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Results are presented for an efficient solution method for second-order accurate dis­
cretizations of the 2D steady Euler equations. The solution method is based on iterative defect 
correction. Several schemes are considered for the computation of the second-order defect. In 
each defect correction cycle, the solution is computed by non-linear multigrid iteration, in 
which collective symmetric Gauss--Seidel relaxation is used as the smoothing procedure. A 
finite volume Osher discretization is applied throughout. The computational method does not 
require any tuning of parameters. The airfoil flow solutions obtained show a good resolution 
of all flow phenomena and are obtained at low computational costs. The rate of convergence 
is grid-independent. The method contributes to the state of the art in efficiently computing 
flows with discontinuities. ,. 1988 Academi, Press. Inc. 

1. INTRODUCTION 

Recently, a very efficient multigrid method has been developed for the solution of 
a robust, first-order accurate discretization of the Euler equations [6]. Two well­
known drawbacks of first-order accurate discretizations of the Euler equations are: 
(i) their need for relatively fine grids in smooth flow regions and (ii) their strong 
smearing of discontinuities that are not aligned with the grid. Second-order 
accurate discretizations yield a strong improvement of both drawbacks. However, 
second-order discretizations cannot be solved with the same efficiency by the multi­
grid method. Motivated by the requirement of computational efficiency, Hemker 
[5] and Spekreijse [ 11 J investigated a solution method for second-order schemes. 
The method is based on iterative defect correction [2]. 

Iterative defect correction is known to be efficient for smooth problems. In this 
paper, we show that it is also feasible for the efficient computation of non-smooth 
problems. We show the behaviour of defect correction iteration for five different 
second-order schemes. The discussion is restricted to a number of well-known 
airfoil flow problems from [ 10, 14]: the NACA0012-airfoil at M"~ = 0.63, r:1. = 2"; 
MI = 0.8, Cl.= 1.25"; M,x, = 0.85, (.( = l 0, and MYo = 1.2, Cl.= 7°. 

* This work was supported by the Netherlands Technology Foundation (STW). 
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In Section 2, we briefly describe the basic discretization technique. In Section 3, 
we discuss the solution method used: non-linear multigrid as an inner iteration for 
the solution of the elementary first-order system and defect correction as an outer 
iteration for the solution of the second-order system. In Section 4, we describe the 
five second-order schemes that were used in our computations. The main results of 
this paper are given in Section 5. Conclusions are summarized in Section 6. 

2. OISCRETIZA TI0N 

The steady 2D Euler equations can be written on the domain Q as 

with 

and 

pvu f = pu2 + p ' 
( 

pu ) 
g= 1 ' ( 

pv ) 

pv- + p puv 

pu(e+ p/p) 

1 p 1 1 1 

e = -- - + - ( u- + v- ). 
y- Ip 2 

pv(e + p/p) 

(2.1) 

(2.2) 

(2.3) 

Here, p, u, v, p, and }' denote respectively density, velocity components in x- and 
y-directions, static pressure, and ratio of specific heats. 

Following [6], we solve the Euler equations in their integral form 

I (fn,+gn,)ds=O. 
()!)• 

(2.4) 

With MJ* we denote the boundary of an arbitrary subregion Q* c Q, and with nx 
and n, the components of the outward normal with unit length, along c5Q*. A 
simple way to discretize (2.4) is to subdivide Q into disjoint quadrilateral sub­
regions Qii (finite volumes) and to assume that the functions f and g are constant 
along each volume wall and that they are functions of the state at the left and right 
side of each volume wall only. This gives us the discretization 

4 

L {f(q\i.k, qij.k)nx,, k + g(q\1.k, q}i.k )n,,, J S;1,k = 0 for all U, (2.5) 
k=I 

with /(q 1, q') and g(q 1, q') the so-called numerical flux functions, su.k the length of 
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the kth wall of Qu, and I and r superscripts referring to the left and right side of a 
wall, respectively. 

