
Dynamic Process Composition and
Communication Patterns in Irregularly

Structured Applications *

C.T.H. Everaars, B. Koren and F. Arbab
email: Kees.Everaars@cwi.nl, Barry.Koren@cwi.nl and Farhad.Arbab@cwi.nl

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, Telefax 020-5924199
(+31 20 5924199}

Keywords parallel languages, parallel computing, distributed computing, coor­
dination languages, models of communication, irregular communications pat­
terns, unstructured process composition, software renovation, multi-grid meth­
ods, sparse-grid methods, computational fluid dynamics, three-dimensional flow
problems.

Abstract. In this paper we describe one experiment in which a new
coordination language, called MANIFOLD, is used to restructure an ex­
isting sequential Fortran code from computational fluid dynamic (CFD},
into a parallel application. MANIFOLD is a coordination language de­
veloped at CWI (Centrum voor Wiskunde en Informatica) in the Nether­
lands. It is very well suited for applications involving dynamic process
creation and dynamically changing (ir)regular communication patterns
among sets of independent concurrent cooperating processes. With a
simple, but generic, master/worker protocol, written in the MANIFOLD
language, we are able to reuse the existing code again, without rethink­
ing or rewriting it. The performance evaluation of a standard 3D CFD
problem shows that MANIFOLD performs very well.

1 Introduction

A workable approach for modernization of existing software into parallel/ distri­
buted applications is through coarse-grain restructuring. If, for instance, entire
subroutines of legacy code can be plugged into the new structure, the investment
required for the re-discovery of the details of what they do can be spared. The
resulting renovated software can then take advantage of the improved perfor­
mance offered by modern parallel/ distributed computing environments, without
rethinking or rewriting the bulk of their existing code. The necessary communi­
cations between the different partners in such a new concurrent system can have
different forms. In some cases, the channel structures representing the commu­
nication patters between the different partners, are regular and the numbers of

* Partial funding for this project is provided by the National Computing Facilities
Foundation (NCF), under project number NRG 98.04.

1047

the partners is fixed (structured static communication). In other cases, the com­
munication patterns are irregular and the number of partners changes over time
(unstructured dynamic communication). There are many different languages and
programming tools available that can be used to implement this kind of com­
munications, representing very different approaches to parallel programming.
Normally, languages like Compositional C++, High Performance Fortran, For­
tran M, Concurrent C(++) or tools like MPI, PVM, and PARMACS are used
(see (1] for some critical notes on these languages and tools). There is, however,
a promising novel approach: the application of coordination languages [2-4).

In this paper we describe one experiment in which a new coordination lan­
guage, called MANIFOLD, was used to restructure an existing Fortran 77 pro­
gram into a parallel application. MANIFOLD is a coordination language devel­
oped at CWI (Centrum voor Wiskunde en Informatica) in the Netherlands. It is
very well suited for applications involving dynamic process creation and dynam­
ically changing (ir)regular communication patterns among sets of independent
concurrent cooperating processes (5, 6). Programming in MANIFOLD is a game
of dynamically creating process instances and (re)connecting the ports of some
processes via streams (asynchronous channels), in reaction to observed event
occurrences. This style reflects the way one programmer might discuss his inter­
process communication application with another programmer on telephone (let
process a connect process b with process c so that c can get its input; when pro­
cess b receives event e, broadcast by process c, react on that by doing this and
that; etc.). As in this telephone analogy, processes in MANIFOLD do not explic­
itly send to or receive messages from other processes. Processes in MANIFOLD

are treated as black-box workers that can only read or write through the open­
ings (called ports) in their own bounding walls. It is always a third party - a
coordinator process called a manager - that is responsible for setting up the com­
munication channel (in MANIFOLD called a stream) between the output port of
one process and the input port of another process, so that data can fl.ow through
it. This setting up of the communication links from the outside is very typical for
MANIFOLD and has several advantages. An important advantage is that it re­
sults in a clear separation between the modules responsible for computation and
the modules responsible for coordination, and thus strengthens the modularity
and enhances the re-usability of both types of modules (see (1, 6, 7]).

