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In spite of the absence of shock waves in most hydrodynamic applica
tions, sufficient reason remains to employ Godunov-type schemes in this 
field. In the instance of two-phase flow, the shock capturing ability of these 
schemes may serve to maintain robustness and accuracy at the interface. 
Moreover, approximate Riemann solvers have greatly relieved the initial 
drawback of computational expensiveness of Godunov-type schemes. In 
the present work we develop an Osher-type approximate Riemann solver 
for application in hydrodynamics. Actual computations are left to future 
research. 

1. Introduction 

The advantages of Godunov-type schemes (Godunov, 1959) in hydrody
namic flow computations are not as widely appreciated as in gas dynam
ics applications. Admittedly, the absence of supersonic speeds and hence 
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shock waves in incompressible flow ( the prevailing fluid model in hydrody
namics) reduces the necessity of advanced shock capturing schemes. Nev
ertheless, many reasons remain to apply Godunov-type schemes in hydro
dynamics: Firstly, these schemes have favorable robustness properties due 
to the inherent upwind treatment of the flow. Secondly, they feature a 
consistent treatment of boundary conditions. Thirdly, (higher-order accu
rate) Godunov-type schemes display low dissipative errors, which is im
perative for an accurate resolution of boundary layers in viscous flow. 
Finally, the implementation of these schemes in conjunction with higher
order limited interpolation methods, to maintain accuracy and prevent os
cillations in regions where large gradients occur (see, e.g., (Sweby, 1984; 
Spekreijse, 1987)), is relatively straightforward. 

In addition, Godunov-type schemes can be particularly useful in hy
drodynamics in case of two-phase flows, e.g., flows suffering cavitation and 
free surface flows. In these situations, an interface exists between the pri
mary phase (water) and the secondary phase (air, damp, etc.) and fluid 
properties may vary discontinuously across the interface. In our opinion, 
the ability of Godunov-type schemes to capture discontinuities is then very 
useful to maintain robustness and accuracy at the interface. Examples of 
such interface capturing can be found in, for instance, (Mulder et al., 1992; 
Chang et al., 1996; Kelecy and Pletcher, 1997). 

A disadvantage of the method originally proposed by Godunov is that it 
requires the solution of an associated Riemann problem with each flux eval
uation. In practice, many such evaluations are performed during an actual 
computation. Consequently, the method is notorious for its high computa
tional costs. To relieve this problem, several approaches have been suggested 
to reduce the computational costs of the flux evaluations involved, by ap
proximating the Riemann solution. Examples of such approximate Riemann 
solvers are the flux difference splitting schemes (such as Roe's (Roe, 1981) 
and Osher's (Osher and Solomon, 1982)). 

In the present work we develop an Osher-type flux-difference splitting 
scheme for the approximate solution of the Riemann problem and we in
vestigate its application in hydrodynamics. Details are presented for the 
Euler equations for four types of fluids that are commonly used to model 
the behavior of water, viz., a genuinely compressible fluid, an artificially 
compressible fluid, a genuinely incompressible fluid, and a two-phase fluid. 
As a preliminary, we examine the Riemann problem. Next, we give an out
line of Osher's approximate Riemann solver. Analysis shows that Osher's 
scheme suffers loss of accuracy in the presence of centered shock waves and 
therefore a modified scheme is proposed. Finally, we present the specifics 
for the aforementioned hydrodynamic applications. Actual computations 
are deferred to future research. 
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2. Riemann Problem 

In this section we investigate the Riemann Problem: 

DefinitionlLetq E !Rn= (q1,••·,qn)T, (x,t) E !Rx]R+ andf E 
C1 (!Rn, !Rn). Consider the Cauchy problem 

subject to the initial condition 

Vx E IR, t E IR+, 

if X < 0, 
if X > 0, 

( la) 

(lb) 

with qi and qR constant. The initial value problem ( 1 a) and the initial 
condition {lb} define the Riemann problem. 

First, an introductory analysis is presented. Subsequently, we obtain the 
general solution to (1). 

2.1. PRELIMINARY ANALYSIS 

Let A(q) denote the Jacobian of f(q), A(q) = 8qf(q), and let .>..k(q), 
k = 1, 2, ... , n, .>.. 1 ::::; .>..2 ::::; ... ::; An, be its eigenvalues and rk(q) the 
corresponding eigenvectors. Equation (la) constitutes a hyperbolic system 
if the eigenvalues .>..k(q) are real and nonzero. Then, the matrix A{q) can 
be decomposed with respect to a basis of its eigenvectors: 

A(q) = R(q)·A(q)-R(q)- 1 , {2) 

where A(q) = diag(.>..i(q), ... ,.>..n(q)) and R(q) = (ri(q), ... ,rn(q)) con
tains the eigenvectors. From (Lax, 1957) we adopt the following classifica
tion of the eigenpairs (.>..k(q), rk(q)): 

