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A standaPd finite element pPoceduPe has been applied to the pPOblem of 

tpansonic shock wave - boundaPy layeP intePaction at a convex wall. The method 

is based on the analytical Bohning-ZiePep model (1], whePe the boundaPy layeP 

is pePtuPbed by a weak no'Y'ITlal shock wave which shows a singulaP pPessuPe 

gPadient at the cul"Ved edge of the boundaPy Zayep. In the pPesent numePical 

method the application of a poweP l(1L) velocity distPibution at the upstPeam 

end of the boundaPy layeP has been abandoned and a mope Pealistic distPibution 

is applied. The Pesults ape compaPed to otheP numePical solutions and to 

expePimental Pesults. The diffepences ape discussed togetheP with the limita

tions intPoduced by the method. 

1. Introduction 

The problem of transonic shock wave - boundary layer interaction has been 

treated analytically by Behning and Zierep [l]. They based their flow model on 

the experimental investigations of Ackeret, Feldmann and Rott [2] who studied 

the interaction of a normal shock with the boundary layer at a curved wall. 

The experiments indicated a very strong pressure gradient immediately down

stream of the shock, manifesting itself in an expansion at the outer edge of 

the turbulent boundary layer. This rather pronounced expansion decreased when 

approaching the wall and it also induced an upstream effect in the boundary 

layer. 

The after-expansion is also observed in the inviscid case at the downstream 

foot of a normal shock at a curved surface, a problem solved by Oswatitsch and 
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Zierep (3]. They found that at a convex wall the normal shock wave curves 

upstream, whereas at the foot the curvature is logarithmically infinite. As a 

consequence the velocity and the pressure gradient show a logarithmic 

singularity resulting in an expansion immediately downstream of the shock. 

Inspired by the similarity between the experimental results [2] and the 

inviscid solution [ 3] Bohning and Zierep [ l] developed an analytical method 

that introduced the Oswatitsch-Zierep singularity into a viscous model. The 

numerical method described in the present paper is entirely based on the 

Bohning-Zierep model. Whereas Bohning and Zierep only could select a special 

initial velocity profile of the boundary layer (a profile that nevertheless is 

rather realistic) a computational approach might generalize the problem with

out more complexity. 

2. The flow model 

General description 

The interaction region is considered [l] to extend over a distance 2l upstream 

and downstream of the shock wave (Fig. 1), l is of the order of the boundary 

layer thickness. 

y5 

-.... xi, 

Fi g.1: Region of interaction in the Behning- Zierep model. 

At the upstream end a boundary layer of the basic flow enters the region with 

a prescribed velocity profile; the thickness of the layer up to the level 

where the velocity is sonic is 6. The basic flow is considered to be indepen

dent of the distance along the wall (wall curvature « 1). The weak shock 

stands on the interaction region of thickness 6. The region is divided into 

two layers: a thick inviscid upper layer and a thin viscous sublayer with 
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thickness o • 
µ 

The flow is composed of the above mentioned basic flow and a perturbation 

flow. The basic flow, which is known, remains when the shock strength vanishes 

and, therefore, the perturbation flow to be determined, exists only due to the 

shock wave. The perturbation quantities are considered small with respect to 

J the basic flow quantities. 

l 

Boundary value problem 

According to [1] a cartesian coordinate system is introduced (Fig. 1). The 

perturbation equations for the inviscid upper layer may be written as 

0 (1) 

for the continuity equation, 

5' ..R.dM~ 15' 
p M* _!::_ + p v' - -- + - £.E..:_ = 0 
o o Clx o o dy y ax 

(2) 

and 

(3) 

for the momentum equations, and 

p' + ½{(y-1) M~ 2 - (y+l)} p' + (y-1) ~ p0 u' 0 (4) 

for the energy equation. 

In these equations all flow quantities are non-dimensionalized by their 

critical ( sonic) values; the subscript o and superscript ' denote basic flow 

and perturbation flow, respectively. Then, the non-dimensional velocity com

ponents are given by M* + u' and v' and the non-dimensionalized pressure, 
0 

density by p0 + p', p0 + p', respectively. The x-coordinate is non-dimension-

alized by l and the y-coordinate by o. y is the ratio of specific heats. By 

introducing a function cp(x,y), such that 

p' -y _Qp_ 
OX v' . (5) 
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we obtain for eqs. (1), (2), (3) the single equation 

0 ( 6) 

where M (y) = M*(y) /p(y) [l] and the partial derivatives are denoted by sub-
o O 0 

scripts. 

