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Abstract. A finite-volume method is considered for the computation of flows of two 
compressible, immiscible fluids at very different densities. A level-set technique is em
ployed to distinguish between the two fluids. A simple ghost-fluid method is presented 
as a fix for the solution errors ('pressure oscillations'} that may occur near two-fluid 
interfaces when applying a capturing method. Computations with it for compressible 
two-fluid flows with arbitrarily large density ratios yield perfectly sharp, pressure-
oscillation-free interfaces. The ma&<;e.o; of the separate fluids appear to be conserved up 
to first-order accuracy. 

1 Introduction 

A known difficulty of capturing two-fluid interfaces in a conservative formula
tion of the compressible Euler equations is that O(h0 ) = 0(1) solution errors 
(iu literature often called 'pressure oscillations') ma.y arise near the two-fluid in
terface. Without remedial intervening, the conservative formulation considered 
in the present pa.per also suffers from the pressure-oscillation problem. Fixes 
for the problem can be found in the literature. We refer to the works of Karni 
[6,7} and Abgrall [l], their common paper [2], and also to (3,5,9}. In most of 
the available literature though, the ratio of the two densities at the interface is 
0(1)-0(102}. To our knowledge, only in [3,9] ratios of 0(103), typical water-air 
ratios, are considered. In this pa.per a fix js proposed, which allows arbitrarily 
large density ratios. The fix is a simple variant of the ghost-fluid method [3]. 

2 Flow Model 

2.1 Conservation Equations 

In 1D, for a sufficiently small control volume a, conservH.tion of mass and mo
mentum reads: 

f(q) = (eu~P) ' 
(I) 

with fl the bulk density: o = a(x,t)ew(p) + (1 - O!(x,t))ua(P), where a is, e.g., 
the volume-of-water fraction, and where flw(P) and ua(p) are the equations of 
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state for water and air, respectively. To balance this system, the equations of 
state and an equation determining the location of the interface (and hence a) 
still have to be chosen. An accurate resolution of the interface location(s) is of 
paramount importance. For this purpose, we follow a level-set approach, to be 
outlined in the next section. 

2.2 Level-Set Equation 

To accurately resolve the interface location(s), a level-set approach [10] is more 
appropriate than the classical volume-of-fluid (VOF) approach [4], because of 
its better smoothness (and thus accuracy) properties at precisely the point of 
interest: the interface. Good smoothness of the level-set function is first taken 
care of in the level-set function's initialization. A common approach is to initialize 
the level-set function as the signed distance to the initial interface, with the 
distance positive in, e.g., water and negative in air. During the computation, the 
level-set function may need to be reinitialized. 

Denoting the level-set function by¢, in 1D, it is advected: %1 + u~ = 0. 
Combined with the bulk-mass conservation equation from (1), this advection 
equation may be written in the conservative control-volume form 

(2) 

Conservation of (l<p is not physical, there is no conservation law for it. The form 
(2) is simply practical because it is COI.ll:listent with system (1). 

2.3 Equation of State 

In homentropic water-air computations, for both fluids, elegant URI' cim be made 

of a single equation of state, viz. Tait's: p+B~cvc = (.JL)1 , wllC'rf' th<~ sub-(1+8 p,.,r l!rnf 

script 'ref' indicates some reference state. The reference prC'ssmc• 7'r.,f L~ dws<~u 
freely but equally for the two fluids. The value of l!rcr for each of the two fl11i<h1 
corresponds with Pref and is read from standard data bas<~ for Haid propeitic~. 
Concerning the material constant.s -y and B, for watm· it holchi:; = 7. B = :moo 
and for air: 'Y = i, B = 0. 

3 Ghost-Fluid Method 

In [8], it is shown that - unfortunatdy tlw prc~cmt. conH<·n·ntiw fi1rm11lut.icm 
(1)-(2) also leads to 0(1) pressnrn errors near two-fl11i1l i111.erfHC·Ps. As n l'l'tlll'dv 
aga.inst this, we outline a simple varia11t of the ghost-llnic.l md liocl. 