The MANIFOLD system runs on multiple platforms and consists of a com­
piler, a run-time system library, a number of utility programs, and libraries of
built-in and predefined processes of general interest. Presently, it runs on IBM
RS60000 AIX, IBM SPI/2, Solaris, Linux, Cray, and SGI IRlX 1 .

The original Fortran 77 code in our experiment was developed at CWI by a
group of researchers in the department of Numerical Mathematics, within the
framework of the BRITE-EURAM Aeronautics R&D Programme of the Euro­
pean Union. The Fortran code consist of a number of subroutines (about 8000
lines) that manipulate a common date structure. It implements their multi-

1 For more information, refer to our html pages located at
http:/ /www.cwi.nl/ farhad/manifold.html.

p:r:ograa DQ..CODII
begin

Preamble ,
- some initialization work

1048

- some initial sequential computations

llea-vy 001111PUtatiorual :lob•
tori= l to N

- Heavy computations that can"t bu don" 1n P4n1llel
- Heavy computation• that can 1n pr1nc1ple bu done in parallel

enator

Poatambl•:
- some tinal sequential c01Q!)Utatlon•
- Printing of result•

end

Fig. 1. ThE! schema of the S<•quential mde

grid solution algorithm for the Euler equations rt•prnst\nting thre(i-dimens
steady, compressible flows. They found their full-grid-of-grids approach to
fective (good convergence rates) but incffidcnt (long r.omputing times). As a
edy, they looked for methods to restructure their rode to nm on multi-pro<
machines and/or to distribute their computation ovPr dusters of workstat

Clearly, the details of the computational algorithms ust>d in the origina
gram are too voluminous to reproduce here, and suC'.h computational de1
essentially irrelevant for our restrur.turing. Thus wf• rder for a detailed de:
tion of the software to the last four c.haptns of rcforf'flC<' [8], ttw official rep<
the BRITE-EURAM project, and instead USt' a simplifiPci psm1do program i1
paper that has the same logical design aml strnctur<• &"I tlw original progra
section 2, we present this simplifaid pstmdo program a.ncl giwi its parallel ,
terpart. Next, in imction 3, we de.scribe how wti imp!Pnwnt our parallel ve
using the coordination language MANIFOLD. In 1«iction •i, W(! Hhow perforn
results for the standard test case of a.n O:'-.ERA :M6 half-wing in transonic f
Finally, the conclusion of the paper is in tlt'dion 5.

2 The Simplified Pseudo Code and its Parallel Versio1

The simplified pseudo cod<! aa distillfid from the original program is shov
figure 1. The heavy computatiomi that. in prindr>h!, c.iui he done in pa
represent the original Fortran version 't1 pm- or pm;t- Gauss-Seidel rela:x:a
on all the cells of a certain grid !9]. Boca.use tht• rnlaxation subroutine 1

and writes data concerning its own grid only, the r~laxations can in prin
be done in parallel for all the grids to lm viHited at a certain grid !eve
figure 2, we show the parallel version of the shnplifif'd piu!udo codti. Theri
create inside a loop a worker-pool consiHting of a numt.)(!r of wcJrl«m1 to whic:
delegate the relaxations of the different. grids. NCJtP that thf! number of wo:
is dependent on tlrn index i of th<! loop. Wh,m th1: work«m, can nm as sep,
processes using different. procet1sors on a rrmlti-proct!tuior hardw,trf!, then we
the desired parallel structurn.

program 11.u_com:
begin

neamble1

1049

- some initialization work
- Some initial sequential cOI11putations

Heavy CQmPllt&tional :lob•
for i = 1 to N

- Heavy computations that can't be done in parallel
- Heavy computations that are done by a number of workers

in a worker-pool that run concurrently

work to be done
by worker-pooli

endfor

Poatamble,

,r (worker 1)
,..-,..-

,--.... (worker 2 J
', I

' I
'"».. ,---'•--­

' [worker nJ

- Some final sequential computations
- Printing of results

end

Fig. 2. The schema of the parallel code

3 The Parallel Implementation using Manifold

We can describe the parallel schema of figure 2 in a kind of master/worker
protocol in which the master performs all the computations of the sequential
code except the relaxations which are done by the workers.

l / / protocolMW .m
2
3 #define IDLE terminated(void)
4
S export manifold ProtocolMW (manifold Master, manifold worker,

event create_worker, event ready)
6 (
7 auto process master is Master.
8
9 begin: (master, IDLE).

