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ABSTRACT 
In this paper, we discuss one of our experiments using the coor­
dination language MANIFOLD to restructure an existing sequential 
numerical application into a concurrent application. The applica­
tion was written in ANSI C and deals with a sparse-grid method 
for a transport problem. Our approach is simple and is in fact a cut­
and-paste method. First, we try to identify and isolate components 
in the legacy source code (the cut). Second, we glue them together 
by writing coordinator modules (glue modules) with the help of a 
coordination language (the paste). We also give some performance 
results. 

1. INTRODUCTION 
A workable approach for modernizing existing software into par­

allel/distributed applications is through coarse-grain restructuring. 
If, for instance, entire subroutines of legacy code can be plugged 
into a new structure, the investment required for the re-discovery 
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of the details of what they do can be spared. The resulting ren­
ovated software can then take advantage of the improved perfor­
mance offered by modem parallel/distributed computing environ­
ments, without rethinking or rewriting the bulk of their existing 
code. Our approach is simple and is in fact a cut-and-paste method. 
First, we try to identify and isolate components in the legacy source 
code (the cut). Second, we glue them together by writing coordina­
tor modules (glue modules) in a coordination language (the paste). 
We have used Manifold as the glue language. Manifold is a gen­
eral purpose coordination language especially designed to express 
cooperation protocols among components in component based sys­
tems. 

Our point of departure is an existing sequential C code for com­
putational fluid dynamics (CFO). This C source code deals with a 
time-dependent advection-diffusion problem solved with a sparse­
grid technique and was developed at CWI by a group of researchers 
in the department of Modeling Analysis and Simulations, within 
the framework of the NWO-funded project "Sparse Grid Methods 
for Transport Problems". The developers of the program found 
their algorithms to be effective (good convergence rates) but in­
efficient (long computing times). As a remedy, they looked for 
methods to restructure their code to run on multi-processor ma­
chines and/or to distribute their computation over clusters of work­
stations. Applying our cut-and-paste method to the program results 
in one generally applicable coordinator module that can restructure 
the sequential program into a parallel application (which can run on 
a shared memory machine) as well as into a distributed application 
(which can run on a cluster of workstations). 

The rest of this paper is organized as follows. In §2 we give a 
brief introduction to the MANIFOLD language. In §3 we present 
the simplified pseudo-program as distilled from the original ANSI 
C program, explore its structure and try to identify and isolate its 
software components. In §4, we describe the paste phase in the 
software renovation process and present our generic gluing mod­
ules written in the MANIFOLD coordination language. The actual 
restructuring of the original sequential program can be found in §5. 
In §6 we show how to run the concurrent version on a cluster of 
workstations and in §7 we give performance results. Finally, the 
conclusion of the paper is in §8. 

2. THE MANIFOLD LANGUAGE 
In this section, we give a brief overview of MANIFOLD. It is 

beyond the scope of this paper to present all the details of the syntax 
and semantics of the MANIFOLD language1• 

1 For more information, refer to our html pages located at 



MANIFOLD is used to develop concurrent software, regardless of 
whether it runs on a parallel or a distributed platforms. 

MANIFOLD is not a parallel programming language; it is a co­
ordination language as opposed to a computation language [10]. 
MANIFOLD is a complete language (as opposed to a language ex­
tension, like Linda [9]) for programming the cooperation protocols 
of concurrent systems. These protocols describe the routing of the 
information between various processes that comprise a concurrent 
application, and the dynamic changes that take place in such rout­
ing networks in reaction to events. 

MANIFOLD is based on the IWIM (Idealized Worker Idealized 
Manager) model of communication [1]. The basic concepts in the 
IWIM model (and thus also in MANIFOLD) are processes, events, 
ports, and channels (in MANIFOLD called streams). In IWIM, a 
process can be regarded as a worker process or a manager (or co­
ordinator) process. An application is built as a (dynamic) hierarchy 
of worker and manager processes. Lowest in the hierarchy are pure 
worker processes that do not do any coordinating activities. High­
est in the hierarchy are pure coordinators. A process between the 
lowest and highest level may consider itself a worker doing a task 
for a manager higher in the hierarchy, or a manager coordinating 
processes lower in the hierarchy. 

Programming in MANIFOLD is a game of dynamically creating 
process instances and (re)connecting the ports of some processes 
via streams (asynchronous channels), in reaction to observed event 
occurrences. Its style reflects the way one programmer might dis­
cuss his interprocess communication application with another pro­
grammer on a telephone (let process a connect process b with pro­
cess c so that c can get its input; when process b receives event e, 
broadcast by process c, react to that by doing this and that; etc.). 
As in the telephone call, processes in MANIFOLD (in this case b and 
c) do not explicitly send or receive messages to or from other pro­
cesses. Processes in MANIFOLD are treated as black-boxes that can 
only read or write through the openings (called ports) in their own 
bounding walls. It is the responsibility of a worker process to per­
form a (computational) task. A worker process is not responsible 
for the communication that is necessary for it to obtain the proper 
input it requires to perform its task (it simply reads this informa­
tion from its own input port), nor is it responsible for the commu­
nication that is necessary to deliver the results it produces to their 
proper recipients (it simply writes this information to its own out­
put port). In general, no process in IWIM is responsible for its own 
communication with other processes. It is always the responsibil­
ity of a third party-a coordinator process or manager-to arrange 
for and to coordinate the necessary communications among a set 
of worker processes. This third party sets up the communication 
channel between the output port of one process and the input port 
of another process, so that data can flow through it. This setting up 
of the communication links from the outside (exogenous coordina­
tion) is very typical in MANIFOLD and has several advantages. One 
important advantage is that it results in a clear separation of the 
modules responsible for computation (the workers) from the mod­
ules responsible for coordination (the managers). This strengthens 
the modularity and enhances the re-usability of both types of mod­
ules (see [3, l ]). 

