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A short proof is given of the following conjecture of Mine, proved in 1973 by 
Bregman. Let A be a n x n - (0, 1)-matrix with r, ones in row i. Then 
per A< n:~, r,!1/Ti. 

1. INTRODUCTION 

Let A = (aii) be a nonnegative n x n matrix. The permanent per A is by 
definition 

n 

per A = L TI G;v, , 
vESn i=l 

where Sn is the set of all permutations on {l, ... , n}. Mine [3] conjectured and 
Bregman [I] proved the following upper bound for permanents of (0, !)­
matrices A: 

n 
per A¾ TI r;!1/ri; 

i-1 

here r; is the number of ones in row i of A. In his proof Bregman uses the 
duality theorem of convex programming and some theory on doubly stochas­
tic matrices. We give a short proof of his result using only elementary 
counting and the following easy lemma. 

LEMMA. ljt1 , ••• , tr are nonnegative real numbers then 

( t + ... + t )t,+• .. +t, 
I r ,,:=: ft' ... ttr 

r ---::: 1 r. 
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Proof. Taking logarithms of both sides and dividing by r we have to show 

( f1 + -~·+tr) log ( f1 +-~·+tr) ¾ t1 log t1 + -~- + t, log t, , 

which is true by the convexity of the function x log x. I 
Our proof is based on the nice last step of Bregman's proof. In Section 3 

we discuss some generalizations of the upper bound to arbitrary nonnegative 
matrices. 

We use the notation Aii for the minor obtained from A by deleting row i 
and column j. Furthermore 0° = 1 and O !11° = 0. For a survey on bounds 
for permanents we refer to Van Lint [2], p. 54-62. 

2. MINc's CONJECTURE 

We give an elementary proof of the following theorem of Bregman [!]. 

THEOREM. (Minc's conjecture [3], Bregman [l]). Let A be a n >( n -
(0, I) matrix with ri ones in row i (1 :o( i ,s;; n); then 

n 

per A :o( TI r; !1 /r;_ 

i-1 

Proof. We use induction on n; for n = I the theorem is trivial. Suppose 
the theorem has been proved for (n - I) x (n - 1)-matrices. We shall prove 

which implies the above inequality. The proof consists of a number of steps 
(equalities and inequalities); we first give these steps and after that we justify 
each step. The variables i,j, and k range from 1 ton. Let S be the set of all 
permutations v of {!, ... , n} for which a;,,; = 1 for all i = 1, ... , n. So 

Is I= per A. 

(per A)n per A (1) TT (per A)per A ~ IT (rtr A IT per A;t A;k) 

i i k 

<3) TI ((n r;) · (D per A1v;)) 
vES i i 

~ D ((I; r;). (IT ( I] rj !llr;) . ( 9. (rj - 1)!1/(rj~1)))) 

j;;=i Je/'1, 

aivi=O aJv i=1 
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~ I! ((I; ,i) · (9 ( I] rj !l/r;). ( 9 (r1 _ 1)!1/(r;-l)))) 
i"F'j i,;,=j 

a 1µ 1=0 aiv i=l 

~ TI ((r:r r) · (9 r; !(n-r;}!ri(r; _ l)!(r;-1)/(r;-1))) 

~ TI (rr r; !nir;) ~ (n r; !1/r,)" per A_ 

vES i ·i 

Explanation of the steps: 

(I) trivial; 

(2) apply the lemma (note that r; is the number of k such that a;" = I 
and per A = L1c.ai/,~i per A;1c); 

(3) the number of factors r; equals per A on both sides, while the 
number of factors per A;k equals the number of v ES for which v1 = k 
(this is per A;1c in case a;k = I, and O otherwise); 

(4) apply the induction hypothesis to each A;.., (i = I, ... , n); 

(5) change the order of multiplication; 

(6) the number of i such that i ¥= j and a;i, = 0 is n - r; , whereas 
the number of i such that i ¥= j and a;v = 1 is 'r; - I (note that a;, = l 
and that the equality is proved for all fix~d v and j separately); ' 

(7) and (8) are trivial. I 

3. GENERALIZATIONS TO ARBITRARY NONNEGATIVE MATRICES 

Using essentially the same method one can find an upper bound for 
permanents of arbitrary nonnegative matrices. To this end define the function 
f on vectors by 

( )
1/(k,l)! 

f (a) = Et bo(b0 + bµ. 1) ••• (b0 + bµ. 1 + · ·· + b,,) , 

where (b0 , ••• , b1J is a permutation of (the entries of) the vector a such that 
b0 ;;:,b;fori= l, ... ,k. 

Now f is stable under permutation of arguments and f(a1 , ••• , a,., 0) = 
f (a1 , ... , a,,). Repeating the arguments of the proof in Section 2 then yields 
the bound 

n 

per A ,s; TI f (a,-), 
i-1 

in which a; is the ith row of A. This upper bound applied to (0, I) matrices 
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produces Minc's upper bound, since f(I, ... , I, 0, ... , 0) = r! 1 /t, where r 
is the number of ones. However, this bound is not very good. Brouwer 
observed that a sharper upper bound for permanents of nonnegative matrices 
can be obtained directly from Minc's bound by the following method. First 
remark that the permanent function is linear on the rows (just as the deter­
minant is), and that each row of a nonnegative matrix is a (nonnegative) 
linear combination of (0, !)-vectors. Now define 

n 

g(a) := I (b1 - b,+1)(i!)l/i 
i=l 

in which (b1 , ... , bn) is a permutation of the entries of the vector a such that 
b1 ~ ··· ~ bn and bnt1 = 0. Then 

n 

per A ~ [1 g(a,) 
i=l 

in which a; is the ith row of A. Again, specilized to (0, I )-matrices this upper 
bound passes into Minc's upper bound. 
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