For the Euler equations, because of their rotational invariance, (2.5) may be 
further simplified [ 11 J to 

4 

L Ti1,l/(Tu.k%k• T;i,kqij_k)su.k =0 for all ij, (2.6) 
k=I 

with 

T;;,-(~ 
0 0 

~} n,,,,k /l_ru,k 

-n nxu,k Y11.k 

0 0 

(2.7) 

and with n,,,.k and n_..,,_1 the components of the outward unit normal on f}Q ij,k· 
In each volume, we assume the state to be an approximation of the mean value of 

the exact solution. When we take q)i.k and qij.k equal to the states in volume Qu and 
its neighbouring volume Qii,k> (2.6) is first-order accurate only. Second-order 
accuracy can be obtained in a simple way by determining q~.k and qij.k as either 
interpolations or extrapolations by low degree piecewise polynomial functions, 
using two or three adjacent volume states. Schemes for inter- and extrapolation of 
volume states are called projection schemes [8]. 

For the evaluation of the numerical flux vector f at the volume walls, we 
consider the flow at each volume wall as the local solution of the l D Riemann 
problem for the two gas states qLk and qfi,k' For the solution of the ID Riemann 
problem, we have chosen the approximate Riemann solver as proposed by Osher 
[9]. The choice for Osher's scheme is motivated among others by: (i) its consistent 
treatment of boundary conditions, and particularly (ii) by its continuous differen­
tiability and therefore its suitability for a Newton-type solution technique. (A 
Newton-type solution technique is used in the relaxation method which is part of 
the multigrid technique used.) 

3. SOLUTION METHOD 

When one uses the first-order discretization, the non-linear system (2.6) becomes 

4 

L Tij,U(T;j,kqij• Tij,kqij_k)S;j,k=O 
k = 1 

for all ij, (3.1) 

in which q;i denotes the state in volume Q;1, and qiJ,k that in the neighbouring 
volume O;i,k· 

To solve this system, we already considered [6, 7] point (=volume) relaxation 
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methods, in which we used one or more local Newton steps for the collective 
relaxation of the 4 unknowns in each single volume. The most efficient relaxation 
was obtained by selecting a large tolerance for the Newton iteration, so that in all 
but exceptional cases only a single Newton step was taken. These relaxation 
methods are simple and robust, but need an acceleration. When one uses, as in 
[6, 7], collective symmetric Gauss-Seidel as a point relaxation method, a suitable 
acceleration technique is found in multigrid. As a very efficient and robust multigrid 
technique we used: the full approximation scheme (FAS), preceded by full multigrid 
( FMG) to obtain a good initial estimate [ 4]. 

However, when one uses a higher order discretization and adopts this solution 
method, one will severely lose in efficiency. Point Gauss-Seidel will no longer be a 
good smoother. To circumvent the difficulty of finding a sufficiently good smoother, 
we use an iterative defect correction (IDeC) process as solution method [2]. 
Denoting the system of equations resulting from a first- and second-order 
discretization as N,: (q1,) = 0 and Nl(q1,) = 0, respectively, the IDeC-process can be 
written as 

n= I, 2, ... , N 

( 3.2a) 

(3.2b) 

As solution method for NL(q1,) = rh as it appears in both (3.2a) and (3.2b), we 
maintain the efficient multigrid method just described. 

It is well known [ 4 J that if the problem is smooth enough, qf, is second-order 
accurate already. If the solution is non-smooth, i.e., when higher derivatives are 
dominating, there is no reason to expect qf, to be more accurate than q h · 
Nevertheless, in Section 5 evidence is given that for non-smooth problems, a single 
IDeC-cycle may improve the solution significantly. In fact we may use q'J, + 1 - q'J, as 
an error indicator. In the smooth parts of the solution qi- qJ, = O(h), and 
qh - qi= O(h 2 ). Where these differences are larger, e.g., 0( 1 ), the solution is non­
smooth (relative to the grid used). There, if a more accurate solution is wanted, grid 
refinement is to be considered rather than a higher order discretization. 