A MANIFOLD application consists of a (potentially very large) 
number of processes that run as threads bundled up (automatically 
or under user control) in one or more operating-system-level pro­
cesses (called task instances in MANIFOLD). The different task in­
stances in a MANIFOLD application can run on a network of hetero­
geneous hosts, some of which may be parallel systems. Processes 
in the same application may be written in different programming 

http://www.cwi.nl/projects/manifold/manifold.html. 

languages. Some of them (the so-called non-compliant atomic pro­
cesses) may not know anything about MANIFOLD, nor the fact that 
they are cooperating with other processes through MANIFOLD in a 
concurrent application. 

The MANIFOLD system consists of a compiler called Mc, a run­
time system library, a number of utility programs, libraries ofbuilt­
in and predefined processes [2], a link file generator called MLINK 

and a runtime configurator called CONFIG. MLINK uses the object 
files produced by the (MANIFOLD and other language) compilers 
to produce link files needed to compose the application-executable 
files for each required platform. At the runtime of an application, 
CONFIG determines the actual host(s) where the processes that are 
created in the MANIFOLD application will run. 

The system has been ported to several different platforms (e.g., 
IBM RS60000 AIX, IBM SPI/2, Solaris, Linux, Cray, and SOI). 
The system was developed with emphasis on portability and sup­
port for heterogeneity of the execution environment. It can be 
ported with little or no effort to any platform that supports a thread 
facility functionally equivalent to a small subset of the Posix threads 
[I I], plus an inter-process communication facility roughly equiva­
lent to a small subset of PYM [8]. 

For a performance comparison between MANIFOLD and the of­
ten used communication middleware PYM [8] we refer to [ 4]. For a 
general discussion about how a chosen coordination/communication 
tool (e.g., PYM) influences the structure of a computer program we 
refer to [3]. 

3. THE CUT 
In this section we explore the structure of the ANSI C program 

of our sequential application . The program consists of a data def­
inition section, a main program and some 33 subroutines with a 
total length of some 3500 lines. Instead of its full source code, we 
give only the relevant part of the C code for the sparse-grid method, 
viz., a schematized version of the main program, and the subrou­
tine subsolve. With this small part of the C code we can explain 
the essential implementation aspects of the sparse-grid method, as 
well as its actual restructuring into a concurrent application. 

1 / * SeqSourceCode. c * / 
2 
3 int root, level; 
4 double le_tol: 
5 
6 /* Declaration of the huge global data structure*/ 
7 
8 / * * * * **** ** ** ** ·- "'*** ** * * **"' * * * ** ** * * * * * *. ** * * * * ** * * / 
9 int main (int argc, char *argv[]) 

10 ( 
11 int i, j, lm, l; 
12 
13 

14 
15 
16 
17 
18 
19 
20 

21 
22 
23 

24 

25 
26 
27 
28 

/* Root level (i.e. refinement level 
of coarsest grid) */ 

root = atoi (argv( 1 J ) , 
/* Additional refinement above the root level */ 
level = atoi (argv[2J); 
/* The tolerance of the integrator. */ 
le_tol = atof (argv[3J); 

/* Initialization data structure and 
some initial computations*/ 

/* The heavy computational work * / 
for (lm = level - l; lm <= level; lm++) { 

/* loop over the grid level*/ 
for (1 = O; 1 <= lm; 1++) {/*loop over the 

grids belonging to a certain grid level * / 
subsolve 11, lm-l); 

29 /* Prolongation work * / 
30 
31 
32 
33 / * * ** **** ** ** ** ** ** ** ** * * ** ** ** * * ** * ** ** **** * ** *** * * / 
34 void subsol ve ( int 1, int m) 
35 ( 
36 /* Heavy computational work on grid (l, m) */ 
37 
38 
39 /* The results are stored in 

40 
41 

the global data struct.ure * / 



1 / / protocolMW .m 
2 
3 Hnclude "MBL.h" 
4 
5 Hnclude •rdid.h" 
6 
7 #include "protocolMW.h" 
8 
9 #define IDLE terminated (void) 

10 
11 /* *** ***** ** * *** ***..,,** ** * * * * ** * * ** * "'** ** • • ** ** **** • ••"' * * / 
12 manner Create_Worker_Pool{ 

13 ~I:~~dm:,~;:~r7!e~~~; 1ataport I output, error>, 
14 ( 
15 save *. 
16 ignore death. 
17 
18 auto process now is variable ( o) . 
~~ auto process tis variable(OI. 

21 event death_worker. 
22 ~! priority create_worker > rendezvous. 

~~ begin: (MES("begin"), preemptall, IDLE). 

27 create_worker: { 
28 hold worker. 
29 
30 
31 
32 
33 
34 
35 
36 
37 l. 
38 

process worker is Worker(death_worker). 

stream KK worker -> master. dataport. 

begin: now = now + li 
{MES ( "create_worker: begin n) , 
&worker-> master-> worker-> master.dataport. IDLE). 

39 rendezvous: { !~ begin: (preemptall, IDLE). 

