a closed subbase 8§ with the property
that if 8’ < 8 and &’ = @ then there exist S, S, € 8" such that §,N 8§, = 4.
Clearly, according to the lemma of ALEXANDER, every supercompact
space is compact. The class of supercompact spaces contains the compact
orderable spaces, compact tree-like spaces (BROUWER & ScERIIVER [4],
VAN MiLr [10]) and compact metric spaces (STROX & SzymaNski [14]). More-
over, there are compact Hausdorff spaces which are not supercompact (BELL
[2], Vax MirL [12]). There is a connection between supercompact spaces and
graphs (see e.g., DE GrooT [7], BRUIINING [5], SCHRIJVER [13]); moreover,
supercompact spaces can be characterized by means of so-called interval struc-
tures (BROUWER & SCHRIJVER [4]).

Let X be a T';-space and 8§ a closed T';-subbase for X (a closed subbase
8 for X is called 7', if for all S¢ 8 and € X with xz¢ 8, there exists an
S, € 8 with ¢ 8, and §, N S = @). The superextension A(X) of X relative
the subbase § is the set of all maximal linked systems M < § (a subsystem of
8 is called linked if every two of its members meet; a maximal linked system
or mls is a linked system not properly contained in another linked system)
topologized by taking {{O € A4(X)[S €M} S€ 8} as a closed subbase.
Clearly, this subbase is binary, hence A4(X) is supercompact, while moreover
X can be embedded in A¢(X) by the natural embedding ¢ : X — A4(X) defined
by #(X):= {S€ 8|z€S}. VERBEEK’s monograph [15] is a gocd place to
find the basic theorems about superextensions. In this paper we will show
that for many spaces there are superextensions homeomorphic to the Hilbert
cube Q; moreover for simple spaces such as the unit interval or the n-spheres
S, we will present easily described subbases for which the corresponding super-
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extension is homeomorphic to Q. Here, a classical theorem of KErrer [8],
which says that each infinite-dimensional compact convex subset of the separable
Hilbert space is homeomorphic to @ (for a more up-to-date proof of this fact,
see also BESsAGA & PrxczyNskI [3]), is of great help.

2. Some examples

In this section we will give some examples. If X is an ordered space,
then the Dedekind completion of X will be denoted by X. Roughly speaking,
X can be obtained from X by filling up every gap. We define X to be that
ordered space wich can be obtained from X by filling up every gap with two
points, except for possible endgaps, which we supply with one point. The
compact space X thus obtained, clearly contains X as a dense subspace.
Define

@lz {AcXi3z €X:4 = (+,z]or 4 = [z, —)}
and
§, = {4 < X| A4 is a closed half-interval}

(as usual, a half-interval is a subset 4 < X such that either for all ¢, b€ X : .
itb<la€Adthenbcd,orforalla beX:if b >ac A then b€ 4) and

§,={4cX |34, 4,€8,:A=4,U4,or A=4,N 4,},
respectively.

Notice that @, equals §, in case X is compact or connected. It is easy to
see that Ag (X) e« X and that Ag(X) o< X.

What about ig (X)?

Exampre (i). If X = I, then Ag(X) = A4 (X) =< I. On the other hand
Ag (X)) is homeomorphic to the Hilbert cube @ (see Section 4).

Exampre (ii). If X = Q, then 4 (X) =< I and 24 (X) is a non-metrizable
separable compact ordered space, which has much in common with the well-
known Alexandroff double of the closed unit interval. In this case, Ag (X) is
a compact totally disconnected perfect space of weight 2%. (The total discon-
nectedness of Jg (X) follows from the following observation: for every T',
T,€8, with T, N T, =@ there exists a T;€8, such that T, < T§ and
ToNT, =9 and X\T;€8,. For every finite linked system {X\7T|T;€&,,
i€{1,2,..., n}} it is easy to construct two distinct mls’s £, and £, belonging

n
to () {IME€ A (X)|T: ¢ M} showing that Ag (X) is perfect. Finally Ag, can

i=1

be embedded in As (X); hence weight (g (X)) = 2%.
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Exawpre (ili). If X = R\ Q, then 2 (X) =< I, while 2¢ (X) o< 45 (X) < C,
the Cantor discontinuum, for it is easy to see that Ag(X) and g (X) both
are totally disconnected compact metric perfect spaces.