4. PROJECTION SCHEMES 

As standard projection schemes, we consider the central, the upwind and an 
upwind biased scheme. Let q\(!>112,1 and q'.t;\;z,J be the kth component (k = 1, 2, 3, 4) 
of q\+ 112.; and qi+ 112,1, in which i +½refers to the wall separating volume i and i + I. 
Then these three schemes can be written as 

( 4.1 a) 

( 4.1 b) 

Hill 



DEFECT CORRECTION AND MUL TIGRID 187 

For"= l, K = -l, and"=½, we get the central, the upwind, and the upwind biased 
schemes, respectively. Similar relations hold for q\'.J~ 1; 2 and q;_t7t 112 • A property of 
the central scheme is that it makes the Riemann solver superfluous. Properties of all 
three schemes are: (i) that they cannot be applied in a consistent way in the 
neighbourhood of boundaries, and (ii) that they may yield solutions with spurious 
non-monotonicity (wiggles). In the context of IDeC, wiggles and even instability 
might not be serious problems. They might become significant in a later stage of the 
process only, a stage not to be reached in practice. 

As a projection scheme which is consistent near boundaries, Hemker [5] 
introduced the so-called superbox scheme. A superbox is defined as a set of 2 x 2 
volumes. At the 4 inner walls of a superbox the simple central projection scheme is 
used, whereas at the 8 outer walls the upwind scheme is used. A property of the 
superbox scheme is that its solutions are second-order accurate per arbitrary set of 
2 x 2 volumes, but not per single volume. The remaining lower order error contains 
only high frequencies. This error can be eliminated in a simple way by computing 
states at volume vertices as averages over neighbouring volumes. (Formal proofs 
can be given.) Similar to the aforementioned schemes, the superbox scheme may 
also yield solutions with wiggles. 

If a monotone solution is required, and if it might be necessary for some problem 
to suppress wiggles indeed, the question arises whether it is suitable to use a flux 
limiter [ t 2, t 3 J for this purpose. Projection schemes using flux limiters can be 
written as 

(4.2a) 

(4.2b) 

with t/1 denoting the flux limiter, and with 

(4.3) 

We prefer a limiter which is smooth and which renders a scheme at the upstream 
side of shock waves which is close to the upwind scheme (a natural scheme in those 
regions). To satisfy these requirements we can simply use the van Albada limiter 
[ t ], which is defined by 

R 2 +R 
t/t(R)= R2+ 1 · (4.4) 

Projection schemes using flux limiters need (at least) three volume states per projec-
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tion. This implies that they cannot be used in a consistent way near boundaries. 
Near boundaries one has to use other schemes, as for instance the central and the 
upwind scheme, which may both introduce some small wiggles. 

5. RESULTS 

For all airfoil flows considered, we used O-type grids with the outer boundary at 
an approximate distance from the airfoil of either 25 or 100 chord lengths. For both 
distances, we imposed the unperturbed flow at the outer boundary, although we did 
not overimpose. (I.e., for, e.g., a subsonic outer boundary, we did not impose more 
than 3 boundary conditions at the inlet part of that boundary and not more than 1 
boundary condition at the outlet part.) 

For each of the projection schemes considered, the Kutta condition was 
automatically satisfied for all flows. For all flows a streamline smoothly left the 
trailing edge. An explanation for the fact that there is no flow around the airfoil's 
tail may be the property of all discretizations that they are non-isentropic. Along 
both the upper and lower airfoil surface, they all generate spurious changes of total 
pressure. As a consequence, a flow around the airfoil's tail would in general result in 
a stagnation at two different pressures, which is an unstable flow situation. 