42 
43 
44 
45 
46 
47 
48 }. 
49 

death_worker: t = t + 1; 
if (t < now) then ( 

post (begin) 
I else ( 

post (end) 
). 

~~} end: (MES("rendezvous acknowledged"), raise(a_rendezvous)). 

52 
53 11111 ** *** ** *** *** *** **"' * ** • ** * •• ** *** ** ** ** ** ** *******•**I 
S4 export manner ProtocolMW( 

pro~ess master <input, dataport / output, error>, 
55 manifold Worker(event) I 
56 ( 
57 save•. 
58 
~~ begin: terminated(master). 

61 
62 

create_pool: Create_Worker_Pool (master, Worker); post (begin). 

63 finished: halt. 
64 ) 

In the description of our protocol, we first discuss the manner (i.e., a 
parameterized subprogram) ProtocolMW (lines 54-64) followed 
by the mannercreate_worker_Pool (line 12-51) which is used 
by the former. 

The actual manifold (named Main) that does the restructuring of 
the sequential source code invokes (as we see in §5) the Proto­
colMW manner in its begin state. As a result, we enter the block 
of this manner (lines 56-64). Upon entering a block, the statements 
in its local declaration part are performed. In this case the only 
statement in this part is the save which states that we can switch 
only to states in this block (i.e., the begin, create-pool or 
~inished states respectively on lines 59, 61 and 63). Other pos­
sible event occurrences are saved and can be handled (if necessary) 
outside this block. 

After performing the local declaration part of the entered block 
the MANIFOLD run-time system automatically posts an occurrence 
of the predefined high-priority event begin in the event memory 
of the caller (as we will see this is main in §5) which causes a 
transition to the begin state. There must always be a begin state 
(i.e., a state with a single begin as its label) in every block. This 
insures that upon entering a block, at least this one state can be 
visited (i.e., the actions in its state body are performed), regardless 
of any other event occurrences that may or may not be present in 
the event memory. 

In the begin state (line 59) we wait until the already active pro-

cess instance master (received as a parameter on line 54) termi­
nates. Because we have mentioned master (as an argument of th 
te~inate primitive) in the state body, we also make this stat~ 
sensitive to events that are raised by master. Because master 
?oes not terminate, the net result of the action in the begin state 
1s that we wait there until there is an event occurrence for which we 
have a matching event label. Because master, which is a process 
~rapper around the C code (excluding the subsol ve work), ar­
nv~s after so~e sequential computation work (initialization) at the 
pomt where 1t has to do the subsol ve work, it raises an event 
named create_pool to signal that it needs a workers-pool to 
delegate that work to (master: 3(a)). This event pre-empts the 
begin state and causes a transition to the create_pool state 
(line 61!. In this s~ate the manner Create_Worker_Pool (lines 
11-51) 1s called with the process instance master, and the mani­
fold Worker (which the protocol manner ProtocolMW itself has 
received as a parameter on lines 54-55) as its actual parameters. 

The manner Create_worker_Pool conducts the workers in 
the pool and takes care that they can do their computational work 
properly. When the workers in the pool are done, they die and the 
manner returns. Afterwards (denoted by the semicolon on line 61) 
we post the begin event so that we jump again to the begin state 
(line 61) where we wait for events. Another event will arrive soon 
because the_master raises the event finished (master: 4) to 
denote that 1t does not need workers anymore. This causes a jump 
to the finished state (line 63), where the primitive action halt 
effectively returns the flow of control from the manner to its caller. 
The master is still running and is also done after performing the 
final prolongation computations. 

The manner Create_worker_Pool (lines 11-51) called on 
line 61 works as follows. Upon entering its block, first the state­
ments in its local declaration part are performed (lines 15-23). 

Line 15 is a declarative statement which states that we can switch 
only to states specified in this block (lines 14-51). 

Line 16 is another declarative statement which states that death 
events can be removed from the event memory of the executing 
manifold instance, upon departure from the block (at line 51). 

On lines 18-19 we create and activate two process instances, re­
spectively named now and t, of the predefined manifold varia­
ble (defined in the MANIFOLD built-in library), and initialize them 
with 0. We use these variables respectively for counting the num­
ber of created instances of the Worker manifold (we count them 
on line 34 with now which is a mnemonic for Number Of Work­
ers~ and for counting the number of dead workers (by counting 
their death_worker events on line 42). Note that, MANIFOLD 

obviously only knows processes; there are no data structures in 
MANIFOLD, not even the simplest kind, a variable. 

On line 21, a local event named death_worker is declared. 
Because it can happen that both events create-worker and 

rendezvous are available in the event memory of the executing 
manifold instance that calls this manner, we state with the prio­
rity declarative statement that jumping to the create_worker 
state has a higher priority than jumping to the rendezvous state. 