Finally define
G={4 cX[34, A4,€G:A=4,Ud,0r 4=A4,NA4,}.
Notice that G, equals T, in case X is compact or connected.
Examere (i). If X = I, then 4, (X) =< @ (Section 4).
Exawrrr (ii). If X = Q, then 4, (X) == @.
Examere (iii). If X = R\ Q, then 4, (X) =< @.

The fact that 2 (Q) o< 24 (R\ Q) =~ @ can be derived from the result
4g,(I) < Q. To see this, define

G = {4 c 1| A€ G, and 4 has rational endpoints}
and

Gs = {4 c I| 4 €G, and 4 has irrational endpoints}.
By Theorem 5 and Theorem 7 of [11] (cf. Theorem 3.1 below), it follows that

g (1) < g (1) o< 26 (Q)
and

A (I) o< Ag(I) o< 2 (R\ Q).

3. Superextensions which are Hilbert cubes

In this section we will show that for each separable metric, not totally
disconnected topological space X, there exists a normal closed T,-subbase 8 such
that Ag(X) is homeomorphic to the Hilbert cube Q. First we will give some
preliminary definitions and recapitulate some well-known results from the
literature, which are needed in the remainder of this section. A closed subset
B of Q is called a Z-set ([1]) if for any non-empty homotopically trivial open
subset O of @, the set O\ B is again non-empty and homotopically trivial.
Examples of Z-sets are compact subsets of (0, 1)™ and closed subsets of @
which project onto a point in infinitely many coordinates. In fact, Z-sets can
be characterized by the property that for every Z-set B there exists an auto-
homeomorphism @ of ¢ which maps B onto a set which projects onto a point
in infinitely many coordinates ([1]). Obviously the property of being a Z-set
is a topological invariant. Moreover, it is easy to show that a closed countable
union of Z-sets is again a Z-set (cf. KrooNENBERG [9]). The importance
of Z-sets is illustrated by the following theorem due to ANDERSON [1].

2 Periodica Math. 10 (1)
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THROREM. Any homeomorphism between two Z-sets in @ can be extended
to an autohomeomorphism of Q.

We will apply this theorem to show that every separable metric, not
totally disconnected topological space X can be embedded in @ in such a
way that @ has the structure of a superextension of X, i.e., every point of ¢
represents an mls in a suitable closed subbase for X. The canonical binary
subbase for @ is

g={4cCc@d= ot [0,z2] or 4 =H;1[x, 1], with € N and z€ I}

and consequently, if we embed X in @ in such a way that for every two ele-
ments T, T, € with Ty N T, = § we have that T, N 7T, N X == §, then ¢
is a superextension of X; this is a consequence of the following theorem ([11]
Theorem 5).

TueorEM 3.1. Let X be a subspace of the topological Ty -space Y. Then 1
is homeomorphic to a superextension of X if and only if Y possesses a binar:
closed subbase § such that for oll T\, T, €8 with T, N T, 5= @ we have tha
T,NT, N X = 4.

In particular, in Theorem 3.1 Yo Ag, (X)), where SN X ={TNX|T €T}

THEEOREM 3.2. For cvery separable metric, not totally disconnected topologice
space X there exists @ normal closed T,-subbase 8 such that 25(X) is homeomorph
to the Hilbert cube Q.

ProoF. Assume that X is embedded in Q(= IV) and let C be a non-trivi
component. of X. Choose a convergent sequence B in C. Furthermore, defi
a sequence {Y,}n—o in @ by

it i=n
@n): = {0 if i=n,
fori=1,2,..