Definition 2 ConsiderthematrixA(q) E IR.nxn_ Let.>..k(q), k=l,2, ... ,n, 
be its eigenvalues and rk(q) the corresponding eigenvectors. An eigenvalue 
>.k( q) and an eigenvector rk ( q) are called genuinely nonlinear on a subdo
main n ~ !Rn if 

Vq En. (3) 

An eigenvalue .>..k ( q) and an eigenvector rk ( q) are said to be linearly de
generate on n if 

VqE n. (4) 
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The eigenvalues that are genuinely nonlinear for all q E ]Rn are related 
to rarefaction waves and shocks in the solution of the Riemann problem. 
The eigenvalues that are linearly degenerate on JF!:n correspond to contact 
discontinuities in the solution. More complex contact phenomena can occur 
for eigenvalues that are neither genuinely nonlinear nor linearly degenerate 
on JF!:n, see, e.g., (LeVeque, 1990, pages 48-50). 

With each of the eigenpairs (>-k(q), rk(q)) we associate two paths in 
state space. Firstly, the k-shock path: 

Definition 3 Consider hyperbolic system (la). The k-shock path thr-ough 
qL is the set 

where s ( q; qL) is referred to as the shock speed. 

Secondly, we distinguish the k-path: 

Definition 4 Consider the hyperbolic system (1a). The k-path through qL 
is the set 

(6) 

with h(~) the solution of the ordinary differential equation 

(7) 

for some ~L E lit 

Furthermore, to each k-path corresponds a set of functions which are in
variant on Rk: 

Definition 5 Consider the hyperbolic system {la). Let rk(q) denote the 
kth eigenvector of the Jacobian A(q) = 8f(q)/8q. A k-Riemann invariant 
is any function 'lfJk E C1 (!Rn, IR) satisfying 

(8) 

There are at most n - 1 such k-Riemann invariants with linearly inde
pendent gradients in !Rn. Observe that for a linearly degenerate eigenpair 
(>-k(q), rk(q)) the eigenvalue Ak(q) is a k-Riemann invariant. 

2.2. SOLUTION 

The general solution to (1) consists of regions in the ( x, t )-domain where 
the solution is constant, separated by simple waves, contact discontinuities 
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and shock waves. Before constructing the general solution, we first obtain 
the (weak) solution to (1) in the case that it contains only one of the 
aforementioned contact phenomena. 

We establish that the (weak) solution to the Riemann problem can 
generally be written in similarity form (see, e.g., (Smaller, 1983)): 

Theorem 1 Suppose a unique solution q(x, t) to the Riemann Problem (1) 
exists. Then q(x, t) can be written in similarity form q(x, t) = h(x/t). 

Proof: Assume q(x, t) solves (1). Then for all a E IR, q(ax, at) is also a 
solution: 

8q(ax, at) of( q(ax, at)) 
at + ax = 

a [D2q(ax, at)+ A(q(ax, at))· Di q(ax, at)] = 0, (9) 

where D1 denotes differentiation with respect to the lth function-argument. 
Because the solution is unique by assumption, q(x, t) = q(ax, at). Hence, 
q(x, t) = b(x/t). □ 

A (classical) simple wave solution of ( 1) exists if Ak ( q) is a genuinely non
linear eigenvalue, Ak(qL) < ).k(qR) and qR is on the k-path through q£. 
Note that this implies that the k-Riemann invariants are equal for QL and 
qR, i.e., V'k(qL) = V'k(qR), form-:/ k, m = l, ... ,n. Assuming that the 
genuinely nonlinear eigenvector in (7) is normalized such that 

Vq E !Rn, (10) 

we find that q(x, t) = h(x/t) according to (7) is the similarity solution in 
the simple wave region >-k(qL) < x/t < Ak(QR) (see, e.g., (Smaller, 1983; 
Lax, 1973)): 
Theorem 2 Suppose h E C1 (JR., ]Rn) solves (7), with rk ( q) normalized ac
cording to {10}, and qR E Rk(qL). Then q(x, t) = h(x/t) is the similarity 
solution of (1) in the simple-wave region Ak(qL) < x/t < Ak(qR)-

Proof: We will only show that q(x, t) = h(x/t) solves (1 a}. Inserting 
q(x, t) = h(x/t) in (la), one obtains 

8h(x/t) + 8f(h(x/t)) = ! (A(h(x/t)) _ r~) . Dh(x/t), (11) 
8t ox t t 

where I stands for the IRnxn identity matrix and D denotes differentiation 
with respect to the function-argument. The right-hand side term of ( 11} 
vanishes if x/t = >.k(h(x/t)) and Dh(x/t) = rk(h(x/t)). The latter trivially 
follows from (7), the former from (10). Hence, h(x/t) solves (la}. □ 

Outside the wave region the solution remains unchanged. The Riemann 
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solution q(x, t) in the case of a k-rarefaction wave is now simply composed 
of the solutions on the separate regions: 