10
11 create_worker: {
12 process worker is worker.
13
14 begin: (&worker -> master -> worker, IDLE I •
15 l,
16
17 ready: halt.
18 I

In MANIFOLD we can do this in a general way, as shown in the code above (for
details see reference [9]). There, the master and the worker are parameters of
the protocol implemented in the MANIFOLD language as a separate coordinator
process (line 5). In this protocol we describe only how instances of the master
and worker process definitions communicate with each other. For the protocol
it is irrelevant to know what kind of computations are performed in the master
and the worker.

In the coordinator process we create and activate the master process that
embodies all computation except the relaxations (line 7). Each time the master

1050

arrives at the pre- or post-relaxation, he raises an event to signal the coordin
to create a worker (line 12). In this way, a pool of workers is set to wod
the master whereby each pool contains its own number of workers (see figur,
Before a worker can really work, it should know on which grid it must perforn
relaxation. Because the master ha.s this information available, the coordin
sets up a communication channel (called a stream in MANIFOLD) between
master and the worker so that the master can send this information to the we
(see the arrow between the ma.i;ter and the worker on line 14 which represe1

stream). Also, the coordinator must inform the master of the identification o:
worker so that it can activate the worker (see thf' arrow between the refer
of the worker denoted by &:worker and the ma..,;ter). When all the workers
certain worker-pool arc created a.ud activated in this way, the master waits 1

the workers are done with the relaxation and am prepared to terminate.)
this rendezvous, the master continues its work (i.e., the index i of the loc
figure 2 is incremented by omi) until it again arrives at a point where it v.
to use a pool of workiirs to delegate thP. relaxations to.

Note that. it is not ncc:<!Rsa.ry to hav<! a streams from workers to the :
ter through which the workf!r!I S(md the results of their relaxations back tc
master. ThE~ reason for this iH that the relaxation work of the different wor
running as different MANil-'OLD processes, c:a.n nm a.s threads (light-weight
rcss,is) [10]. in the same operating-system-level (heavy Wf!ight) process, and
r.an share th(: same global data spa<:f•. Therefore, the r<'.struc:turing we pn
here is not suitable for distribut£><i memory computing. N1wertheless, the res,
•ured program we present here doP.s improvf• tlw performance of the applic,
.'l we will see in the next Sf!ction. For a clcsc:ription of the distributed me1
estructuring S<~' http://www.cwi.nl/" farha<l/CWICoordina.html.

Having implemented the mastf!r /worker protocol in MANIFOLD in a ge1
way, the only t.hinK we, need to do is to \111{.~ thia protocol by replacing its fo
parameters by actual vah1,!S whkh ar,• pror.t•SSf!8. Th<! actual master and w<
manifolds an! ea.Hy to implmnent as atomk proc~~ written in C. The
functions then call th,! original Fortrn.n rnclf• (8000 line1-1) to do the real wor:

4 Performance Results

A numb<!r of expririmtmts W<!rn conductecl to obtnin concrete numerical da
mm.1s11re th£' dfoctive spet•d-up of our parallt!li:r.ation All ,ixpuriments werE
on au SGI Cha.lleng,! L with four 200 :-.mz IP HJ proc,•Hff<m,, <'.ach with a ~
H.-1-100 proc<!si;or c:hip as CPU and a MIPS R4010 fle>at.ing point chip for l
This 32-bit ma.chine has 256 rmiga.bytf!fi of main nwmory, 16 kilobytes of ins
ticm ca .. chri, 16 kilohytrn, of data cadw, and ,, rrwgabyU!ti uf secondary UI

imll.rudicm/data cadw. 'fhil-i mac·himi runs l.tndf!f nux 5.3, iM cm a network
ili ll!Wd ;u; a 1-wrver for <:omputing and inttirartivc: jobt1. Ottuir SGI machin,
this rwt.work fouc:tion as fil(i aerveni.

