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SUPEREXTENSIONS WHICH ARE HILBERT CUBES 

by 

J. VAN MILL (Amsterdam) aml A. SCHRIJVER (Amsterdam) 

Abstract 

It is shown that each separable metric, not totally disconnected, topological 
space admits a superextension homeomorphic to the Hilbert cube. Moreover, for simple 
spaces, such as the closed unit interval or then-spheres Sn, we give easily described sub
bases for which the corresponding snperextension is homeomorphic to the Hilbert cube. 

I. fotroduction 

In [6], DE GROOT defined a space X to be supercompact provided that it 
possesses a binary closed subbase, i.e., a closed subbase 8, with the property 
that if$' c $ and nS' = 0 then there exist S 0 , S1 E $' such that S0 n 8 1 = 0. 
Clearly, according to the lemma of ALEXANDER, every supercompact 
space is compact. The class of supercompact spaces contains the compact 
orderable spaces, compact tree-like spaces (BROUWER & ScHRIJVER [4], 
V.A.N MILL [10]) and compact metric spaces (STROK & SZYMANSKI [14]). More
over, there are compact Hausdorff spaces which are not supercompact (BELL 

[2], VAN MILL [12]). There is a connection between supercompact spaces and 
graphs (see e.g., DE GROOT [7], BRUIJNING [5], SCHRIJVER [13]); moreover, 
supercompact spaces can be characterized by means of so-called interval struc
tures (BROUWER & SCHRIJVER [4]). 

Let X be a T 1-space and Sa closed T 1-subbase for X (a closed subbase 
S3 for X is called T 1 if for all S E S and x E X with x ~ S, there exists an 
S 0 E 8, with x E 8 0 and Son S = 0). The superextension 18(X) of X relative 
the subbase 8, is the set of all maxinrn,l linked systems g)T/, c $ (a subsystem of 
3, is called linked if every two of its members meet; a maximal linked system 
or mls is a linked system not properly contained in another linked system) 
topologized by taking { { g)T/, E 1$(X) [SE 8)1t} [ SE S} as a closed sub base. 
Clearly, this subbase is binary, hence As(X) is supercompact, while moreover 
X can be embedded in As(X) by the natural embedding i: X --+ As(X) defined 
by i(X): = {SE S[xES}. VERBEEX's monograph [15] is a gocd place to 
find the basic theorems about superextensions. In this paper we will show 
tha,t for many spaces there are superextensions homeomorphic to the Hilbert 
cu·be Q; moreover for simple spaces such as the unit interval or the n-spheres 
Sn we will present easily described sub bases for which the corresponding super-

AMS (MOS) subject class,ifications (1970). Primary 54D 35; Secondary 57A 20. 
Key words and phrases. Supere::x:tension, Hilbert cube, Z-set, convex. 



16 VAN MILL, SCHRIJVER: SUPEREXTENSIONS WHICH ARE HILBERT CUBES 

extension is homeomorphic to Q. Here, a classical theorem of KELLER [8), 
which says that each infinite-dimensional compact convex subset of the separable 
Hilbert space is homeomorphic to Q (for a more up-to-date proof of this fact, 
see also BESSAGA & PELCZYNSRI [3]), is of great help. 

2. Some examples 

In this section we will give some examples. If X is an ordered space, 
then the Dedekind completion of X will be denoted by X. Roughly speaking, 
.X cu,n be obtained from X by filling up every gap. We define X to be that 
ordered space wich can be obtained from X by filling up every gap with two 
points, except for possible endgaps, which we supply with one point. r.rhe 
compact space X thus obtained, clearly contains X as a dense subspace. 
Define 

~ 1 = {A cXj3x EX:A = (+-,x] or A= [x, -)} 

8l" 1 = { A c XI A is a closed half-interval} 

(as usual, a half-interval is a subset A c X such that either for all a, b EX : 
if b ~ a E A then b E A, or for all a, b E X: if b :?:'. a E A then b E A ) and 

8l"2 = {A C XI 3.Ao, .Al E 8i 1: .A = Ao u A1 or A= Ao n Al}, 

respectively. 

Notice that ~ 1 equals 3J 1 in case X is compact or connected. It is easy to 
see that ?.$,(X) ~ X and that ?.51(X) ,,.__, X. 

What about ?.5 ,(X)? 

EXAMPLE (i). If X = I, then Aq,(X) = ?.6,(X) ~ I. On the other hand 
Aff,(X) is homeomorphic to the Hilbert cube Q (see Section 4). 