{ 
QL, if 

q(x, t) = h(x/t), if 
qR, if 

x/t < >.(qL), 
>.(qi) < x/t < A(qR), 
x/t > >.(qR), 

(12) 

Next, we derive the (weak) Riemann solution in the instance that it contains 
a single contact discontinuity. The states qi and qR are connected by a 
k-contact discontinuity if (>.k(q), rk(q)) is a linearly degenerate eigenpair 
and qR is on the k-path through qi. Then, by (4), Ak(qR) = >.k(qL). The 
solution to the Riemann problem is now obtained immediately from (12): 

( t) _ { qL, if 
q x, - "f qR, 1 

x/t < A(qi) = A(qR), 
x/t > A(qL) = A(qR), 

(13) 

However, because (13) is discontinuous at x/t = >.(qi) = A(qR), it must 
be verified that ( 13) satisfies the weak form of (la): 

i (qnt + f(q)nx) dC = 0. (14) 

Here C is any closed curve in (x, t) and n = (nt, nx) denotes the outward 
pointing unit normal on C. It can easily be shown that (14) does indeed 
hold for (13), so that (13) is a valid weak solution. 

Finally, we consider the solution to (1) when it comprises a single shock. 
A shock occurs if >.k ( q) is a genuinely nonlinear eigenvalue, >.k ( qL) > 
>.k(qR) and qR is on the k-shock path through qL, A solution of the 
form (12) is then necessarily multiple-valued and must therefore be dis
carded. Instead, the weak solution reads 

( t) = { qL, if q x, 'f qR, 1 

x/t < s(qL; qR), 
x/t > s(qL; qR), 

(15) 

where s(qL; qR) denotes the shock speed, determined by the Rankine
Hugoniot relation 

(16) 

Expression (16) is in fact equivalent to (14). Hence, (15) is a valid weak 
solution of ( 1). 

The general solution to the Riemann problem consists of n + 1 (possibly 
empty) regions f!1 where the solution is constant, separated by simple waves, 
contact discontinuities and shock waves. Define q0 = qi, q 1 = qR and let 
ql/n, l = 0, ... , n, be the solution in 01. Assuming that q(l-l)/n is connected 
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to ql/n by a simple wave, we denote by h1(x/t) the similarity solution in the 
wave region. Conversely, if q(l-l)/n is connected to q1;n by a shock wave, 
we designate s1 the appropriate shock speed. Then, in succinct form: 

x/t < a+ 
0 ' a1- < x/t < at. 

at 1 < x/t < a1-, 

x/t>a:;;, 

where af denotes the contact speed 

l = 1, ... ,n-1, 
l=l, ... ,n-1, 

(17a) 

af = { A1+(1±l)/2(q1;n) if± A1~(l±l)/2(q1;n) < ±,\1+(l±l)/2(q(l±l)jn), 

s1+(1±l)/2 otherwise. 
(17b) 

The general solution ( 17) is schematically depicted in Figure 1. The figure 
illustrates the contiguity of regions connected by shock waves and contact 
discontinuities, for instance, O(l-l)/n and 0 1;n, and the separation of regions 
connected by rarefaction waves, e.g., 0,l/n and O(l+l)/n-

As a side-note, we mention that for general f( q) and sufficiently large 
llqL-qRII, a solution to (1) can be non-existent (see, e.g., (Smoller, 1983)). 

a+ 
I 

Figun~ 1. General solution to the Riemann problem 

3. Approximate Riemann Solution 

In the previous section we established that the solution to the Riemann 
problem can generally be written in similarity form, h(x/t). Denoting by 
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h(x/t;qL,qR) the similarity solution for given qL and qR, f(h(0;qL,qR)) 
expresses the corresponding centered flux, next indicated by f ( qL, qR). This 
flux is of particular importance in computational applications: following 
Godunov's approach, it can be interpreted as the flux between two adjacent 
cells in the discretized domain. Unfortunately, solving the Riemann problem 
exactly is computationally expensive and it is therefore necessary to revert 
to approximate solution techniques. 

In this section, we investigate Osher's approximate Riemann solver and 
a modified Osher-type scheme. We will first present a general outline of the 
Osher scheme. Subsequently, the approximate Riemann solution employed 
in Osher's scheme is examined and the computed flux approximation is com
pared to the exact solution. Finally, we shall propose the modified scheme, 
based on the preceding analysis. 

3.1. OSHER'S SCHEME 

In the scheme developed by Osher (Osher and Solomon, 1982; Osher and 
Chakravarthy, 1983), the centered flux, f(qL, qR) = f(h(0; qL, qR)), is ap
proximated by: 

(18) 

with the absolute value of the Jacobian matrix defined by IA(q)I = R(q) · 
IA(q)l · R(q)- 1. Here, IA(q)I = diag(l>.i(q)I, ... , l>-n(q) I). Clearly, the inte
gral term is the upwind contribution to the centered flux approximation. 