Comput.at.iona wern done for lx,th tht: !IJULr8'l· and thti l:l<!mi-sparse-gri1

prnaclws. For thu spa.r!«•-grid approach, th,! fineMt grid l«!Vt!ls considered a

1051

Table 1. Average elapsed times (hours:minutes:seconds) for sparse- and semi-sparse­
grid-of-grids approaches.

level sequential parallel
1 11.24 5.84

sparse 2 1:37.42 34.06
3 9:15.56 2:47.40
2 50.43 27.33

semi-sparse 4 18:02.10 5:58.72
6 4:36:08.54 1:14:44.04

2 and 3; for the semi-sparse-grid approach, the finest grid levels are: 2, 4 and
6. The higher the grid level the heavier the computational work. The results
of our performance measurements for both the sparse- and the semi-sparse-grid
approaches are summarized in table 1, which shows the elapsed times versus the
grid level. All experiments were done during quiet periods of the system, but,
as in any real contemporary computing environment, it could not be guaranteed
that we were the only user. Furthermore, such unpredictable effects as network
traffic and file server delays, etc., could not be eliminated and are reflected in
our results. To even out such "random" perturbations, we ran the two versions
of the application on each of the three levels close to each other in real time.
This has been done for each version of the application, five times on each level.
From the raw numbers obtained from these experiments we discarded the best
and the worst performances and computed the averages of the other three which
are shown in table l.

From the results, it clearly appears that the MANIFOLD version takes good
advantage of the parallelism offered by the four processors of the machine. The
underlying thread facility in our implementation of MANIFOLD on the SGI IRIX
operating system allows each thread to run on any available processor. For the
sparse-grid and the semi-sparse-grid applications, the MANIFOLD-code times are
about 3.25 and 3.75 times smaller, respectively, than the sequential-code times.
So, in both cases we have obtained a nearly linear speed-up.

The dynamic creation of workers in different work pools for the sparse- and
the semi-sparse-grid versions, are respectively shown in Figures 3 and 4. From

Table 2. Work pool and worker statistics.

1 6 3 10
sparse 2 18 6 50

3 42 10 170

2 18 3 38
semi-sparse 4 82 7 336

6 268 12 1838

1052

pool number (horizontal axis) versus number Of WO<kers in the pool (vertical axis)

level=1 level=2 level=3
10

II I 11 I 11 \I 11 1I 11 II 11 I 11
1 6 1 18 1 42

Fig. 3. Different pools of workers created during the sparse-grid parallel applications.

Figure 3 we see that for level=l, 6 pools of workers were created with their
corresponding synchronization points each with 1, 1, 3, 1, 1 and 3 workers on
board, respectively. This makes the total number of worker processes for this
application 10. For level=2 there are 18 pools with a total of 50 workers, and for
level=3 these numbers are 42 and 170, respectively. The numbers for both the
sparse- and the semi-sparse-grid applications are summarized in Table 2. Here,
np denotes the number of pools, (nw)max the maximum number of workers in a
pool and (nwhotaI the total number of workers in the application. Note that in
the semi-sparse-grid application in level 6 the average elapsed time went from 4
hours and 36 minutes down to 1 hour and 14 minutes by introducing 268 worker­
pools in which a total of 1838 workers, as independently running processes, did
their relaxation work.

5 Conclusions

Parallelizing existing sequential applications is often considered to be a compli­
cated and challenging task. Mostly it requires thorough knowledge about both
the application to be parallelized and the development system to be used. Our
experiment using MANIFOLD to restructure existing Fortran code into a parallel
application indicates that this coordination language is well-suited for this kind
of work.