It is clear that

lim y, = y,.

n—co

Moreover definez€Q by 2z, =0 (¢ =1,2,...,). Then
E = {ynln € N} U {z} U {y}

is a convergent sequence and therefore is homeomorphic to B. Since B and
both are closed countable unions of Z-sets in Q. they themselves are Z-se
Choose a homeomorphism @ : B — E and extend this homeomorphism to
autohomeomorphism of @. This procedure shows that we may assume t.
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X is embedded in @ in such a way that E < C. Let Ty, T, €§ such that
T,NT, > @, where § is the canonical binary closed subbase for . We need
only consider the following 4 cases:

Case 1: To=1II" [0,2]; T, = II;} [y, 1] (¢ > y). Since z€7, and
Yo € T, and C is connected, it follows that @ s T,NT,NCcT,NT,NX.

Case 2: TO = H,-l;l [0, x]; 1’1 = ﬂ,zl [y, 1] (no Ea nl)' Then Yn, ETO g
nT, N x.

Case 3: Ty = II71 [0,2]; T, = II,* [0, y]. Then z € T, N T, N X.
Oase 4: Ty = IT. " [2,11; Ty = IT;," [y, 1]. Then y, ¢ T, N T, N X.

This completes the proof of the theorem.

4. A superextension of the closed unit interval

In the present section we will prove that ‘28' (I) is homeomorphic to the

Hilbert cube, where G, = {[z,y] |z,y€ I} U [0, x] Uly, 11| z,yel}. For
this purpose we introduce

F={f:I-I|f(0)=0 and if z,y€I and __x.gy then 0 < f(y) — f(a:jg
<y — a}.

Hence each f€ & is continuous and monotone non-decreasing. On & we
define a topology by considering & as a subspace of C[I, Il with the point-

open topology. We obtain the same topology on & by ordering & partially
as follows:

f<giff for each 2 € I : f(z) < g), (f,9€ &),

and then taking as a closed subbase for & the collection of all subsets of the
form {fe&|f <f,} or {f€&F|f >/, where f, runs through & We first
prove that & o< @ and next that Ao (I) = &; we conclude that Ao (1) e< Q.

Notice that by Kerrer’s theorem each compact metrizable convex
infinite-dimensional subspace X of I'is homeomorphic to the Hilbert cube @,
since, by the fact that X is metrizable, X can be embedded as a convex sub-
space of I=; finally I~ can be affinely embedded in J,. This observation will be
used in the proof of Theorem 4.1 and Theorem 5.1.

TeEEOREM 4.1. & =< Q.

Proor. We show that & is a compact, infinite-dimensional, convex
subspace of I ! with countable base; hence, by KELLER's theorem, & is homeo-
morphic to the Hilbert cube Q.

D%
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& is clearly a convex subspace of I . it is also clear that (&, <), as
defined above, is a complete lattice, whence & is compact. & has a countable
subbase, since the collection of all subsets of the forms {f € & |f(z) < y} and
{fe&|f(x) <y} where 2,y € Q N I, forms a countable closed subbase for &.

Finally, & is infinite-dimensional, because @ can be embedded in &.
For, let a = (a, @y, ag, . . .) € IN. Let G(a) be the smallest function f in &

(in the ordering < of &) such that for each i = 1,2, 3, ... the following
holds:

f

1
L]Z—L"i‘_a‘i‘

9i+1 9i+1 Qi+l
It can be seen easily that G defines a topological embedding of @ in &.

THEOREM 4.2. 4 (I) ex &.

Proor. Define a function K: 2 (I) — I by :
K(O) = inf {z € I|[0, 2] € M}, (SN € 4g (1)),
and a function H: 2, (1) — & by:
H(®N) (i) = inf {x€ I|[0,2] U [y, 1]1€M, 2 + y = K(MN) + 1},
(1 €1, ME 2g (D)) .
We prove that H is an homeomorphism between A, (1) and &.
First we observe that:
K(ON) < = iff [0, x] € OM;
K@) > = iff [z, 1] € I;
(M) = = iff [0, ] € M and [«, 1]€ I;
H@N) (1) < xiff [0, 2]U[KIN) + ¢ — 2, LT ;
H(N) (i) > = iff [, K(ON) + 7 — 2] € I ;
HN) () = 2 iff [0, 2] U [K@N) + ¢ — =, 11€ 9 and
[z, K(ON) + & — x] €SN ;

~

these facts follows easily from the fact that I is a maximal linked system in
G,. Also we have K () = H(IM)(1).

