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Abstract. In this paper we describe one experiment in which a new 
coordination language, called MANIFOLD, is used to restructure an ex­
isting sequential Fortran code from computational fluid dynamic (CFD}, 
into a parallel application. MANIFOLD is a coordination language de­
veloped at CWI (Centrum voor Wiskunde en Informatica) in the Nether­
lands. It is very well suited for applications involving dynamic process 
creation and dynamically changing (ir)regular communication patterns 
among sets of independent concurrent cooperating processes. With a 
simple, but generic, master/worker protocol, written in the MANIFOLD 
language, we are able to reuse the existing code again, without rethink­
ing or rewriting it. The performance evaluation of a standard 3D CFD 
problem shows that MANIFOLD performs very well. 

1 Introduction 

A workable approach for modernization of existing software into parallel/ distri­
buted applications is through coarse-grain restructuring. If, for instance, entire 
subroutines of legacy code can be plugged into the new structure, the investment 
required for the re-discovery of the details of what they do can be spared. The 
resulting renovated software can then take advantage of the improved perfor­
mance offered by modern parallel/ distributed computing environments, without 
rethinking or rewriting the bulk of their existing code. The necessary communi­
cations between the different partners in such a new concurrent system can have 
different forms. In some cases, the channel structures representing the commu­
nication patters between the different partners, are regular and the numbers of 

* Partial funding for this project is provided by the National Computing Facilities 
Foundation (NCF), under project number NRG 98.04. 
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the partners is fixed (structured static communication). In other cases, the com­
munication patterns are irregular and the number of partners changes over time 
(unstructured dynamic communication). There are many different languages and 
programming tools available that can be used to implement this kind of com­
munications, representing very different approaches to parallel programming. 
Normally, languages like Compositional C++, High Performance Fortran, For­
tran M, Concurrent C(++) or tools like MPI, PVM, and PARMACS are used 
(see (1] for some critical notes on these languages and tools). There is, however, 
a promising novel approach: the application of coordination languages [2-4). 

In this paper we describe one experiment in which a new coordination lan­
guage, called MANIFOLD, was used to restructure an existing Fortran 77 pro­
gram into a parallel application. MANIFOLD is a coordination language devel­
oped at CWI (Centrum voor Wiskunde en Informatica) in the Netherlands. It is 
very well suited for applications involving dynamic process creation and dynam­
ically changing (ir )regular communication patterns among sets of independent 
concurrent cooperating processes (5, 6). Programming in MANIFOLD is a game 
of dynamically creating process instances and (re)connecting the ports of some 
processes via streams (asynchronous channels), in reaction to observed event 
occurrences. This style reflects the way one programmer might discuss his inter­
process communication application with another programmer on telephone (let 
process a connect process b with process c so that c can get its input; when pro­
cess b receives event e, broadcast by process c, react on that by doing this and 
that; etc.). As in this telephone analogy, processes in MANIFOLD do not explic­
itly send to or receive messages from other processes. Processes in MANIFOLD 

are treated as black-box workers that can only read or write through the open­
ings (called ports) in their own bounding walls. It is always a third party - a 
coordinator process called a manager - that is responsible for setting up the com­
munication channel (in MANIFOLD called a stream) between the output port of 
one process and the input port of another process, so that data can fl.ow through 
it. This setting up of the communication links from the outside is very typical for 
MANIFOLD and has several advantages. An important advantage is that it re­
sults in a clear separation between the modules responsible for computation and 
the modules responsible for coordination, and thus strengthens the modularity 
and enhances the re-usability of both types of modules (see (1, 6, 7]). 

The MANIFOLD system runs on multiple platforms and consists of a com­
piler, a run-time system library, a number of utility programs, and libraries of 
built-in and predefined processes of general interest. Presently, it runs on IBM 
RS60000 AIX, IBM SPI/2, Solaris, Linux, Cray, and SGI IRlX 1 . 

