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A fully conservative model for compressible two-fluid flow 
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SUMMARY 

A five-equation model for compressible two-fluid flow is proposed, that is based on physical flow equations only. 
The model is conservative and pressure-oscillation free. Equations for continuous flow and jump conditions for 
discontinuities are given, as well as a discretisation of the equations and an adaptation of the HLL Riemann solver 
to two-fluid flow. Numerical tests in ID and 2D show the accuracy of the method. 
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1. INTRODUCTION 

Interface-capturing methods for compressible two-fluid flows assume that the flow consists of a mixture 
of the two fluids everywhere. The interface between the fluids appears as a numerically smeared 
transition from fluid 1 to fluid 2. Abgrall and Kami [ 1] have shown that many conservative formulations 
of such models produce large pressure errors. This problem can be solved by using locally non­
conservative methods [I] or by solving the full two-phase flow model [2]. 

Here, an intermediate approach is presented. The current method is fully conservative and pressure­
oscillation free, but it is simpler than two-phase methods, because it has a single pressure and velocity 
for the two fluids. It is an extension of the work by Van Brummelen and Koren [3 ], it will be described 
in detail in a future paper. A similar method is derived in a different way by Kapila et al. [ 4]. 

The present method has two major advantages. First, the conservative formulation gives good 
capturing of shocks and interfaces, also for problems with very strong shocks. And second, the model 
strongly resembles a single-fluid model: it does not require a complex interface-tracking algorithm. It 
can thus be solved with existing techniques, even on complex, irregular grids. 

2. FLOW MODEL 

The physical model used here for two-fluid flow is based on a mixture model. However, the fluids are 
not fully mixed: the 'mixture' may be thought to consist of very small bits of the two pure fluids, in 
an arbitrary pattern. Each fluid has its own pure-fluid equation of state and the fluids interact only by 
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exerting forces on each other. In the model, the pressure and the velocity of the fluids are equal, but 
each fluid has its own density. The volume fraction of fluid 1, a, is used to denote the relative amounts 
of the two fluids. Thus, in ID, we have five independent state variables (p, u, Pl, P2 and a), so we need 
five differential equations to solve the flow. 

The bulk two-fluid flow satisfies the standard Euler equations: 

(P)t + (pu)x = 0, (la) 

(pu)1 + (pu2 +pt= 0, (lb) 

(pE)1 + (pEu + pu)x = 0. (le) 

In these equations, the bulk density p and bulk total energy E are 

p = apI + (1 -a)pz, pE = ap1E1 + (1 -a)P2E2, (2) 

with the total energy for each fluidj = 1, 2 defined as Ej = ej + ½u2• Here ej is the internal energy 
offluidj. 

Two more flow equations are needed to close the system. The first one is the conservation of mass 
for fluid 1: the fluids are not supposed to change into each other. Using the partial density p1a, this 
equation is 

(3a) 

Together with equation (la), this equation gives mass conservation for both fluids. For the last equation., 
the energy balance of fluid 1 is used. This equation has a special property: the fluids exert forces on 
each other, so they exchange energy. This exchange appears as a source term in the equation: 

(3b) 

An expression for this source term is derived in the next section. 
To close the system, equations of state (EOS) are needed for the two fluids. A possible EOS is the 

ideal gas law, 
(4) 

with constant y 's. For this equation, it is easy to compute the primitive variables p and a from the total 
energies. 

3. THE SOURCE TERM 

3.1. Derivation of the source term 

The source term S in equation (3b) models the exchange of energy between fluid 2 and fluid 1. Euler 
flow has no heat conduction, so the only energy exchanged is the work done by the force between the 
fluids. This force is found from a momentum analysis. 

