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SPURIOUS, ZEROTH-ORDER ENTROPY GENERATION 
ALONG A KINKED WALL 
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SUMMARY 

Numerical entropy generation is studied in the case of steady, subsonic Euler flow along a kinked solid wall. 
For a standard upwind finite volume discretization the numerical entropy error, a component of the global 
discretization error, appears to be zeroth-order in mesh size. Two possible causes of the zeroth-order 
entropy error are studied. First an investigation is made of the local truncation error on a kinked grid. 
Although this error also appears to be zeroth-order in the neighbourhood of the kink, it probably does not 
cause the zeroth-order entropy error. Next a study is made of the existence of a singularity in the exact 
solution. Probably, the Euler flow solution is singular at the kink in the wall. The form of this likely 
singularity is unknown. Therefore the construction of a computational method which uses a priori 
knowledge about the singularity is not possible. Finally it is shown by numerical experiments that the 
subsonic Euler flow along a kinked wall still can be computed with vanishing entropy errors by using an 
appropriate sequence of continuously curved walls which converge to the kinked wall in the limit of zero 
mesh width. 
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1. INTRODUCTION 

Numerical approximations of the subsonic Euler flow along a kinked solid wall show an 
erroneous entropy generation which is virtually independent of the mesh size h of the computa­
tional grid. In this paper we study this numerical entropy generation for the steady, two­
dimensional Euler equations and a perfect gas. The steady, two-dimensional Euler equations can 
be written as 

(1) 

with 

[ 
pv l puv 

g(q)= pv2 + p . 

pvH 

(2) 

In (2) the usual notations have been used: u and v for the velocity components in the x- and 
y-directions respectively, p for the density and p for the pressure. E denotes the total energy 
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defined by E=e+½(u 2 +v2 ), withe the internal energy, which for a perfect gas can be written as 

1 p 
e=--, (3) 

y-lp 

with y denoting the ratio of (constant) specific heats. 
We proceed by giving a brief outline of the basic discretization method used in this paper: the 

upwind finite volume method which was first presented in Reference 1. The method has already 
been shown to yield good numerical solutions not only for transonic and supersonic flows but 
also for fully subsonic flows, flows which are often neglected when validating discretization 
methods for the compressible Euler equations, in particular when these are upwind methods. For 
extensive evaluations of the present, basic discretization method we refer to References 2-4, in 
particular to Reference 2, in which-among others-a standard test case for fully subsonic Euler 
flow is considered: the NACA0012aerofoil at M 00 =0·63 and o:=2°. 

The steady Euler equations are written in the integral form which is found by integrating (1) 
over some area O*, an arbitrary subdomain of the computational domain 0: 

(4) 

In (4), 80* is the boundary of O*, and n., and ny are the x- and y-components respectively of the 
outward unit normal at 80*. The Euler equations are then discretized by requiring (4) to hold for 
each O;,j, i.e. each (i,j)th quadrilateral finite volume in a disjunct division of the computational 
domain 0, 0= Ui.J Oi,i• Given a quadrilateral finite volume division, along aoi,J the integral in 
(4) consists of four parts, each of which with constant nx and ny. At each cell face the line integral is 
approximated by taking the flux functions f(q) and g(q) constant and by computing them with 
Osher's numerical flux function 5 in the P-variant as proposed by Hemker and Spekreijse.1 

Denoting the cell face between e.g. 0;,1 and 0 1+ 1,1 by ani+ 112 ,1 and the numerical flux functions 
approximating f(q) and g(q) by F(q1, q') and G(q1, q'), the integral along cell face 801 + 112 ,1 can be 
written as 

I [f(q)n.,+g(q)ny] ds = [F(ql+ 112.1, qf+ 112.1Hn.x)i+ 112.1 
ao, •• ,2.1 

+ G(q/+ 112.1, qf + 112.1Hn1 )i+ 112.1+ O(h")] Li+ 112.1, (5) 

where Li+ 1,2.J is the length of ani+ 112 ,1, (n.,)i+ 112,1 and (ny)i+ 112,1 are the components of the 
outward unit normal at ani+ 112 ,1, ql+ 112 ,1 and qf + 112,1 are the states at the left and right sides of 
ani+ 112,1 respectively andµ is the order of accuracy of the approximation. In this paper we take 
the state vector qi,J constant over each cell ni,J· Taking for the left and right states at e.g. cell face 
ani+ 112.1 

(6) 

and similarly for ql,1+ 112 and qf.1+ 112 the corresponding adjacent volume states, on a smooth grid 
this yields a first-order-accurate discretization: µ = 1. 