The integral in ( 18) is evaluated along a path r = { q( s) : 0 :s s :s 
1} C Rn in state space, satisfying q(0) = qo and q(l) = q1, with <io = 
qL and <ii = qR or vice versa. This path is composed of sub-paths r1, 
l = 1, 2, ... , n, where each of the sub-paths connects two adjacent states 
4(1-l}/n and <iz;n- Moreover, r1 is tangential to an eigenvector rk(t), where 
k : {1, 2, ... , n} --+ {1, 2, ... , n} is a bijective mapping. It should be ap
preciated here that r1 is thus a section of the k(l)-path through 4(l-l)fn, 

connecting CJ.(l-l)/n and CJ.l/n· Usual choices for the ordering of the sub-paths 
are the O-variant k(l) = n - l and the P-variant k(l) = l. 

Rewriting the integral in (18) as a summation of contributions of the 
integral over each of the sub-paths, 

qR n J IA(w)l ·dw = ~ fr
1 
IA(w(O)l ·rk(J)(w(~)) d{ = 

qL n 

L { sign(>.k(l)(w))A(w) ·dw. (19) 
l=l Jr, 
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Obviously, if >..k(l) does not change sign along r1, then the sub-integral can 
be evaluated to [f(<11;n) - f(q(l-l)jn)] sign(>..k(I))- Then, by (4), if >..k(l) = 
>..k(l+l) = ... = >..k(l+µ) is a linearly degenerate eigenvalue, the sum in (19) 
concatenates and we simply obtain 

Hence, the intermediate stages Cl.(l+i)/n, i = 1, 2, ... , µ - 1 are of no conse
quence and can be eliminated from the composed path r. 

As a result of the choice of the sub-paths r1, the intermediate CJ.ljn, 

l = 1, 2, ... , n-1 can be conveniently determined by means of the Riemann 
invariants: Because the sub-path f I C Rk(l) ( CJ.(l-l)/n), 

l,m = 1,2, ... ,n, m 'f' k(l), (21) 

see section 2.1. If it is assumed that the k-Riemann invariants in (21) 
have linearly independent gradients, then by the implicit function theo
rem, (21) constitutes a solvable system of equations from which the CJ.ljn, 

l = l, 2, ... , n can be extracted. In many practical cases the intermedi
ate stages can then be solved explicitly from (21). Once the intermediate 
states <llf.n have been obtained, the flux approximation f(qi, qR) can be 
computed using (18), (19). 

3.2. ACCURACY 

The flux computed by means of the Osher scheme, f( qi, qR), relies on an 
approximate solution of the Riemann problem. Because the approxima
tion can again be written in similarity form, it is useful to introduce the 
notation f(qL,qR) = f(h(O;qi,qR)), where h(x/t;qi,qR) stands for the 
approximate similarity solution. In this section we investigate the accuracy 
of the approximate similarity solution and of the corresponding centered 
flux approximation. 

To evaluate the accuracy of the approximate solution, we examine the 
inherent representation of simple waves, contact discontinuities and shock 
waves. In section 3.1 it was emphasized that the sub-paths, r1, in Osher's 
scheme are actually sections of k(l)-paths. Referring to section 2.2, it follows 
that the intermediate states Cl.ljn, l = 0, ... , n, in the approximate solution 
are connected by simple-waves only. Clearly, this representation is correct 
for simple waves and contact discontinuities. However, shock waves in the 
actual solution are then replaced by so-called overturned simple waves, 
see (van Leer, 1984). We will now show that this representation is accurate 
for weak shocks. From (Smaller, 1983) we adopt: 
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Lemma 1 Suppose q1 and qR are connected by a weak k-shock with shock 
strength E, i.e., qR E Sk(qL) and ,\k(q1) = ,\k(qR) + E, with E a small 
positive number-. Then the change in a k-Riemann invariant across the k
shock is of order O(c3). 

Proof: Proof is omitted here, but can be found in (Smaller, 1983, pages 
326-333). D 

Then, we obtain: 

Theorem 3 Suppose qR E Sk(qL) and ,\k(q1) = ,\k(qR) + E. Then a CJ.RE 
Rk(qL) exists such that Ak(CJ.R) = ,\k(qR) and ICJ.R - qRf is of or-der O(c3). 