Consider a fluid element in a smooth 1D flow (figure 1). The element contains fluid 1 and fluid 2 
(the interface is drawn schematically). The force on the entire fluid element is p(x)-p(x +dx) and its 
bulk mass is pdx. The force on fluid 1 in the element is (pa)(x)- (pa)(x +dx) +SMdx. ltsmassis 
Pl adx and its acceleration is equal to the acceleration of the entire element (because both fluids have 
the same velocity). Therefore 

p(x) - p(x + dx) (pa)(x)- (pa)(x + dx) + SMdx 
= pdx p1adx 
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The force SM follows from this expression ( using the mass fraction fJ = 7 ): 
SM= pax + (a - fJ) Px· (5) 

The first term, pax, expresses the pressure force on the interface: pressure times the projected height of 
the interface. The second term is friction. There is no friction in normal Euler flow, but the two fluids 
are mixed so well that friction force between the fluid~ prevents one fluid from movmg faster than the 
other. When fluid l is denser than fluid 2 (fJ > a), then it is accelerated less by the pressure force - Px 
than the lighter fluid 2. In that case, the friction force passes a part of the pressure force on fluid 2 to 
fluid 1, such that the velocity of the two fluids remains the same. The energy source term Sis the work 
done by the force SM: 

S = uSM = puax + (a - fJ) UPx· (6) 

fluid 2 

p(x) p(x +dx) 
a(x) 

fluid 1 a(x +dx) 

X x+dx 

Figure 1. Two-fluid element in smooth ID flow. 

3.2. Characteristic analysis of the system for ideal gas 

The source term ( 6) is valid for any EOS. Substitution of the ideal gas law ( 4) allows a characteristic 
analysis of the flow equations. This results in five wave speeds, 

).I = U - c, ).2,3,4 = u, AS= U + C, with C = ✓<r1a + n(l - a))p/ p. (7) 

This combination of wave speeds is physically correct. It can be proved that (6) is the only possible 
source term that gives such a combination. 

3.3. Source term in discontinuities 

To allow weak solutions with discontinuities of the two-fluid flow equations, we need a proper 
definition of the flow across a discontinuity. The first four equations, (la) - (le) and (3a), satisfy 
the standard Rankine-Hugoniot jump condition ~f = Cs ~q, with c_. the speed of the discontinuity. For 
the fifth equation, (3b), this condition becomes 

(8) 

The integral must be evaluated across the discontinuity, which is impossible. However, if we assume 
that the discontinuity is the limit of a viscous discontinuity and thus has a continuous internal structure 
(the precise shape is unimportant), then we can write the state variables as continuous functions of p 
and integrate the source term: 

1XR } 1PR 
Sdx = !!..(pua) + ½thPL(UL - c_.)!!..u2 + ---- padp. 

XL PL(UL - Cs) PL 
(9) 
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A derivation of this expression will be given in a future paper. The last integral can be evaluated by 
integration of the fifth equation, (3b), combined with an EOS. So there is a mrique jump condition 
for the present two-fluid model, but, unlike the single-fluid jump condition, it depends on the material 
properties of the fluids. 

4. NUMERICAL METHOD 

4.1. Second-order accurate discretisation 

The flow equations are discretised with a second-order accurate finite-volume scheme. Fluxes are 
computed with an improved version of Linde's three-wave HLL approximate Riemann solver [5), 
combined with a limited reconstruction of the cell interface states. The limiter is applied to the primitive 
variables p, u, p, a and /3. Time stepping is done with a two-step scheme [7]: 

q~+l = n~ - M (rk - fk ) + A.t l 
l "'1l tu i+½ j-½ tu I' 

q~+2 = qf-2 M (r~+/ -f~+i) + 2 M /+1_ 
I lu 1+,: 1-,: tu I 

(10) 

4.2. Numerical source term 

A discretisation of the source term is needed in two places. First, an approximation of the source term 
in a discontinuity is needed to compute the HLL flux. The HLL solver models a Riemann problem with 
three discontinuous waves. The easiest way to incorporate the source term in these waves is to compute 
only one approximate solution of equation (9), using the left and right cell interface state, and to divide 
this source term proportionally over the three waves. This procedure causes some small inaccuracies, 
but it is fast and straightforward. 