Boundary conditions are incorporated into the scheme in a way which is consistent with the 
discretization in the interior of the computational domain. In subsonic flows this requires that 
three boundary conditions are imposed at inflow and one boundary condition at outflow. (We 
remark that by just obeying these numbers in subsonic flow computations, mathematical 
well-posedness is not yet guaranteed. For a study of the mathematical well-posedness of e.g. some 
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typical subsonic outlet boundary conditions we refer to Reference 3.) For supersonic flow the 
number of boundary conditions to be imposed at inflow and outflow is four and zero respectively. 

In this paper we will mainly consider flows of which the exact solutions are known to be 
homentropic. We will make proper use of this knowledge to monitor the quality of numerical 
solutions obtained for these flows. As is well known, in steady subsonic flow the entropy along 
a streamline is constant. Hence a first requirement for obtaining a homentropic flow in a numer­
ical computation is to impose a constant entropy at inflow. 

We study the entropy error, one of the four components of the global discretization error, for 
a subsonic Euler flow along a kinked wall (Figure 1). At the inflow boundary the velocity vector 
and the entropy are imposed. The imposed velocity corresponds to that of an incompressible, 
irrotational flow along a kinked wall. At outflow the corresponding pressure is imposed. The type 
of grid used is shown in Figure 2. It consists of 32 x 32 finite volumes. Coarser grids (16 x 16 and 
8 x 8) are obtained from the finer one by leaving out each second grid line. Entropy errors 
obtained along the wall are given in Figure 3. The results show that the entropy error is virtually 
independent of the mesh size; they clearly outline the problem to be studied in this paper. For the 
sake of clarity we emphasize that the entropy error can be seen as a monitor for the complete 
global discretization error. Most likely, the other three components of the global discretization 
error will also be zeroth-order-accurate. 

2. NON-SMOOTHNESS OF THE GRID 

Having noticed the zeroth-order behaviour of the entropy error, it is natural first to investigate 
the local truncation error of the numerical scheme. In the following we study the effect of the 
grid's non-smoothness on the local truncation error of the upwind finite volume discretization. 

JI 

t 
I 

Figure 1. Kinked wall 

·1.0 -o.s 

Figure 2. Kinked grid, 32 x 32 
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2.1. Local truncation error 

In Section 1 we mentioned that the Rux functions at e.g. cell face i'{)1 • 1 J. 1 are appru:mnated hy 

Let q denote the exact, continuous solution of the Euler equation'i in the dum.un \;mered h; the 
grid as 'Shown in Figure 2 and let q1, 1 denote the discrete value nr q in the centre of U, , Then fnr 
n,., 1, a cell just behind the kink in the grid (Figure 4}, the !iys1em or d1~rc111cd cqu.11111n, read, 

[F(q,.,pq,., 1.i)··-F(q,. 1.i,q1•. 1)]+2tanb[f<'(q,., 1 1,Q,•. 11 Ftt1,•;•ff1•,, 11) 

+2[G(q,.,1,q,., 1 • d"·G(qi•., 1,fL• 1)] .. 0. tkl 

Taylor series expansion around the centre of n, •. , yields for the fiM term m 1K1 

( c1F(q,•,1,ql,,q)' l ('','f,'fq,.,. q11.,q) 
F(q,., 1,q,•11. 1)=F(q,._,.q,•, 1)+2h ··· ·~•··,. +2htanb ,·· ·t.. 1111 