Proof: By definition 5, 1Pf(qL) = 1Pr(crn), k = 1, 2, ... , n, k =I- m. Then, 
by lemma 1, 

(22) 

System (22) can be augmented with ,\k(CJ.R) = ,\k(qR) to obtain n equations 
for CJ.R· Because rank(c\1Pl, ... , 8q'l/;k) = n - 1 and OqAk E (dq'l/;k, ... , 
3q1Pk)J_, it follows that det(Oq1Pk, ... , Oq1P7/;, OqAk) =I- 0. The result now 
simply follows by a Taylor expansion around qR of the tenns in CJ.R of 
the augmented system. □ 

From Theorem 3 it may be inferred that the intermediate states obtained 
by a rarefaction-waves-only approximation are O(E~aJ accurate, with 

(23) 

the strength of the strongest shock. 
Although the computed intermediate states are accurate even in the 

presence of (weak) shocks, the flux approximation f(qL,qR) is not neces
sarily so. By (19), if CJ.RE Rk(qL) and ,\k(qL) > 0 > ,\k(qR), 

(24) 

with q* E Rk(qL) such that ,\k(q*) = 0. In contrast, the actual flux 
corresponding to the k-shock reads f(qL) if s(qR; q1) > 0 and f(qR) if 
s( qR; qL) < 0. Consequently, the error in the approximate flux in the case 
of a centered shock with strength E can be of O(c). An instance of such 
failure of Osher's flux is discussed in (van Leer, 1984). 

3.3. MODIFIED OSHER SCHEME 

In view of the above, a modification of the scheme is advocated. The 
rarefaction-waves-only approximation of the similarity solution is main
tained. However, the centered flux approximation is obtained differently, to 
avoid loss of accuracy due to centered shock waves. 
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We propose to extract the intermediate states in the approximate solu
tion to the Riemann problem from 

l,m=l,2, ... ,n, mc:/=l, (25) 

with qo = q1., and q1 = qR. This is in fact equivalent to (21) with a 
presumed P-variant ordering of the sub-paths. Next, approximate contact 
speeds a/ are obtained: 

ol = { A1+(1±~)/2(<l1;n) if ± A1+(l±l)j2(<J.1;n) < ±>-1+(1±1);2(Cl(l±l)jn), 

s1+(1±l)/2 otherwise, 

(26a) 

with 

Estimate (26b) of the shock speed is justified by the following theorem, 
taken from (Smoller, 1983): 

Theorem 4 Suppose qR E Sk(qL) and Ak(qL) = ,\k(qR) + E, E > 0. 
Then the speed of the k-shock connecting q1., and qR satisfies s(q1.,; qR) = 
½>-k(qL) + ½>-k(qR) + 0(c2). 
Proof: Proof can be found in (Smoller, 1983, pages 326-333). D 

Once the intermediate states and contact speeds have been established, 
the approximate Riemann solution can be constructed in a manner similar 
to (17a). However, considering that our purpose is to compute an approxi
mation to the centered flux, we only need to obtain the central part of the 
approximate solution: 

{ 

<lo, if 
- . _ <ll/m if 
h(0,q1.,,qR)- -* "f 

q ' l 

<ll, if 

-+ 0 ao > , 
;j1 <0<o/, 
;jt..1 < Q <al-' 
a;; < 0, 

lE{l, ... ,n-1}, 
lE{l, ... ,n-1}, 

(27) 

with q* E R1(<l(l-l)jn) such that >-1(q*) = 0 in case of a centered rar
efaction wave. The centered flux approximation is now simply f( q1.,, qR) = 
f(h(O; q1.,, qR)). 

4. Applications in Hydrodynamics 

In the previous section we presented a flux-difference splitting scheme that 
gives an accurate approximation of the centered flux in the Riemann prob
lem, even in the presence of (weak) centered shock waves. A prerequisite 



960 E. H. VAN BRUMMELEN AND B. KOREN 

for the flux evaluation is the derivation of the intermediate states <ii/m 
l = I, ... , n. Once these states have been obtained, the flux calculation 
proceeds via straightforward operations. 

In this section we derive the intermediate states for the one-dimensional 
Euler equations for three types of fluids that are commonly used to model 
the behavior of water. These fluids are, successively, a genuinely compress
ible fluid, an artificially compressible fluid and an incompressible fluid. Fur
thermore, we obtain the intermediate states for the Euler equations in the 
case of an immiscible, compressible two-phase flow. 

4.1. COMPRESSIBLE FLUID 

Suppose that u, v and w denote the x, y and z components of a fluid velocity 
u E IR3 in a Cartesian coordinate system, respectively, and that p E JR+ 
denotes the density of the fluid. Consider the hyperbolic system (la) with 
q = (pu, pv, pw, pf and f(q) given by 

(28) 

Then equations (la) are the Euler equations for a compressible fluid in one 
dimension. In this section it is assumed that the pressure is related to the 
density via an equation of state of the form p = p(p), with p E C 1 (IR+, ]R+) 
an increasing function. An example is Tait's equation of state, which is 
often used to model the behavior of water: 

p(p) = o.p'Y + {3, (29) 

where a, 1 E ]O, oo[ and {3 E JR are given constants. Our objective now is 
to obtain the approximate intermediate states for the Euler equations (la), 
(28). 