The original Fortran 77 code in our experiment was developed at CWI by a 
group of researchers in the department of Numerical Mathematics, within the 
framework of the BRITE-EURAM Aeronautics R&D Programme of the Euro­
pean Union. The Fortran code consist of a number of subroutines (about 8000 
lines) that manipulate a common date structure. It implements their multi-

1 For more information, refer to our html pages located at 
http:/ /www.cwi.nl/ farhad/manifold.html. 
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- Printing of result• 
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Fig. 1. ThE! schema of the S<•quential mde 

grid solution algorithm for the Euler equations rt•prnst\nting thre(i-dimens 
steady, compressible flows. They found their full-grid-of-grids approach to 
fective (good convergence rates) but incffidcnt (long r.omputing times). As a 
edy, they looked for methods to restructure their rode to nm on multi-pro< 
machines and/or to distribute their computation ovPr dusters of workstat 

Clearly, the details of the computational algorithms ust>d in the origina 
gram are too voluminous to reproduce here, and suC'.h computational de1 
essentially irrelevant for our restrur.turing. Thus wf• rder for a detailed de: 
tion of the software to the last four c.haptns of rcforf'flC<' [8], ttw official rep< 
the BRITE-EURAM project, and instead USt' a simplifiPci psm1do program i1 
paper that has the same logical design aml strnctur<• &"I tlw original progra 
section 2, we present this simplifaid pstmdo program a.ncl giwi its parallel , 
terpart. Next, in imction 3, we de.scribe how wti imp!Pnwnt our parallel ve 
using the coordination language MANIFOLD. In 1«iction •i, W(! Hhow perforn 
results for the standard test case of a.n O:'-.ERA :M6 half-wing in transonic f 
Finally, the conclusion of the paper is in tlt'dion 5. 

2 The Simplified Pseudo Code and its Parallel Versio1 

The simplified pseudo cod<! aa distillfid from the original program is shov 
figure 1. The heavy computatiomi that. in prindr>h!, c.iui he done in pa 
represent the original Fortran version 't1 pm- or pm;t- Gauss-Seidel rela:x:a 
on all the cells of a certain grid !9]. Boca.use tht• rnlaxation subroutine 1 

and writes data concerning its own grid only, the r~laxations can in prin 
be done in parallel for all the grids to lm viHited at a certain grid !eve 
figure 2, we show the parallel version of the shnplifif'd piu!udo codti. Theri 
create inside a loop a worker-pool consiHting of a numt.)(!r of wcJrl«m1 to whic: 
delegate the relaxations of the different. grids. NCJtP that thf! number of wo: 
is dependent on tlrn index i of th<! loop. Wh,m th1: work«m, can nm as sep, 
processes using different. procet1sors on a rrmlti-proct!tuior hardw,trf!, then we 
the desired parallel structurn. 
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- some initialization work 
- Some initial sequential cOI11putations 

Heavy CQmPllt&tional :lob• 
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- Heavy computations that are done by a number of workers 

in a worker-pool that run concurrently 

work to be done 
by worker-pooli 
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- Some final sequential computations 
- Printing of results 

end 

Fig. 2. The schema of the parallel code 

3 The Parallel Implementation using Manifold 

We can describe the parallel schema of figure 2 in a kind of master/worker 
protocol in which the master performs all the computations of the sequential 
code except the relaxations which are done by the workers. 

l / / protocolMW .m 
2 
3 #define IDLE terminated(void) 
4 
S export manifold ProtocolMW (manifold Master, manifold worker, 

event create_worker, event ready) 
6 ( 
7 auto process master is Master. 
8 
9 begin: (master, IDLE). 

10 
11 create_worker: { 
12 process worker is worker. 
13 
14 begin: ( &worker -> master -> worker, IDLE I • 
15 l, 
16 
17 ready: halt. 
18 I 

In MANIFOLD we can do this in a general way, as shown in the code above ( for 
details see reference [9]). There, the master and the worker are parameters of 
the protocol implemented in the MANIFOLD language as a separate coordinator 
process (line 5). In this protocol we describe only how instances of the master 
and worker process definitions communicate with each other. For the protocol 
it is irrelevant to know what kind of computations are performed in the master 
and the worker. 

In the coordinator process we create and activate the master process that 
embodies all computation except the relaxations (line 7). Each time the master 
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arrives at the pre- or post-relaxation, he raises an event to signal the coordin 
to create a worker (line 12). In this way, a pool of workers is set to wod 
the master whereby each pool contains its own number of workers (see figur, 
Before a worker can really work, it should know on which grid it must perforn 
relaxation. Because the master ha.s this information available, the coordin 
sets up a communication channel ( called a stream in MANIFOLD) between 
master and the worker so that the master can send this information to the we 
(see the arrow between the ma.i;ter and the worker on line 14 which represe1 

stream). Also, the coordinator must inform the master of the identification o: 
worker so that it can activate the worker (see thf' arrow between the refer 
of the worker denoted by &:worker and the ma..,;ter). When all the workers 
certain worker-pool arc created a.ud activated in this way, the master waits 1 

the workers are done with the relaxation and am prepared to terminate. ) 
this rendezvous, the master continues its work (i.e., the index i of the loc 
figure 2 is incremented by omi) until it again arrives at a point where it v. 
to use a pool of workiirs to delegate thP. relaxations to. 