,.q ( .t t*, J ' q { J ' * . ., 
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Similar formulae for the other terms in (8) and 

aFj =(aF(q,q;,j)oq)I +(oF(qi,j,q)aq)j 
ax i,j aq ox i,j aq ax i,j 

yield then as modified equation for (8) 

oF I + oG I -½tanci (aF(q, qi.,j) aq) I =O(h). 
ax i•,j oy ;•,j oq oy i*,j 

1117 

(10) 

( 11) 

From (11) we see that the discretization has a zeroth-order local truncation error. The error 
vanishes for ci =0 (of course) or for fully one-sided upwind discretization from the right. (In the 
latter case F(q, q;•,i)=f(q;•,j) and hence aF(q, q;•,j)/oq=0.) A similar result is obtained when we 
analyse the local truncation error for a cell !l;•- t,j just in front of the kink: 

aF j aG j (JF(q·• 1 . q)Jq) I - +- +½tanci ' - ·1 ' =O(h) 
ax i*-1,j ay i*-1,j Jq oy i*-1,j . 

(12) 

Thus for a cell just in front of the kink the zeroth-order local truncation error vanishes for a fully 
left-sided upwind discretization or, trivially, for vanishing ci. 

To verify the analysis, we substitute an exact solution of the Euler equations into the discretized 
equations. For the exact solution we take a supersonic, non-uniform, parallel flow 

(13) 

with uo, U1, Po, Po constant and u0 , u1 both positive. No solid wall boundary is involved in this 
flow. Since the flow solution has a gradient in the y-direction, for ci,i:0 we expect to have 
a zeroth-order local truncation error. Since the flow is supersonic from the left, we should find 
zeroth-order local truncation errors only in cells just behind the kink. Numerical results show 
that zeroth-order local truncation errors are indeed concentrated around the cell centres just 
behind the kink (Figure 5). If we take the same supersonic flow in the opposite direction 
(u0 < 0, u 1 < 0), as expected, zeroth-order local truncation errors are concentrated around cell 
centres just in front of the kink (Figure 6(a)). In subsonic flow (Figure 6(b)) we find zeroth-order 
local truncation errors both in front of and behind the kink, as could be expected from (11) and 
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a. On 16 X 16-grid. 
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b. On 32 X 32-grid. 

Figure 5. Local truncation error (residual energy equation), supersonic flow from the left, <> = 10° (without wall) 
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Figure 6. Local truncation error (residual energy cquatmnl, 16 >< 16 gnd. ,, " !O flh1thuu1 \Ir.all! 

(12), since in subsonic flow the numerical flux function depends on both the left and right ,;tates. 
(As can be seen from both Figures 5 and 6, along a part of the boundary icroth-ordcr errors arc 
found as well. Apparently, the boundary of the computational domain cause<; 1<>1.:al truncation 
errors as though the grid were kinked at the boundary. It can he shown analytically 1ha1 at the 
boundary the behaviour of the local truncation error with respect to the upwind dirct:lion is 
indeed identical to that at the kink in the grid.) 

Remark. The local truncation errors presented in Figures 5 and 6 arc those of the Euler 
equations discretized by a finite volume method and hence they arc derived from integrated 
quantities. In order to compare integrated residual fields for a family of grid!., they have to be 
scaled with their corresponding volume areas; therefore in both figures we ha-.·e gi\en the i'iole\·cls 
of Hn (residual)dxdy/JJ0 dxdy. 

I,} l,J 

2.2. New discretization 

The zeroth-order local truncation errors as derived in Section 2. l only inrnhc derivatives in 
the y-direction, i.e. the direction in which the cells behind the kink arc shifted. In th1!1 '>UhM':ction 
we try to remove these errors by enlarging the stencil of the discreti1.atton. Since for thi'> purpo!le 
we only need to introduce extra derivatives in the y-direction, we simply widen the '>tenet! in the 
y-direction. A new flux across il!l;• + 112,J is introduced hy taking a weighted mc,rn nf the 1'\l.\lltlfl 

numerical fluxes across o!l;• f 1;2,1 and !l,· + 112,11 1, i.e. we approximate r,., 1 : ., hy 

f;. + 112.j=a1• + 112.JF(q1•.J• q,. 11,1)+(1 a,., 1 2,1lf<'(q,._ 1 , i, 411•.1.,.11. 1141 