The first state we visit in this manner is the begin state (line 
25). There, we do the following: we print the message •begin" 
on the screen to indicate that we are in this state; we state by the 
primitive action preemptall that all events for which we have a 
handling state label can pre-empt the begin state; and we wait 
(due to the word IDLE) for the termination of the special pre­
defined process void. In the MANIFOLD language we express this 
by terminated (void) as can be seen from the meaning (line 
9) of the IDLE macro (line 25). Because the special process void 
never terminates, this effectively causes a hang in the begin state 



On lines 3-4, some global variables are declared followed on line 6 
with the actual global data structure that contains the grid data. On 
Jines 13-18 the global variables declared on lines 3-4 are set with 
values read from the command line at the time the program is ex­
ecuted. After that, the program continues with initializing the data 
structure and with some initial computation (line 20). After this a 
nested iteration starts (the nested for-loop on lines 22-27) in which 
the subroutine subsol ve is called. In this nested loop a number 
of grids are visited and on each of these grids (a grid is specified 
by two integers; see the two integer arguments of subs ol ve on 
line 25) the subroutine subsolve is performed. subsolve is a 
very computation-intensive routine. In this routine, a linear system 
of equations (Ax = b) is solved for every time step. Moreover, 
this A matrix must be built up in the program which takes a lot of 
time. Also the adaptive time step in the time integrator ( a so-called 
Rosenbrock solver) is something that must be computed again and 
again. After the nested loop, the coarse approximations on the vis­
ited grids are known and are prolongated on line 29 onto the finest 
grid used in the application to obtain a more accurate solution for 
it. With this the program comes to an end. 

Because it is our aim to restructure this ANSI C program in a 
concurrent (parallel or distributed) structure we have special inter­
est in which subroutines possess concurrent properties. In general, 
we can say that every grid subroutine with the property that it reads 
and writes data only from and to its own grid, can be restructured to 
run concurrently. In our program it turns out that subsol ve has 
this property and because it is also very computing-intensive, it is a 
good candidate to run concurrently on all the grids to be visited in 
the nested for-loop. 

A simple way to restructure our sequential ANSI C program into 
a concurrent one, is to introduce a workers-pool (containing a num­
ber of workers) when we arrive at the heavy computations that can 
be done concurrently. Each worker in the workers-pool performs 
the same operation subsol ve on a different data segment of the 
global data structure independently of the others. In a program built 
according to this schema, none of the computational processes ac­
tually runs concurrently until it reaches a concurrent region. Then 
the multiple workers (i.e., the parallel or distributed threads) in the 
workers-pool begin, and the program runs concurrently. When the 
program exits the concurrent region, only one single computational 
process continues (now it runs sequentially) in which the prolonga­
tion work is performed. 

4. THE PASTE 
The crux of our restructuring is to allow the computations done 

in subsolve on every single grid visited in the nested loop, to 
be carried out in a separate process. These processes can then run 
concurrently in MANIFOLD as separate threads executed by differ­
ent processors on a multi-processor hardware, or in different tasks 
on a distributed platform (e.g., a network of workstations), or a in 
combination of the two. 

We have organized the restructuring according to a master/worker 
protocol in which the master performs all the computation in the 
sequential source code except the work embodied in subsol ve, 
which is done by the workers. In MANIFOLD, we can easily real­
ize this master/worker protocol in a generic way, where the master 
and the worker are parameters of the protocol. In this protocol we 
describe only how instances of master and worker process defini­
tions should communicate with each other. For the protocol, it is 
irrelevant to know what kind of computation is performed in the 
master or the worker. What is indeed important for the protocol is 
that the input/output and the event behavior of the master and the 
worker comply with the protocol. E.g., the master should write the 

data needed by the worker to its own output port and the worker, 
connected by a third party (a manager) to this port, should read this 
information from its own input port. Furthermore, according to this 
protocol, the coordinator can create a worker only when the master 
raises an event to request for its creation. 

Due to space limitation, we give only an informal description of 
the master/worker protocol in §4.1, a short description of its im­
plementation in §4.2 and short stepwise description of the behavior 
interface of the master and worker in §4.3. For details we refer to 
the official report of the NCF project [6]. 

4.1 The Glue 
The master/worker protocol we use can be described as follows. 

In a coordinator process we create and activate a master process that 
performs all computation in the main C program of the sequential 
version, except the computation to be carried out by subsolve. 
Each time the master arrives at the point where it has to do the 
subsol ve work, it delegates this work to a worker in a workers­
pool. The master makes its wish known to the coordinator by 
raising an event (create_pool)2 • The coordinator reacts to this 
event by jumping to a state where it waits for requests coming from 
the master to create a worker for the workers-pool. Each time the 
master needs another worker for the workers-pool it raises an event 
(create_worker) to signal the coordinator to create one. Be­
cause the master wants to use the worker, it needs to know its iden­
tity. The coordinator makes this identity available to the master 
by sending its reference via a stream. The master waiting for its 
workers, receives a worker reference, activates it and takes care 
that the worker receives all necessary information so that it can do 
its job. The master writes this information on its output port which 
is connected by the coordinator to the input port of the worker, 
so that the latter can read it from this port. In this way, a pool 
of workers, created by the coordinator, is set to work by the mas­
ter, each worker performing a relaxation computation. Before the 
master can continue its work, it must wait until all the workers are 
done with their relaxations and are ready to die, which they signal 
by raising an event (dead_worker). The master does not want 
to count those events by itself, but delegates the organization of 
this rendezvous (i.e., a synchronization point) by raising an event 
(rendezvous) to signal the coordinator to make the proper ar­
rangements. In the meantime, the master takes a nap and waits 
for the event (a..rendezvous) raised by the coordinator (which 
is now responsible for counting the dead_worker events) to ac­
knowledge the successful rendezvous. After this rendezvous, the 
master reads from its input port the computational results of the 
workers. This is made possible by the coordinator which has set up 
a stream between the output port of the worker and the input port of 
the master. Hereafter, the master proceeds with prolongation work 
and is done. 

Note that in the master/worker protocol just described the master 
process passes all data to and from the workers. An alternative is 
for the master to introduce I/0 workers. Of course this also involves 
extra coordination overhead. We have not tried this out because we 
were already content with the achieved results as given in §7. 