EXAMPLE (ii). If X = Q, then Aq,(X) c:,,_ I and Jff,(X) is a non-metrizable 
separable compact ordered space, which has much in con1mon with the well
known Alexandroff double of the closed unit interval. In this case, Ao-,(X) is 
a compa,ct totally disconnected perfect space of weight 211'. (The total discon
nectedness of ?.5 ,(X) follows from the following observation: for every T 0 , 

T 1 E3J2 with T 0 n T 1 = 0 there exists a T~E3l2 such that T 0 c T~ a,nd 
T~nT1 =0 and X\T~E8J2• For every finite linked system {X\T;ITiE8f2 , 

i E {I, 2, ... , n}} it is easy to construct two distinct mls's S:'. 0 and~\ belonging 
n 

to n { 8m. E A&-.(X) IT; ~ 8m.} showing that ?.5 , (X) is perfect. Finally A,g-1 can 
i=l 

be embedded in J.,5,(X); hence weight (?.&-,(X)) = 2N•. 
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EXAMPLE (iii). If X = R \ Q, then ).<l!,(X) ~ I, while ).6,(X) Qa:: ).61(X) ~ 0, 
the Cantor discontinuum, for it is easy to see that ).6JX) and ).62(X) both 
are totally disconnected compact metric perfect spaces. 

Finally define 

~ 2 ={Ac Xi:lA 0 , A 1 E~1: A= A 0 U A 1 or A= A 0 n A 1}. 

Notice that ~2 equals T2 in case Xis compact or connected. 

EXAMPLE (i). If X = I, then A<l!,(X) Qs:: Q (Section 4). 

EXAMPLE (ii). If X = Q, then A~1 (X) Q.: Q. 

EXAMPLE (iii). If X = R\ Q, then A<l!,(X) ~ Q. 

The fact that ).~2(Q) ~ ).<l!.(R\ Q) ~ Q can be derived from the result 
).~(I) ~ Q. To see this, define 

~ = { A c I I A E ~2 and A has rational endpoints} 
and 

~; = { A c I I A E ~2 and A has irrational endpoints}. 

By Theorem 5 and Theorem 7 of [11] (cf. Theorem 3.1 below), it follows that 

).~.(I) ~ ).<!!;(I) ~ ).<l!,(Q) 
and 

3. Superextensions which are Hilbert cubes 

In this section we will show that for each separable metric, not totally 
disconnected topological space X, there exists a normal closed T 1-su b base ~ such 
that ).1(X) is homeomorphic to the Hilbert cube Q. First we will give some 
preliminary definitions and recapitulate some well-known results from the 
literature, which are needed in the remainder of this section. A closed subset 
B of Q is called a Z-set ([I]) if for any non-empty homotopically trivial open 
subset O of Q, the set 0\ B is again non-empty and homotopically trivial. 
Examples of Z-sets are compact subsets of (O, 1)- and closed subsets of Q 
which project onto a point in infinitely many coordinates. In fact, Z-sets can 
be characterized by the property that for every Z-set B there exists an auto
homeomorphism (t> of Q which maps B onto a set which projects onto a point 
in infinitely many coordinates ([I]). Obviously the property of being a Z-set 
is a topological invariant. Moreover, it is easy to show that a closed countable 
union of Z-sets is again a Z-set (cf. KRoONENBERG [9]). The importance 
of Z-sets is illustrated by the following theorem due to ANDERSON [I]. 

2 Periodica Math. 10 (1) 
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THEOREM. Any homeomorphism between two Z-sets in Q ean be extended 
to an auiohomeomorphism of Q. 

We will apply this theorem to show that every separable metric, not 
totally disconnected topological space X can be embedded in Q in such a 
way that Q has the structure of a, superextension of X, i.e., every point of Q 
represents an mls in a suitable closed subbase for X. The canonical binary 
subba,se for Q is 

~ = {A c Q!A = n;;1 [O, x] or A= n-;;1 [x, l], with n EN and x E J} 

and consequently, if we embed X in Q in such a way that for every two ele
ments To, Tl E 8f with Ton Tl =fa 0 we have that Ton Tl n X ¥ 0, then <; 
is a superextension of X; this is a consequence of the following theorem ([ 11 J 
Theorem 5). 