The same is done for the approximation of the flux across i'\U,. 1 :. , : 

f1•-112.1=a1•-112.1F(q,. -1.1,q,.,1)+(1 ·- a,. 1 ~.,IF(q,. 1.,, i,q,._ 1 , 11 OSI 

Substitution of (14) and (15) into the discrete version of (4) and applic.:atton of Taylor ,;,enc!. 
expansion around the centre of O;•,J then yields as modified equation 
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In a fully one-sided upwind discretization from the left (i.e. in a supersonic flow from the left) the 
fourth term in (16) is equal to zero by itself. The third term can be made equal to zero by choosing 
~he ~eights such that they satisfy ai•-i;2,j-ai•+i;2,rtan<>=0. Thus, applying this new discret-
1zat1on to (13), in the case of supersonic flow from the left the fourth term in (16) drops 
automatically. Using the old discretization for the flow, there was no zeroth-order local trunca­
tion error in il;• - l,j (see Figure 5). To ensure that there is still no zeroth-order local truncation 
error ~n 0;•- 1,j, in that volume we still use the old discretization (i.e. a;•_ 112,j = 1). Hence, by 
choosmg 

a;•-1;2,j= 1, a;•+1;2,j= 1-tanJ, (17) 

the zeroth-order local truncation error in ni.,j should vanish for supersonic flow from the left 
without introducing a zeroth-order error in 0;•-i,j- However, this new discretization for i=i* 
does introduce zeroth-order local truncation errors in the cells downstream of 0.;•,j• In order to 
remove these errors, we apply the new discretization in all cells downstream of the kink. (Notice 
that for b = 0 the new discretization equals the old discretization.) In Figure 7 now, local 
truncation error distributions are given as found by substitution of the exact solution (13) into the 
new system of discretized equations. We observe that the local truncation error indeed behaves 
first-order. 

In subsonic flow the Riemann solver is not fully one-sided and as a consequence the zeroth­
order local truncation error in (16) can be removed only by making the sum of the third and fourth 
terms in ( 16) vanish. In that case the weights a;•- i;2,j and ai• + 112,j become dependent on the 
solution. Thus in subsonic flow the zeroth-order local truncation error cannot be removed 
without introducing a significantly more complicated discretization. Before making any attempt 
to construct a discretization of this kind, we will first investigate to what extent the zeroth-order 
local truncation error actually causes the zeroth-order global discretization error. 

2.3. Entropy error on a kinked grid not involving a wall 

In this subsection we study the entropy error on a kinked grid without a wall. The purpose is to 
find out whether or not the zeroth-order entropy error, as found in the approximation of the flow 
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b. On 32X32-grid. 

Figure 7. Local truncation error (residual energy equation), supersonic flow from the left, o = 10° (without wall), new 
discretization 
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Figure 8. Global discretization error (entropy error) in bottom row of cells, subsonic flow from the left, o = 10° (without 
wall), old discretization: 0, 8 x 8 grid;~, 16 x 16 grid; +, 32 x 32 grid 

along a kinked wall (Figure 3), is caused by the zeroth-order local truncation error on a kinked 
grid. We consider the old discretization and a subsonic version of (13) as the exact flow field. 
However, here we will not use this exact flow field to evaluate the local truncation error but 
instead to solve the discretized equations by imposing the exact flow field through the boundary 
conditions. If for the flow without a wall on the kinked grid shown in Figure 2 zeroth-order 
solution errors-i.e. global discretization errors-are found, then these may be caused by the 
zeroth-order local truncation error. However, if we do not find zeroth-order global discretization 
errors in the approximate solution, assuming that the parallel flow considered is not too trivial, 
the kinked grid and the resulting zeroth-order local truncation errors do not cause zeroth-order 
global discretization errors. 

Results are given in Figure 8, which shows the entropy error in the bottom row of cells for 
different mesh sizes. The results clearly show that the entropy error becomes approximately twice 
as small when the mesh size is made twice as small. This first-order entropy behaviour seems to 
imply that the zeroth-order local truncation error which occurs in the case of a kinked grid is 
indeed harmless. Therefore we postulate that the zeroth-order entropy error as found in the 
approximation of the subsonic flow along a kinked wall is not caused by the zeroth-order local 
truncation error. 

