
STICHTING

2e BOERHAAVESTRAAT 49

AMSTERDAM

AFDELING TOEGEPASTE WISKUNDE

Garbage-collecti.on methods for

ABC in ALGOL 60

by

R. P. va.11 de Riet

TW report 110

January 1969

•

The Mathematical Centre at Amsterdam, founded the 11th of February, 1946,

is a non-profit institution aiming at the promotion of pure mathematics

and its applications, and is sponsored by the Netherlands Government

through the Netherlands Organization for Pure Research (Z. W. 0.) and the

Central National Council for Applied Scientific Research in tl1e Netherlands

(T. N. 0.), by the Municipality of Amsterdam. and by several industries.

' I

The author is grateful to W.P. de Roever for critically reading a preliminary

manuscript; this revealed several obscurities concerning Daines and values.

•

II

The subject of this report i.s the implementation of autornatic garbage

collection techniques in a formula manipulation system written in ALGOL 60.
Two garbage-collection methods, completely written in ALGOL 60, one using

•

a relocation technique, the other using a free-list technique are compared

with each other with respect to: ease of progra.1nmjng a.nd memory space used •

•

•

Table or contents

Acknowledgement

S1J1omary

Table of contents

1. Introduction

III

•

2. Recapitulation of the simple formula manipulation system

'

3. Formulae, Formula expressions, internal representation of formulae,

and names of formulae

4. Values and na1nes

p. I

p. II

p. III

p. 1

p. 1

p. 4

p. 5

5. Assigning a :formula to a variable by means o:f a Formula expression p. 9

6. Block entry and block exit p. 12

7. Garbage-collection with a relocation technique p. 13

8. The relocation garbage-collection technique prograJnmed in

ALGOL 60 for a simple syster11

9. Discussion of the actual program and the results
• • • 10. The differentiation process

11. Garbage-collection with a free-list technique

12. The free-list garbage-collection technique progra1·omed in

ALGOL 60 for a simple system

13. Discussion of the actual progra.,rl and its results

14. The new derivative process

15. Testing the garbage collection system

16. Relocation-versus free-list technique

References

p. 15

p. 27

P• 27
p. 31

p. 39

p. 50

p. 51

p. 52

p. 53

p. 54

l

•

1. Introduction

As a continuation of the investigations on fortn:u.la manipulation in ALGOL 60,

as described in 1 ,2 , we study in this report :rorroula xnanipulation systems

with automatic garbage collectio~ and compare them with respect to ease of

programming and memory space used.

On the basis of' the results of thi.s report a new formula-manipulation system
•

will be made, in the near f'ut11re, comparable vi th the system of 1 , which

should serve as a basis for a new progra.1nrr1i ng la.nguage: ABC ALGOL (= ALGOL 60 +

the new type formula) , ABC standing for:

''Algebraische Bewerkingen met behulp va.n de Computer''

(Dutch :for: ''Algebraic operations by mea.ns of the computer'').

'

Since the aim of this report is studying only the effect of garbage collection

on the organization of the system, we have. ba.sed ourselves on the simple

forxnula 1:oa.nipu.lation system of 1 chapter 1 , which is copied and described

in a condense forin in section 2.

In section 3 we clarify the use of the ter1ns 11 for1nula 1
', ''formula expression'',

a ''stored formula'' and ''the naxne of a formula''.

In section 4 the concepts name and value are introduced; while in sections

5,6 assignations, block entry and block exit are studied. Garbage collection

with a relocation technique is treated in section 7-10 and with a free-list

technique in sec,tions 11-15. Finally, section 16 discusses the advantages

and disadvantages of both techniques.

Complete and tested ALGOL 60 progra,cns are reproduced from flexowriter tape:

ALGOL 60 identifiers (or ALGOL 60 ''text'') occurring in the accompanying text

are (or is} typed in italics.
Identifiers o:t' na.rmes (section 41 will be typed in s1nall letters; identi:riers

of values in capital letters.

2. Recapitulation _of', _the simpl,,e f'ormula-manipulati_on s~st.~m

For the sak.e of convenience of the reader, the simple :formula-manipulation

system of 1 chapter 1 is copied:

-

•

2 •

•

•

integer arraY- F[l:1000,1:3];

integer_ p:raoced~ STORE (Lhs, twe, Phsl; vaiu.e. Zhs, type, rhs;

int~~er lhs, type, rhs;

peqin STORE:= k:= k+l; F[k,1]:=. ZJzs;
F[k,2]:- type; F[k,3]:= rlis

end STORE;
,

integf!,r pro,c_edure. TYPE (f, Zhs, ~bsl; vaZ.ue f; integer, f, Z.b,s, Phs;

bee:irz.. l,hs:= F[f,1 J; TYPE:= F[f,2]; rhs:= F[f,3] end;

inteeer f!T'Ocedur~ .. S(a,b); value a.,b; ~ntf!,ger a,b;

S: i a= zero t'hen b eZse i• b = 2ero then a

else STORE (a, sion, b).

~nteger procedur~ P(a.,b); vaZu.e a,b; integer a,b;

P:= i a= zero vb - zero then 2e'l"o else

i a= one the.n b eZse i b = one then a.

eZse STORE (a, product, bl;

integer procedure DER(a,b); value f,x; integer, f,~;
beg~n integt::r a., type, b; type:- TYPE (f,a,bl;

DER:= i f = x tfien one eZse

i type= sum trien S(DER(a,xl,DER(b,xll else

i~ type= product thBn S(P(a,DER(b,~11,P(DER(a,xJ,b)}

eZse zero

end DER;

INITIALIZE: swn:= 1; product:= 2; aZgebraic va'Piabl-e:= 3; k:= O;

one:= STORE(O, aLgebraic VaPiabZe, OJ;

zero:

comment

STORE { 0, algebraic var>iab Ze, 0 l; ·

Suppose one wishes to calculate:

f' - (x><x+xl * dy/d:x. + (y~+y} * dx/d.x,

•

,

which is a trivial problem, but illustrates the need f'or automatic garbage

collection.

3

•

Tl1.e calculation is performed by the following actual progra.m;

ACTUAL PROG • •

begin int.eger x, y, f;
x:= STORE (0, aZgebraic var>iable, Ol;

y:= STORE (0, algebraic vancib_le, Ol;

f:= S(P(S(P(x,xl,xl,

DER(y,x}),

P(S(P(y,yl,y),

DER(x,x)

JJ;
end

end

The result of the calculation is that f

•

l+y l; but d1.1:ring the calculation

process the expression S(P(x,xl,xl has been evaluated resulting in the storage

of the useless fonnula ((x,Ex}+x1 into the array F.

This formula is useless for two reasons:

a) it is not used for building up f;

b) it cannot be used later on since it is not known where it is stored in F.

Therefore, we 1nay freely consider this forrnula as garbage. To get rid of it

is not a simple matter since it occupies space in F which is surrounded by

space in which still interesting formulae are stored (y end f}.

In 1 section 2. 14 we have studied the problem of' ma.king a proced1.1re COLLECT

GARBAGE which can be added to the above set of proced11res and which can find

out which fonnulae are garbage in order to create new storage space.

It has been shown that :

a) merely adding a procedure COLLECT GARBAGE is not possible since it is

provi.ded with insu:fficient information (it only knows the contents of F,

but it should also know that the formula o:f which f is a name does not

belong to the garbage)

b} a procedure COLLECT GARBAGE can be made if:

1. The connection between the variables, being na.rnes o:f forrnulae, and the

internal representations o:f these formulae~ is made less direct;

2. 'I1l1e form o:f the system proced1.1res S and P is changed considerably.

4

of fo1·1nulae
I

. -- ''f -ul '' In this section we sha.l 1 cla,rify the use of the tez·rn 01-n1 a •

•

A formula is a sequence of symbols satisfying the following syntactical

rules:

<for1n:ula>: := <sum> <product> <derivative> <algebraic variable>

<formula identifier>

<sum>::= (<for1nula> + <fo1·111ula>)

<product>: : = (<foz·,,nula> * <formula>}

<derivative>::= d<formula>/d<algebraic variable>

Where <algebraic variable> and <f'or1nula identifier> are just na.,nes defined

in the t:tam~ as <identifier> in the L 60 report 3.

A f ortn.u.J a as progra.mrned in an A L 60 progra.m will have quj te a different

appearance; it is progra.rmned as a Formula expression. A For,,111la expression

is a sequence of symbols satisfying the following syntactical rules:

<For1n.ula expression>: : = <Sum> <Product> <DERi vati ve> <Algebraic variable>

<Value of a formula variable>

<Sum>: : - S (<Formula expression>, <For1nula expression> 1

<Product>::= P(<Formu.la expression>, <Forinula expression>}

<Derivative>::= DER(<Formula expression>,<Algebraic variable>)

<Algebraic va.riable>: := STORE(<aritbmetic expression>, algebraic variabZ.e,
•

<arithmetic expression>)

<Value of a formula variable>::= V(<formula variable>)

<fonnu.l a variable>: : = <variable>

(<variable> and <aritbmatic expression> are defined in the ALGOL 60 report

3; the role of V will be clarified in the following section}. Due to its

above definition a formula may appea.r in a mathematical textbook, a Formula

expressior1 may appear in an ALGOL 60 progra.1n.

•

5

•

Moreover, a Formula expression can appear only as a sequence of symbols,

typed in italics.

By means of execution a For1nula expression an ima,ge of a formula is stored

in the array F (or in another arr~y, see sections 11,12}, occupying three

places: F[k,1], F[k,2] and F[k,3], where k is some integer; this i1nage is
. - . called the internal representation of the forrnula •

•

Some formulae have obtained na.rnes by means of an assigr11nent statement; the

1e:rt- ~-~d side of which being a variable (or variaoles), the right-hand side

of which being a Formula expression. These variables are called the va,nies of

the form.ulae. In the actual program of the preceding section we have, for

instance,

one is the na;me of a,n algebraic va.riable;

z is the narne of an algebraic variable;

f is the I1aine of the forrrrula f {y-wy)+y}; the forinula expression creating

this formula being:

S(P(S(P(~,xl,xl,

DER(y,xll,

P(S(P(y,y),y),

DER(x,xl

) 1

a.nd the array elements in F, where the internal representation off is stored,

being F[B,1], F[B,2] and F[B,3].