Next we show that H(SM) € &, for each maximal linked system 9. L n
fact (i) H(OM)(0) = 0, for [0,0] U [K(IN), 11€ I and [0, K(IM)] € IM; (i1) id
1 <7, HEN(@) =, HEN)(j) =y, then z y, for [z, K@) +§ — ] —=
C [z, K@) + i -—z] € I, hence [z, K(OMN) + j —z] € Mandy = HEN)(j) > o=
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alsoy —2<{j—4, for [y —j+i, K@) +i—(y — 7+ ) D [y, KON) +
+j-—yl€IN, hence x = HO(E) >y — ] + .

H is a one-to-one function, for suppose &N, I, € A (1), M, 5= I,
and H(@N,) = H(N,). Let a = K(N,) = H@EN,)(1) = H(O,)(1) = K(IL,), i.e.,
[0,a]€dN, NI, and [a, 17€ I, N M,. Since M, == M, we may suppose
that there are 2” and y” such that [0, 2]" U [y, 1] € M, \IM,. Since [0, a] € M,
and [a,1]€dN,, we have '’ <<a <y’ Let i=a"+y —ac[z,y'] Il
Then since [0,2']U[a+ 4 —2’,1]=[0,2"] U [y, 11€ M \IM,, we find
that H(IN,)(1) < " < H(IMW,)(4) and this is a contradiction. H is also a surjec-
tion. Take f€ & and let:

€ ={l@), f() 4 ¢ — f@11e€ I} U {[0, f(1)] U [f(1) + 5 — f(i), 11| s € T}.

Then by definition of &, it is easy to see that € is a linked system in §,. £ is
contained in some maximal linked system M of §,, and for this I it holds that
K (M) = f(1) while for each i¢ I:H(ON)(i) = f(i); i.e., H() = f. Finally we
prove that H is continuous. Let i, € I. Then

{IM € Ag,(I) | H(EM) (3) < 2} = QI{WE Ag, ()10, 2] U [y, 1]€ I or
y

and hence this set is closed. For, let I € g (1) such that H(N) (¢) < «; this
last inequality means that [0,2] U [K(@ON) 4+ 4 — z,1]1€ M. If y > K(OM) +
+ @ — x, then [0,y 4+ = - i] D [0, K(OM)] €M; if y < K(N) + ¢ — = then
[0,2]U [y, 11D [0, 2] U [K@) + ¢ — =, 1] € I

Conversely, suppose that

[0,z]U [y, 1]1€Mor [0,z + y — i]€ SN

for each y¢€ I, then also [0,z + y - i]§ I for each y < K(OMN) + i — =x;
hence [0, 2] U [y, 1]€ IL; we conclude that [0, z] U [K(ON) + & — =, 1] € I,
ie., HOM)(@) < =.

In the same way one proves:

(M€ 2g,(D) | HEM)(3) > 2} = ﬂ!{mé Ao,D [z, yl€TMor [z +y -4, 1] € SN},
ye€

Ge

and hence is closed.