3. ENTROPY ERRORS IN A SLIGHTLY DIFFERENT SITUATION 

3.1. Entropy error along a smooth wall 

In this subsection we study the entropy error in the flow along a continuously curved wall. This 
is done in order to make sure that the solid wall boundary condition, or rather its numerical 
modelling, does not cause the zeroth-order entropy error. The shape of the wall which we will use 
is given by 

{ 

0, x~ -½I, 

(x+½l)3 1. (x+½/)4 
Yw(x)= tanb 12 2 tanb /3 , -½l<x~½l, 

(tanb)x, x>½l. 

(18) 
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Here l is the length of the curved part of the wall (Figure 9) and /j is the angle between the positive 
x-direction and the uncurved part of the wall at x;;,,½l (Figure 9). The wall is defined in such a way 
that Yw(x) is a C2-function. The type of grid used is shown in Figure 10. In Figure 11, for l = 1 and 
three mesh sizes, the entropy error along the wall is given. We see that the entropy error is 
first-order in mesh size. Since the scheme is the first-order-accurate on smooth grids, this is what 
we were expecting. The results make it perfectly clear that no zeroth-order entropy errors are 
introduced by the solid wall boundary condition treatment. 

3.2. Entropy error for other types of grids 

In this subsection we study the entropy error for two cases in which the Euler flow along the 
kinked wall is approximated on types of grids which are essentially different from the simple 
kinked grid (Figure 2) as applied in the previous sections. First a grid is used which is only kinked 
at the wall (Figure 12(a) ). In the interior of the domain it is smooth and orthogonal; its grid lines 
are hyperbolae. We will call this grid the hyperbolic grid. Since this grid is smooth, except at 
a single point, it will not cause zeroth-order local truncation errors along the complete i*th grid 
line as does the simple kinked grid. The other grid, shown in Figure 12(b), does not contain any 
kink at all, but it has degenerated quadrilaterals located at the kink. We call this grid the circular 
grid. Entropy errors along the wall as obtained on these grids are shown in Figure 13. For both 
grids we immediately see that the entropy error is also zeroth-order at the kink. A peculiarity of 
the results obtained on the circular grid, in comparison to those obtained on the hyperbolic and 
kinked grids, is that the entropy error along the wall decreases behind the kink. We think that this 

J 
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I 

Figure 9. Continuously curved wall 

a.a 

X 

Figure 10. Continuously curved grid, 32 x 32 
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Figure 11. Global discretization error (entropy error) along continuously curved wall, b= 10°: 0, 8 x 8 grid; A, 16x 16 
grid; +, 32 x 32 grid 
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Figure 12. Other types of grids, 32 x 32 
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b. Circular grid. 

0,S 

phenomenon, which we already know from aerofoil flow computations (see e.g. Reference 2), is 
caused by the increasing mesh width and hence by the increasing amount of crosswise numerical 
diffusion, when going in the streamwise direction behind the kink, on this circular grid. 

4. SINGULARITY IN THE SOLUTION 

In Section 2.3 we found that the zeroth-order entropy error is probably not caused by the 
non-smoothness of the grid, in Section 3.1 we found that the error is not caused by the 
implementation of the solid wall boundary condition and in Section 3.2 we found that it is also 
not cause~ by the use of a specific type of grid. In this section we will consider another possible 
(and now most likely) cause of the error: a singularity (i.e. a non-differentiability) in the (exact, 
continuous) solution at the kink. 
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a. On hyperbolic grids. b. On circular grids. 

Figure 13. Global discretization error (entropy error) along kinked wall, o= 10°: O, 8 x 8 grid; 11, 16 x 16 grid; +, 32 x 32 
grid 

Figure 14. Polar co-ordinates at kink 

4.1. Incompressible potential flow 

For the incompressible potential flow along a kinked wall the exact solution of the continuous 
potential flow equation is known to be singular. In polar (r, 8) co-ordinates (Figure 14) for 
b ~ 0 ~ n the velocity field is described by 

u= Ur 61<n- 6lcos 0---n , v= Ur 61<n:- 6lsin 0---n , ( 0-b ) ( 0-o ) 
n-b n-o 

(19) 

where U is a constant. For O < b < n/2 the velocity field clearly has a singularity at r = 0. (There, it 
is not differentiable.) 