Eq. (6) is integrated between x =±Land the boundary conditions are (Fig. 2): 

y 

L:0(10I 

Fig. 2 : Region of integration. 

1. at x = ±L, v' O, giving 

0 

2. at the outer edge of the inviscid upper layer, y 

the external flow, thus 

1 
~x(x,l) = - y p'(x,1) 

& 
3. at the inner edge, y = ~µ = y , we have p' (x,y ) 

u O y 0 

and (7) 

(7) 

1, p' is prescribed by 

(8) 

0, so that with eqs (3) 

(9) 

The thickness y0 of the viscous sublayer is considered as they position where 

the viscous and inviscid stresses balance; above y O the inertia stresses are 

dominant, below y0 the viscous stresses are dominant. 

According to [1] the x derivative of the wall shear stress ~w is taken as the 

characteristic physical quantity of which the parametric dependance of y0 is 

analysed; this derivative is expressed as 
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µ. 
o2 u' (x, o;y 0 ) 

ox oy 
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(10) 

where a* is the critical speed of sound and µ the dynamic viscosity coeffi

cient. 

To evaluate eq. (10) the perturbation velocity u' is determined in the viscous 

sublayer by solving the perturbation equations in the sublayer [ l] under the 

assumption that v' = 0. Then u' is found as an explicit function of x and y 

with y 0 as a parameter. 

taken as that value 

The particular thickness of the viscous sublayer is 

o-i:w 
of y O for which~ shows a minimum with respect 

to y0 • That is, at the foot of the shock wave 

In the numerical computation it was found that eq. (10) showed such a minimum 

for y O of the order 10-2 • The perturbation pressure along the outer edge of 

the upper inviscid layer in front of the shock wave has been taken constant 

[l], namely 

J_ 

p' (x, 1) p' (-L, 1) 
[ + 1 ] y-1 

2+(y-l) M2(-L,1) 
1 (11) 

The pressure jump across the shock wave is then given by the normal shock 

relations. 

For the pressure prescribed at the edge of the inviscid layer downstream of 

the incident shock the expressions of the 0swatitsch-Zierep theory [ 1,3] are 

applied. These expressions read 

u'(x,1) u'(o,l) - ------ [2.R. - ov'(o,l)] (2 x fox+ x) + 

n'Vl-M2(o, 1), Rw ox (12) 

and -4 S l O U' ( 0 , 1 ) X 

(13) 

where ~ denotes quantities downstream of the shockwave, Rw is the radius of 

wall curvature and s 10 is a free parameter matching the boundary layer flow to 

the external flow field. Integrating the momentum equation, eq. (2), with 

respect to x we obtain 
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p'(x,l) 
~ ~ l dM* ( l) x ~ ~ 

-yp (l)[M*(l){u'(x,1)-u'(o,1)} + T _od_ f v'(~,l)d~]+p'(o,l) (14) 
0 0 u Y O 

Since p'(x,1) is not known a priori, it requires a known flow in the inviscid 

upper layer (and vice versa, the determination of the flow field in the upper 

layer requires known values of p' at the edge of the layer); p' has to be 

determined iteratively. 

3. Numerical solution 

Computational method 

The boundary value problem given by eqs (6)-(9) together with eq. (14) has 

been solved numerically by a standard finite element method, consisting of a 

package of FORTRAN subroutines. The package, called AFEP (A Finite Element 

Package), is described in detail in [4]-[6]. 

In the present application the computational domain is subdivided in a number 

of subdomains, shown in Fig. 3, where each pair of numbers represents the sub

boundary and the number of meshpoints, respectively. The total number of mesh

points is 1121. 

y 

-y=1-----------r---:--,--::--r::-c::,-k-:--:::-r-::--::--r------;:;--;;;;------, 
3.10 i L.,10 \5,1Q ,7.10: 8,10 9,10 

i : i1t i I I 11 I 
I I ,, I 
I I 11 I I 

2.10 10,10 

i I 15'5 I I Y, ----------------- --- ---,-----f-.--,,---+- ____ J..._ -- - - -- -- - - -------- - -

Y2 1,10 18,10 1 17,10 ~6.10i1L.,10\ 13,10 ! 12,10 11.10 x 

-L -1 -x1 /0\ x1 L~ 
-xo Xo 

Fig. 3: Distribution ot meshpoints in the computational program. 

The shock wave et the outer edge of the inviscid upper layer is confined with

in the interval [-x ,x ] , where x =10-6 , then the numerical pressure rise is 
0 0 0 

almost discontinuous. In regions where the derivatives of flow quantities are 

large a fine meshwidth has been chosen. The streamwise dimension of the com

putational domain is taken as L = 10. 
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The computational domain is now divided into triangular elements, the corner 

points of which are the above mentioned meshpoints. 