THEOREM 3.1. Let X be a subspace of the topological T 1-space Y. Then J 
is homeomorphic to a superextension of X if and only if Y possesses a binar: 
closed subbase 8i" such thnt for all T 0 , T 1 E 8f with T O n T 1 ¥ ff ice have tho 
T 0 nT1 nX¥0. 

In particular, in Theorem 3.1 Y ~ A&-nx(X), where inx = {T nx [TE 3l] 

THEOREM 3.2. }'or every separable metric, not totally disconnected topologic1 
space X there exi.,ts a normal closed T 1-subbase S such that } . .,(X) is homeomorph
to the Hilbert cube Q. 

PROOF. Assume that Xis embedded inQ(= JN) ar.d let C be ;:i, non-trivi 
component of X. Choose a convergent sequence B in 0. Furthermore, defo 
a sequence {Yn};;"=o in Q by 

{
l if i#n 

(yn)i = 0 1·f . 
i = n, 

for i = 1, 2, ... , . 

It is clear that 

lim Yn =Yo· 

Moreover define z E Q by z; = 0 (i = 1, 2, ... ,). Then 

is a convergent sequence and therefore is homeomorphic to B. Since Band 
both are closed countr,ble unions of Z-sets in Q. they themselves are Z-sE 
Choose a homeomorphism <P: B-,.. E apd extend this homeomorphism to 
autohomeomorphism of Q. This procedure shows that we may assume t' 
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X is embedded in Q in such a way that E c O. Let T 0, T 1 E Sf such that 
T 0 n T 1 ¥- 0, where 8J" is the canonical binary closed subbase for Q. We need 
only consider the following 4 cases: 

Case 1: T 0 =IT;;-1 [O,x]; T1 =IT;;1[y,1J (x~y). Since zET0 and 
Yo ET l and O is connected, it follows that 0 ¥:- TO n T 1 n O C TO n Tl n X. 

Gase 2: TO= n;;-:1 [O, x]; T 1 = ll;,_1 [y, l] (n0 ¥- n1). Then Yn, E T 0 n 
n T1 n x. 

Case 3: To= II;;,1 [O, x]; Tl= ll-;;;_1 [O, y]. '!'hen z E Ton T1 n X. 

Case 4: To= II;,1 [x, 1]; Tl= IT;;,_n [y, l]. Then YoETo n T1 n x. 
This completes the proof of the theorem. 

4. A superextension of the closed unit interval 

In the present section we will prove that i~. (i) is homeomorphic to the 
Hilbert cube, where ~2 = {[x, y] Ix, y E 1} U t[o, x] U [y, 1] I x, y E 1}. For 
this purpose we introduce 

Sf= {t: I....,. I I /(0) = 0 and if x, y E J and ;i:.:s;: y then O::;: /(y) -- /(x) :s;: 
:S: y - x}. 

Hence each / E Sf is continuous and monotone non-decreasing. On 8F we 
define a topology by considering 8F as a subspace of 0(1, I] with the point
open topology. We obtain the same topology on 8F by ordering 8f partially 
as follows: 

f < g iff for each x E J : /(x) :::;: g(x), (/, g E 8f), 

and then taking as a closed sub base for 8F the collection of all subsets of the 
form {/ E 8F If :S: f 0 } or {/ E 8F If):_ f 0}, where f 0 runs through 8F. We first 
prove that 8F ,,.___, Q and next that ).~2 (J) ~ 8F; we conclude that ).~,(I) ~ Q. 

Notice that by KELLER'S theorem each compact metrizable convex 
infinite-dimensional subspace X of 11 is homeomorphic to the Hilbert cube Q, 
since, by the fact that X is metrizable, X can be embedded as a convex sub
space of r; finally 1- can be affinely embedded in l2 • This observation will be 
used in the proof of Theorem 4.1 and Theorem 5.1. 

THEOREM 4.1. Sf~ Q. 

PRooF. We show that Sf is a compact, infinite 0 dimensional, convex 
subspace of 1 1, with countable base; hence, by KELLER's theorem, 8F is homeo
morphic to the Hilbert cube Q. 
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Sr is clearly a convex subspace of 11; it is also clear that (Sr, S:), as 
defined above, is a complete lattice, whence 8f is compact. 8f has a countable 
sub base, since the collection of all subsets of the forms {f E Sr\ f(x) s;: y} and 
{t E Sr\ f(x) s;: y} where x, y E Q n I, forms a countable closed sub base for gf. 

Finally, Sr is infinite-dimensional, because Q can be embedded in gf. 