4.2. Incompressible potential flow with compressible Euler equations and source term 

In this subsection we investigate whether or not a singularity of the form r/%, O<a< 1, gives rise 
to errors which are similar to those found in the previous entropy distributions. We do this by 
approximating the incompressible potential flow field by numerically solving the compressible 
Euler equations with a proper source term. (Since the exact solution is known, we can easily 
evaluate the corresponding global discretization error.) The source term for the equations is 
found by substituting the exact, incompressible potential flow solution into the continuous 
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compressible Euler equations. The incompressible potential fl.ow solution satisfies the 'compress­
ible Euler continuity' and 'compressible Euler momentum' equations, but the 'compressible Euler 
energy' equation is not satisfied. Therefore we (only) need a source term for the energy equation: 

o(puH) o(pvH) 1 u3 b -(,r- 46li<x-6) (0-b ) s: 0 (20) 
:i + :i ---1p --s:r cos --s:n: , u~ ~n:. 
uX uy y- n-u n:-u 

In order not to let zeroth-order errors be introduced by the source term, we take b = n:/4. For the 
computation we apply the existing, multigrid-based solution method 1 to the first-order dis­
cretized Euler equations supplied with a second-order approximation of the source term (20). 

In Figure 15 numerical results are presented as obtained on the hyperbolic grid. The results 
shown are the errors in the entropy-like quantity z=ln(p/pY). (Notice that the function p/pY in the 
exact solution is not a constant.) The figure shows that at some distance from the kink the error in 
the numerical approximation to this solution (i.e. the global discretization error) is first-order­
accurate, but it becomes zeroth-order-accurate in the vicinity of the kink. From this we conclude 
that when the solution of the exact equations has a singularity at r=O, the global discretization 
error is zeroth-order at r = 0. In our numerical approximation of the subsonic, compressible Euler 
fl.ow along a kinked wall we have a zeroth-order global discretization error at the kink. Thus it is 
likely that the exact solution of the subsonic compressible Euler equations for the fl.ow along 
a kinked wall also has a singularity at the kink. 

4.3. Transformation of variables and equations 

In this subsection we investigate whether for· compressible Euler flow we can transform the 
equations in such a way that only smooth (i.e. non-singular) functions remain to be approxim­
ated. Herewith we strive for a minor modification of the existing numerical method. We assume 
that the velocity field of the subsonic, compressible Euler fl.ow along a kinked wall has a singular­
ity similar to that of the incompressible potential flow. In the previous subsection it was suggested 
that if this is the correct form of the singularity, the approximate solution obtained by solving the 
discretized Euler equations should have a zeroth-order global discretization error. By extracting 
such a singularity, one may hope to easily remove this error. 

~,-----------------

8 
.,;-----,------,-----~_.,,._ _ ___J -, -a,s ,., 

X 

Figure 15. Global discretization error ('entropy' error z/z .... ,-1) along wall, incompressible potential flow, hyperbolic 
grid, 5 =rr./4: 0, 8 x 8 grid; A, 16 x 16 grid; +, 32 x 32 grid 
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Assume that u and v can be written as 

1125 

U= Ura, V= vr«, (21) 
where U and V are sm th f · f 
O<<><n 2 °0 ~nct1ons o x and y and where, following (19), a=J/(n-b), 
h / · _(Thus _u and v are smgular at r=O.) Further, assume that the exact Euler flow is 

omentropic and isenthalpic. Then along the wall we have for the speed of sound 

2 y-1 
C =c5--2-(u2+ v2)r2«=C5-Cfr2«, (22) 

with Co a consta~t and C 1 a smooth func~ion. ~f we assume that the enthalpy changes smoothly 
from one stream~me to another, then (22) 1s valtd everywhere in the flow field, with both C0 and 
C 1 smooth functions of x and y. Furthermore, C 1 is a known function of U and V. With s = p/ p Y 

constant we find for the density 

(23) 
and for the pressure 

P =(y1s)- l/(r- 1>(C5-Cf r 2"')1/(y- ll =(P0 -P 1 r2«p!<r- 1>. (24) 