As a consequence of these two theorems we have, as announced,

TrEOREM 4.3. Ag (I) < Q.
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5. A superextension of the n-sphere

In this final section we show that the superextension of the n-sphere
8" with respect to the collection of all closed massive n-balls in S" is homeo-
morphic with the Hilbert-cube. As usual, the n-sphere S" is the space

x?:l]
i=o

and the closed massive n-ball with centre x € §" and radius & > 0 is the set

B(x, &) = {y€ 8"|d(x,y) < ¢}

[\A 3

Writing & for the collection of all closed massive n-balls in §”, we will prove
that, if » > 1, 14(8") =< Q. Obviously 24(8") is the superextension of the
circle with respect to the set of closed intervals. For the definition of & it

does not matter whether the euclidian metric of R"*" or the sphere metric
n

of 8" (in this case the distance between x and y in 8" is arccos X x;y;, i.e.,
i=0

the minimum length of a curve between x and y on §") is used. However,

in the proof of the theorem we need the latter metric and we call this metricd.
Furthermore we define, for each point x = (x,, ®,, . . . , z,) € §”, the antipode
xof x by x = (—2g —2y, ..., —Zp).

TaEOREM 5.1. If n > 1, 14(8") is homecomorphic to the Hilbert-cube Q.

Proor. In fact we show that 24(S") is compact and infinite-dimensional
and has a countable base and that 14(S") can be embedded as a convex sub-
space in R%"; hence, by KELLER’s theorem, A4(S") is homeomorphic to Q.
Clearly, 24(S") is compact.

To prove that 14(S") has a countable base, let X be a countable dense
subset of S". Define &, = {B(x, ¢)|x€ X, ¢€Q, ¢ > 0}. It is not difficult
to see that P:Ag(S") — A4 (S"), such that P(IMN) = M N B, (M€ 14(S™)) is
a homeomorphism; hence, since g4 (S™) has a countable base, 14(S") also has
a countable base. Next, A4(8") is infinite-dimensional, since Ag(I)( 22 Q) can
be embedded in Ag(S™). For, let

Y= {x€8"|x= (20 %, ..., %), 2, >0, &, = ... =2, = 0};

this subspace is homeomorphic to I. Let §, be as defined in Section 3, i.e.,
G, is the collection of all closed subsets Y’ if ¥ such that Y’ is connected or
Y\ Y’ is connected. Define T':2g (Y) — 24(S") by T(M) = {B€ B| B N Y € M}
(M€ 2g,(I)). Again it is not difficult to prove that 7' is a topological embedding.
Hence A (I) =< Q can be embedded in 4(S"), i.e., A4(S™) is infinite-dimensional.
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Finally we embed A4(S™) as a convex subspace in RS", by means of the
function U:1g(S™ — RY", determined by:

U M) (x) = inf {& > 0| B(x, &) € M}, (M€ A (8™), x € 8").

The mapping U is continuous and one-to-one since U (IM)(x) < ¢ iff B(x, ¢) € I,
and UM (x) > ¢ iff Bx, 7w — &) €IN. And indeed, U[1g(S")] is a convex
subspace of R%". In order to show this, we need only prove: it 91, M, € A4(8™),

then thore exists an 9l ¢€ Ag(S") such that UEN) = % U©n,) + % U@,
(U[24(S™)] being compact and hence closed in RS"). So take 9N, M, € 14(S™)
and let 9, = {B(x, &) [x € 8", & 2—;- U(9N,) (x) + % U(9M,) (x)}. Then 91, is
a linked system, because if B(x,¢&) and B(y, 8) €M, (x,y€8", ¢>
> LUEL) () + 5 U (), 8> TEM) (y) + 5 (TEL) (5), then:

2

d(x,y) < UEL)(x) + UE,)(y),

and
d(x,y) < U, (x) + U(EM,)(y);
hence
d(x,y) < 0+ &
ie.,

B(x, &) N B(y, §) == 4.

Let 91, be a maximal linked system containing 91, (in fact 9N, is itself a maxi-
mal linked system). Then, clearly,

mﬁmmgémmmn+§mmmm,

and

U@, (x) < % T, (x) + ';T U(9N,) (x) for each x € 8™

But, since for each maximal linked system 9N : U(9M) (x) + UIN) (x) = =.
we have

U,) (x) = -;j U@én,) (x) + —;—U(Sﬂz) (x) for each x¢ 8"
Thus

U@ET) = UEM) + 5 UL
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