Secondly, the source term for the time integration, s; in equation (10), is computed. It consists of 
two parts: (i) Sources in the discontinuities at the cell faces. These are summed over all HLL waves, on 
interfaces i - ½ and i + ½, that actually run into cell i. (ii) Sources in the continuous flow in the cell. 
These are integrated over the piecewise linear approximations to the primitive variables, that follow 
from the use of the limiter. 

5. NUMERICAL RESULTS 

5. I. Shock tube tests 

The method is tested first on two 1D Riemann problems for ideal gases. Results are compared with 
the exact solutions. The first test is a contact discontinuity (constant pressure and velocity) of water-air 
density ratio. The solution in figure 2 shows the smeared interface, exactly in the correct location And, 
most importantly, the pressure is constant: no pressure oscillations occur. 

The second test is a two-fluid variation of Sod's problem, with a ten times higher left pressure and 
density, giving it a pressure ratio of 1: I 00. Figure 3 shows that the discontinuities (shock and two-fluid 
interface) are in the proper locations. Note that the pressure is constant over the contact discontinuity 
and that the volume fraction is constant over the shock and over the expansion fan. A convergence study 
for this particular problem. on five grids, shows that the L 1-errors in p, u and p converge approximately 
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Figure2.1Dcontactdiscontinuity.p= I, u = 1,PL = 1000, PR= 1,YL = 1.4andyR = 1.6. Thegridhas200 
cells, 80 time steps and M / Ax = 0.5 (CFL = 0.5). Solid lines: exact solution. 

with the power 0.96 of the mesh width. The volume fraction converges with the power 0. 78 of the mesh 
width. This rate of convergence is comparable to that for single-fluid solutions with limited second­
order schemes. 
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Figure 3. High-pressure, two-fluid Sod problem. (p, u, P)L = (10, 0, IO), (p, u, P)R = (0.125, 0, 0.1), 
YL = 1.4 and YR = 1.6. The grid has 200 cells, 160 time steps, At/ Ax = 0.2 (CFL = 0.56). Solid lines: 

eicact solution. 

5.2. Shock hitting helium bubble 

This 2D test case has been taken from literature [6). It consists of a cylindrical helium bubble in air, 
which is hit by an incoming shock wave. The problem is solved on a grid of 200x400 cells, with 
At = 1.25 x 10-5• Figure 4 shows the solution at two times. The (half) bubble is visible between x 
= -0.025 and x = 0.025. Toe incident shock, coming from the right, can be seen in the air above the 
bubble, the curved shock in the bubble runs ahead of this shock. The rightmost wave is an expansion 
wave, reflected into the air behind the shock. At the later time, a complicated A-shock structure has 
developed above the bubble. Figure 5 shows the pressure and the volume fraction for this time. Of the 
waves appearing in the density plot, the shock waves and expansions are visible in the pressure plot 
only and the interface in the volume fraction plot only, as it should be. The pressure is continuous over 
the interface. 

The speeds of the shocks and the interface at the centerline (y = 0) have been compared with results 
from Quirk and Kami [6] (obtained on a very fine, adapted grid). The difference is between 0.7% and 
2.2%. 
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Figure 4. Shockhittingheliumbubble,densityatt = 2.74 x 10-3 and t = 10.74 x 10-3. 
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Figure 5. Shock hitting helium bubble, pressure Qeft) and volume fraction (right) at t = 10.74 x 10-3 . 

6. CONCLUSION 

A model for compressible two-fluid flow is proposed, that is conservative and pressure-oscillation free. 
ID tests show that the model resolves contact discontinuities without creating pressure errors and that 
it accurately handles problems with strong shocks. A 20 test confirms that the method also handles 
curved shocks and interfaces well. 
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