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Abstract. In this paper an iterative method for the computation of stationary gravity­
wave solutions is investigated, using a novel formulation of the free-surface (FS) 
boundary-value problem. This method requires the solution of a sequence of station­
ary Reynolds-Averaged Navier-Stokes subproblems employing the so-called quasi free­
surface condition. The numerical performance of this new approach iH investigated for 
two test cases. The first test case involves the computation of the 3D gravity-wave 
pattern due to a pressure perturbation imposed on a uniform flow. The second is the 
computation of the gravity-wave pattern generated by a realistic ship-hull form, known 
as Series 60. Results of the ship-hull case are compared with experimental data. 

1 Introduction 

In fluid dynamics a large class of problems exists in which a free surface is present. 
The inherent difficulty of this class of problems is the interdependence of the free 
surface (FS) location and the unknowns of the bulk-flow problem. Examples of 
FS flow problems in the physical sciences and engineering are vast. Herc we 
consider the stationary gravity waves generated by ships moving with constant 
speed. Although much of this wave system is adequately described by inviscid 
theory, certain areas in the ship-hydrodynamics problem, such as the boundary 
layer and the wake, require a viscous description. Therefore, present-day devel­
opments are primarily directed towards computing stationary FS Navier-Stokes 
flow problems. Current numerical methods for solving the stationary viscmrn FS 
flow problem often employ a time-dependent formulation and integrate until a 
steady state is reached. This approach typically displays two defects, viz., high 
computational costs due to persistent transient behaviour of the gravity waves 
and substantial spatial damping of these waves. To reduce the computational 
effort of solving FS Navier-Stokes flow an efficient iterative method, employing 
a novel formulation of the FS flow problem was introduced in [l]. This method 
employs the so-called quasi free-surface condition ( QFSC). The method shows 
mesh-independent asymptotic convergence rates for a 2D test case. 

The emphasis of this paper lies on the extension to 3D of this method and on 
the investigation of its convergence behaviour. The numerical method is applied 
to two 3D test cases. The first test case concerns the computation of the wave 
system due to a pressure perturbation imposed on the FS of a uniform flow. In 
the second test case the wave pattern is computed around the Series 60 ship­
hull form, a benchmark problem for FS methods in the ship-hydrodynamics 
community. 
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2 Mathematical Model 

111 this section a short description is given of the mathematical model which 
is involved and, secondly, a short summary of the free surface conditions from 
which the QFSC can be derived. 

Let D(x) c R3 denote the physical domain which i8 occupied by the fluid 
and Di?(x) = I'ps U I'o the boundary of D(x), where I'ps denotes the FS and 
I'o the remaining (fixed) part of the boundary. The dynamics of the viscous, 
incompressible flow subjected to a constant gravitational force is described by 
the Navier-Stokes equations, which read 

'v · uuT + 'vr.p - 'v · -r(u) = 0, \fx E rJ, 

'v · u = 0, Vx E 5?, 

(la) 

(lb) 

where -r(u) is the viscous stress te118or and 'vr.p(x) = 'vp(x)+Fr- 2 ez the gradient 
of the hydrodynamic pres8ure containing the Froude number Fr= Uoc.,/ .Jije with 
g the acceleration of gravity and e the reference length. 

The dynamics of the free 8urface boundary, I'ps, is governed by the following 
conditions. As:-mming that the FS can be de8cribed as a single-valued function, 
denoted by I'Fs = {(x): z = ((x,y)}, the kinematic condition can be written as 

u · 'v((x, y) = u · ez, Vx E I'ps, (2) 

where ez i8 the unit vector directed in the oppo8itc direction of the gravita­
tional force. The FS ha8 to adhere to the three dynamic conditions imprn;ed by 
the assumption of vanishing interfacial stresses. The dynamic condition in the 
direction normal to the FS reads 

() 18u.,, () 
p x - 2Re - Dn = JJFs x , 

whereas the conditions in the two tangential directions are 

t(o) - -r(u) -n = 0, o, = 1, 2. 

(3) 

(4) 

m,re PFs(x) is the specified pressure di8tribution along the FS. In our first 
and second test case, JJFs(x) =/= 0 and JJFs(x) = 0, respectively. For the practical 
application envisaged here the viscous contribution in (3) will be neglected. AlHo, 
the effects of surface tension can be safely ignored. 