In order to compute the intermediate states from (25), k-Riemann in
variants for the system under consideration have to be derived first. The 
Jacobian of the flux vector (28) reads 

2qifq4 0 0 -qrf ql + c2(q4) 

q2/q4 q1/q4 0 -q1q2/q4 
(30) A(q) = 

q3/q4 0 qifq4 -q3q1/q4 

1 0 0 0 

where c(p) = J8p/8p denotes the speed of sound. Computation of the 
eigenvalues of A( q) and the corresponding eigenvectors then yields 

>-1 = qif q4 - c(q4), >-2,3 = qifq4, A4 = qif q4 + c(q4), (31) 
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and 

r1 = (qiJq4 - c(q4),q2/q4,q3/q4, lf, 
r2 = (0, 1, 0, of' 
r3 = (0, 0, 1, 0) T, 

r4 = (qiJq4 + c(q4),q2/q4,q3/q4, lf -

(32) 

Notice that the eigenvalue Ak and the eigenvector rk are genuinely nonlin
ear fork = l, 4 and linearly degenerate fork = 2, 3. Riemann invariants are 
then obtained by solving partial differential equations (8), with the eigen
vectors according to (32). The details are omitted here, but it can easily be 
verified that (33) constitutes a complete set of k-Riemann invariants: 

1/Ji = qiJq4 + ¢(q4), 

1P~ = qi, 

?pj = q11 

1/Jl = qiJq4 - ¢(q4), 

where ¢(p) is defined by 

1/Jr = q2/q4, 

1P~ = q3, 

1/Ji = q2, 

1/Jl = q2/ q4, 

p 

¢(p) =Jc~) d77. 

0 

'1/J{ = q3/q4, 

1Pi = q4, 

'lpj = q4, 

1/Jl = q3/q4, 

(33a) 

(33b) 

The intermediate states can now be extracted from (25), (33). In view of the 
linear degeneracy of the eigenvalues >-.2 and ,\3 and the arguments presented 
in section 3 .1, we ignore q112 . We then find that qo is connected to q1 via 
two approximate intermediate states C!.l/3 and Cl.2/3: 

and 

where ¢- 1 (',P) denotes the inverse of ¢( 1jJ). 
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For a fluid that is described by Tait's equation of state, the intermediate 
states can be determined by substituting (29) in equations (33) to (35). The 
intermediate velocity components v1; 3 , v2; 3 , w1; 3 and w2; 3 are immediately 
obtained from (33): 

'Vl/3 = Vo, 
Wl/3 = WO, 

V2/3 = V1, 
W2/3 = W1. 

(36) 

From (33) it is also clear that ii 1;3 = ii2;:3 = ii1;2 and Pl/3 = P2/3 = P1/2-
To determine u1; 2 and fJ 1; 2 , it is necessary to distinguish between the cases 
1 = 1 and 1 -=I= 1. For 1 = 1 one obtains 

u1;2 = ~(uo + u1) + .;:, ln(po/ pi), 

P1/2 = v1PoPl exp ( u~ fo1 ). 

(37) 

In case 1 -=/=- 1, it is convenient to express the density in terms of the speed 
of sound: 

1 1 
ii1;2 = 2(uo + ui) + 1 _ 1 [c(po) - c(p1)], 

, - 1 1 
c(h;2) = - 4-(uo - u1) + 2[c(po) + c(p1)]. 

(38) 

4.2. ARTIFICIALLY COMPRESSIBLE FLUID 

Assume that u, v and w again denote the x, y and z components of a fluid 
velocity u E JR.3 in a Cartesian coordinate system, respectively, and that 
p E JR+ denotes the fluid pressure. Consider hyperbolic system (la) with 
q = (u, v, w,p)r. Let f(q) be 

(39) 

with c constant. Equations (la), (39) are the Euler equations for an artifi
cially compressible fluid in one dimension. Notice that the op/ ot term that 
occurs in ( la) in this case, implies compressibility of the fluid. 

To determine the intermediate states, we first derive Riemann invariants 
for (la), (39). For the Jacobian of f(q) we simply obtain 

2 q1 0 0 1 

A(q) = 
qz q1 0 0 

( 40) 
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The eigenvalues and corresponding eigenvectors of A(q) follow by straight
forward computation: 

and 

r1 = ( 1, -q2/ ✓qf + c2, -q3/ ✓qr+ c2, -qi - ✓qr+ c2) T' 

T r2 = (0, 1, 0, 0) , 

r3 = (0,0,l,O)T, 
(42) 

r 4 = (1' q2/ ✓ qf + c2' q3/ ✓ qf + c2' -q1 + ✓ qf + c2) T 

The eigenpairs (>-1, r1) and (,\4, r4) are genuinely non-linear, whereas the 
eigenpairs (,\2, r2) and (,\3, r3) are linearly degenerate. Riemann invariants 
are now obtained by solving ( 8), ( 42): 

'I/Jr = q2A4, ¢{ = q3,\4, 1/1{ = ,\4 exp ([2q4 + q1A4]/c2), 

¢~=qi, 1/)3 1Pi = q4, 2 = q3, 
(43) 

¢1 = qi, ¢2 - 1/)4 -3 - q2, 3 - q4, 

1Pl = q2>-1, 1./J~ = q3.\1, 'l/Jl = >.1 exp ([2q4 + q1Ai]/c2). 