In updating the finite-volume solutions with a sh1gl<• <'xplidt t i111<• s!PIJ tlll' 
following is done. Suppose wti have au r:qnidistnnt. c-<•ll-<·1•11h·rt·d fiuih•-volim11• 
grid ili, i = 1,2, ... ,N, with cell faces iHli+l• i = 0.1. .... iV. wllC'r<• Ofl1. 
and onN+l. a.re at the domain bonmlm-it~. A1811\11pposc thnt Ill ti1111• h·wl II \\/i' 

2 
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have a known, uniqne solution (uf,P:', ¢f), i == 1, 2, ... , N. Then, at first, at the 
actual time level n the cells and cell faces are classified into different types. For 
cells, the following three types are distinguished: (i) pure-water cells, (ii) pure
air cells and (iii) cells with one (or two) interface(s). To make this classification, 
we determine ¢~1. = ½ (¢f + ef>f+1), i = 1, 2, ... , N -1. At the inflow-boundary 

2 

face, say 8D ½, we take ¢1. = ¢f:, with ¢1t the boundary condition, and at the 
2 

outflow boundary, say &nN+½: rf>'l.+½ = (jw. Then, cell ni is: (i) a pure-water 

cell if¢:' > 0, ¢;_J. > 0 and ¢1!+ 1 > 0, (ii) a pure-air cell if ¢,f < 0, </>': 1 < 0 
2 1 2 i- 2 

an<l ¢~+½ < 0, and - else - (iii) a cell with one or two interfaces. The third type 

of cells are named ghost cells. This classification is also applied to the cell faces; 
(i) pure-water, (ii) pure-air and (iii) ghost faces are distinguished. The two faces 
of a ghost cell are both identified as ghost faces. I.e., if ni is found to be a ghost 
cell, then both EJD._1. and 8Di+1. a.re ghost faces. A cell face not belonging to 
a ghost cell is - depe~ding on the2 sign of ¢, at that face - either a pure-water or 
a pure-air face. Across the latter two types of faces, the flux is simply computed 
with the single-fluid linearized Godunov scheme F(iio, q1), ii.= (u,p). So, across 
pure-water faces we get F = F w and across pure-air faces F = Fa.• Across the 
ghm;t faces two fluxes are computed: a water and an air flux, so bath F w(iio, iii) 
and Fu(iio,iii). Applying the forward Euler scheme, the subsequent update of 
finite-volume solutions reads then: 

(i) iu pure-water cells: qf+1 = qf-1.t ((Fw)~+½ - (Fw)~-½), 

(ii) ill pure-air cells; qf+l = qf -1.t ((Fa)#½ - (Fa):_,), 
(iii) in ghost cells: (qw)~+l = qf - tt ((Fw);+½ - (Fw);_½) and 

(qa);•+l = q?- tt (CF a):':,_½ - (Fa)r-½)· 

So, in ghost cells we are left with two, possibly different updated solutions: Qw 

a11cl q 11 • Expressed in q = (u,p)-variables, these two new ghost solutions will 
not differ very mu.ch for the flows considered here. In case a solution ambiguity 
does arise, we proceed as follows. From the updated level-set ftmction, which is 
updated separately through an advection equation, the volume-of-fluid fraction 
r.t;•+ 1 in the ghost cell is computed. Next, the updated solution in the ghost cell 
iH mrule unique with 

(3) 

4 Numerical Results Ghost-Fluid Method 

4.1 Water Front at Constant Speed and Pressure 

Consider a ID tube with unit leugth, x E [O, 1], inflow at x = 0, outflow at x = 1 
and with as initial solution: u(x, t = 0) = 1, p(x, t = 0) = 1, (xrs)t=O = 0, g(x = 
o, t = O) = e11,(1) = 1, and e(x, t = O).,>o = ea(l) «: 1, where Xfs is the location 
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of the free surface, i.e., the water-air interface. The boundary conditions to be 
imposed are u(x = 0, t) = 1, ¢(x = 0, t) = t and p(x = 1, t) = 1. The exact Euler
flow solution reads u(x, t) = 1, p(x, t) = 1, e(x, t).,9 = 1 and e(x,t):>t = ea.(1). 
This simple model flow precisely uncovers the deficiency of capturing methods 
with regard to material interfaces. Various values are considered for the density 
ratio ~. The grids to be used are equidistant. The space discretization is taken 
first-order accurate and time integration is done with the forward Euler scheme. 

