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An alternative proof of the formula for the average workload cost 

for the D-policy in the M/G/1 queue 

H.C. Tijms 

ABSTRACT. This paper presents an alternative derivation of the formula for 

the average workload cost for the D-policy in the M/G/1 queue with a linear 

cost structure. The D-policy turns the server off only when the system is 

empty and turns the server on when the workload exceeds the value D. The 

approach used in this paper may be itself of interest. 
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Consider a single-server queueing system in which jobs arrive in accor­

dance with a Poisson process with rate A. The service times of the jobs are 

known upon arrival and are independently sampled from a distribution having 

probability distribution function F(·) with finite first momentµ and finite 

second moment µ( 2 ). Assume that F(O)=O and p<1, where p=Aµ. The workload at 

epoch t, V(t), is defined as the sum of the service times of all jobs queueing 

at epoch t plus the remaining service time of the job being served at epoch 

t, t~O. The system is controlled by the D-policy which turns the server off, 

only when the system is empty and turns the server on when the workload 

exceeds D. When turned on the server provides service where the order of 

service is unimportant assuming that V(t) is independent of this order. The 

following costs are considered. There is a cost of K~O for turning the server 

off (any cost for turning the server on may be included in K) and there is 

a holding cost of h>O per unit workload per unit time. 

A formula for the average cost was found by BALACHANDRAN[1]; see also 

TIJMS[8] where this formula was corrected and simplified. The derivation of 

this formula was based on a'standard result from the theory of renewal reward 

processes. In this paper we give an alternative derivation. The more general 

approach used in this paper was suggested by DE LEVE's[3J treatment of general 

Markovian decision processes. First we study a Markov chain imbedded at points 

in time where either the server is turned off or is left off. Next we show 

that the average cost can be found from the stationary distribution of this 

Markov chain and simple cost and time functions having intuitive explanations. 

This approach may be itself of interest and seems rather widely applicable 

to controlled inventory and queueing systems (cf. chapter 4 in Tijms[7J). 
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PRELIMINARIES 

We define first the following random variables for the 0-policy. Given 

fT(x) 
that V(O)=x, let T(x)=inf{t~OJV(t)=O}, and let W(x)= O V(s)ds. That is, 

T(x) is the first epoch at which the system is empty and W(x) is the cumula­

tive workload up to that epoch when the server is always on. 

LEMMA 1. E'T{x) = x/(1-p) a:nd EW(x) = x 2 /2(1-p) + >..x/ 2J /2(1-p;2 for x~O. 

PROOF. For completeness we give a simple proof of the second relation; the 

proof of the first one is identical. Let A(x) be the number of jobs arriving 

in (O,x), x>O. Given that A(x)=n each of then arrival epochs has expectation 

x/2 (e.g. p .. 17 in ROSS[6J). Let tb= f' ET(y)dF(y), and let wb= f00 

EW(y)dF(y). 
0 0 

Then, for any x>O, 

By unconditioning on A(x) and next integrating with respect to F(x), we get 

the formulae for wb and EW( x) . 

The following functions will appear to be important. For any x~O, let 

k 0(x) = hEW(x), 

t 0(x) = ET(x), 

k 1 ( x) = K ( 1-o ( x) ) + hx/ A + h J00 

EW ( x+u) dF ( u) , 

Joo 0 
t 1(x) = 1/>.. + ET(x+u)dF(u), 

o· 
where o(O) = O and o(x) = 1 for x>O. By Lemma 1, for any x~O, 

For the situation where the workload equals x>O and the server is off 

k 1(x)-k0(x) gives the difference between the expected holding cost incurred 

until the system is empty for turning the server on immediately and for 

turning the server on at the next arrival. A similar interpretation holds 

( ) '\oo n( ) n For any x~O, let M x = ln=1 F x where F denotes then-fold 
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convolution of F with itself. The renewal function M(•) is finite[6] and 

M(x) can be interpreted as the expected number of jobs before the cumulative 

service times exceed x. 