Note, that the above formula expression is not quite a Formula expression ;

but in the simple system of section 2 it is a legitimate formula expression.

To make it a Formula expression, all ~'sand y's should be changed into

V(x)'s and V(y)'s, respectively.

4. Values and names

In this section we shall study the connection between a !lame of a formula

and the internal representati.on of a formula. As. ye have seen in the preceding

section a naJne of a formula is an ALGOL 60 variable such as an integer f or

an integer array element g[lO].

6
•

•

Definition: A value is the whole of three a.rray elements in F, :for a certain

nilrnber k: {F[k., 1 J, F[k., 2 J, F[k., 3 J}, in which the internal representation o:r

a fon11ula is stored.

Remark: If the :particular method for storing the internal representation o:r a
•

formula is chosen in another way, then the value is defined as the whole o~
•

storage cells in which the internal representation of a :formula is stored.

In the simple system of section 2 the value of a variable f, being the name

of a formula f, points to the value in which the internal representation o~

f is stored.

So, if ve introduce th.e abbreviation: val(f) for value of f, then

val(f} ➔ value v

with v - {F[val(f),1],F[.val(f}.,2],F[val(f},3]}.

Introduci.ng the notation val(f) :for value of f, we have in the simple system
' of section 2 the following:

The variable one is the name of an algebraic variable,

val(one) - {F[1,1],F[1,2],F[1,3]},

while val(val(one}l {0,3,0}.

The variable f is the na.n1e of the formula ((y~)+y},

val (f) = { F[8., 1 J , F[8, 2] , F[8., 3 J } ,

while val(val(f}} = {7,1,4};

the numbers 7 and 4 point to other values, r1a.n1ely

{ F[. 7, 1] , F[7., 2 J , F[7, 3] } and. { F[4, 1] ,F[4, 2] , F[4, 3 J } ,

respectively.

In order to make the connection between the variable f, being a narne of' a

:formula f and the internal representation off less direct, we introduce a

Definition: A na.1ne. is a storage cell. The value of a naJne either • is zero or
•

points to a value. Each va.riable f, o.eing the na,rn.e of a formula
•

'f, shall

7

We now- have the :following situation:
I

val(f) + va.1ne(f}.

If a variable g is not the na:me of a f'o:t·mula, but will possibly become the

na;me of a :for1nula, then for this g a name is cre~ted also, having the value

zero. If a variable f is the name of a formula f, then the value of its na.,,,e

is defined as the value qf f itself:

val(na.me(f}) -+ val(f} ;

hence in this case:

val(f) + narr1e(f} ; val(na.me(f}}_-+ val(f}.

One · ht vi.sualize the situation in the following manner, which is al roost

the 1r1anner described in the following sections:

Introduce the int:,eger array [-1000:-1 J ;

let val(f) = -5,

then name(f} = N. [-5] , •

let val(N. ~[-5]} = 8, then

val(f) = val(name(f}) {F[B.,1 J ,F[B.,2] ,F[B, 3] }.

Note, that chasing values of pointers to na.rnes to be non-positive and values

of pointers to values to be positive gives the possibility of a run-·time
-

''type-check''.

•

Let f be a formula having an internal representation stored in the value:

val(f) .•

Definitions: 1. f is called a formula of the first kind if there exists a

name n such that val(n) val(f} •

•

•

2. f is called a subformula of the forrnula g, i:f val(g) contains

a pointer to val(:f).

3. is called a sub:form.u.la of the formula h, if f is a subf'or111ula

of the formula g and g is a subformula of h.

4. f is called a formula of the second kind if there exists no

na.me with. a value pointing at val(:fl, but there exists at

least one formula g of the first kind of wbi ch f is a sub-

f orrn.u.la.

•

•

8

It is clear now that giving a proced11re COLLECT GARBAGE the list of-Da:rnes

it can determine precisely wbj ch for1r1ul ae belong to the garbage; na,1nely,

those ro1·1n\llae vhich a.re nei th.er of the first kind nor of the second kind.

Ass11m~ that an integer array N. · were introduced in the progra1n of section
•

2, then the final stage of the calculations mi gh.t be visualized by means o'f

the following diagram~

val(one)=

val. (zero}=

val(x)

val(y)=

val(f}-

Abbreviation:

n

-1

-2

-3

-4

-5

NAME[nJ

1

2

3

4

8

fig. J.

k F[k.,1] F[k,2]
..

1 0 3

2 0 3

3 0 3

4 0 3

5 3 2

6 5 1

7 4 2

8 7 1

The value {F[k,1],F[k,2],F[k,3]} will be denoted by {k}.

F[k., 3]

0

0

0

0

3

3

4

4

From fig. 1, we see that the formulae with the values {1}, {2}, {3}, {4} and

{8} are of the first kind, with the values {5} and {6} form the garbage and

that the formula with the value {7} is of the second kind.

•

9

vari able by: rneans of a
: a

•

Fo:rn1ul.a,s: ~JCpression
•

In this section we shall investigate the ALGOL 60 analogue of an assigr1ruent

statement, as e.g.

)) . (1)

Although we have introduced the concept Forrm1Ja expression already in section

3, we shall temporarily forget the concept in order to study hov a fort11,1la

expression should be built up. Of co11:rse, the decla.rations of the procedures

for storing a st11n and a product ferro the cornerstones.

There are principally two ways open:

1. We ina.ke proced1Jres s and p, :for storing a s11m and a product, respectively,

in such a way that they create a na,roe, the pointer to which being delivered

by the values of their procedure identifiers.

2. We make procedures S and P, for storing a surr1 a,nd a product, respectively,

in such a way that they create a value, the pointer to which being delivered

by the values o~ their procedure identifiers.

P11rs,1i ng the first way, we observe that since we want to be able to write
I

'' s (p (s (. • • '' , the values of' the actual para.rrteters of s and p should be
. - pointers to names. The following statement is then legitimate:

f:= s(p(x,x),p(y,y)) , (2)

for, a)

b)

• the values of x and y are pointers to names;

f becomes equal to a pointer to a nam.e.

However, since s and p create unique na.mes, it f'ollows that, without pre

cautions, execution of (2) leads to three unique na.m.es of which two are

superf'luous, namely the na~es created by p(x~xl and p(y,y).

Therefore, s and p should not only create na.rnes, they should also destroy

the temporarily created na.mes as the result of' evaJ.uat·ion of their parameters.

In order to save the names of x and y from this erasure it is necessary to

insert a special procedure save(f) which delivers a pointer to a newly

created name with the same value as the value off.

Hence, (2) changes into:

f:= s(p(save{x),save(x)),p(save(y)~save(y)J). (3)

10

We sba,] l now declare the procedure s, using the (rmdeclared 1 procedure

<!reate name (VALUE), which delivers a pointer to a newly created name with

as value: {VALUE}, and the (undeclared) procedure REMOVE, which destroys the

lastly created :na,cne.

begin: ~nteg_er S;

S:= _ V(a) - V(zePo) then V(b) else

i V(b) - V(zero) then V(a) else

STORE (V(a), sum, V(b));

REMOVE; REMOVE;

s:= create name (SJ

ends.

•

If the formula f produced by (3) becomes 11ninteresting, then a procedure

call ERASE(f J is necessary to destroy the :narne of f.
It should be observed that merely assigning to f another value does not destroy

the na.cne of f; this na1ne is only not be pointed at any more by the value of

f. This means that the user should recognize that garbage is being formed,

which means that the system is not an automatic garbage-collection system.

Another disadvantage of the above approach is that a possible omission of

save will lead to catastrophal results; moreover it is not possible for the

system to check for such omissions since the values of save(x) and x are

both pointers to ~ames.

The second way, Sand P deliver values pointing to values, will now be studied.

Since the values of their actual parameters will now also be pointers to

values (we want to write S(P(S ..•), it is not possible to write.

since the values of x, y and fare pointers to names.

Ir1s t ead, we now should have :

ASSIGN(f,S(P(V(xl, V(xl l 3 P(V(y)., V(y J))), (4)

where V(x) becomes equal to the pointer, pointing at the value of x,

•

•

1 1

•

•

and where ASSIGN makes the value of the name of f equal to the pointer

pointing at the value where the for1nula ((x••x)+(y~)) is stored.

It has implicitly been assu,ned that the narue of f does exist already, which

suggests that all the na10es of the variables, being used as na:rnes for forrt1ulae,

are created upon block entry thro appropriate ''forinula declarations'' •
•

Let the proced11re SAVE(VALUE) create a new na,me with as value: {VALUE}.

The proced11-re S rnay now be declared as follows:

fn~eeer procedure S(A,B); ~nteaer A,B;

begin i:itf3-ger Al,Bl; Al:= A; SAVE(A1); Bl:,,,, B;

comment T"he forirrru.Z.a with a vaZUE pointed at by Al is saved from erasure

by a possible garbage collection during evaiuation of t'he actu,ai parameter

B. After B has been evaZuated t'he.re is no danger anymore fPom any state

ment in this procedure bo , so that -the tempora.Pi.Zy oraeated name for

Al can be removed by:

REMOVE (Al);
\ .

comnent REMOVE(Al) as effect that:

1. The vaZue of Al becomes equaZ to t'he vaZue of the Lastly areated , --
which., after SAVE(Al)., equaZZed the value of A, but which may e been

changed after a possible garbage coZZeotion du~ing ''Bl :=B'',,

2. the lastZy created name is d,estroyed.;

S:= i+- Al= V(zero) then Bl else

i Bl= V(zero) then Al eZse

STORE(Al, sum, Bl)

end S.

We remark that, for storing x+y+z+u, it is more easy to write

S(V(x).,S(V(y),S(V(z),V(u)))) then S(S(S(V(x),V(y)),V(z)),V(u)); therefore,

a change of the first four statements of the procedure declaration into:

Bl:= B; SAVE(Bl); Al:= A; REMOVE(B1)

will, in general, lead to the creation of less simultaneously existing

temporary names.

12
•

i111portant observation is the following.