For, let a = (ai, a2, a3 , ••• ) E JN_ Let G(a) be the smallest function f in 8F 
(in the ordering s;: of &F) such that for each i = 1, 2, 3, ... the following 
holds: 

It can be seen easily that G defines a topological embedding of Qin gf_ 

THEOREM 4.2. A<'i,(I) ~ Sr. 

PROOF. Define a function K: ').$,(I) -+ I by : 

K(ffi) = inf {x E l\[O, x] E ffi}, (@lL E A<'i.(l)), 

and a function H: i<'i,(J) -+ Sr by: 

H(ffi) (i) = inf {xE I\ [O, x] U [y, l] E8JR, x + y = K(ffi) + i}, 

{ i E I, @1L E }.$,(I)) . 

We prove that His an homeomorphism between A<'i,(I) and Sr. 

First we observe that: 

K(@lt) :S:: x iff [O, x] E 8JTL; 

K(@lL) ~ x iff [x, I] E 8JTL; 

K(@lt) = x iff [O, x] E g)R. and [x, I] E @lL; 

H(~) (i) s;: x iff [O, x] U [K(W) + i - x, l] E 8llL; 

H(8JR) (i) ~ x iff [x, K(8JR) + i - x] E @1L; 

H(8JR) (i) = x iff [O, x] U [K(@lL) + i - x, l] E 8J1L and 

[x, K(8JR) + i -- x] E&l[; 

these facts follows easily from the fact that 8JR is a maximal linked system in 
~ 2• Also we have K(8l[) = H(@lL)(l). 

Next we show that H(@lL) E Sr, for each maximal linked system 8Jlt. l:r1 
fact (i) H(@lL)(O) = 0, for [O, OJ U [K(&JTL), l] E tITTL and [O, K(8lTC,)] E 8JR; (ii) ij 
is;: j, H(@lL)(i) = x, H(gJTC,)(i) = y, then x s;: y, for [x, K(@lL) + j - x] =:::: 
c [x, K(8JTC,) + i -- x] E @lL, hence [x, K(8l[) + j - x] E @lL and y = H(@lL)(j) ::2:: ::t: 
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also y - x < j - i, for [y -· j + i, K(.W) + i - (y - j + i) ::::i [y, K(g)]t) + 
+ j -- y] E 8JfL, hence x = H(.W)(i) 2 y - j + i. 

H is a one-to-one function, for suppose .Wi, gJJt2 E A~,(J), m 1 # gJJt2 

and H(m1) = H(.W2). Let a= K(.W1) = H(.W1)(1) = H(m2)(l) = K(@lt2 ), i.e., 
[O, a] E ml n .W2 and [a, l] E .wl n .W2. Since .wl # gm2 we may suppose 
that there are x' and y' such that [O, x]' U [y', l] E .W 1\8JR2. Since [O, a] E gJR2 
and [a, l] E m 2, we have x' <a< y'. Let i = x' + y' - a E [x', y'] c I. 
Then since [O, x'J U [a+ i -- x', l] = (0, x'] U [y', I] E m 1\@lt2 , we find 
that H(.W1)(i) S:: x' < H(.W2)(i) and this is a contradiction.His also a surjec
tion. Take / E gJ: and let: 

£ = {[f(i), /(1) + i -- /(i)J Ii E J} U {[O, f(i)] U [f(l) + i - /(i), I] Ii EI}. 

Then by definition of 8F, it is easy to see that £ is a linked system in ~ 2• £ is 
contained in some maximal linked system .W of cy2, and for this 8)f(, it holds that 
K(8JrL) = /(1) while for each i E J:H(8JrL)(i) = f(i); i.e., H(.W) = /. Finally we 
prove that H is continuous. Let i, x E J. Then 

{gJTL E ;.~,(J) I H(@lt) (i) S:: x} = n {8JrL E ).~,(I) I [O, x] U [y, l] E girr, or 
yEI 

[O, X + y - i] E gJIT,}' 

and hence this set is closed. For, let &JTL E ).~,(J) such that H(8JTL) (i) S:: x; this 
last inequality means that [O, x] U [K(.W) + i -- x, 1) E g)f(,_ If y 2 K(gJIT,) + 
+ i x, then [0, y + x -- i] =:i [O, K(8JrL)] E g)IT,; if y < K(8JTL) + i - x then 
[O, x] U [y, l] =:i [O, x] U [K(gJR,) + i - x, l] E 8JfL. 