The foregoing invariants have linearly independent gradients. Hence, the 
intermediate states can be obtained from (25), ( 43). 

Considering the linear degeneracy of A2, ,\3, we only need to obtain q1; 3 

and q213 . Unfortunately, in this instance we have not succeeded in deriving 
a closed form expression for these intermediate states. However, from ( 43) it 
immediately follows that u1; 3 = u2; 3 = u1; 2 and Pl/3 = P2/3 = {;1;2- Then, 
using the expressions for 1/Ji and 1./Jl, one finds that u1; 2 is determined by 
the implicit relation: 

( u1;2 + juT12 + c2 ) exp (2u1;2J~f12 + c2) 
~ ✓ :.2 2 c2 
u1;2 - u1/2 + c 

'!fi(qo) 
= 1PJ(q1). 

(44) 

Once 11, 1; 2 has been solved from (44), <i1; 3 and <i2; 3 are simply obtained 
from (43). 

4.3. INCOMPRESSIBLE FLUID 

We consider the Euler equations for an incompressible flow. Assume that 
u E !Ra denotes the fluid velocity and that the fluid pressure divided by the 
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(constant) fluid density is designatedp E JR+. Next, let uu E C 1 (JR3 ,JR3 X 3 ) 

be the convective momentum flux tensor. The Euler equations for an in
compressible fluid read 

~: + div uu + Vp = 0, 

divu = 0. 

(45a) 

(45b) 

Due to the absence of a time derivative in (45b), equations (45) do not 
constitute a hyperbolic system. However, equation (45a) can trivially be 
recast into an inhomogeneous hyperbolic system governing u: 

au d. V at + lV UU = - p. (46) 

Equation (45b) is then interpreted as a constraint on u and p serves as a 
Lagrangian multiplier to enforce the constraint. Solving the Euler equations 
for an incompressible fluid now requires the resolution of the hyperbolic 
system ( 46) subject to the constraint ( 45b). Here, we shall only concern 
ourselves with the hyperbolic part of the operator. Furthermore, in the 
following section we will only consider the homogeneous system in one 
dimension, i.e., we shall neglect the forcing term -Vp and (assuming a 
Cartesian coordinate system is employed) the flux gradients in the y and 
z direction. We then retrieve an expression of the form (la), with q = 
(u,v,w)r, where u,v,w again denote the x,y,z components of the fluid 
velocity u E IR3 in a Cartesian coordinate system, respectively, and f ( q) 
given by 

(47) 

We acknowledge that the first equation of (la), (47) is decoupled from the 
remaining system and can therefore be treated separately. However, for 
completeness we refrain from doing so. 

To obtain the approximate intermediate states for (la), (47), we first 
determine Riemann invariants for this system. The Jacobian of f(q) reads 

(48) 

with the eigenvalues 

(49) 



A GODUNOV-TYPE METHOD FOR CAPTURING WATER WAVES 965 

and the corresponding eigenvectors 

r1 = (q1, Q2, q3)T, 

r2 = (0, 1, of, 

r3=(0,o,1f. 

(50) 

The first eigenpair is neither linearly degenerate nor genuinely nonlinear: 
the gradient of ,\ 1 ( q) in the direction of r1 ( q) vanishes for q1 = 0, but is 
nonzero otherwise. Nevertheless, for our purposes it is sufficient to treat 
(>.1, ri) as a genuinely nonlinear eigenpair, because the eigenvalue vanishes 
only if Q1 = 0 and, therefore, the eigenvalue can change sign only once along 
'R 1 ( qL). The second and third eigenpair are linearly degenerate. Riemann 
invariants are obtained by solving (8), (50): 

'l/Jr = qif q2, 'l/Jr = qif q3, 

(51) 

These invariants have linearly independent gradients in IR3 • 

Because the second and third eigenpair are linearly degenerate, q 0 and 
q1 are connected via a single intermediate state q1; 2 . This intermediate 
state is immediately obtained from (25), (51): 

4.4. TWO-PHASE FLOW 

if uo = 0, 

otherwise. (52) 

In this section we derive the intermediate states for the Euler equations 
for an immiscible, compressible two-phase flow. The phases are supposed 
to be separated by a moving interface, which is described by the time
dependent set I(t) = {x E IR3 I 0(x, t) = O}. Furthermore, we assume 
0(x, t) to be negative in one phase and positive in the other. As a result of 
the immiscibility of the phases, the following kinematic condition applies: 