Initial velocity profile 

As incoming velocity profile at x 

been taken, given by 

-La turbulent boundary layer profile has 

where M~(l) = 1 [l], the von Karman constant K = 0.41, cf(-L) is the skinfric

tion coefficient at x = -L, the recovery factor for a turbulent boundary layer 

r = 0.89 and M(-L,1) is the Mach number of the flow at the edge of the 

boundary layer at x = -L. The term ,.Q,n y describes the logarithmic law of the 

wall of the velocity profile; ( l+cos-n:y) is the additional term of the Coles 

wake function, it is multiplied by 0.5 in the case of a turbulent boundary 

layer with zero pressure gradient. 

Boundary conditions along upper and lower boundaries 

of the inviscid layer 

The determination of the thickness y O of the viscous sublayer is part of the 

solution procedure of the flow problem in the inviscid upper layer. Since 

y = 0(0.01) [ l], as an initial guess y is assumed to belong to the interval 
0 0 

0.005 < y0 < 0.015. Then, for three distinct values of y0 , displayed regularly 

in that interval, the boundary value problem is solved, yielding the u' and p' 

distributions along 
oi; 

w 
pute ox (o,o) for 

the edge of the sublayer. Using eq. (10), we may now com-

each of the distinct values of y • Fitting a parabola 
o oi; 

through the results for these three values, a minimum value of oxw (o,o) may 

be found course (y0 )min should ly within the afore-

mentioned interval, if this is not the case the procedure should be repeated 

for a new interval of y 0 • Depending on the particular problem, values between 

0.013 and 0.014 were obtained. The perturbation pressure at the outer edge is 

computed according to eqs (11)-(14) and using the normal shock relations. 

Downstream of the shock wave and behind the minimum in the after-expansion 

region a linear pressure distribution is applied until at x = L the pressure 

recovery is 90% of its value just across the shock wave. 
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The pressure applied at the outer edge of the inviscid layer downstream of the 

shock requires a known flow field of the inviscid upper layer. Therefore this 

flow problem has also been treated iteratively; the first iteration sweep has 

been performed for a constant pressure, being the value just across the shock 

wave which is obtained from eq. (11) using normal shock relations. 

The free parameter s 10 in eq. ( 12) has been taken such as 

matching with the inviscid outer flow field. In fact 

experiments in [2] and (7] have been used. 

Computation of perturbation pressure and velocity 

to give a good 

the results of 

In all meshpoints of the inviscid upper layer p' and v' are determined from 

eq. (5) using the standard subroutines of the AFEP package. Eq. (2) is 

integrated with respect to x, knowing the incoming velocity profile at x = -L, 

eq. (15), this yields u'. 

The perturbation pressure in the viscous sublayer is obtained from the results 

in the inviscid upper layer for an established value of y, giving p'=p'(x,y) 
0 ' 0 0 

since%}- in the sublayer is assumed to be zero [1]. 

4. Results 

The numerical results are compared to some experimental data [2] for a convex 

surface (R ~ 0.5 m) and to those [7] for a plane wall. The comparison has been 

made for different Mach numbers Mat the edge of the boundary layer just ahead 

of the shock wave, and for different Reynolds numbers Re. The Reynolds number 

is based on the length of the convex plate [2] or on the length of the plane 

wall on which the boundary layer develops [7]. Also other theoretical results 

have been compared to those measurements [l], [8]-[11). The results of 

1 

Messiter [9) are only available downstream of the shock. ,, 

All numerical surface pressure distributions show a steeper pressure rise than 

the experimental distributions (Figs 4-6). 

It should be mentioned that the theoretical pressures of Inger and Mason [10] 

and of Melnik and Grossman [ 11] , Fig. 6, are in better agreement with the 

initial pressure rise than the results obtained by the Bohning-Zierep model. 

I 

J 
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This is probably due to the better model description in [10] and [11] which is 

closer to the real viscous flow behaviour, whereas in the Bohning-Zierep model 

used in [ 1, 8] and in the present method the sublayer is very thin indeed, 

about 1% of the boundary layer thickness. 