Conversely, suppose that 

[O, x] U [y, l] E ~R or [O, x + y - i] E 8lll. 

for each y E J, then also [O, x + y - - i] ~ g)f(, for each y < K(a)]l) + i - x; 
hence [O, x] U [y, l] E 8JR.; we conclude that [O, x] U [K(g)R,) + i - x, I] E 8JTL, 
i.e., H(gJIT,)(i) < x. 

In the same way one proves: 

{ gJJL E J..~2(1) I H(51R.)(i) 2 x} = n { 51R. E J..,1.(1) I [x, y] E 51R. or [x + y -- i, 1] E 8lll}, 
yEI 

and hence is closed. 

As a consequence of these two theorems we have, as announced, 

THEOREM !.3. },,., (I) ~ Q. 
"' 
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5. A superextension of the n-sphere 

In this final section we show that the superextension of the n-sphere 
sn with respect to the collect~on of all closed massive n-balls in sn is homeo
morphic with the Hilbert-cube. As usual, the n-sphere sn is the space 

{(Xo, ~1, · · · , Xn) E Rn+l I j' xr = 1} 
c=O 

and the closed massive n-ball with centre x E Sn and radius s > 0 is the set 

Writing ci3 for the collection of all closed massive n-balls in S", we will prove 
that, if n ~ I, A&,(Sn) ,..___, Q_. Obviously -"&o(S1 ) is the superextension of the 
circle with respect to the set of closed intervals. For the definition of J/3 it 

. . I 

does not matter whether the .eucli.dian metric of Rn+i or the sphere metric 
n 

of Sn (in this case the distance between x and y in S" is arccos ;:Ex; y;, i.e., 
i=O 

the minimum length of a curve between x and y on Sn) is used. However, 
in the proof of the theorem we need the latter metric and we call this metric d. 
FurthermoEe we define, for each point x = (x 0 , x 1 , •.. , Xn) ES", the antipode 
x of x by x = (-x 0 , --x1 , ••• , -xn). 

THEOREM 5.1. If .n ~ 1, AJ/6(8") is homeomorphic to the Hilbert-cube Q. 

PROOF. In fact we show that A&,(Sn) is compact and infinite-dimensional 
and has a countable base and that A&,(S") ca,n be embedded as a convex sub
space in R5n; hence, by KELLER'S theorem, 11.IB(Sn) is homeomorphic to Q. 
Clearly, 11,'il(Sn) is comp.wt. 

To prove that -".ro(Sn) has a countable base, let X be a countable dense 
subset of sn. Define &2i 0 = { B(x, s) Ix EX, s E Q, s ~ O}. It is not difficult 
to see that P: 11&)(8") --+ 11.IB.(S"), such that P(ci)[) = cilll n &2i 0 (JlTL E 11<ill(S")) is 
a homeomorphism; hence, since AJ\l,(S") has a countable base, ).&ll(S") also has 
a countable base. Next, A&;(Sn) is infinite-dimensional, since ).'12 (J)( ""Q) can 
be embedded in A.IB(S"). For, let 

y = {x E sn IX,= (xo, ~l:' .•• 'Xn), X1 2 0, Xz = ... = Xn = O}; 

this subspace is homeomorphic to J. Let 6J2 be as defined in Section 3, i.e., 
6J2 is the collection of all closed subsets Y' if Y such that Y' is connected or 
Y\ Y' is connected. Define T:Aey,(Y) -+ 11.fil(Sn) byT(ci)[) = {BE &2i I B n YE 8m,} 
(~E -"4',(1)). Again it is not difficult to prove that Tis a topological embedding. 
Hence Aey,(I) ".:.::'. Q can be embedded in AJ\l(S"), i.e., A&ll(Sn) is infinite-dimensional. 
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Finally we embed )..ll'l(Sn) as a convex subspace in Rsn, by means of the 
function U :,\m(Sn) -+ RS\ determined by: 

The ma,pping U is continuous and one-to-one since U(@fe)(x)::;: e iff B(x, s) E SJll, 
and U(!{)ll)(x) > e iff B(i, n - e) E g)JL And indeed, U[)..ll'l(Sn)] is a convex 
subspace ofR8 n. In order to show this, we need only prove: if 8Jfe1 , SJ1l2 E Aill(Sn), 

then there exists an 8JR E A.ll'l(Sn) such that U(@ll) = ~ U(JJ[1 ) + ~ U(g}]t2) 
2 2 