Note that. it is not ncc:<!Rsa.ry to hav<! a streams from workers to the : 
ter through which the workf!r!I S(md the results of their relaxations back tc 
master. ThE~ reason for this iH that the relaxation work of the different wor 
running as different MANil-'OLD processes, c:a.n nm a.s threads (light-weight 
rcss,is) [10]. in the same operating-system-level (heavy Wf!ight) process, and 
r.an share th(: same global data spa<:f•. Therefore, the r<'.struc:turing we pn 
here is not suitable for distribut£><i memory computing. N1wertheless, the res, 
•ured program we present here doP.s improvf• tlw performance of the applic, 
.'l we will see in the next Sf!ction. For a clcsc:ription of the distributed me1 
estructuring S<~' http://www.cwi.nl/" farha<l/CWICoordina.html. 

Having implemented the mastf!r /worker protocol in MANIFOLD in a ge1 
way, the only t.hinK we, need to do is to \111{.~ thia protocol by replacing its fo 
parameters by actual vah1,!S whkh ar,• pror.t•SSf!8. Th<! actual master and w< 
manifolds an! ea.Hy to implmnent as atomk proc~~ written in C. The 
functions then call th,! original Fortrn.n rnclf• (8000 line1-1) to do the real wor: 

4 Performance Results 

A numb<!r of expririmtmts W<!rn conductecl to obtnin concrete numerical da 
mm.1s11re th£' dfoctive spet•d-up of our parallt!li:r.ation All ,ixpuriments werE 
on au SGI Cha.lleng,! L with four 200 :-.mz IP HJ proc,•Hff<m,, <'.ach with a ~ 
H.-1-100 proc<!si;or c:hip as CPU and a MIPS R4010 fle>at.ing point chip for l 
This 32-bit ma.chine has 256 rmiga.bytf!fi of main nwmory, 16 kilobytes of ins 
ticm ca .. chri, 16 kilohytrn, of data cadw, and ,, rrwgabyU!ti uf secondary UI 

imll.rudicm/data cadw. 'fhil-i mac·himi runs l.tndf!f nux 5.3, iM cm a network 
ili ll!Wd ;u; a 1-wrver for <:omputing and inttirartivc: jobt1. Ottuir SGI machin, 
this rwt.work fouc:tion as fil(i aerveni. 

Comput.at.iona wern done for lx,th tht: !IJULr8'l· and thti l:l<!mi-sparse-gri1 

prnaclws. For thu spa.r!«•-grid approach, th,! fineMt grid l«!Vt!ls considered a 
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Table 1. Average elapsed times (hours:minutes:seconds) for sparse- and semi-sparse­
grid-of-grids approaches. 

level sequential parallel 
1 11.24 5.84 

sparse 2 1:37.42 34.06 
3 9:15.56 2:47.40 
2 50.43 27.33 

semi-sparse 4 18:02.10 5:58.72 
6 4:36:08.54 1:14:44.04 

2 and 3; for the semi-sparse-grid approach, the finest grid levels are: 2, 4 and 
6. The higher the grid level the heavier the computational work. The results 
of our performance measurements for both the sparse- and the semi-sparse-grid 
approaches are summarized in table 1, which shows the elapsed times versus the 
grid level. All experiments were done during quiet periods of the system, but, 
as in any real contemporary computing environment, it could not be guaranteed 
that we were the only user. Furthermore, such unpredictable effects as network 
traffic and file server delays, etc., could not be eliminated and are reflected in 
our results. To even out such "random" perturbations, we ran the two versions 
of the application on each of the three levels close to each other in real time. 
This has been done for each version of the application, five times on each level. 
From the raw numbers obtained from these experiments we discarded the best 
and the worst performances and computed the averages of the other three which 
are shown in table l. 