0.7 .----.------.-----,----.-----,---------, 

pix.OJ 
~ l 06 

Behning en Zierep (1.8 l 

I Q,5 t-------'H-------+----+-------t----~---------, 
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0 : A.F.&R.[2] 

-- : pre5ent rl?5ult5 

OJ. ----------+------+-----+-----~------, 
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Fig.l., Surface pressure distribution: M=1.3225,Re=2.63·106 
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J 
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Fig.5: Surface pressure distribution: M=1.1897, Re=2.658•106 



164 9 (1984) DELFT PROGRESS REPORT 

0,6 .--------,-----,-----,----,-----,---, 

pix.OJ 

P!1 

p 

Pt1 

t 

I Messiler [ 9 I 
Melnik en Grossman {11 l 

Inger en Mason I 10 l 
0.5 1-------'----+------l-----+------'-------; 

-:Gadd [71 

--: present results 

0,41,.._ __ .....J. ___ _j_ ___ ...1.... ___ ::-------:---~ 

-2 0 2 I. 6 8 10 
--..... x 

Fig. 6: Surface pressure di stri but ion: M= 1.12, Re= 6 .0-106 
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Fig. 7: Pressure distribution in the boundary layer : M = 1. 3 225, Re:2.63-10 6 
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Fl g. 8: Pressure distribution in the boundary layer: M = 1.12, Re = 6 .0-106 . 
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Fig.9: Velocity profiles: M = 1.3225, Re= 2.63-10 6 • 
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Fig.10:Velocity profiles: M=1.12, Re=6.0·10 6 • 

Figs 7 and 8 represent the diffusion towards the wall of the steep pressure 

jump applied at the edge of the layer. 

The velocity profiles are plotted in Figs 9 and 10, There exists a substantial 

disagreement between theory and experiment for the higher Mach number case 

(Fig. 9). This may be expected since the Bohning-Zierep model is based on the 

disturbance of a M = 1 basic flow, therefore a better agreement results for a 

Mach number closer to unity (Fig. 10). 

Another reason for the disagreement in the case of Fig. 9 may be the diffi

culty of having a correct incoming velocity profile at x = -L, since in the 

experiments of [2] there is no profile given at that position. The numerical 

results show a reverse flow in the case of Fig. 9. Since the flow model does 

not cover such a phenomenon, this result should be considered with some doubt; 

it might only indicate the breakdown of the flow model and one has to look for 

a different approach, as has been down in (12]. 

From Fig. 11, where the distribution of the vertical velocity component is 

shown, it may be seen that the upwash in the inviscid upper layer accumulated 

into a discontinuity at the foot of the shock wave, indicating an oblique 

shock wave and a kinked streamline. 

/'J 
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Fi g.11, Vert icol velocity component: M=1.3225, Re= 2.63·106 
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In the initial boundary conditions the pressure jump across the shock wave was 

obtained by normal shock relations, thus involving no vertical velocity com

ponent. An oblique shock does not have a singularity at its foot on a curved 

surface. There is, however, always the possibility of an after-expension that 

is regular in the sense that the streamline is convex downstream of the shock, 

as shows the v-distribution in Fig. 11. 

The v-distribution is asymmetric with respect to x = O. At y = y 0 , the edge of 

the viscous sublayer, v should vanish as the boundary condition states. In the 

AFEP computation procedure the Neumann conditions are satisfied better if the 

meshsize in vertical direction is decreased in the vicinity of the boundary. 

~ In the present computercode we have not tried the utmost. 

5. Concluding remarks 

The implementation of the Bohning-Zierep model [l] into a numerical method of 

the shock wave - boundary layer interaction problem delivers a more universal 

treatment of the flow problem than the analytical method given in [l] because 
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of the larger applicable variety of flow parameters. 

As is the case with most of the existing numerical methods the agreement among 

themselves is better than the agreement with experimental results. This may be 

due to the insufficient modelling of viscosity and, certainly, of turbulence. 

In the flow model introduced in [l], which is applied numerically in the 

present paper, the initial normal shock changes into an oblique one as the 

numerical procedure iterates to the final solution. As a consequence the 

0swatitsch-Zierep singularity [3] at the foot of the shock vanishes and so 

does the accompanying after-expansion belonging to a normal shock at a convex 

wall. However, also oblique shocks inpinging on a boundary layer are succeeded 

by expansion regions. Therefore, instead of having a normal shock, it would be 

interesting to apply as incident shock on the edge of the inviscid upper layer 

a shock wave which is slightly oblique and which is followed by an expansion 

region. A comparison of the results obtained with the present numerical method 

and using the two different boundary conditions, might be helpful in the 

discussion [13] which of the two conditions is most likely. Such an extension 

of the flow model will be the subject of future work at the Laboratory for 

High Speed Aerodynamics of the Department of Aerospace Engineering. 
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