If th.e storage space :ror the na,mes is chosen in the same array as :for the

values, then the space needed to save Bl, in the above procedure Smay

be used afterwards for storing the triple: {A1,swn,B1} without a garbage

collection; furthermore, the saving-of Bl

storage space (provided Al a.nd B1 ax·e not

• • VJ.1.1, l.ll general, not

V(zero)).

cost extra

equal to

Erasure of the formula :r, as introduced by (4) is now sitr•ply possible by

assigning to its name another value; i.e. by assigning to the naJne of f

another value. A possible garbage collection will then find out that f

belongs to the ga,rbage since there is no na.:me pointing to its internal re
..

presentation.
•

This system 1nay thus be called an automatic garbage-collection system. .

Moreover, syntactic control is possible on the appearance of V, since the

value o:r Vis a pointer to a value and the value of xis a pointer to a

naJne (which ma.y be chosen negative, e.g.).
I

It does not need saying that the latter, just described, method will be

followed in the next sections. •
• >

•

6. Block entry and block exit
SI Cl A $1177

Upon block entry all the variables, to be used as na1nes of :forxuulae, should

be declared as variables of integral type, and unique names should be created
>

for them. To combine this creation and a possible initialization, we use a

procedure DE, which heading runs as follows:
•

Boolean ePocedure DE (first time, f, F); vaiue fiPst ~ime;
•

Boolean first time; ~nteger f, F;

Creation of na.mes arid the ir1i tialization (to F) is then possible by means of

a ''declaration statement'', syntatically defined as follows:

<declaration statement'.!>: : - DE.(tPUe., <_va.riable>, <value> J ..

DE(<declaration statement>,<variable>,<value>J

<value>::= 0 <Formula expression>

13

Exa1n1-:,le: the variables x and y, to be used as na,rnes of algebraic variables ,

and the variable f to be used as name of the formula ((x><x)+(y-ry)) are

'' declared'' as follows:

inteaer x,y,f;

DE(DE(DE(true,x,STORE(O,aLgebraic variable,OJ), •

•

y, STORE(O,aLgebraia variable,O)),

f, S (P (V (x) , V (x)) , P (V (y) ., V (y)))) ;

It is necessary that, immediately after block entry, DE is called with

first time - true; afterwards it has to be called with first time - aZse.

~xam:ele: The .. subscripted va.riables g[i], i
•

1, . .. ,10 will be used as naines

for, 1..1ntil -now, 11nknown forrn.u.lae; they may be ''declared'' by:

integer i; integeP array g[1:10];
I 1

for i:= l·step 1 until 10 do DE(i=l, g[i], OJ;.

'
Upon block exit all the lastly created naJnes after the corresponding block

entry, are erased by a call o:f ERASE. These lastly created naroes are created
•

during and after a call of DE with first time true; hence, each executed

•

call: ERASE should correspond with one and only one executed call: ''DE(true., ..•)'' .

•

7. Garb~.p,,,e colJ_ection with a rel9c,ation ,technique

In this section we describe a garbage-collection process which is based on a

relocation tP-chniq_ue; i.e. after a garbage collection the ''non-garbage''

formulae have been relocated in the array F such that there are no holes
•

left in F.

In the following section the ALGOL 60 program will be reproduced.

The garbage-collection process is split into two subprocesses: GCPA and GCPB.

GCPA stores the contents of the values of ''non-garbage'' formulae in a second

a.rray Fdrum., which serves as an j mage o:f the a.rray F; it is filled as if it we1 .. e

the future array F.

•

14

GCPB stores the contents of F~ into F.

We remark that in an actual, more realistic, system we would not use_an

array Fdrum but secondary storage instead, such as e.g. a dr1rn (See 1

chapter 2 (section 2.7)).

•

GCPA is described by means of the following algorithm:

Step 1 : If there is a na:tne, then choose the first na;rc1e and take step. 2;

otherwise, take step 8. · ·
• Step 2: Take as storage cells the last chosen name. If the value of s 1.s

zero, then take step 7; otherwise, take step 3.

Step 3: Choose as value v the value pointed at by the value of s. Take step 4.

Step 4: If vis marked as being treated already, then the value of s becomes

the pointer to the value in Fdrum where the contents o~ v has been

stored and take step 7;

otherwise, take step 5.

Step 5: 1If v contains pointers to the values,

for i-1, •.• ,n do the following:

choose as storage cells= v. and
1

i=1, •• ,n, n>1, then

execute the GCPA beginning with step 3 and ending with step 6.

Take step 6.

Step 6: Store the contents of v (possibly being changed in step 5) into a

value V of Fd:Piun. Mark v as being treated already and store the

pointer to V into v and into s.

Take step 7.

Step 7: Choose the next name, if available, and take step 2.

If there is no name left, then take step 8.
Step 8: GCPA is finished.

The algorithm for GCPB is very simple: The contents of Fdrwn is exactly

copied into F and in the sa.me locations; i.e. :

or i:- 1 step 1 until pointer of F do 1,2,3 do
F[i,j]:-

15

•

A:rray eleirients of F, occupying th.e ''top position'' in F, will be chosen for

the na.mes. The organisation of which is as a stack with the pointer:

pointeP of name, growing downstairs and shrinking upwa1·ds.
I

A garbage collection will take place if

pointer of F = pointer of name -1,
•

where pointer of Fis the pointer of the values in F; i.e. the current value

of pointer of Fis pointing to the lastly created value in F; in the same

way, the current value of pointeP of name is pointing to the lastly created

name in F.

The procedure COLLECT GARBAGE is provided also with a para.,oeter arr, specified

as integeP arra~, in which it is possible to give to COLLECT GARBAGE some

extra special Dames, not occ1.1ring in the na.me list (see the proced11re decla

ration of STORE).

In order to organize the block entry (creation of naxnes) block exit (erasure

of names) mechanism, a second stack, the array last name, with pointer

pointer of last name, is used. In this stack the current value of the pointer

of the name list: pointer of name, is stored upon block entry by means of a

call DE(true., •••). Upon block exit the pointer of the na,cne list is reset to

the value of the top of Zast name by means of a call of ERASE.

8. The relocation garbase-collection _ ~ecl:}.nigue :ero,sraJnmed in ALqo~. 60 for
a a

a
a simple system.
-

In this section the ALGOL 60 program is reproduced describing the relocation

garbage-collection technique. Some procedures have not been mentioned before:

the procedure AV for storing an algebraic variable; the procedure ERROR which

detects a possible error, prints the error message and discontinues the cal

culation by means of a call of the standard procedu.re EXIT;

the procedures PR nlcr, PR string, PR, PR intnum and PR sym, for printing

and punching a new. line-carriage ret1.Jrn s.ymbol, a string, a real nur11ber,

16 •

an integral. number and a symbol;

the procedure OUTPUT wbi ch. outputs a forrnula without superfluous brackets.

Finally, the progra.rn ends vi th an actual program which will be discussed,

together vith its also reproduced results, in the section 9 •

•

be~in comment A simple system of ABC - ALGOL 60 procedures for
I

formula manipulation with garbage collection (relocation-technique).

RPR 061168/02 - T8190. R. P. van de Riet;

ip.~e~er, pointer of F ,poi11ter of name,pointer of last name,

max of F ,max of last name,

algebraic variable, sum ,p1~oduct ,one ,zero; '

max of F:= read; max of last name:= read;

be~in integ~r; arrav F[l:max of F ,1:3],last name[l:max of last name],

Fdrum[l:max of F,1:3],auxiliary array[l:5];

p,roced~.1:~ INITIALIZE;

begin pointer of F:= pointer of last name:- O; pointer of name:=
a

max of F + 1; algeb1·aic variable:- 1; sum:- 2; product:= 3;

DE(DE (true,one,A V(O ,1)),zero,AV(O ,0));

end INITIALIZE;

12r:?cedu1:e. COLLECT GARBAGE(n,arr); value n; integer n;

in~ege_r_ ar1'av arr;

be~in, ,:in~~g~r. i ,j;
'

inte~~r. pro:~,ed~1'e .. SET ON DRTJ.1\1:(FF~); ,Talue FF; intep;er FF;
4

if }"F = 0 then SET ON DllUM:- 0 else

if F[FF,1] < 0 then SET ON DRTJM:- -F[FF,1] else

~.e~~; i~t~~~r. t,"'t\,B; t:- 11YPE(FF ,A,B);

if DYADIC OP(t) then

b_~_gin, A:= SET ON DRUM(A); B:= SErr ON DRUM(B) end;

•

17

SET ON DRU~:- pointer of F:= pointer of F + 1;
'

Fd1 .. um[poi11ter of F ,1]:- A; Fdrum[pointer of F ,2]:= t;

Fdl'Uill [pointer of F ,3]:- B; F[FF ,1]:= -pointer of F

· end SET ON DRUM;

.J?t'o~edu,~~. DUMP;
•

b,eetln_ PR nlcr; for i ::= 1 step 1 until max of F do

be~in, PR nlcr; PR int num(i); for j: 1,2,3 do

~e.e;~,~, PR string() ;

if 7(j > 1 /\ i > pointer of name) then PR int num(F[i,j])

end end end DUMP;

if poi11ter of F = pointer of name

pep;in DUMP;

1 then

comment GCPA:; pointer of F:= O; for i:= max of F step -1 until

pointer of name do F[i,1]:= SET ON DRUM(F[i,1]);

for i:= 1 step 1 until n do_ arr[i]:= SET ON DRUM(arr[i]);

c,qmllle~t. GCPB:; for i: 1 step, 1 until pointer of F do

fdr j: 1,2,3 do F[i,j]: Fdrum[i,j]; DUMP;

ERROR(pointer of F pointer of name - 1, o space lef)

end end COLLECT GAR.BAGE;
•

inte~~r ,proced~re STORE(A,t,B); value A,t,B; ,,integer, A,t,B;
11 i $ I

J:>egin auxiliary array[l]:== pointer of F:= pointer of F + 1;

F[pointer of F,1]:: A; F[pointer of F,2]:= t; F[pointer of F,3]:= B;

COLLECT GARBAGE(l,auxiliary ar1~ay);

STORE:= auxiliary array[l]

end STORE;

inte~er_ procedure AV(l,r); value l,r; inte&~r, 1,r;
a

AV:= STORE(l,algebraic variable,r);

18

S:\\rE:= poi11ter of nan1e:== pointer of name - 1;

F[poi11tcr of nnme,1]:= FF;

CC)l . .,I."I◄:CT GARBAGE(O,auxiliary array)

end S1\VE;

_i~teae:.~. Ei:oc~~11r,e, V(f); value f; i?;~eger. f;
a .