80 .... 
- + u-'v0 = 0 at ' (53) 

where u E JR3 again denotes the fluid velocity. Employing the continuity 
equation for compressible fluids, we can restate kinematic condition (53) in 
conservation form: 

ap0 .... (a0 .... ) (ap .... ) at + 'y' . p0u = p at + u. 'v 0 + 0 at + 'v . pu . (54) 



966 E. H. VAN BRUfl,IMELEN AND B. KOREN 

The first term in parentheses vanishes due to (53), the second due to con
tinuity. Hence, p0 is a conserved quantity. Suppose that throughout the 
entire fluid volume the pressure is related to the density via an equation 
of state of the form p = p(0, p). Then, again using u, v, w to designate 
the velocity components relative to a Cartesian coordinate system and 
ignoring spatial derivatives in y and z direction, we retrieve (la), with 
q = (pu.pv.pw,p0,pf and 

Equations (la), (55) constitute the one-dimensional Euler equations for an 
immiscible. compressible two-phase flow. 

Our first objective now is to derive Riemann invariants for (la), (55). 
We define c1 = ci(0, p) = ✓op/80 and c2 = c2(0, p) = J8p/8p. Then, the 
Jacobian of (55) reads: 

2 q1 / q5 0 0 2; Cl q5 2; 2 2 / 2 2 -ql q5 - Cl q4 q5 + C2 

q2/q5 q1/q5 0 0 -q2qi/qg 

A(q) = q3/q5 0 qJ/q5 0 -q3q1/qg 

q4/ q.s 0 0 qJ/q5 -q4qi/qg 

1 0 0 0 0 

The eigenvalues and eigenvectors of A( q) are 

and 

r1 = (qi/qs - c2, q2/qs, q3/q5, q4/q5, if, 
r:2 = (0, 1, 0, 0, of, 

r3 = (0,0, 1,0,of, 

r4 = (q1cf, 0, 0, -c~qg +cf% q5ci) T, 

rs= (qJ/q5 +c2,q2/q5,q3/q5,q4/q5,lf. 

. (56) 

(58) 

The eige~value >.k and the eigenvector rk are genuinely nonlinear for k = 
1, 5 and lmearly degenerate fork = 2, 3, 4. Riemann invariants can now be 
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obtained by solving (8), (58): 

'l/J? = qi/ q5 + </>, 

'lp~ = qi/ q5' 

'lpj = qi/ q5' 

'l/Jl = qi/qs, 

'lf;g = qi/q5 - </J, 

'l/Jr = q2f q5, 

'l/JJ = q3, 

'lp~ = q2, 

'l/Jl = q2, 

'lp~ = q2/q5, 

'l/Jf = q3/q5, 

'!/Ji= q4, 

'lpj = q4, 

1Pl = q3, 

1/Jl = q3/qs, 

withp=p(0,p) and¢= ¢(0,p) defined by 

'l/J1 = q4/q5, 
.,.s - p 
'1-'2 - ' 

1P~ = P, 

1P~ = P, 

'lpg = q4/q5, 

(59a) 

(59b) 

Observe that 0 is a k-Riemann invariant for k E {1, 5}. Hence, it may be 
inferred that the phase transition is a contact discontinuity. Moreover, be
cause both u and p are k-Riemann invariants fork E {2, 3, 4}, the pressure 
and the normal velocity component are continuous across the interface. 

The intermediate states can now be obtained from (25), (59). Because 
the linearly degenerate eigenvalue qif q5 has algebraic multiplicity 3, only 
two intermediate states have to be distinguished. Trivially, 

(60) 

and ii.1; 3 = u2; 3 = u1; 2 - Then, p1; 3 and p2; 3 are determined by 

¢(0o, Pi;3) + ¢(01, P213) = uo - u1 + </>(0o, Po)+ ¢(01,P1), (6l) 
p(00,h13) = p(01,ii2;3). 

We refrain from a further reduction of these expressions and suffice by 
stating that once the intermediate densities have been obtained, u1;2 follows 
by straightforward computation. 

5. Conclusions 

In spite of the absence of shock waves in most hydrodynamic applications, 
sufficient reason remains to employ Godunov-type schemes in this field. 
The shock capturing ability of these schemes renders them notably useful 
in the case of two-phase flow. In the present work we developed an Osher
type Riemann solver and we investigated several of its applications in the 
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:field of hydrodynamics. First, the Riemann problem was examined. Subse
quently, Osher's approximate Riemann solver was discussed. It was shown 
that this scheme employs a rarefaction-waves-only approximate Riemann 
solution and that this approximation is accurate even in the presence of 
(weak) shocks. Then, it was demonstrated that the centered flux approx
imation obtained by means of Osher's scheme is not necessarily accurate 
and, therefore, a modified scheme was proposed. Finally, details were pre
sented for several types of fluid-models commonly used in hydrodynamics. 
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