Many modern PS-iteration methods apply a formulation in which they solve 
(la), (lb), in tirne-depcndcnt form, subjected to the normal dyuamic condition 
applied at an approximate location of the FS, followed by an update of the FS 
U8ing the kiuematic: condition in time-dependent form. This approach is disad­
vantageous bec:au8e it decouples the two FS conditions. It is the combination of 
the kinematic and (normal) dynamic condition which is responsible for wave-like 
solutions. Therefore it was proposed in [l] to combine these couditiom; resulting 
in the quasi free-surface condition (QFSC) 

Fr2u • 'vi.p - u · e:: = Fr2u · 'vJJFs(x), \::Ix E I'Fs- (5) 

Note the nonlinearity of the boundary condition. 
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3 Computational Method 

It has lwcn shown that the time-integration method to solve the steady-state 
FS fiow problem is cornpntationall.v inefficient. This is due to the fact that the 
attt•1111atiu11 of tlH' s11rfacP-grnxity waves behaves like O(ll-d)/2 ) in Rd, see e.g. 
[l .21. To circmnwut this slow transient behaviour we adopt an iterative method 
for 01he statiouarv formulation of the FS flow problem. This iterative method 
requin.:'ti the solution of a number of stationary Navier-Stokes subproblems em­
plu.ving the QFSC. The solution of the FS flow problem can be found by iterating 
the following two steps: 

l. For a given boundary I'ps. solve (u(x),cp(x)) from (la), (lb) with on TFs 
the boundary conditions (4), (5) and on I'o other appropriate boundary 

conditions. 
If IIJJ - J>Fsll is still larger than a chosen small tolerance (assume that at 
l'Lmve1-gt·11cc p = pps), then do step 2, else stop. 

·1 l\;c the solution (u(x).:p(x)) of step 1 to obtain a (better) approximation 

of I1•s according to 

1wxt return to :,;tep l. 

The nonliumr stationary Navier-Stokes subproblem it> discretized by replac­
ing the diffcrPntial operaton; by second and third-order finite-clifforence schemes 
and next solwd by Newton's method. The resulting linear system of algebraic 
equations is solved using a space-marching strategy whereby the marching it> 
perfornwd in the main flow direction. As a result a mtmber of smaller systems 
has to be wived, which is done by preconditioned Gl\IRES. I\Iore details on this 
solutiou proccdur<• can be found in [:3]. 

4 Numerical Results 

4.1 Pressure Perturbation 

The first test ease eonsiders the computation of the gravity-wave pattern due to 
a prl'ssure perturbation imposed on a uniform flow. The perturbation has the 
Gaussian distribution 

wllt'rP tlw parameter values P = 0.05, n = -4 and (:i:0 , :Yo) = (0, O) correspond 
to thP rnlues sl't in [-1]. The Froude number is Fr= 0.6 based on unit length. 
Till' tiolutions are computed on a mesh containing 161 x 41 x 41 grid point:,, in 
thP .r. ,I/ and : direction. respectively, with ;:; = 0 as initial estimate for the FS. 
Tht' correction to the FS which results from the solution of the first Navier­
Stokes subproblem is shown iu Fig. 1. The convergence behaviour of the FS 
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Fig. 1. FS for pressure-perturbation problem, after solving first Navier-Stokes sub­
problem 
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Fig. 2. FS pressure defect rneasunxi in 11 · 11'.X)(o), 11 · II 1 ( □) and II· ll2(6) 

iteration proccs:::, described in the previous :.;cction, is showu in Fig. 2. Corre­
spomlcnc:c of the computed solution with that from [4] is good although small 
diffon,nccs in amplitude ilnd wave length are present. Incrcasiug the amplitude 
of the p('rturbation, entering the range of the 1nildly nonlinear wave systems, 
shows a reduction of the convergence rat('. Cornput.ing highly 1101ili11ear waves 
is not yet possible with the FS iteratiou method due to rohustll('SS problems of 
the Navirr-Stokcs subproblem :.;olver. 
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4.2 Realistic Ship-Hull Form 

The rnmpntational domain for this test case contains 321 x 121 x 41 points. 
Fr arnl He ,u-e set at 0.316 and 106 • respectively, both based on the length of 
the ship hull. For tlw initial I'Fs we take z = 0. The wave pattern of the first 
NaYiff-Stukes subproblem. obtained after 255 iterations, is shown in Fig. 3. A 
emuparisull oft !tis pattern with the experimental data from [5] is given in Fig. 4. 
For this test case no FS updates were computed yet. 
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Fig. 3. Wave pattern SPries 60 ship hull at Fr= o.:.316 after solving first N avier-Stokes 
subproblem. The flow enters the domain at J' = -1 with speed U0 • The hull is located 
at -05 -S J' -S ll.5 
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Fig.~- ~\irn_1mrison of computed longitudinal wave cuts ( 1 with experimental results 
,. Sorn·, bll hull_ at Fr= 0 316 and Re = 106 Left oTaJ)l1 · !J - o [')7~5 · 't l , · · · · · · o · i" - - ,J, , ng,1 grap 1 

: f = O.:!OG7. 1f = 0 corresponds to the ship's plane of symmetry 
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5 Conclusions 

The proposed FS iteration method, employing the QFSC. shows very fast con­
vergence in the cat>c of the pressure perturbations for linear to mildly nonlinear 
wave systems. For both the pressure-perturbation problem ancl the ship-hull 
problem, the solution of the first Navicr-Stokes snbproblcm already reveals a 
large portion of the final wave system. The present method does not suffer from 
the slow transient effects encountered in time-dependent formulations. So, based 
on the results of the two test cases considered here, we can conclude that the 
new formulation of the FS flow problem possesses the proper 3D wave physics 
and :;hows very fast convergence. 
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