~~el?i!!1 ERilOR(t· > 0, name not appropriate in

V:= F'[-f,1]

end V;

);

•

~1;1~,~~~-~- ,P.1:~C..~?~:re, TYPE{FF ,A,B); value FF; i~~e~er. FF ,A,B;

be n ERROR(FF < 0, F negative in TYP);

A:= F[FF,1]; TYPE:= F[FF,2]; B:= F[FF,3]

end TYPE;
I

Boolean E,r,~~d.ure. DYADIC OP(t); value t; i~!.~ger t;

DY t\I)IC ()P:= t = sum V t = pro·dtlct;

pl'Ocedure REl\lO'VE'FF); i~~~~_g~!. FF;

~.eflii~ t~l;t:-= F(11ointer of nr1me,:l]; pointer of name:- pointer of name + 1;

r:I{R(JR(poi11tt~r of name > max of F - 1, REMOVE no a11propriale)

end Rf:MOVf~;

I~ oolea1·1 J~~ocedu 1··e._ fJf~' (fi 1·st time ~f ,F); val, ~e first time;

·soolt·ati~ first tin1e; ~nteg~,r, f,F;

!?.~f!~r.~. i 1 f'i t~st Li1ne then__

~r~gi11 {X)int(!l" ,)f l,1st nr1n1e:= p<'inter of last nan1e + 1;

ERJl<.}f{(poi11ter of 1~tst n~1rne > m,1x of last na1L1e,

·pointer of last n:1n1e too la1·ge ...);

last nitnJt.~[pointer of lti.3t 11an1e]:= ·11ointer of name

f:11cl; f:= - SA \ 1 E(1.1); DE:= false

(.' l l ti I,·, I~; -

19

p1 .. oceclu1--e ERASE;

,begi11. poi11t.er of name:= last name[pointer of last name];

name - 1; poi11t.er of last name:- pointer of last

El{llOR(pointer of last name < 1, E

e11d ERASE;

SE not appropriate)

•

_inte_ger procedure ASSIGN(f,FF); value f,FF; intel?ie.r, f,FF;

beJ;.rin ERROR(f > 0 ,· name not appropriate in ASSIGN) ;

ASSIGN:= F[-f,1]:= FF

end ASSIGN;

.!!lteg,~r. µ1·ocedure ERROR(b,s); value b; Boolean b; ,~~ri!)f;_ s;

if b then

bep;in, PR nlcr; PR string(s); EXIT; ERROR:= 1 end ERROR;

urocedure PR nlcr; PR string(
•

) ;

pr?.c~du1'e. PR string(s); .. ~t·1·infi s;

b_e~i~1. PRINTTEXT(s); PU1'EXT(s) end PR string;

Er~~~d~1·e. PR(r); v,tlL1e r; real r;

be~in P CH(r); PRJN'I'(r) e11d;
a 1 n 1111 4

yrocedu~--e. PR int num(a); v~tl.ue a; _integer a;

end PR int num;

procedure PR sy .. m(s); ,.ralue s; in,~~~e.r s;

~e~~~. PUS1.7M(s); PRS\:~M(s) end;

); a:= a end;

20

i11 te~e1 ... p1--qcedt1i:e .. S(.. .t\.,B); ~~!te~er. A,B;

be~in. i11teger Al,Bl; Bl:= B; SAVE(Bl); Al:= A;

EltROR(Al < 0 V Bl < 0, A or B negative in); REMOVE(B1);

S:= if Al - V(zero) then Bl else if Bl = V(zero) then Al else

STORE(Al,sum,Bl)
•

end S;

,in~~ge~. Er~c~?u.re, P(A,B); ~nteger, A,B;

begir1 inteFier, Al,Bl; Bl:= B; SAVE(Ill); Al:= A;

ERROR(Al < 0 V Bl < O,tA or B negative in); REMOVE(Bl);

P:= if Al = V(zero) V Bl = V(zero) then V(zero) else

if Al = V(o11e) then Bl else if Bl = V(one) then Al else

STORE {Al ,product ,B 1)

end P;

procedure OUTPUT(name,OUTPUT VARIABLE); value name; ~teger. name;