(U[)..ll'l(Sn)] being compact and hence closed in RS"). So ta,ke 8)[1, Yrl.2 E A~(Sn) 

and let gm,3 = {B(x, e)[xESn, e:2:: ~ U(ffi1)(x) + ~ U(8JTl2)(x)}. Then ffi3 is 

a linked system, because if B(x, e) and B(y, o) E 5'll3 (x, y E Sn, e :2:: 
1 1 1 1 > ~U(~1) (x) + - U(@Tl2) (x), b :2::- U(ffi1 ) (y) + -(U(..VTl2) (y)), then: 
2 2 2 2 

and 

hence 

i.e., 

d(x, y) :::;: o + e, 

B(x, e) n B(y, 8) =:-6 0. 

Let c0ll3 boa maximal linked system containing 8JTl3 (in fact 8Jll3 is itself a maxi
mal linked system). Then, clearly, 

and 

But, since for each maximal linked system 8JTl: U(W) (x) + U(@Tl) (x) = -a, 
we have 

Thus 



24 VAN MILL, SCHRIJVER: SUPEREXTENSIONS WHICH .A.RE HILBERT CUBES 

REFERENCES 

[l] R. D. ANDERSON, On topological infinite deficiency, Michigan Math. J. 14 (1967), 
365-383. MR 35 # 4893 

[2] M. BELL, Not all compact Hausdorff spaces are supercompact, General Topology 
and Appl. 8 (1978), 151-165. 

[3] Oz. BESS.A.GA, and A. PEZ.OZYNSKI, Selected topics in infinite-dimensional topology, 
Monografie Matematyczne 58, PWN, Warszawa, 1975. Zbl. 304. 57001 

[4] A. E. BROUWER and A. ScHRIJVER, A characterzitaion of supercompactness with an 
application to treelike spaces, Report Mathematical Centre ZW 34/74, Amsterdam, 
1974. Zbl. 292. 54020 

[5] J. BRUIJNING, Characterizations of In and I"' using the graph theoretical represen
tation of J. ne Groot, Topological Structures (Proc. Sympos., Amsterdam, 1973), 
Mathematical Centre Tracts 52, Amsterdam, 1974, 38-47. 

[6] J. DE GROOT, Superextensions and supercompactness, Proc. I. Intern. Symp. on 
Extension Theory of Topological Structures and its Applications, VEB Deutscher 
Verlag Wiss., Berlin, 1967, 89-90. 

[7] J. DE GROOT, Graph representations of topological spaces, Topological Structures 
(Proc. Sympos., Amsterdam, 1973), Mathematical Centre Tracts 52, Amsterdam, 
1974, 29-37. MR 51 * 9012 

[8] 0. H. KELLER, Die Homoiomorphie der kompakten konvexen Mengen im Hilbert
schen Raum, Math. Ann. 105 (1931), 748-758. Zbl 3, 224 

[9] N. S. KROONENBERG, Pseudo-interiors of hyperspaces, Dissertation, Louisana State 
University (1974). 

[10] J. VAN MILL, A topological character-ization of products of compact tree-like spaces, 
Rapport 36, Wiskundig Seminarium Vrije Universiteit, Amsterdam, 1975. 

[ll] J. VAN MILL, On supercompactness and superextensions, Rapport 37, Wiskundig 
Seminarium Vrije Universiteit, Amsterdam, 1975. 

[12] J. VAN MILL, A topological property of supdrcompact Hausdorff spaces, Report 
Mathematical Centre ZW 66/76, Amsterdam, 1976. 

[13] A. ScHRIJVER, Graphs and supercompact spaces, Report Mathematical Centre ZW 
37/74, Amsterdam, 1974. 

[14] M. STROK and A. SZYMANSKI, Compact metric spaces have binary bases, Fund. 
Math. 89 (1975), 81-91. MR 52 # 4232 

[15] A. VERBEEK, Superextensions of topological spaces, Mathematical Centre Tracts 41, 
Amsterdam, 1972. JJ.!R 50 * 11157 

DEPARTMENT OF MATHEMATICS 
FREE UNIVERSITY 
DE BOELELAAN 1081 
AMSTERDAM 
THE NETHERLANDS 

MATHEMATISCH CENTRUM 
2-E BOERHAAVESTRAAT 49 
AMSTERDAM 
THE NETHERLANDS 

(R~ceived July 5, 1976) 