At first, we investigated the iterative solution method for the non-linear systems 
(3.2a) and (3.2b) (inner iteration). It was found that the convergence rate is 
independent of the starting point of the relaxation sweeps. However, we found that 
for efficient smoothing one should always make symmetric sweeps. So, for instance, 
if one starts at the airfoil, one should not stop at the outer boundary, but return 
from the outer boundary to the airfoil and stop there. 
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Concerning the multigrid strategy, it appeared that the straightforward use of 
V-cyclcs with a single symmetric pre- and post-relaxation per level gives the best 
convergence rate. For all results presented in this paper, we used a coarsest grid 
with 8 volumes tangentially to the airfoil and either 4 or 2 volumes radially. We 
notice that this is extremely coarse, if seen in the light of suspicions raised by 
Eriksson and Rizzi [3 J against the possibilities of a multigrid method. 

To study the behaviour of IDeC for the various projection schemes, we 
considered as standard test case: the NACA0012-airfoil at M x = 0.8, (Y. = 1.25'' 
( transonic flow with shock). 

First, to investigate the convergence properties of IDcC for the various projection 
schemes, we performed for each scheme 10 IDeC-cycles, with 5 FAS-cycles per 
IDeC-cyclc. As finest grid, we used a moderately stretched 32 x 16-grid ( Fig. 5.1 ), 
yielding a 3-level multigrid strategy. 

In Fig. 5.2a, convergence histories are given by graphs of the residual ratio 
L7- 1 lr;:U)I/I:;~ 1 li'J,(i)I versus the number of FAS-cycles. Here,,;: denotes the sum­
mation over all volumes of,;:= Nl,(q;:), i the ith residual component, and n the nth 
iterand in ( 3.2 ). As a starting point in the convergence histories, the first-order 
solution obtained from ( 3.2a) is used. The vertical lines mark the beginnings and 
ends of the IDeC-cycles. In Fig. 5.2b, graphs are given of the surface distribution of 
the entropy ratio s/1·, , with s = pp ;·_ For this, the curves with circular markers 
indicate the upper surface distributions, whereas the curves with triangular markers 
indicate the lower surface distributions. Except for the superbox scheme, the 
markers correspond with the x-locations of the volume wall centres at the airfoil's 
surface. (For the superbox scheme, due to the averaging, they correspond with the 
volume wall vertices at the airfoil's surface.) 

It appears that both the central and upwind scheme lead to an early divergence 
of IDeC. For the central scheme, the shock behaves as source of instability. For the 
upwind scheme, the stagnation region behaves as such. The instability of IDeC for 
the upwind scheme can be explained by applying local model analysis to the linear 
convection equation. 

The upwind biased scheme, the superbox scheme, and the upwind scheme sup­
plied with the van Albada limiter (van Albada scheme) all give convergence. Their 
convergence histories suggest that the use of 1 or 2 FAS-cycles· per IDeC-cycle is 
sufficient. To investigate the optimal number of FAS-cycles per !DeC-cycle, we 
performed for the converging schemes successively: 20 IDeC-cycles with l FAS­
cycle per IDeC-cycle, and 10 IDeC-cycles with 2 FAS-cycles per IDeC-cycle. As 
finest grid, we used again the 32 x 16-grid as shown in Fig. 5.1. 

The convergence histories obtained are given in Fig. 5.3. As starting point, we 
used again the first-order solution obtained from (3.2a). It clearly appears from 
Fig. 5.3 that the strategy with l FAS-cycle per IDeC-cycle is most efficient for each 
of the three projection schemes considered. 

Next, we compared some qualitative properties of the fully converged solutions 
of the first-order, upwind biased, superbox, and van Albada scheme. As finest grid, 
we used again the 32 x 16-grid. To be sure that the solutions were fully converged, 
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we used 10 FAS-cycles for the first-order scheme, and 50 [DeC-cycles with 1 FAS­
cycle per IDeC-cycle for the three second-order schemes. 