procedure OUTPUT ,, ARIARLE;

~~~in .. n:P!,~ce~u1·e. OP(F ,'ty1Je); value F ,type; integer, F ,type; 

begir: ,integ~r. t,A,B; 

proc!edure I.1BR; if t < type tl1e11 PR stri11g( ); 

p1--ocedure RBR; if t < type then PR string( ) •); 

t:,. TYPE(l~,A,B); 

if t algebraic variable then OUTPUT V ARIABLE(F) else 

it· l)Y.,-'\l)IC OP(t) then 

bes.in_ J"'BR; OP(,t\,t:); 

if t = Sltrn the11 PR string( +. ) el~e -
if t = product tl1en PR string( . ); .. 

OP(B,t); llBR 

encl else ERHOI1(true, f not appropriate in OtJTPU ) ----
e11d OP; 

()P(V(r1,1me) ,0) 

end OUTPUT; 



21 

ACTU1\L PR RAM: 

~cgin i,11tege1"". x,y ,f; 

p1,.occdu1--e_ov (f); 

begi11 i11t~e;er A,t,B; t: T E(f,A,B); 

if B < 1 then PR int num(B) else 

if B = 2 then PR string( ) else 

if B -·- 3 then PR string( ) else 

ERROR{true, error in outpu ) 

end; 

pi-:ocedure, P T(x,s); .integer. x; s.~~ing_ s; 

• 

,beg!n. PR nlcr; PR string(s); PR string( (name: ); PR int num(x); 

PR string( ) (value: ); PR int num(V(x)); PR string( ) formula: ); 

OUTPUT (x,OV) 

end; 

PR rilcr; PR string( results RPR 061168/02 ); 

max of F:·= 13; INITIALIZE; 

comment garbage:; AV(l0,10); 

DE(DE(DE{true,x,A V(O ,2)),y ,AV(0,3)),f ,0); 

PRINT(x,::: - ); PRINT(y, y ); 

ASSIQN(f ,S(P(S(V(x), V(y)), V(x)) ,V(y))); 

PRINT(x,"" ); PRINT(f, 

E SE; 

DE(DE(true,x,A V(O ,2) ),f,0); 

ASSIGN(f, P(V(x) ,S(V(x) ,S(V(x), V(one)) )) ) ; 

PRINT(x,

ERASE; 

); PRINT(f, ); 

); 



22 

m:1x of F:= 18; INITIALIZE; 

cornn1c11t garbage:; AV{20,20); AV(30,30); 

DE(DE (DE(t1~e,x,A V(0,2 )),y .A V(0,3)).f ,S(P(V(x), V(y)), V(one))); 

PRINT(x,-.:::r" = ); PRINT(y, - ); P T(f, 

ASSIG N(f ,S(P(V (f) ,P(\'(x), V(y))), 

S(P(V (f), V (f) ), 

S(P(S(V(f) ,P(V(f) ,V (y)) ), V(zero)), 

P(V(x),V(f)) 

) ) ) ); 

PRINT(x, = ); PRINT(y, - ); PRINT(f, ); 

ERASE 

end 

end end 100 100 

results RPR 061168/02 

x = (name: -11) (value: 4) formula: x 

y = (name: -10) (value: 5) formula: y 

1 0 1 1 

2 0 1 0 

3 10 1 10 

4 0 1 2 

5 0 1 3 

6 5 

7 4 

8 5 

9 0 

10 5 

11 4 

12 2 

13 1 

• 



1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0 

0 

0 

4 

4 

3 

4 

0 

10 4 

11 3 

12 

13 

X = 
y 

f 

1 

2 

3 

4 

5 

6 

7 

8 

2 

1 

(name: 

(name: 

(name: 
' 

0 

0 

0 

0 

3 

5 

6 

0 

9 1 

10 0 

11 8 

12 2 

13 1 

1 

1 

1 

1 

1 

1 

0 

2 

3 

3 

23 

-11) (value: 3) formula: x 

-10) (value: 4) formula: y 

-9) (value: 7) formula: (x+y)xx+y 

1 1 

1 0 

1 2 

1 3 

2 4 

3 3 

2 4 

1 2 

• 

• 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

0 

0 

0 

3 

5 

6 

-3 

1 

0 

11 3 

12 2 

13 1 

1 

1 

1 

1 

2 

3 

2 

1 

1 

0 

2 

3 

4 

3 

4 

2 

24 

x = (name: -11) (value: 3) formula: x 

f = (name: -10) (value: 6) formula: xx(x+x+l) 

x = {naine: -16) (value: 5) formula: x 

y = (name: -15) (value: 6) formula: y 

f = (name: -14) (value: 8) formula: xxy+l 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

a 

20 

30 

0 

0 

5 

7 

5 

8 

11 10 

12 2 

13 9 

1 

1 

1 

1 

1 

1 

3 

2 

3 

3 

1 

0 

20 

30 

2 

3 

6 

1 

8 

6 

• 



14 8 

15 6 

16 5 

17 2 

18 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0 

0 

0 

0 

3 

5 

3 

6 

_7 

-8 
\ 8 

12 2 

13 7 

14 6 

15 4 

16 3 

17 2 

18 1 

1 

2 

3 

4 

5 

6 

0 

0 

0 

0 

3 

5 

1 

1 

1 

1 

3 

2 

3 

3 

3 

3 

1 

1 

1 

1 

3 

2 

1 

0 

2 

3 

4 

1 

6 

4 

8 

6 

1 

0 

2 

3 

4 

1 

25 

• 

• 



7 

8 

9 

10 

11 

12 

13 

14 

15 

3 

6 

6 

6 

10 

4 

11 

6 

4 

16 3 

17 2 

18 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

I 

0 

0 

0 

0 

3 

5 

6 

3 

7 

4 

7 

9 

13 9 

14 6 

15 4 

16 3 

17 2 

18 1 

X (name: 

y - (name: -

f (name: 

3 

3 

2 

3 

2 

1 

1 

1 

1 

3 

2 

3 

3 

2 

3 

2 

6 

4 

8 

6 

7 

1 

0 

2 

3 

4 

1 

6 

6 

8 

6 

7 

26 

• 

-16) (value: 3) formula: x 

-15) (value: 4) formula: y 

• 

' 

-14) (value: 12) formula: (xxy+l)xxxy+(xxy+l)x(xxy+l)+xx(xxy+l) 



27 

9. Dis~ussion ot' the actual program and the results 
' 

In order to test the garbage-collection mechanism, some exa,mples, in which 

garbage collections take place, have been treated in the actual progracn. 

The garbage is introduced in two ways: 
• 

explicitly, by the calls AV(l0,10), AV(20,20) and AV(30,30), introducing 

algebraic variables without a name; 

implicitly, _by means of ERASE and by means of the Formula expression: 

P(S{V{f),P(V(f),V(y))),V(zero)) , 

producing the garbage: (f+(f-wy}). 

The output of a formula consists of the following: 

1 • the value of the variable being its na.me; 

2. the value of the name of the variable being its name; 

3. its ordinary representation as a formula. 

I 

Immediately preceding and i1nmediatly after a garbage collection, the 

interesting part of the contents of the array Fis output (see procedure 

DUMP in the procedure COLLECT GARBAGE); i.e. if k is the pointer to a value, 

the values of the array elements F[k~l], F[k,2] and F[k,3] are printed; 

if k is the pointer to a name, then the value of F[k,1] is printed only. 

This output is preceded by a column in which the value of k is printed. 

Remark: All garbage collections occurred after a call of SAVE, as should 

be expected. 

10. The differentiation process 
Ii 

Calculating the derivative of a formula f with respect to an algebraic 

variable x means going recursively along the branches of the tree representing 

f and producing meanwhile partial results of the derivative. 

However, producing partial results means storing formulae, which means 

possible garbage collections, which means changing the pointers to the 

values, which finally means that the branches of the tree, being pointers, 

are ,, . 1' slithery. 

• 



28 

Therefore, in order to have fixed grip on the branches, na,,nes are intro

duced in the following declaration, for holding the branches. 

inteqer procedure DER(F,xl; value F,x; integer F,x; 

beg·i,i ~_ri~eaer t, a, A, b, B; t:- TYPE(F,A,B); . 

i DYADIC OP(t) then DE(DE(true,a,A),b,B); 

DER:= i F = V(x) then V(one) else 

i'" t = sum then S(DER(V(a),x),DER(V(b),x)) else 

t = product then S(P(DER(V(a),x),V(b)),P(V(a),DER(V(b),x))) 

else V(ze:ro); 

i~ DYADIC OP(t) then ERASE 

end DER. 

Let the depth of a forrnula f' being defined as follows: 

i~~eg~~ pPgced~e depth(f); value f; integeP f; 

beg~n i!iteg_e~ p~oa~~ure d(F); value F; integeP F; 

be;gir~_ ~~~-tf!-eer t, A, B, dA, dB; t:- TYPE(F.,A.,B); 

i DYADIC OP(t) then 

beain dA:= d(A); dB:- d(B); 

d:= (i'· dA<dB then dB else dAJ +l 

end eZ.se d:= 0 

end d; depth:= d(V(fJ) 

end depth. 

It can easily be seen that, if depth(f) n, then, during the computation of 

DER(f,x), there will be a moment at which 2n new names have been created 

simultaneously and n places in the stack last name have been used. 

These 2n na.rr1es are created in the procedure body of DER; besides these na.tn,es, 

names may be created by calls of S and P. All ne:rr1es occupy temporarily the 

space which after-wards roay be used for the storage of the derivative itself. 

A situation is, however, far from impossible that there is not enough space 

f'or storing these temporary na.mes, while there would be space for storing 

the derivative. 



29 

n+1 
Consider, for example, :f = X ( .•. ((x+x)+x} .•. +x), with depth (f) n; 

i 1 
in calculating DER(f,x), DER introduces :for each bracket pair two names 

and one place in Z.ast name; moreover S introduces one na,rne :for each bracket 

pair pointing to the value of DER(x,x} =one.Hence, at the moment the 

innermost s11m (x+x) is being treated by DER and before the statement 

ERASE is called, there have been created 3 n new names; and n places in 

last name have been occupied. 

However, the storage of df/dx needs only n places in the array F. 

We conclude that the method should be refined in two ways: 

1 . the saving of values should not be perforrned by means of declaration state

ments; for, the declaration statements lead to then places in Zast name. 

2. the saving of values should be performed by a SAVE-REMOVE mechanism intro-
• • ducing the least as possible n1L1mber of new names • 

• again: Let us face the problem once 

Suppose f (a~), the values of F, A and B being the pointers to the values 

off, a and b, respectively. 

During the calculation of ((da/dx~) + (a~b/dx)) a garbage collection is 

possible. We do not have to worry about :f', a, and b being erased, since f 

will be a formula of the first or second kind. The problem we are involved 

with is that the pointers to the values off', a and b may change, without a 

correspor1ding change of the values of F, A and B. We now observe that it is 

not necessary to know the values of A and B, if we know the value of F; for, 

the values of A and B can be calculated by means of TYPE from the value of F. 

Let us now try the following procedure declaration: 

integer F,x; 
I l • 

beg1:1i integer E!.!>~,Je4_7:!,re A of F; 

bewi:n i12 tel./e_r., A., B; REMOVE (F); SAVE (F); 

TYPE(F,A,B); A of F:- A 

end; 

inteJer proae4uTe B of F; 

bea.·in in.-t_e;;er A,B; REMOVE (Fl; SAVE (Fl; 

TYPE(F,A,Bl; B of F:- B 

end; 



30 

i~tcge~ t, A, B; t:= TYPE(F,A,Bl; 

DYADIC OP(tl then SAVE(F); 

DER:= i F = V(x) then V(one) else 

i~ t - sum then S(DER(A of F,xl, DER(B of F,x)J eZse 

i~ t = product then S(P(DER(A of F,x),B of F), 
• 

P(A of F, DER(B of F,x))) 

eZse V( zero); 

DYADIC OP(t) then REMOVE(F) 

end DER. 

We have used in this declaration that SAVE(F) adds a new name with as value 

the value of F, on the top of the name stack and that REMOVE ( F) makes the 