Here Ro, R 1, Po and P 1 are smooth functions of x and y, and R 1 and P 1 are known functions of 
U and V. Next we ca? transform the Euler equations (1) and (2) into equations to be satisfied by 
o~r new, smooth vanables U, V, R0 and P0 . Substitution of (21)-(24) into e.g. f(q) as given in (2) 
yields 

U V(Ror2«(r l) _ R1 r2«y)ll(r- l) 

Us-y-(R5r"<1-1) _ RoR1 r"'<Y+ 1))1/(y- l) 
y-1 

(25) 

Unfortunately, the transformed fluxes are complicated non-linear functions of the dependent 
variables U, V, R 0 and P0 . The corresponding system of discretized equations cannot be solved 
by the existing method for the Euler equations, nor by a slightly modified version ofit. Apart from 
the fact that the transformed equations require an ambitious modification of the existing 
numerical method, it is not yet certain whether or aot the assumptions made on the singularity 
are correct. Therefore we refrain from a further investigation of the transformed equations. 

5. DISCRETIZATION OF THE KINKED WALL BY A SEQUENCE OF 
SMOOTH WALLS 

In Section 3.1 we computed the Euler flow along a continuously curved wall. There the length I of 
the continuously curved wall segment (Figure 9) was the same for all three grids considered. In 
this section we recompute the flow along a continuously curved wall as given by (18), but now we 
decrease/ together with the mesh size: l = O(h''), 2 >0. For finite 2 it is clear that for h➔O the wall 
becomes kinked. The results in Sections 1 and 3.1 can be considered as those for the limit cases 
.?c =oo and 2 = O respectively. The number of cells, N, lying along the curved part of the wall is 
N = l/h. Hence with I= O(h;.) we have N =OW·- 1 ). Thus for 2< 1, N increases with decreasing 
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hand for ,l, > 1 it decreases. In the latter case for h-+0 we find that at the kink there is only one grid 
line. In that case we would arrive at a similar situation as for ,l, =oo, the situation with zeroth-order 
entropy error. Thus, looking for decreasing entropy errors for decreasing mesh size, we must take 
.A.<l. 

In Figure 16 we show the behaviour of the entropy error when I decreases as a function of h. 
Here for I we take I= c1 h\ with c1 constant, and for the maximum norm of the entropy error we 
assume the form II s/s;nnow-1 IIL =c2 hµ, c2 constant. Based on numerical experiments with 
c1 = 1 on 16 x 16, 32 x 32 and 64; 64 grids, µ has been determined for different values of ,l,. As 
already known, for. A.=0 we findµ-+ 1 for h-+0. The message of Figure 16 is that the flow along 
a continuously curved wall can indeed be used to approximate the flow along a kinked wall. For 
any ,l,e]O, 1 [ in the limit h-+0 the curved wall becomes kinked and the entropy error vanishes, 
because for any ,l, in that range it appears that II s/s;0n0w- l II L~ = O(hµ), µ>0. 

:L 

. 
0 

.; 

.. 
0 

o,+---~-~--~----.-----1 
0 0.2 O.t 0.1 0.1 

A 

Figure 16. Order behaviour of global discretization error (entropy error), o = 10°, shrinking rounded kink: 0, 16 x 16 
grid/32 x 32 grid; A, 32 x 32 grid/64 x 64 grid 