The pressure distributions obtained are given in Fig. 5.4. In each graph, the upper 
dashed line indicates the critical pressure, and the lower the stagnation pressure. 
The meaning of the markers is the same as in Fig. 5.2b. Clearly visible in Fig. 5.4 is 
the strong under- and overshoot at the shock wave, as obtained with the upwind 
biased and superbox scheme. The small wiggles upstream of the shock, generated 
by the van Albada scheme must be due to the central and upwind projection that 
were used near boundaries. Compared with the first-order scheme, all three second­
order schemes give an improvement of the stagnation pressure. 

When we take monotonicity at full convergence as a requirement to be fulfilled, 
only the first-order and van Albada scheme can be used. However, since only a few 
IDeC-cycles might be necessary (and are desired of course), the question arises how 
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FIG. 5.3. Convergence histories for I FAS-cycle per IDeC-cycle (solid) and 2 FAS-cycles per IDeC­
cycle (dashed), (NACA0012, M, =0.8, ':I.= 1.25 ): (a) upwind biased; (b) superbox; (c) van Albada. 
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a b 

c=====::===-
C d 

';',--------------, 

c========-
FIG. 5.4. Converged surface pressure distributions (NACA0012, M, = 0.8, r:1. = 1.25 ): (a) first-order; 

(b) upwind biased; (c) superbox; (d) van Albada. 

spurious non-monotomc1ty at the shock develops in the first IDeC-cycles. To 
investigate this, we recomputed the flow for both the first-order scheme and the 
three second-order schemes. As finest grid, we now used a similar, but four times 
finer grid; a 128 x 64-grid ( Fig. 5.5 ). As IDeC-strategy, we used 10 IDeC-cycles with 
I FAS-cycle per IDeC-cycle. 

The results obtained are given in Figs. 5.6--5.8. Figures 5.6a and b show the first­
order pressure distribution, as obtain€d after I and 10 FAS-cycles, respectively. The 
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1.6 

first pressure distribution ( Fig. 5.6a) shows, in fact, the first-order solution which is 
used as initial estimate for ( 3.2b ). The second one ( Fig. 5.6b) is that of the fully 
converged first-order solution. The meaning of the markers and dashed lines in the 
graphs is the same as before. Figure 5.7 shows for the three second-order schemes 
the pressure distribution, as obtained after successively the I st, 2nd, 3rd, and 10th 
IDeC-cycle. Figure 5.8 shows surface entropy distributions. 

From Fig. 5.7, an opposite behaviour after the 1st IDeC-cycle becomes clear. The 
small wiggles, as obtained with all three schemes after the I st !DeC-cycle, grow in 
the following IDeC-cycles for the upwind biased and superbox scheme, but shrink 

a b 

FIG. 5.6. First-order surface pressure distributions (NACA0012, M, = 0.8, :,, = 1.25 ): (a) after 
I FAS-cycle: ( b) after IO FAS-cycles. 

5XJ 77 1-13* 



194 BARRY KOREN 

(1) l----r---r'--~----r---~~--1 
s·1- I- 0 

d8 
s·o 5' I 

d8 



~ C 

7 

~ 

~ 

l',o 

~ 

~,_L ______________ _j_ _______________ L_ ______________ __,__ ______________ ~ 

FIG. 5.7. Convergence histories surface pressure distribution second-order schemes (NACA0012, M ,. = 0.8, :x = 1.25' ), after 1st, 2nd, 3rd, and 10th 
IDeC-cycle: (a) upwind biased; (b) superbox; (c) van Albada. 
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for the van Albada scheme. The van Albada scheme yields a nearly wiggle-free 
solution after the 3rd IDeC-cycle. Remarkable for all three schemes is the excellent 
improvement of the stagnation pressure which is obtained in the 1st IDeC-cycle 
(Fig. 5.6a and 5.7). 

In Fig. 5.8, all three second-order schemes show an excellent improvement of the 
entropy distribution. The upwind biased scheme shows the best improvement. 

In Fig. 5.9, we make a comparison with computational results obtained by other 
investigators, for the transonic flow with shock. In Fig. 5.9a, the left graph shows 
the pressure distributions that we obtained after 10 IDeC-cycles, whereas the right 
graph stems from [ 10]. In Fig. 5.9b, we did the same, using the best results from 
[ 14]. 