value of F equal to the value of the top na.rne and removes this na,me. On 

first sight the declaration seems what we are looking for: no declaration 

statement and only one newly created name. However, we have to recnernber 

that S and P also create na.rnes at the top of the name stack, so that the 

naJne for F will not always be the top na.me. Hence the above declaration :for 

the differentiation process may lead to errors. Fortunately, we can calculate, 

however, how far the name for Fis sunk into the name stack by counting the 

number of SAVE' s executed by S and P. 

In the following, and final, procedure declaration for the derivative process~ 

the deepness of the name for F is being taken :i.nto account by means of the 

proced11re GET, which digs up the r~amf.:_ for F, conibines the actions of the 

procedures A of F and B of F, declared above, and, finally, ''bt1ries '' the narrl.e 

for Fas deep as it originally lay. 

I IS t I 

-- i; R<Jo1 e .1n 1.hs; 

,b~gi11 .~.11t~~g~ r_ j; ~ lll~[~--~~ ~ l L nr }{f: l\·'ll 1 ;i ]; 

f'<)t' j:=: 1 ster) 1 !1llt.i1 i <.lo hEM< .. )VJ~(RElvl[j]); 

·r Yl) I◄~ ( 11 J◄: 1\1 [ i ],~l\. »R); t, I:: T := ii lhs tl1t~11 _A,,_ else B; 
·••·-·· 

fo1" j:= i stt:p -1 t1ntil 1 do SAVE( l{E_._VI(j ]) 

e11d GET; 



,,. 

31 

t:= TYPE(F .A,B); 

if DYADIC OP(t) then SAVE(F); 

DER:= if F = V(x) tl1e11 V(one) else 

if t 

if t = product tl1en 

if DYADIC OP(t) then REMOVE(F) 

end DER; 

else 

• 

Note, that it were possible to construct the procedure GET in such a vay 

that it does not use SAVE and REMOVE, but that it operates directly on the 

name list by means of pointer of name and F. 

Having studied the derivative process and the value 

such details we leave to the reader the Problem: 

• • - na111e mechanism in 

What roay go wrong in the declaration statement: 

DE(DE(t~ue, a, A) b, B), 

in the very first decla.ration of DER? 

Concluding this section we observe that it turned out to be far from trivial 

to construct a ''water-proof'' differentiation process. This is due to the 

fact that the branches of the tree representing a formula a.re ''slithery'' 

in a relocation garbage-collection technique. 

It is for this reason that we study in the next sections a garbage-collection 

technique without relocating the non-garbage formulae. 

11. Garbage co~~ecti9n "¥.,i~~ a free-list tecl:µ,}~gue 

In a garbage-collection system relocating formulae, the free storage cells 

are characterized by lying in a certain area of the storage space; i.e. the 

pointer k of a free cell satisfies: 

pointer of F < k < pointer of name. 



32 

. . . f '' - b '' This characterization of free cells is no longer possible i non gar age 

formulae a.re not relocated such that there rerna,in holes in the storage 

space. 

There are two other ways to characterize a free cell: 
• 

1. the free cell is flagged; 

2. the free cell is pointed at by the ''outer world''. 

The implication of flagging a free cell is that the system has to go through 

the storage space in order to find a new free cell; this cnay be very time 

consuming, in particular, if there are only a few free cells left. 

Another disadvantage is the need for an extra bit: the flag. 

The second way will be studied now. 

We use a free-list technique as follows: 

Suppose, that the first free cell has an address contained in the variable 
• 

free ceii. 

Suppose, furthermore, that the (n+1)-st free cell as an address contained 

in the n-th free cell ( as s11.mi.ng that there is at least one free cell) • 

Suppose, finally, that the address of the last free cell is contained in 

the variable last free oeii. 

The finding of a free cell is now obvio~s: it is pointed at by the value of 

free cell and the value of free ceZZ is changed in order to point to the 

second free cell (if available). Adding a new free cell to the free-cell 

list is also a trivial matter: it is connected with the last free cell pointed 

at by the value of last free ceii and the value of Zast f~ee aeiz is changed 
• • in order to point to the new free cell. 

Evidently, a garbage collection is necessary if 

free ceZZ last f.eee aeZZ 

and the last free cell has been used. 



33 

In section 4 we have introduced naines, which, -in the relocation ga,rbage-

collection technique, have two purposes: 

1. as inf'ormation for the system to deterrnj ne which fortr1ulae a.re ''non-

garbage''; 

2. as storage cells in which the pointers to values can be stored (these 

storage cells have to be known by the system during a garbage collection). 

Since we now have a situation tha the value of a ''non-garbage'' formula 
• • • • remains unchanged, 1.t is not evident that we have to introduce names; for, 

a variable, being the na:rne of a formula, may now contain itself the pointer 

to the value of that formula. So, let us temporarily discard the notion of 

na.rnes and concentrate on the problem of how ''non-garbage'' formulae can be 

identified without using names. 

Ass1J1r1e that the only formulae present in the storage space are ''non-garbage'' 

formulae. 
I 

Let a certain forrrLula f' be condemned to be garbage dependent on whether: 

1. it is not a subformula of a ''non-garbage'' formula and 

2. it is not pointed at by a variable being a na.rne o:r :r. 

The information: being not a subformula of a ''non-garbage'' formula can be 

found (in a non-trivial way) in the storage space itself. 

The information that there is not a variable pointing at the value off 

must be stored in the value of f itself; for, we do not use na.,aes. This 

inforrnation can not consist of a single flag since f 1r1ay have more than one 

narnes; therefore, this information should be a number defining how many 

names :f has. Let us call this n11rnber the reference counter of f. This nwnber 

may then also be used to count how many times f is a subformula of another 

formula (how many times it is referenced). The treatment off, condemned to 

be garbage , can now be easily performed by the following ''erase'' process: 

Step 1: Choose as value the value off. Take step 2. 

Step 2: If the value of the last chosen value v points to the values 
• 

V. , l. 
--i 

• for 1 

1, .•• ,n, then 

1, •.• ,n do the following: 

1 f th ''era.se'' process beginning choose as va ue: v. ; per orm e 
1 

with step 2 and ending with step 5. 

Take step 3. 



34 

Step 3: Decrease the reference counter of v by one. 

If the reference counter is zero then take step 4; otherwise, 

take step 5. 

Step 4: Erase v by connecting it with the free-cell list. 

Take step 5. 
• 

Step 5: The erase process is finished. 

There a.re two serious drawbacks attached to this approach: 

1. The reference counters will occupy nlllch space; each value, whether it 

vill be referenced often or seldom, will occupy a counter of a length 

dictated by the maxim1~ua number of possible references. 

This maxim11m ntim.ber will, in general, be reached for the values of algebraic 

variables, being referenced often. 

2. An erase call should explicitly be stated by the user; he should then 

constantly be awa.re of the appearance of garbage. 

An easy block-entry-block-exit device is not possible. 
\ 

Having observed the consequences of dropping the n~.a1es, we now proceed by 

introducing the names again. 

From now on, we shall not use the ar-ray F o:f the :preceding sections, but we 

shall use instead the arrays C and C type declared as: 

inte~er arra~ C[l:max of C,1:2], C type[l:max of C]. 

The a,rray elements of' C will be used for names and ''non-type''-pa.rts of values. 

The array elements of C t;ype will be 11sed for storir.1g tht ''type''-parts of 

values (i.e. F[k,2] in section 3). In a 19.ter, more reaJ.istic, system, we 

shall not use C type anymore, but we shall store the whole value i.n a compact 

way in the array elements of C. 

The free cells are connected with each other as rollows: 

the value of fre:e ae"ll poi11ts to fi:r·st free cell: 

{C[free oelZ,1], C[Jree ceZZ,2]} ; 

consider a certain free cell: {C[k,1],C[k,2]} > 

then the next free cell is: {C[C[k., 1 ]., 1 ], c·[C[k, 1 ], 2]} ; 

the last free cell is: {C[last free ceZZ,1],C[Zast free aeZZ,2]} • 



35 

. 

The names are connected with each other as follows: 

the last na1ne is {C[Z.ast name.,1],C[Zast name,2]} ; 

consider a certain name: {C[k,1].,C[k,2]} , 

then the preceding name is: {C[C[k,2].,1],C[C[k,2],2]}, :provided C[k.,2];t0 ; 

let the first naxne be: {C[f, 1 ]., C[f, 2]}, then 
• 

the value of C[f,2] is zero. 

Let a nrune be {C[k.,1],C[k,2]}, then 

the value of C[k.,1] detern1ines the possible value of the name. 

I:f C[k., 1 J 0, then there is no val.ue, otherwise the value of 

the na.1r1e is {C[C[k., 1 ]., 1 ]., C type [C[k., 1] ]., C[C[k., 1 J, 2 J} • 

Creation of a new narne is performed by adding the first free cell ( if available) 

to the end of the narne list. 

Eras11re of the lastly created naJne (REMOVE}, and thus condemning the value 

of this na.ct,e possibly as being garbage, is perfox·rrted by adding the last 

name to the free-cell list. It is thus necessary to keep track of the last 

name; it is not necessary to know the first nain,e. 

Erasure of an arbitrary nrune n is performed by: 

1. the names preceding and following n are connected; 

2. n is connected with the free-cell list. 

As in section 7 there are two ways to create and erase na.mes: 

1. By means of a call: SAVE(F); a new name is created having a value pointed 

at by the value of F. 

This creation is cancelled by a call of REMOVE, destroying the lastly 

created and still living na.me. 

2. By means of a declaration statement: 

. • n n 
which creates n r.1.ew t1ames wt1ose pointers are assigned to f. and whc)se - ~ 