The highly modular structure of the resulting application and the ability to
use existing computational subroutines of the sequential Fortran program are
remarkable. The unique property of MANIFOLD that enables such high degree
of modularity is inherited from its underlying IWIM (Idealized Worker Idealized
Manager) model in which communication is set up from the outside [6]. The
core relevant concept in the IWIM model of communication is isolation of the

>
1053

pool number (horizontal axis) versus number of 'M'>rkers in the pool (vertieal axis)

1eve1=2 leve1=4 level=£
12

10

1 181 821 268

Fig. 4. Different pools of workers created during the semi-sparse-grid parallel applica­
tions.

computational responsibilities from communication and coordination concerns,
into separate, pure computation modules and pure coordination modules. This is
why the MANIFOLD modules in our example can coordinate the already existing
computational Fortran subroutines, without any change.

An added bonus of pure coordination modules is their re-usability: the same
MANIFOLD modules developed for one application may be used in other parallel
applications with the same or similar cooperation protocol, regardless of the fact
that the two applications may perform completely different computations (the
sparse-grid and semi-sparse-grid application use the same protocol manifold, see
also reference [7] for this notion of re-usability).

The performance evaluation of our test problem shows that MANIFOLD per­
forms very well. Encouraged by the good results of this pilot study and the
practical value it has for the partners who already use the sequential sparse-grid
software, we now intend to develop a distributed restructuring of this sequential
application. Also the distributed restructuring essentially consists of picking out
the computation subroutines in the original Fortran 77 code, and gluing them
together with coordination modules written in MANIFOLD. Again no rewriting
of, or other changes to, these subroutines are necessary and we can reorga­
nize according to a master /worker protocol. The additional work we have to
do now, is to arrange for the MANIFOLD coordinators to send and receive the
proper segments of the global data structure, which in the parallel version were
available through shared memory, via streams. We can thereby implement the
MANIFOLD glue modules (as separately compiled programs!) in such a way that
their MANIFOLD code can run in distributed, as well as parallel environments.

1054

References

1. F. Arbab. The influence of coordination on program structurE
of the 30th Hawaii International Conference on System Science,
1997.

2. D. Gelernter and N. Carriero. Coordination languages and theirs
munication of the ACM, 35(2):97-107, February 1992.

3. F. Arbab, P. Ciancarini, and C. Hankin. Coordination language:
gramming. Parallel Computing, 24(7):989-1004, July 1998. spec'
dination languages for parallel programming.

4. G.A. Papadopoulos and F. Arbab. Coordination Models and Lani
of Advances in Computers. Academic Press, 1998.

5. F. Arbab. Coordination of massively concurrent activities.
port CS-R9565, Centrum voor Wiskunde en Informatica,
1098 SJ Amsterdam, The Netherlands, November 1995.
http://www.cwi.nl/ftp/CW1reports/IS/CS-R9565.ps.Z.

6. F. Arbab. The IWIM model for coordination of concurrent ac
Ciancarini and Chris Hankin, editors, Coordination Languages a,:
1061 of Lecture Notes in Computer Science, pages 34-56. SpriI
1996.

7. F. Arbab, C.L. Blom, F.J. Burger, and C.T.H. Everaars. Reu
modules for massively concurrent applications. Software: Practic
28(7):703-735, June 1998. Extended version.

8. H. Deconinck and eds. B. Koren. Euler and Navier-Stokes Sol
Dimensional Upwind Schemes and Multigrid Acceleration. No
Fluid Mechanics 57. Vieweg, Braunschweig, 1997.

9. C.T.H. Everaars and B. Koren. Using coordination to parallelize
ods for 3D CFD problems. Parallel Computing, 24(7):1081-1106,
issue on Coordination languages for parallel programming.

10. Bradford Nicols, Dick Buttlar, and Jacqueline Proulx Farrell. J
ming. O'Reilly & Associates, Inc., Cebastopol, CA, 1996.