From the results, it clearly appears that the MANIFOLD version takes good 
advantage of the parallelism offered by the four processors of the machine. The 
underlying thread facility in our implementation of MANIFOLD on the SGI IRIX 
operating system allows each thread to run on any available processor. For the 
sparse-grid and the semi-sparse-grid applications, the MANIFOLD-code times are 
about 3.25 and 3.75 times smaller, respectively, than the sequential-code times. 
So, in both cases we have obtained a nearly linear speed-up. 

The dynamic creation of workers in different work pools for the sparse- and 
the semi-sparse-grid versions, are respectively shown in Figures 3 and 4. From 

Table 2. Work pool and worker statistics. 

1 6 3 10 
sparse 2 18 6 50 

3 42 10 170 

2 18 3 38 
semi-sparse 4 82 7 336 

6 268 12 1838 
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pool number (horizontal axis) versus number Of WO<kers in the pool (vertical axis) 

level=1 level=2 level=3 
10 

II I 11 I 11 \I 11 1I 11 II 11 I 11 
1 6 1 18 1 42 

Fig. 3. Different pools of workers created during the sparse-grid parallel applications. 

Figure 3 we see that for level=l, 6 pools of workers were created with their 
corresponding synchronization points each with 1, 1, 3, 1, 1 and 3 workers on 
board, respectively. This makes the total number of worker processes for this 
application 10. For level=2 there are 18 pools with a total of 50 workers, and for 
level=3 these numbers are 42 and 170, respectively. The numbers for both the 
sparse- and the semi-sparse-grid applications are summarized in Table 2. Here, 
np denotes the number of pools, (nw)max the maximum number of workers in a 
pool and (nwhotaI the total number of workers in the application. Note that in 
the semi-sparse-grid application in level 6 the average elapsed time went from 4 
hours and 36 minutes down to 1 hour and 14 minutes by introducing 268 worker­
pools in which a total of 1838 workers, as independently running processes, did 
their relaxation work. 

5 Conclusions 

Parallelizing existing sequential applications is often considered to be a compli­
cated and challenging task. Mostly it requires thorough knowledge about both 
the application to be parallelized and the development system to be used. Our 
experiment using MANIFOLD to restructure existing Fortran code into a parallel 
application indicates that this coordination language is well-suited for this kind 
of work. 

The highly modular structure of the resulting application and the ability to 
use existing computational subroutines of the sequential Fortran program are 
remarkable. The unique property of MANIFOLD that enables such high degree 
of modularity is inherited from its underlying IWIM (Idealized Worker Idealized 
Manager) model in which communication is set up from the outside [6]. The 
core relevant concept in the IWIM model of communication is isolation of the 
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pool number (horizontal axis) versus number of 'M'>rkers in the pool (vertieal axis) 

1eve1=2 leve1=4 level=£ 
12 

10 

1 181 821 268 

Fig. 4. Different pools of workers created during the semi-sparse-grid parallel applica­
tions. 

computational responsibilities from communication and coordination concerns, 
into separate, pure computation modules and pure coordination modules. This is 
why the MANIFOLD modules in our example can coordinate the already existing 
computational Fortran subroutines, without any change. 

An added bonus of pure coordination modules is their re-usability: the same 
MANIFOLD modules developed for one application may be used in other parallel 
applications with the same or similar cooperation protocol, regardless of the fact 
that the two applications may perform completely different computations (the 
sparse-grid and semi-sparse-grid application use the same protocol manifold, see 
also reference [7] for this notion of re-usability). 

The performance evaluation of our test problem shows that MANIFOLD per­
forms very well. Encouraged by the good results of this pilot study and the 
practical value it has for the partners who already use the sequential sparse-grid 
software, we now intend to develop a distributed restructuring of this sequential 
application. Also the distributed restructuring essentially consists of picking out 
the computation subroutines in the original Fortran 77 code, and gluing them 
together with coordination modules written in MANIFOLD. Again no rewriting 
of, or other changes to, these subroutines are necessary and we can reorga­
nize according to a master /worker protocol. The additional work we have to 
do now, is to arrange for the MANIFOLD coordinators to send and receive the 
proper segments of the global data structure, which in the parallel version were 
available through shared memory, via streams. We can thereby implement the 
MANIFOLD glue modules (as separately compiled programs!) in such a way that 
their MANIFOLD code can run in distributed, as well as parallel environments. 
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