F. ( i = 1 , ••• ,n). The effect of this 
t, 

of ERASE. • 

values polnted at by the values of 

statement is cancelled by a call 



36 

The block-entry-block-exit mechan5sm uses a stack in which the current value 

of last name is stored upon block entry (DE(tPue, .•• )}. This stack is also 

organized as a list 

Let {C[k., 1 ], C[k., 2]} 

with pointer: pointer of staak. 
• 

be a cell of this stack, then C[k,1] contains a value of 

Zast name and C·[k,2] deterrnines (if ,'o} a preceding cell of the stack • 
• 

• 

The cell for which k pointer of stack is the last cell of the stack. The 

cell for.which C[k,2] - O is the first cell of the stack. 

By means of a picture we shall now illustrate the organization of the arrays 

C and C type. 

Since the cells of C may be tho t of as beads on a string, which 1nay be 

shuffled without breaking the string, we shall dr·aw the cells of the list 

of :free cells , the cells of the list of na.1nes , the cells of the list of 

values and the cells of the stack compactly. 

By means of the a.rrows the pointers are 1na.de visible. 

' 



37 

k C[k., 1] CLk.,2] C type[k] formula: .. 

2 --> ''alg 0 1 var'' 1 
4 ·- hlo- 0 0 ''alg var'' 0 

7 .... .,,. 0 2 ''alg var'' X 

9 - ,.. __ 
17 0 3 ''alg va.r'' y 

• 

12 - ~ ..... ~➔ 7 9 ''+'' x+y . 

14 -,_ . .. . ~· ,,... 7 9 ''~' ·;, 

15 7 12 ''~' x+y) 
• 

17 20 15 ''+'' ( x+y) -w{ x+y ) +x-w{ x+y- ) 
20 12 12 ''*' (x+y)~x+y) 

3 2 
-

0 

5 4 3 -

8 7 5 . 

10 9 8 T list of names 

13 12 10 . 

I 

16 17 13 
'"' 

Z.ast name 18 14 16 
• 

1 0 0 I°" stack 
pointer of stack+ 6 5 1 

• 

free aeZZ 1 1 . 19 

Z.ast free cell 19 f'ree list 

f'ig. 2. • • The storage organization. 

The above exa.mple has been taken :from the progra.m output described in the 

next section; ''alg var'', ''+'', and ''~' are symbolic representations for 1, 

2, and 3, respectively. 



• 

38 

The ga.rbage-collection process may now be described by means or the :following 

algorithm: 

Step 1: If there is a na.me, then choose the last na,xne and take step 2; 

otherwise, take step 7. . 
Step 2: Choose as value v the value pointed at by the last chosen na.me. 

Take step 3. 

Step 3: If vis marked, as being treated already, then take step 6; 
otherwise, take step 4. 

Step 4: If v contains pointers to the values, v., i 
l. 

1 , ••• ,n, n> 1 , 

then for i = 1, .•• ,n do the following: 

Choose as value v the i-th value v. and execute the 
al. 

garbage-collection process beginning with step 3 and 

ending with step 6, without executing it. 

Take step 5. 

Step 5: Mark v as being treated already. 
• I 

Take step 6. 

Step 6: If there is a preceding name, then choose this name and take step 2; 

otherwise, take step 7. 

Step 7: Ma.rk the storage cells constituting the list of riames and the stack. 

Connect all the unmarked storage cells with the list of free cells. 

Remove all the marks introduced above. 

Take step 8. 

Step 8: The process is finished. 



12. The.. :fre.e-li st ga;r-page 

for a simple system 

39 

collection tecp.nigue progra1n:rned in ALGOL 60 
¥41 

In this section the ALGOL 60 program is reproduced. The following procedures 

have not been mentioned already: 

LHS, which becomes equal to the 

storage cell {C[k,~],C[k,2]}, 

• 

value of the left- ~.d side part of a 

RHB, which becomes equal to the value of the right-hand side part of a 

storage cell, 

STIL, stores a nurnber in the left-hand side pa.rt of a storage cell, 

STIR, stores a number in the right-hand side part of a storage cell, 

ST, stores two numbers in a storage cell, 

ST TYPE, stores the ''type''-part of a value into C type, 

(Remark, the above procedures have been introduced to make a future re

organization of the storage cells more easy.) 

join ~o free space, connects a cell with the free-cell list. 

Since the values of formulae are fixed now, we can take advantage of it by 

assigning the pointers of the values, not to names only, but also to variables, 

which are distinguished from variables, being na.rrles o:f formulae, by their 

identifiers in which capital letters are used. 

In this way ONE and ZERO have values pointing to the values of the va.riables 

one and zero. 

For a discussion of the actual program and its results we refer to the next 
• section. 



4o 

bt:~in comme11t A simple systen1 of ABC ALGOL. 

Gr11'bage collection with a f1"ee list. 

RPR 181168/02 - T 8190 1 R. P. van de Riet; 

.~n.te~~sr free cell 1last free cell 1Iast name.pointer of stack,max of c. 
algeb1--aic variable,sum,product,one,zero,ONE,ZERO; 

max of C:= read; 

begi11 inte~er array C[l:max of C,1:2],at1:xiliary array[l:5],Ctype[l:max of C]; 

Boolean ar~ay:, traced[l:max of C]; 

• 

_procedure INITIALIZE; 
a " us • 

b_~gtn ~~teger i; for i:- 1 step 1 until max of C do C[i,1]:= i + 1; 

free cell:= 1; last free cell:= max of C; 

last name:= pointer of stack:= 0; 

algebraic variable:= 1; sum:= 2; product:= 3; 

DE(DE(true,one,A V(0,1)),zero,A V(O,O)); 

ONE:= V(one); ZERO:= V(zero) 

end INITIALIZE; 

,intee;~r .. 12~~c~,d~_res LHS(k); value k; ,in~eger. k; 

LHS:= C[k,1]; 

inte~~r. E~oce~u~e. RHS(k); value k; ,i~t~ger k; 

RHS:- C[k,2]; 

pprocedur~s STIL(k, v); value k, v; ,,integer k. v; 
7 

C [k,1 ]:== v; 

procedure STIR(k,v); value k,v; in~~g~~. k,v; 

C [k,2 ]:== v; 



41 

k,vl,vr; _,_ 
b,eg~11, C[k,1]:= vl; C[k,2]:= vr end; 

i11tege,1 ..... E.rocedure SAVE(F); value F; ,i~te!1ier F; 

b_egi,11, ~n.tet!i~r. k; ERROR(F < 0 • F < 0 in SA V ) ; · 

k:= LHS(free cell); ST(free cell,F ,last name); 

SAVE:= last name:= free cell; 

COLLECT GAR.13AGE(O,auxiliary array,k) 

end SAVE; 

.. 12~~cedure. REMOVE; 

begin join to free space(last name); 
a -

last name:= RHS(last name); 

ERROR(last name 2, EMOVE not appropriate ) 

end REMOVE; 

I 

procedure join to free space(k); value k; int~~er k; 

bze~in, STIL(last free cell,k); last free cell:= k end; 

i1;1te~e!,, procedure STORE(A,t,B); value A,t,B; ~nteger, A,t,B; 

beg,i?, ,inteR:er. k; ERROR(A < 0 V B < 0, 

or B not appropriate in STOR ) ; 

STORE:= free cell; k:- LHS(free cell); 

ST(free cell,A,B); ST TYPE(free cell,t); 

auxiliary array[l ]: free cell; 

COLLECT GARl3AGE(l,auxiliary array,k) 

end STORE; 

pr:,o_cedure. ST 

Ctype[k]: · t; 

TYPE(k,t); value k,t; .i1:1teger. k,t; 
a 

integer procedure AV(l,r); value l,r; ,~n~~p;~:r:. 1,r; 
I 

AV:= STOl{E(l,algebraic variable,r); 



42 

Boolean procedure DYADIC OP(t); value t; ,in~eger. t; 

DYADIC OP: t = sum V t - product; 

'{Jrocedure COLLECT GARBAGE(n,arr,fc); value n; i~t~f:!t~r. n,fc; 

)~te~~r. array arr; 

begin int~~~r, i; 

procedure TRACE(F); value F; ,int~~er, F; 

if F > 0 then 

,beR}1:1. if 7 traced[F] then 

beg!:1 i~te~er, t,A,B; t:= T E(F ,A,B); 

• 

if DYADIC OP(t) then ,~e~~ T CE(A); T CE(B) end; 

traced[F]:= true 

end end T CE; 

:erocequre DUMP; 

~~g!~, .1:nteger, i,j; PR nlcr; PR string( ree cell = ) ; PR int num(free cell); 

PR string( last free cell ); PR int num(last free cell); 

PR string( last name = ); PR int num(last name); 

PR string( ptr of stack ); PR int num(pointer of stack); 

for i:.,·· 1 .~tep 1 until max of C do traced[i]:= false; 

i:= last name; for i:= i while i O do 

b~g!':1, traced[i]:- true; i:- RHS(i) end; 

i:- pointer of stack; for i:= i while i ~ 0 do 

-~~K!!1. traced[i]:= true; i: RHS(i) end; 

i:- free cell; for i:'= i while i last free cell do 

.~e~!i:1 traced[i]:= true; i: LHS(i) end; 

traced[last free cell]:- true; 

for i := 1 step 1 until max of C do 

11
be~~~- PR nlcr; 

PR string( 

PR int num(i); 

); PR int num(LHS(i)); 

PR string( ); PR int num(RHS(i)); 

if 7 traced[i] then ,~~g!n. PR string( 

end 

end DUMP; 

); PR int num(Ctype[i]) end 



43 

if f1 .. ee cell last free cell then free cell:- fc else 

begi11 DUMP; f1--ee cell:= O; 

for i:= 1 step 1 until max of C do traced[i]:= false; 

for i:= 1 stel.) 1 until n do T CE(arr[iD; 

i: ___ iast name; for i:= i while i O do · 

~~a!n, T CE(LHS(i)); traced[i]:= true; i:= RHS(i) end; 

i:=---pointer of stack; for i:= i while i O do 

,be~in, traced[i]:= true; i:= RHS(i) end; 

for i:= 1 step 1 until max of C do 

if 7 traced[i] t.hen 

beg!n if free cell = 0 then free cell:= last free cell:= i else 

join to free space(i) 

end; ERROR(free cell = 0, o space lef ); DUMP 

end end COLLECT GARBAGE; 

.i~~~~~:r- pr~cedure, TYPE{F,A,B); value F; ,i11;~er;er, F,A,B; 
I 

I 

~eSt~n. ERROR(F < 0 V F > max of C, F not appropriate in T 
C 

A:= LHS(F); B:= RHS(F); TYPE:= Ctype[F] 

end T E; 

Boolean pr:q~edure DE(first time,f,F); value first time; 
4 

Boolea11 fi1 .. st time; i:1teger f ,F; 

b,,egin if first time then 

); 

pointer of stack:= free cell; COLLECT G ... ~RBAGE(O,at1xiliary array ,k) 

end; 

f: SAVE(F); DE:= false 

end DE; 



44 

• 

E~.~c.~~u1~e. ERASE; 

joi11 to free space(pointer of stack); st:= LHS(pointer of stack); 

poi11ter of stack:= RHS(pointer of stack); 

for st:- st while st last name do REMOVE; • 

end ERASE; 

inte~er, procedure ASSIGN(f,F); value f,F; ,intej?jer, f,F; 

b~gin, ERROR(f < - max of C V f > O, 

ame not appropriate in ASSIGN ) ; 

ASSIGN:= F; STIL(-f,F) 

end ASSIGN; 

i~~.e~er_ p_roce~~re. ERROR(b,s); Boolean b; stri~1-g_ s; 
if b then 

beKi~_ PR nlcr; PR string(s); EXIT; ERROR:= 1 end; 
' 

,int~~~,r. procedure V(f); value f; ~~~~~er. f; 

V:= if f > 0 then ERROR(true, '-I.. ame > 0 in ) else 

LHS(-f); 

i~t~~er, pr(?~~d~ re_ S(A ,B); i~~~ger, A,B; 

b,~K.i11, int~~e1· Al,Bl; Bl:= B; SAVE(Bl); 
I 

S:= if Al = ZERO then Bl else if Bl 

STORE(Al,sum,Bl) 

end S; 

Al:= A; REMOVE; 

ZERO then Al else 

); 



. i11~e~er. procedure P(A,B); .i~te;fie
2
r. A,B; 

pe~in
2 