4.2 Implementation of the Gluing Modules 
The MANIFOLD source code of our master/worker protocol is 

given below. To clarify the way this protocol ~o-?perates wit~ the 
different steps in the master and workers behav10r_m~erface as given 
in §4.3, we provide references to those steps w1thm parentheses. 
For the MANIFOLD terminology used here we refer to [2]. 

2We give the names of the events as used in the MANIFOLD source 
code (see §4.2) in parentheses. 



until it detects an event in the event memory of the process instance 
where this manner is invoked and for which it has a state label. An 
event will come soon, because master is expected to raise the 
event create_worker every time it wants another worker in the 
workers-pool (master: 3(b) ). This event pre-empts the beg in state 
and causes a state transition to the crea te_worker state. 

In the create_worker state (lines 27-37) a number of work­
ers are set to work in a workers-pool. The body of this state is a 
block. In its local declaration, we use the hold statement on line 
28 so that we can handle events coming from Worker instances 
outside the scope in which those instances are known (we intend 
to count their death_worker events in the rendezvous state 
on line 42); otherwise, the instances of Worker are known only 
in the block in which they are defined (lines 27-37). On line 30, 
we create a process named worker and pass it the local event 
deat1Lworker declared on line 21. 

The death_worker event is an event the worker must raise to 
inform the manner Crea te_Worker _Pool, that it finished its job 
and is going to die (worker: 4). 

The declarative statement on line 32 states that all stream con­
nections between the output port of worker and the input port of 
the master (this input port is named dataport) must be of type 
KK (i.e., Keep-Keep). When streams of this type are used in a state 
they are not dismantled (i.e., disconnected from their sources and 
sinks) once the state is pre-empted. Normally, streams are BK (i.e., 
Break-Keep) streams which means that the stream is disconnected 
from its producer automatically, as soon as it is disconnected from 
its consumer, but disconnection from its producer does not discon­
nect the stream from its consumer. 

In the begin state of the state create_worker, the stream 
configuration on line 36 is constructed and we wait for events (due 
to the word IDLE) from the master (crea te_worker and ren­
dezvous are possible events). In the stream configuration we see 
that the process identification of worker (denoted by &worker) 
is sent through a stream (the first -> on line 36) to the already ac­
tive master. The master receives this reference to worker and 
sends all the information worker requests through a stream (the 
second -> on line 36) to worker. The worker process promptly 
reads the information it receives from master (worker: 1), does 
its job (worker: 2), and sends its computed results (worker: 3) 
through a stream (the third -> on line 36) to the data port port of 
master (denoted by master. dataport). The master pro­
cess reads this and stores the results in the global master space 
(master: 3(t)). Due to the word IDLE (line 36) we stay in the state 
on line 34 until master again raises a create_worker event. 
This event pre-empts this begin state (line 34) which dismantles 
the streams in this state and causes a transition to the create_wor­
ker state where the whole sequence starts again. Dismantling of 
the streams means, in this case, that all the streams on line 36 are 
broken at their sources (because they have the default type BK) 
with the exception of the stream for which the worker is the source; 
this stream is KK (see line 32) and must stay intact because when 
the worker is a remote worker this stream is used to transport its 
computed results to the master. This is how all workers are created 
and set to work in the pool. 

The next event to be handled is the rendezvous event. This 
event is raised by master (master: 3(g)) after it reads the com­
puted results of the remote workers (master: 3(t)) and causes a 
transition to the rendezvous state which has two (sub)states: the 
begin state (line 40) and the death_worker state (line 42). In 
its begin state, we wait for the death_worker events. Each 
time a dea th_worker is detected, it is counted (line 42). As long 
as we have less death_worker events than the number of ere-

ated workers (i.e., the value of now on line 34) we post the begin 
event (line 44) which causes a transition back to the begin state 
(line 40) where we wait for other death_worker events. Oth­
erwise, we post end (line 46) which causes a state switch to the 
end state (line 50). In this state we print a message on the screen, 
raise the event a.xendezvous, and the Create_Worker_Fool 
manner returns. 

Note that coordination schema in ProtocolMW can also handle 
a more demanding master. Just imagine that we have a master 
that instead of raising finished wants to introduce another work­
ers-pool to delegate some work to. It could easily raise the event 
crea te_pool to denote that, in which case we jump again to the 
create_pool state and another pool is created. In [7, 5] we have 
exploited this facility in a slightly different master/worker protocol. 

4.3 Behavior Interface of Master and Worker 
The behavior interface of the master is given below. The line 

numbers in parentheses in this section refer to the MANIFOLD source 
code protocolMW. min §4.2. Moreover, we refer to the process 
instance that invokes the protocolMW manner, as the coordinator 
(i.e., the instance of the manifold Main (line 13) in §5). 

1. Make the extern events create_pool, create_worker, 
rendezvous, a_rendezvous, and finished available 
to the master so that it can communicate with the master/­
worker protocol. 

2. Perform some initialization work (optional). 

3. Perform some work concurrently by creating a pool of work­
ers and charge each with a computational job. Do this as 
follows: 

(a) Request a coordinator process to create an empty pool 
of workers by raising the create_pool event (which 
is handled at line 61 ). 

(b) Request this coordinator process to create a worker in 
this pool by raising the event crea te_worker (which 
is handled at line 27). 

(c) Read a unit containing the process reference (identifi­
cation) of a created worker from your own input port 
and activate it. (This unit, &worker, is sent through 
the first stream(->) on line 36 in protocol:MW .m to 
the master). 