In Fig. 5.9a, the agreement between the various reference results is poor. This is 
partly caused by wiggles, but mostly by a large scattering in shock position. This 
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cycle (second-order schemes), (NACA0012, ML =0.8, a= 1.25 '): (a) first-order; (b) upwind biased; 
(c) superbox; (d) van Albada, 
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scattering is smaller in the more recent reference results of Fig. 5.9b. The agreement 
between our results and these reference results is good. However, the under- and 
overshoots, as generated by the upwind biased and superbox scheme, are more 
severe than those of any of the reference results. The van Albada scheme appears to 
be most suitable for the computation of flows with shock(s ). 

In Fig. 5.9c, we present for the van Albada scheme the convergence history of the 
lift and drag coefficient. As a starting point, we again took the solution obtained 
from (3.2a). The lift and drag as computed by the other investigators are spread 
over the shaded areas. One shading represents all ( 5) Euler results from [ 10 ], the 
other shading all ( 7) Euler results from [ 14]. 

Clearly visible in Fig. 5.9c, is the excellent improvement of the drag, which is 
obtained in the first IDeC-cycle. (The main cause of this is the strong improvement 
of the stagnation pressure in the first IDeC-cycle.) When we take the results from 
[IO] as a standard, we see that we only need I IDeC-cycle to reach the standard. 
With the results from [ 14 J as a standard, we end up with a lift which is slightly too 
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low. The cause of this discrepancy is thought to be the fact that the outer boundary 
is not far enough ( ~ 25 chord lengths) from the airfoil. We generated a new fine 
grid (Fig. 5.10), with a twice smaller number of volumes in the radial direction (32 
instead of 64), but yet with an outer boundary at ~ 100 chord lengths, and a twice 
smaller volume height at the airfoil. Results of a computation with this new grid are 
given in Fig. 5.11. The improvements are evident. (Concerning the entropy error 
(Fig. 5.1 la), an arbitrary good improvement seems to be possible.) 

In Figs. 5.12-5.14, we present comparisons for some other standard problems. As 
reference results for the lift and drag histories, we again used all Euler results 
available from either [ 10 or 14 ], whereas as reference results for the distribution of 
some solution component, we only selected the best results from either [IO or 14]. 

As extra test cases we considered the NACA00l2-airfoil at: (i) M.,. =0.63, IX= 2° 
(subcritical flow); (ii) M,: = 0.85, IX= I O (transonic flow with upper shock, lower 
shock and slip line); and (iii) M x = 1.2, IX= 7° (supersonic flow with detached bow 
shock, oblique tail shock, and slip line). For all three cases, we used as finest grid: 
the 128 x 32-grid shown in Fig. 5.10, and as IDeC-strategy: 10 IDeC-cycles with 
1 FAS-cycle per IDeC-cycle. As projection scheme for the subcritical test case, we 
used the upwind biased, the superbox, as well as the van Albada scheme. For the 
transonic and supersonic test case, we only used the van Albada scheme. 

Remarkable in the results obtained for the subcritical test case is the excellent 
agreement between the surface pressure distributions of the three second-order 
schemes ( Fig. 5.12a ). The agreement between our results and the reference results 
[10] is good. Very good is the drag yielded by the upwind biased and superbox 
scheme (Fig. 5.12b ). Both closely approach the exact zero-drag. The convergence of 
all three schemes is fast. Within a few IDeC-cycles their corresponding lift and drag 
values seem to be converged for practical purposes. 