I 

J 
.. a 

X 

Figure 17. Global discretization error(entropy error) along wall with shrinking rounded kink, ,1,=0·4, O= 10°: O, 16 x 16 
grid; A, 32 x 32 grid; +, 64 x 64 grid 
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If we want to let the entropy error disappear at the same rate as l, then from Figure 16 we find 
that we should take A~ 0·4. In Figure 17 we give the entropy error distributions along the wall as 
obtained for A =0-4 on 16 x 16, 32 x 32 and 64 x 64 grids. Given the rather low order of accuracy, 
µ(J.. = 0·4) ~ 0·4, reduction of the entropy error below some required tolerance level may become 
expensive when applying global grid refinements solely. The remedy in avoiding too high 
computational costs lies in applying local grid refinements. As an example, in Figure 18 we give 
results obtained on a 32 x 32 grid enriched with local refinements, still with J.. = 0·4. The refine­
ment criterion applied here is based on the gradient of the entropy error in the streamline 
direction: w ·Vs/II w IIL,, w =(u, v)T. For a detailed description of the underlying solution-adaptive 
multigrid method we refer to Reference 6. In Figure 19 we give the locally adapted grid 
corresponding to the most accurate result from Figure 18: the 32 x 32 grid with four additional 
levels of local refinement on top. Notice that for decreasing mesh width the refined regions get 
smaller and also closer to the corner, which indicates that local refinement (combined with the 
present smooth discretizations of the kinked wall) is indeed a good possibility for reducing the 
entropy error without excessively increasing the computational costs. Finally, in Table I for the 
three grids considered in Figure 18 we give an impression of how the rounded corner converges to 
the kink for decreasing mesh width. 

X 

Figure 18. Global discretization error (entropy error) along wall with shrinking rounded kink, ~=O:~ ~=Ir: ?• 3;( 3~ 
grid without local refinement; d, 32 x 32 grid with two levels of local refinement; +, 32 x 32 gnd wit our eve s o oca 

refinement 

Table I. Geometrical data, rounded comers, ). = 0·4 

Grid 

32 x 32 grid without local refinement 
32 x 32 grid with two levels of local refinement 
32 x 32 grid with four levels of local refinement 

0·3299 
0·1895 
0-1088 

N 

5 
12 
28 
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a. In full. 
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b. In detail. 

0.50 

Figure 19. 32 x 32 grid with four levels of local refinement 

6. CONCLUSIONS 

1.0 

0.30 

In this paper we have studied two possible causes of the zeroth-order global discretization error 
as encountered in the numerical approximation of subsonic Euler flow along a kinked wall: 
(i) non-smoothness of the grid and (ii) non-smoothness of the exact solution of the continuous 
Euler equations. (The approximation of the flow along a smooth wall shows, as expected, that the 
entropy error is not caused by the discretization of the solid wall boundary condition.) 

Concerning the non-smoothness of the grid, it appears that the upwind finite volume discret­
ization of the equations has a zeroth-order local truncation error at the kink in the grid. For 
supersonic flow this local truncation error can be removed by widening the stencil of the 
discretization in the direction in which the grid is shifted. For subsonic flow the zeroth-order local 
truncation error is not easily removed. However, the numerical computation of a subsonic, 
non-uniform, parallel flow on a kinked grid without wall suggests that the zeroth-order local 
truncation error does not cause the zeroth-order global discretization error. 

Concerning the non-smoothness (i.e. the being singular) of the exact solution, it is well known 
that the incompressible potential flow along a kinked wall has a singularity at the kink. It is likely 
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that a similar singularity is adopted by the Euler flow. The numerical approximation of the 
incompressible potential flow by means of the Euler equations with proper source term shows 
that a zeroth-order global discretization error arises at the same places where it is found in the 
approximation of the Euler flow. However, extraction of a singularity from the dependent 
variables of the Euler equations-a singularity which is assumed to be similar to the one in the 
incompressible potential flow solution-is not feasible because it does not lead to a set of 
equations which can be solved with the existing method. 

Removing the zeroth-order global discretization error is still possible. We find the paradoxical 
result that by making a sequence of geometrically less accurate (but specific) discretizations of the 
kinked wall, a numerical solution with better error behaviour can be obtained. The less accurate 
discretizations of the kinked wall employ discrete smooth versions of the exact kinked wall. By 
making the discretization of the geometry dependent in a proper way on the mesh size h, an 
O(hl')-entropy error, 0<µ< 1, can still be obtained. Poor computational efficiency due to the 
rather low order of accuracy µ can be circumvented very effectively by application of local, 
solution-adaptive grid refinements. 
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