(d) Write the information, which the worker needs to do its 
job, on your own output port. 

( e) Repeat steps a, b, c and d for each worker as needed. (In 
this way a pool of workers is created and set to work.) 

(t) Collect the computational results from the workers (read 
those results from your own input port) 

(g) Raise the event rendezvous to request the coordina­
tor to organize a rendezvous (which is handled at line 
39). 

(h) Wait for the event a.xendezvous raised by the co­
ordinator to acknowledge a successful rendezvous (line 
50). 

4. Repeat step 3 as many times as needed and raise at the end of 
this repetition the event finished (which is handled at line 
63) to inform the coordinator process that the master does not 
need workers anymore. 

5. Perform some final sequential computation (optional). 



The behavior interface of the worker is described below. Here, 
the death_worker event is introduced via the first argument of 
the worker. 

I. Read the information you need to do your job, from your 
own input port. 

2. Do the computational job. 

3. Write the computed results to your own output (master: 3(f)). 

4. Raise the event death_worker (which is handled at line 
42), to signal to the coordinator that you are done and are 
going to die. 

5. THE CONCURRENT VERSION 
The master and worker manifolds are easy to write as C wrappers 

around the original C subroutines of the sequential version. They 
are implemented according to the steps given in §4.3. Thereby we 
use a special ANSI C interface library where we find the routines 
for event handling, reading and writing data units from and to ports, 
etc. Due to space limitation we cannot show these wrappers. For 
this and other details we refer to [6] 

Using the manifold ProtocolMW together with the two master 
and worker manifolds (i.e., those wrappers from above), we can 
construct the following small MANIFOLD program which finally 
changes our original sequential application into a concurrent ver­
sion. 

1 // mainprog.m 
2 
3 //pragma include "ResSourcecode.h" 
4 
5 #include "protocolMW.h" 
6 
7 manifold Worker (event) atomic. 
8 
9 manifold Master(port in p) port in input. port in dataport. 

port out output. port out error. 
10 atomic {internal. event create_pool, create_worker, 

rendezvous, a_rendezvous, finished}. 
ll 
12 /* *** * ** ** * * ** * * * * ** * * * * * * ** ** *** *** ** * * * * * ** * •• * * * * / 
13 manifold Main (process argv) 
14 { 
15 begin: ProtocolMW(Master(argv), Worker). 
16 

In this source code we define on lines 12-16 the manifold named 
Main, which in its begin state calls the ProtocolMW man­
ner with the master and the worker manifolds as its actual argu­
ments (line 15). After this, the instance of Main, the instance of 
the master Master, and all the necessary instances of the worker 
Worker, run concurrently. 

6. RUNNING THE CONCURRENT VERSION 
The source files that contain the MANIFOLD program (i.e., main­

prog. m in §5 and protocol . min §4.2) must be compiled with 
the MANIFOLD compiler, named Mc. This compiler generates from 
each MANIFOLD source code a C source file which is subsequently 
compiled by a normal C compiler to an object file. These object 
files are linked with the object files obtained from the ANSI C 
files of the master and worker, the object files of the original se­
quential source code excluding the main and subsol ve routines, 
and with some other C source files necessary to provide the inter­
task information (these latter files are generated by the MANIFOLD 

linker named MLINK). In order to facilitate this whole procedure, 
the linker in the MANIFOLD system generates a makefile, which 
is meant to be used as a black-box by recursive make commands 
in programmer-defined makefiles that finally create the executable 
files suitable for the appropriate platforms. 

Process instances in a MANIFOLD application always run as sep­
arate threads (light-weight processes (11]) within an operating-sys­
tem level process. This latter heavy-weight process is called a task 

instance jn MANIFOL~. Process instances are bundled in task in­
stances either automatically or under user control. When all pro­
cess instances of a MANIFOLD application run as threads in the 
same task instance, the application executes in parallel (i.e., not 
distributed). We can, however, also bundle the process instances in 
such a way that each worker is housed in a separate task instance. 
This mapping of process instances in task instances, which can be 
fully specified by the user, is considered to be a separate stage in the 
application construction and is described in a file which is input for 
the MANIFOLD linker MLINK. In the example below, we arrange 
it such that each worker is housed in a separate task instance (line 
numbers have been added). 

l # mainprog.mlink 
2 
3 
4 
5 
6 
7 
8 
9 

10 
ll 
12 

{task * 
{perpetual} 
{load l} 

) 

{weight Master l} 
{weight Worker l} 

{ task mainprog 
{include mainprog.o} 
(include protocolMW.o) 

In this file, we specify that a task instance is considered to be 
"full" when its load exceeds 1 (line 5) and that the weight of an 
instance of the Worker or Master is also I (lines 6-7). The net 
result of this is that each task instance will house only one Worker 
or Master instance and thus instances of Worker or Master 
end up in different instances of the task named mainprog (line 
9). 