For the transonic test case, we compare our solution with those of Schmidt and 
Jameson [ 14] and Salas and South [ 14]. As grid, they used an O-type grid of 
320 x 64 respectively 192 x 39. Although no evidence can be given that they both 
needed such a fine grid, it can be seen that we can use a significantly coarser grid. 
Our lift and drag agree well with theirs. (Salas and South found: c1 = 0.3472, 
cd = 0.0557, and Schmidt and Jameson found: c1 = 0.3584, cd = 0.0580, whereas we 
found: c, = 0.3565, c d = 0.0582 ). Further, all three discontinuities occurring in the 
flow are captured equally well in our results and the reference results ( Fig. 5.13a 
and c ). Our entropy distribution (Fig. 5.13d, no comparable results available) 
shows, furthermore, a very modest entropy error (0.002) just upstream of the 
foot of both shock waves. (The smearing of discontinuities in radial direction 
(Figs. 5.13c and d) is only due to the grid enlargement in this direction.) The lift 
and drag value seem to be converged for practical purposes within (again) only a 
few IDeC-cycles. 

For the supersonic test case, we compare our solution with those of Schmidt and 
Ja~eson [14] and Veuillot and Vuillot [14]. As grid, they used a 320x64 O-type 
gnd and a 201 x 55 C-type grid, respectively. As lift and drag, they found: 
c, = 0.5138, cd = 0.1538 respectively c, = 0.5280, c d = 0.1536, whereas we found: 
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c1 = 0.5237, l'ct = 0.1551. Except for a slight difference in drag and upstream location 
of the bow shock ( Fig. 5.14c ), the agreement between our results and the reference 
results is very good. Our entropy distribution (Fig. 5.14d) shows a very modest 
entropy error (0.002) just upstream of the airfoil's tail. The same conclusion holds 
as for the previous test case: with an unadapted and relatively coarse grid, a good 
solution is obtained. 

For the airfoil flows computed on the 128 x 32-grid, we needed on an average 
5 IDeC-cycles to drive the lift coefficient to within ½% of its final value. On the 
CDC Cyber 205 (single pipe version) on which we performed all our computations, 
this took us ~ 100 s (i.e. ~25 ms per volume) in scalar mode, and ~50 sin vector 
mode. In scalar mode, we obtained the same computational rate per volume for 
both coarser and finer grids. The convergence rates of both FAS (inner iteration) 
and IDeC (outer iteration) appear to be independent of the number of volumes on 
the finest grid (grid-independent). 

We did not extensively tune our code for use on vector computers since we did 
not expect significant accelerations by vectorization. However, for large scale com­
putations, where all data cannot be kept in core, the small number of iteration 
cycles required (5 IDeC-cycles on an average) results in a small number of out-of­
core data transports. For most Euler codes this is significantly more. Since IO-times 
rather than CPU-times may be the hampering factor in large scale computations on 
vector computers, we consider this feature as another advantage of the present 
method. 

6. CONCLUSIONS 

Studying the behaviour of an iterative defect correction (IDeC) process for 
various second-order schemes, it appeared that the central and upwind projection 
scheme lead to divergence for the basic flow problem considered: a transonic airfoil 
flow with shock. For this flow problem, the other projection schemes; an upwind 
biased scheme, a superbox scheme, and an upwind scheme supplied with the van 
Albada limiter (van Albada scheme), all give convergence. The converging schemes 
all give sharp discontinuities, but they all introduce wiggles, already after the first 
IDeC-cycle. However, for the van Albada scheme the wiggles disappear within only 
a few IDeC-cycles. Comparison with the results of other investigators shows that 
for flows with discontinuities, we obtain solutions of the same good quality with a 
finest grid which may be twice as coarse (in both directions). For smooth problems 
the upwind biased, superbox, and van Albada scheme behave in the same way; they 
all yield solutions of good quality. 

For the multigrid computation of second-order accurate flow solutions, IDeC is 
found to be a very efficient tool. In all cases it converges fast. Both for smooth and 
non-smooth flow problems, it appeared that it is sufficient to perform only a few 
IDeC-cycles, each implying only a single multigrid (FAS) cycle. 

An important property of the present computational method is that it is com­
pletely parameter-free; it needs no tuning of parameters. 
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