_intc:ger Al,Bl; Bl:= B; SAVE(Bl); Al: A; REMOVE; 

P:= if Al= ZERO V Bl = ZERO then ZERO else 

if Al = ONE then Bl else if Bl = ONE then Al else 

STORE(Al,product,Bl) • 

end P; 

procedu1--e OUTPUT(f,OUTPUT VARIABLE); value f; ,i~tP.~~r, f; 

procedure OUTPUT VARIABLE; 

b
2
egin, procedure OP(F ,type); value F ,type; i1:3-t~aier F ,type; 

be~~~& iI1:~~~er
2 
t,A,B; 

;erocedure. LBR; if t < type then PR string( ) ; 

P.~~~~d~re. RBR; if t < type then PR string( ); 

t:= TYPE(F,A,B); 

if t - algebraic variable then OUTPUT VARIABLE(F) else 

if DYADIC OP(t) then 

,~eg!n LBR; OP(A,t); if t sum then PR string( + ) else 

PR string( ...... ) ; OP(B ,t); R.13 R 
• 

e1id else ERROR(true,-F not appropriate in OUTPU ) 

end OP; 

OP(V(f),O) 

end OUTPUT; 

1~rocequre PR string(s); st:r:ing_ s; 
be~!n

2 

PRINTTEXT(s); PUTEXT(s) end; 

procedure PR nlcr; PR string( 

); 
;procetjure PR num(a); value a;real a; 

a 

~egin PRINT(a); P CH(a) end; 



46 

procedure PR int num(a); value a; inty~ers a; 

if a < 9 then PR sy=m(a) else 

end; 

proce~ure_ PR sym(a); value a; ,inte~er_ a; 

begin. PRSYM(a); PUSYM(a) end; 

ACTUAL PR M: 

J:>eg!n ~ntege~. x,y ,f; 

proc~d11:re OV(F); value F; in~~~~r F; 

be~!n,,in~eger. A,t,B; t:- TYPE(F.A.B); 

if B < 1 then PR int num(B) else 

if B = 2 then PR string( ) else 

if B - 3 then PR string( ) else 

ERROR(true, error in out ) 
• 

end; 

;eroced~~e, PRINT{x,s); inte~er. x; strin~ s; 

) ; a:- -a end; 

end 

• 

be~in. PR nlcr; PR string{s); PR string( (name: ); 

PR int num(x); PR string( ) (value: ) ; PR int num(V(x)); 

PR string(-- ) formula: ); OUTPUT(x,OV) 

end; 

max of C:- 15; INITIALIZE; 

DE(DE(DE(true,x,A V(0,2)),y,AV(0,3)),f ,0); 

PR nlcr; PR string( Results RPR 181168/02 ); 

ASSIGN (f ,S(P(V (x), V(x)) ,P (V (y), V(y)))); PRINT(f, 

ASSIGN(f,S(P(V(x),V(x)),P(V(y),V(y)))); PRINT(f, 

ERASE; 

); ASSIGN(f,ZERO); 

); 



max of C:= 20; INITIALIZE; 

DE (DE(DE(true,x,A V(O ,2)),y ,AV(0,3)),f,S(V(x), V(y))); 

PillNT(f, ); 

ASSIGN (f .S(P(V (f) ,P(V (x) • V(y))), 

S(P(V(f),V(f)), 

S (P(S(V (f) ,P(V(x), V (y))), V(zero)), 

P(V(x),V(f)) 

) ) ) ) ; 

p ); 

E SE; 

end 

end end 100 

Results RPR 181168/02 

f = (name: -11 ) (value: 15 ) formula: xxx+yxy 

• 

free cell 14 last free cell = 14 last name = 14 ptr of stack = 6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

I 

0 

0 

2 

0 

4 

5 

0 

7 

0 

9 

4 

7 

9 

9 

12 

0 

1 

0 

0 

3 

1 

2 

5 

3 

8 

10 

7 

9 

11 

13 

1 

1 

1 

1 

3 

3 

2 



48 

free cell = 12 last free cell = 15 last name = 14 ptr of stack = 6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

0 

0 

2 

0 

4 

5 

0 

7 

0 

9 

4 

13 

15 

9 

0 

1 

0 

0 

3 

1 

2 

5 

3 

8 

10 

7 

9 

11 

15 12 13 
\ 

1 

1 

1 

1 

f (name: -11 ) (value: 15 ) formula: xxx+yxy 

f = (name: -13 ) (value: 12 ) formula: x+y 

• 

• 

• 

free cell = 18 last free cell = 18 last name = 18 ptr of stack = 6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0 

0 

2 

0 

4 

5 

0 

7 

0 

9 

12 

7 

0 

1 

0 

0 

3 

1 

2 

5 

3 

8 

19 

9 

1 

1 

1 

1 

2 

2 

• 



13 

14 

15 

16 

17 

18 

19 

20 

12 

7 

7 

17 

20 

14 

7 

12 

10 

9 

12 

13 

15 

16 

9 

12 

3 

3 

2 

3 

3 

• 

• 

free cell = 11 last free cell = 19 last name = 18 ptr of stack = 6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

·12 

13 

14 

15 

16 

17 

18 

19 

20 

\ 

0 

0 

2 

0 

4 

5 

0 

7 

0 

9 

19 

7 

12 

7 

7 

17 

20 

14 

7 

1.2 

0 

1 

0 

0 

3 

1 

2 

5 

3 

8 

19 

9 

10 

9 

12 

13 

15 

16 

9 

1.2 

1 

1 

1 

1 

2 

3 

3 

2 

3 

• 



50 

13. Discussion of th:e. actual progra.tn. ~nd its results 
' 

The actual program chosen performs the sa,cne formula manipulations as the 

actual prograJn discussed in section 3. The garbage is now formed by means 

of a reassignation of f, an ERASE call and by execution o:f the Formula 
, 

expression: 

P(S(V(fJ~P(V(x),V(y))),V{zero)), 

which creates the ''garbage'' formula: (f+(x-wy)). 

The output consists again of two parts: 
• 

1. The pointer to the name, the pointer to the value and the ordinary 

appearance of a forrrtu.la are printed. 

2. The contents of the storage cells ( C and C type} is printed irnrnediately 

before and immediately after a garbage collection. These results are 

preceded by the values of free aeZZ, last fPee ceLZ, Last name, and pt~ 

of staak. 
I 

Since the values of the formulae are fixed in the garbage-collection system 

we can now almost return to the old situation where there was no need for 

st1rrounding formula names with '' V ( '' · and '' J '' • 

This can be accomplished by introducing besides x, y and f, the integer 

vexiables X, Y, F, the latter ones for holding the pointers to the values 

The last example o:f the actual prograrn might then read: 

be[Lin integer x,y,f,X,Y,F; 

end 

DE(DE(DE(true,x,AV(O, 2)) ,y,AV(O, 3)) ,f., S(V(x)., V(y))); 

X:= V(x); Y:= V(y); F:- V(f); 

ASSIGN( f, S(P(F, P(X, Y)), 

) 

PRINT (f, 

ERASE 

S(P(F,F)., 

S(P(S (F.,P(X, Y)), ZERO)., 

P(X,Fl 

11); 

f ); 



• 

51 

Note, that a statement: F:- S(P(F,P(X,YlJ, ... , would be erroneous; therefore, 

another assignment statement is necessary: 

DOUBLE ASSIGN(f,F,S(P(F,P(X,Y)), ••• l, 

which not only changes the value of the name of f but changes the value of 

F also. 
• 

I 

In order to refine the definition of Formula expression of section 3 to cope 

with this new situation we change the syntactical rule for <Value of a 

:formula variable> into: 

<Value of a formula variable>::= V(<formu.la variable>) <Value variable> 

and add the following syntactical rule: 

<Value variable>:: <variable>. 

14. The new .. deri v:a_t_i ve process 

A procedure for calculating a derivative is easily written down. In order to 

be able'to write: 

DER(S(F,P(F,X)),x), 

we save explicitly the value of the :first actual para.rneter of DER. So, each 

call of DER involves one new na.me; note· that each call of the DER of section 

10 involves a number of new names equal to the depth of the formula to be 

differentiated. 

i~te~er. :er~.~e~ure, DER(F ,x); value F ,x; ,integ:er. F ,x; 

begi~. i~~eger. X,A; inte~er procedure D(F); value F; inteJier F; 
I A I I .. 

be~~. i!l;~eger, t,A,B; t:= T E(F,A.B); 

D:= if F = X then ONE else 

if t = sum then S(D(A),D(B)) else 

if t product then S(P(D(A),B),P(A,D(B))) else ZERO 

end D; 

X:= V(x); SAVE(F); DER:= D(F); REMOVE 

e11c..l DER; 



52 

15. ~e,sting ~~e garb~ge-collection system 

For test purposes we declare the following procedure: 

i1~teser procedure GARBAGE; 

bep;in in~ege~. i,n; n:- O; i:= free cell; 

for i:- i while i ~ last free cell do 

begin n:- n + 1; i:= LHS(i) end; GARBAGE: 
I C 

end GARBAGE; 

• 

1; 

• 

• 

Next, we change in the procedurebody of DER, the statement t:= TYPE(F,A,B) 

into t:= GAR.BAGE * TYPE(F,A,B); and we test the procedure DER by means of 

the following actual progra,m: 

• 

b~~in, int~ge:. d,f,x,y ,F ,X,Y; 

_Ero~~q1;1re, PRINT(s,f); be~in. PR nlcr; PR string(s); 

.:eroced~rfJ. OV(F); value F; i.~~~Pier, F; 

OUTPUT(f .ov) end; 

begin, .~n~~~~r. t,A,B; t:= TYPE(F,A,B); 

if B < 1 then PR int num(B) else 

if B = 2 then PR string("· ) else 

if B = 3 then PR string( ) 

end; 

inte~er, procedure SG(A,B); SG:= GARB_AGE x S(A,B); 

inte~er, E~ocedU:,re, PG{A,B); := GAR.RAGE x P(A,B); 

DE(DE(DE (DE(true ,x.A V(O ,2)),y ,A y(O ,3) ),f ,SG(V(x), V(y))) ,d,O); 

X: ,,, V{x); Y:- V(y); F:= V(f); PR.LNT( = ,f); 

ASSIGN(d,SG(DEll(PG(F ,SG(F, (F ,F))),x), 

DER(PG(F ,SG(F ,PG(F ,F))),y))); 

PRINT{ derivative = ,d); 

ERASE 

end 

encl end 100 

• 



53 

• 

• which, after the d1Jmps, produced by COLLECT GARBAGE have been removed, 

resulted in 

f x+y 

derivative x+y+(x+y )x (x+y )+ (x+y )x (1 +x+y+x+y )+x+y+(x+y )x (x+y )+ (x+y )x(l +x+y+x+y) 

• 

It is remarked that the procedure DER of section 10 has been tested with a 
• • similar procedtre GARBAGE. 

It turned out that the above, free-list technique, procedure was about three 

times faster than the relocation-technique procedure. 

16. Relocation versus free-list technique 

The apparent advantages of the relocation technique with respect to the 

free-list technique are: 

1. direct access to free space; 

2. formulae are stored compactly, thus rna,king it easily possible to store more 

complicated structt1res as e.g. arrays ( coef'f'icients of a tr11ncated power 

series or of a polynomial). 

The apparent disadvantages are: 

1. the intricate n1anner a proced1.1re like DER should be constructed; 

2. relocating for1r1ulae implies creation of more names due to the fact that 

the tree branches are ''slithery''; 

3. secondary storage is needed for the garbage-collection process thus 

reducing the speed of this process considerably; 

4. a Formula expression of the form: 

S(P(X,Y).,U) 

is not possible, while it is with the free-list technique. 

The tnain disadvantage of the free-list technique is that complicated struct1Jres 

d . '' . t . '' as arrays cannot be stored compactly but should be store in a poin er-wise 

way. 

It is clear, however, that the free-list technique will be chosen to be 

expanded and to be used in the fut11re. 



54 

References 

1 

2 

3 

R.P. van de Riet, Formula Manipulation in ALGOL 60 part 1, 

Mathematical Centre Tracts 17, 189 pp. 

Mathetn.atical Centre, Amsterdam 1968. 
• 

R.P. van de Riet, For111u.la Manipulation in ALGOL 60 part 2, 

Mathe1natical Centre Tracts 18, 196 pp. 

Matbe111atical Centre, Amsterda:rn 1968. 
• 

P. Naiir (ed.) Revised report on the algorithmic language ALGOL 60, 

Regnecentralen, Copenhagen 1962. 

I 