After this task composition stage the final stage in application 
construction can start: this is the runtime configuration stage. In 
that stage we define the mapping of tasks to hosts. This mapping 
too, is described in a file and is the input for the MANIFOLD runtime 
configurator named CONFIG. Suppose we need in our application in 
addition to the master, five workers; then we expect, with the above 
input file for MLINK, that at most (as we will see) six task instances 
come into existence during the run. Each of these task instances 
houses either a master or a worker instance. However, it can happen 
that a worker is already done before another worker is introduced 
by the master. In that case, the task instance (which is a heavy 
weight process) that has housed the freshly expired worker does 
not have a load of I anymore and is in principle ready to welcome 
a new worker. However, the standard behavior of a MANIFOLD task 
instance is that it dies when there are no thread processes running in 
it. To inhibit this task instance termination behavior, and to keep an 
empty task (i.e., task with load zero) alive for new workers, we use 
the keyword perpetual in the input file for the MANIFOLD linker 
MLINK (line 4). With this task termination behavior it can happen 
that we need less than six machines to run an application with five 
workers, which is more efficient. Therefore, when we start up the 
first task instance on the machine we are sitting behind (this so­
called "start-up" machine is in our case bumpa. sen. cwi . nl), 
we have to organize five other machines for the possible other five 
task instances that are forked during the run. In the file below these 
additional machines are specified. 

{host hostl diplice.sen.cwi.nl) 
{host host2 alboka.sen.cwi.nl} 
{host host3 altfluit.sen.cwi.nl} 
{host host4 arghul.sen.cwi.nl} 
{host hosts basfluit.sen.cwi.nl} 
{locus mainprog $hostl $host2 $host3 $host4 $host5J 

Here, we define five variables hostl, host2, upto host 5, which 
we set to, respectively, dip lice. sen. cwi. nl, alboka. sen­
. cwi. nl up to basflui t. sen. cwi. nl. These are the names 
of computers located at different places and connected via a net­
work. The last line in the file states that the instances of the task 
named mainprog can be started on any of these machines. 

Running the restructured program, using the task composition 
stage and run-time configuration described above, the application 
executes in a distributed fashion and produces the following chrono­
logical output. 

bumpa.sen.cwi.nl 262146 140 1048087412 175834 



mainprog Master(port in) ResSourceCode.c 136 -> Welcome 
basfluit.sen.cwi.nl 1572865 79 1048087412 275851 

mainprog Worker{event} ResSourceCode.c 351 -> Welcome 
basfluit.sen.cwi.nl 1572865 79 1048087412 366117 

mainprog worker{event) ResSourceCode.c 370 -> Bye 
arghul.sen.cwi.nl 1310721 79 1048087412 385644 

rnainprog worker(event) ResSourceCode.c 351 -> Welcome 
basfluit.sen.cwi.nl 1572865 90 1048087412 414473 

mainprog Worker(event) ResSourceCode.c 351 -> Welcome 
arghul.sen.cwi.nl 1310721 79 1048087412 483301 

mainprog Worker(eventl ResSourceCode.c 370 -> Bye 
basfluit.sen.cwi.nl 1572865 90 1048087412 511798 

mainprog Worker(event) ResSourceCode.c 370 -> Bye 
altfluit.sen.cwi.nl 1048577 79 1048087412 520315 

mainprog worker(event) RessourceCode.c 351 -> Welcome 
arghul.sen.cwi.nl 1310721 90 1048087412 552362 

mainprog Worker(event) ResSourceCode.c 351 -> Welcome 
altfluit.sen.cwi.nl 1048577 79 1048087412 600215 

rnainprog Worker(event) ResSourceCode.c 370 -> Bye 
bumpa.sen.cwi.nl 262146 140 1048087412 637649 

mainprog Master(port in) ResSourceCode.c 337 -> Bye 
arghul.sen.cwi.nl 1310721 90 1048087412 639482 

mainprog Worker (event) ResSourceCode.c 370 -> Bye 

In this output we see messages from the master and workers 
when they start working ("Welcome") and when they are done and 
return ("Bye"). We don't show the computational results of this 
distributed run. These are written to a file and are exactly the same 
as in the sequential version. 

Each of these messages has the following structure (one mes­
sage consists of two lines here). It starts with a long label followed 
by a-> before the actual message. The label shows, respectively, 
the machine on which the task instance runs, the identification of 
the task instance, the identification of the process instance, a time 
stamp that is expressed as two numbers (these numbers are the sec­
onds and microseconds past since midnight (0 hour), January 1, 
1970) the name of the task, the name of the manifold, the name of 
the MANIFOLD source file and the line number where the message 
is produced. With such a label in front of an actual message, we 
always know who is printing, what, where and when. 

When we look at the above output we see that not all the ma­
chines specified in the input file for the configurator are used. This 
is due to the perpetual termination behavior of a task instance and 
the fact that workers die before new ones are introduced in the 
workers-pool 
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Figure 1: The ebb & flow during a run of our restructured 
application for level 15. 

Because the number of task instances that are forked, varies dur­
ing the run and each task instance runs on a separate machine, the 

number of machines vary in exactly the same way as the number 
of task instances do. From the output, like above, we can make a 
graph that shows the number of machines needed during ~he dy­
namic expansion and shrinking of our application run. In Figure 1 
we show such a graph of an application that runs for 634 seconds 
and sometimes uses 32 machines. The weighted average of the ma­
chines used in this case is 11. 

When we want to execute our application in a parallel way such 
that all the workers are in the same task instance, then we simply 
change the load on line 5 ofmainprog .mlink to 6, and do the 
linking phase again. 

7. PERFORMANCE RESULTS 
We have carried out a number of experiments. Every run of our 

sequential and restructured application needs a number of parame­
ters. These are (see lines 13-18 in §3), the refinement level of the 
coarsest grid (we have used 2), the additional refinement level (we 
have used 0 through 15), the tolerance in the integrator (we have 
used l.0e-3 and 1.0e-4). 