Results of several nwnerical approaches that do not work satisfactorily a.re 
given in [8). The ghost-fluid method performs very well; pressure (not shown) 
remains constant. In Figure 1 we present the computed bulk-density profiles at 
t = 0.0, 0.1, 0.2, ... , 1.0. The results are perfect; the interface is captured over a 
single mesh width h only (thanks to the level-set approach). The method does not 
break down with increasing density ratio. It works for standard water-air density 
ratios, !be.. = O(io3), as well as for much larger ratios (Figure 2). Reinitialization 

{}a, 

of the level-set function is not necessary for the running water front . 
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Fig. 1. Bulk-density profiles at t = 0.0, 0.1, 0.2, ... , 1.0, h = ;ff;, cleni;ity ratio.-; from 
left to right: 10, 100, 1000 
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Fig. 2. Bulk-density profiles at t = 0.0, 0.1, 0.2, ... , 1.0, h = :f.i, dc•111!it.y rntiOl! from 
left to right: 1010 , 10211 , 1030 
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4.2 Oscillating Water Column 

In the ghost cel.h:1, the conirerva.tion law::s a.re applied to virtua.1 amom1ts of wnter 
and s.ir, not to the real physical a.mmwts. Hence, proper conservation of m1'181l and 
momentum in these cells is not guaranteed. As a second test case, we consider 
a closed 1D tube (impermeable boundary 11.t the left a.nd right), with the initial 
condition as sketched iu Figure 3. Starting from t = 0, the air at the right is 

Fig. 3. Initial condition: clooed tube with columu of water (grey) in between two 
columns of air, ail three columns flowing to the right at constant speed and pressure 

compressed by the water and the air a.t the left expands. The column of water 
is decelerated until stagnation, and uext accelerated to the left. The latter leads 
to a reverse pressure gradient across the water column, which redirects the flow 
from left to right again, and so on: the water column starts to oscillate. 

We present numerical results obtained through the ghost-fluid method, ta.king 
~ = 1000 a11d (xrs)1""0 ==OJ.An equidistaut grid with h = lo is applied. The 
space discretization is again first-order accurate and time integration is done 
again with the forward. Euler scheme. The level-llet function is taken as the 
signed-di:-;tance function. fbr this test case, the level-set function is reinitialized. 
(The reiu.itia.lization is done after each time step.) 

In the left graph of Figure 4 we give the time evolution of the relative ID888 

error M(t) = "'•<;l:{aj•l0l, where ma(t) is the total mass of air in the tube at 
time t. The error appears to be composed of two components: one oscillating and 
the other behaving linearly in time. The total n:i&-s of air is slowly decreasing; 
air is converted into water. Fortunately, the orders of both the osdllatory a.nd 
the linear error component are close to the computational method's order of 
accuracy, which is first-order. To show the latter, in the right graph of Figure 4 
the time evolution of the relative air-mass error is also given for a grid and time 
step twice as fine. {The orders of accuracy of the oscillatory and linear error 
component - in going from h = fo to h = io - appear to be 0.78 and 0.90, 
ra,pectively.) 

5 Conclusions 

To avoid large solution errors near iJ1terfacei;, a problem for many conserva
tive capturing metho~'>, a simple ghost-fluid fix has heen proposed. For density 
ratios of the order 1000 ( typical water-air ratio) the simple ghost-fluid tech
nique pt'rforms pt'rfectly. Even the computation of front.s running into vacuum 
is expected to be possible. Extem;iou of the method to higher-order accuracy is 
straightforward through the use of, e.g., a MUSCL approac:h and a multi-st.age 



528 

............ ..... 
0 
0 

Oo 

~ ~, 
C\I 
I 

0 

B. Koren et.al. 

J I I l 

A~~~A,~ 

\ \ '111\1\ \ 
I ' 

2 4 6 6 

t 

~ 

10 0 2 4 8 8 10 

t 

Fig. 4. Time evolution of relative error in total mass of a.ir in closed tube, left: h = -lo, 
right: h = 81a 

time integrator. Concerning the exten.-;ion to higher dimensions, no principal 
difficulties exi!,;t. 
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