The relationship between the additional refinement level l and 
the number of workers w is that w = 2l + 1. Thus the total number 
of workers plus master is 2l + 2. This latter number is an upper 
bound for the number of machines used during a distributed run. 

We have run and compared the performance results of the se­
quential and the concurrent versions of our application on a cluster 
of 32 single processor workstations. Such a cluster is big enough 
to run the application with l = 15. Unfortunately, in our institute 
no homogeneous cluster of workstations of that size is available. 
All the machines in our cluster have an AMD Athlon Processor 
and a cache size of 256Kb. However 24 machines have a clock 
cycle of 1200Hz, 5 machines have a clock cycle of 1400Hz, ~d 3 
machines have a clock cycle of 1466Hz. Although these machmes 
have different CPU speeds, their speeds are of the same order of 
magnitude. The workstations in the cluster are connected to each 
other by a switched Ethernet (100 Mbps). 

The experiments were done at night. However, even then, this 
means that we do not have a guarantee that we are the only user. 
There are always unpredictable effects such as network traffic and 
file server delays, etc. Furthennore some users of the machines in 
the cluster, run their ownjob(s) at night, run screen savers or have 
runaway Netscape jobs. All this causes differences in performance 
on identical hardware. These unknown effects cannot be eliminated 
and are always reflected in our computational results. To even out 
such "random" perturbations, we ran the two versions of the appli­
cation five times and computed the average elapsed or wall clock 
times (i.e., the actual time the application program runs as it would 
be measured by a user sitting at the terminal with a stopwatch). 
Thereby we notice that the elapsed times for the five different runs 
were of the same order of magnitude. The timing measurements 
were obtained using the UNIX utility /bin/ time. The results 
are given in Table I. The weighted average of the number of_ ma­
chines used during a run and the average speedup are also given. 
Figures 2, 3, 4 and 5 graphically show the contents of Table I. Be­
cause of the wide range of the average sequential and concurrent 
time we use the logarithmic scale in Figures 2 and 4. 

For our analysis of the results, we distinguish the following cat­
egories of overhead introduced by our restructuring: 

• The overhead introduced by the unpredictable effects of work­
ing in a multi-user environment. These ~ffects are ~otally out 
of control in a multi-user environment without dedicated ma­
chines. 

• The overhead introduced by the concurrency itself (i.e., the 



overhead of making a sequential program run as a concurrent 
program). 

• The overhead of the coordination layer (i.e., the actual im­
plementation of the overhead of the concurrency). 

Error Name: /stackunderflow 
I II 1eve1 I Sf I Cl I m I su 
I II () I f\ f\'l I O ?7 I 1 o I /'\0 
Offending Command: --rlineto--o 

I II ~I 0.061 13.09 2.8 0.0 
0.11 7,86 2.7 0.0 

Operand Stack: 11.45 2.9 0.0 

I 
., V,"TV 17.40 3.6 0.0 
6 0.86 26.91 3.3 0.0 

63 7 1.90 28.97 3.6 0.1 
J.Oe-3 run 8 4.27 30.06 3.7 0.1 

9 10.28 23.84 4.1 0.4 
10 24.14 21.82 5.5 l.l 
11 57.91 33.58 6.3 1.7 
12 145.47 50.79 7.6 2.9 
13 337.69 75.28 9.8 4.5 
14 818.62 124.20 11.7 6.6 
15 2019.02 259.69 12.2 7.8 
0 0.02 7.68 1.9 0.0 
1 0.05 13.04 2.4 0.0 
2 0.07 12.99 2.8 0.0 
3 0.15 7.44 2.6 0.0 
4 0.30 12.03 2.9 0.0 
5 0.68 16.39 3.3 0.0 
6 1.53 21.07 3.5 0.1 
7 3.53 28.68 3.7 0.1 

J.Oe-4 run 8 8.04 30.29 3.9 0.3 
9 21.00 26.24 4.8 0.8 

10 51.64 38.66 5.7 1.3 
11 124.17 46.30 7.6 2.7 
12 301.17 65.02 9.9 4.6 
13 724.92 129.28 11.4 5.6 
14 1751.02 227.18 13.l 7.7 
15 4118.08 519.15 13.3 7.9 

Table 1: Average sequential time (st), average concurrent time 
(ct), weighted average of numbers of machines used (m), and 
average speedup (su = st/ct) for 1.0e-3 and 1.0e-4 runs for 
levels O through 15. 

Because the differences between the five results were not so big we 
conclude that the effects of working in a multi-user environment 
are minimal in comparison with the other overhead. Looking at 
Table l, we see that for the runs with l < 10 there is no gain in 
time for the 1.0e-3 and the l .0e-4 runs (i.e., the speedup is less than 
1.0). Probably the useful computational work done by the workers 
is too little in comparison with the overhead of the concurrency plus 
the overhead of the coordination layer. For the l 2:'.: 10 runs we see 
a gain in time. For those levels the average speedup for the levels 
10 through 15 ranges from 1.1 to 7.8 for the l .0e-3 runs and from 
1.3 to 7.9 for the l.Oe-4 runs. However, we also see that this time 
reduction is accomplished by a growing number of machines. Their 
averages range for the l.Oe-3 runs from 5.5 to 12.2 machines and 
for the 1.0e-4 runs from 5.7 to 13.3. Furthermore, we see that the 
average speedup in a run always lags behind the average number 
of machines it uses. For the levels 12 and higher the speedup is 
about half of the weighted number of machines used. From this 
we conclude that for those levels the overhead of the concurrency 
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