THE DERIVATION OF THE FORMULA FOR THE AVERAGE COST 

We now consider the queueing system controlled by the D-policy. The 

state of the system can be described by a point in {xix real, O~:ic,;D}u{x'lx 

real, x>O} where state x(x') corresponds to the situation where the workload 

equals x and the server is off(on). For any t~O, let X(t) be the state of 

the system at epoch t, and let Z(t) be the total cost incurred during [O,t]. 

We now introduce a Markov chain imbedded at points in time where either 

the server is turned off or is left off. To do this, assume that X(O)=x for 

some Qo;x:s;D. Let TO=o, and, for n~1, let Tn be the nth epoch such that 

X(T )E{xlO~x~D} and X(T) ~ X(T-). For any n~O, let X = X(T ). The process 
n n n n n 

{X} is a Markov chain with the state space [O,D]. Let P (y)=Pr{X ~YIX 1=x}. 
n x n n-

Then, P (y)=F(y-x)+1-F(D-x) where F(u)=O for u<O. Let N=inf{n~1 Ix =O}. 
X . n 

THEOREM 1.(a) The Markov ahain {X} has a unique stationary probabiZity 
. n D 

distribution function Q(·) suah that Q(y)= J P (y)dQ(x) for O~y~D. 
0 X 

(b) Q(y)={ 1+M(y) }/{ 1+M(D)} for O~y~D. 

(a) For initial, state x0=o, limn-+oo n-1 l~=O Ef(Xk) = JD f(x)dQ(x) for any 

ID 0 
Baire funation f suah that O Jf(x) idQ(x) is finite. 

PROOF. Clearly, Pr{Xn=O for some n~1jXO=x}=1 and E(NixO=x)<00 for all O~x~D. 

The parts (a) and (c) now follow from Theorem 4 in the appendix. From part 

(a) we easily obtain Q(y)=Q(O)+ I: Q(y-x)dF(x) for O~y~D. By this renewal 

equation(e.g. p. 35 in Ross[6]), Q(y)=Q(O){1+M(y)} for O~y~D. Together this 

and Q(D)=1 imply part (b). 

For any n~O, let, =T 1-T , and let Z be the total cost incurred in 
n n+ n n 
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[T ,T 1) (the cost K is included in Z when X =O). The distributions of T n n+ n n n 

and z are determined by X. Let -r(x)=E(-r Ix =x), and let ~(x)=E(Z Ix =x) 
n n n n n n 

for O~x~D.Observe that -r(·) and~(·) are bounded where -r(x)~1/A for all x. 

The process {X(t)} can be regarded as a semi-Markov process having a cost 

structure where X is the nth state of the process, -r is the length of the 
n n 

(n+1)st transition interval, and Z is the cost incurred during the (n+1)st 
n 

transition interval. It is easy to verify that EN, ET and EZ(T) are finite 

when X(O)=O where T=inf{t>OIX(t)=O, X(t)~X(t-)}. Now, by the proof of Theorem 

7,5 in Ross[6J, 

limt EZ(t)/t = ' 00 O EZ /' 00 O E-r 
-+-a> ln= n ln= n when X(O)=O. 

It now follows from part (c) of Theorem 1 that for X(O)=O, 

limt_.., EZ(t)/t = J: s(x)dQ(x)/ J: ,(x)dQ(x). 

We now prove the next result(cf. p. 36 in Part I of De Leve[3]). 

THEOREM 2. 

(2) 

J: S(x)dQ(x)= J: {k1!x)-k0{x))dQ(x), J: ,!x)dQ(x)= J: {t1(x)-t0{x))dQ{x). 

PROOF. By the definitions of the functions k0 ,k1,t0 ,t1,~ and -r, 

k,(x)=s(x)+ J: ko(y)dPX(y), t,(x)=,(x)+ J: to(y)dPX(y) for o•=· 

Integrating both sides of each of these relations with respect to Q(x) and 

using part (a) of Theorem 1, we get the desired result. 

Observe that the functions k 1-k0 and t 1-t0 do not depend on the D-policy 

as the functions~ and T do. We now give the formula for the average cost. 

THEOREM 3. For each initial state, limt-+-a> EZ(t)/t equals 
D 

[2(1-p)J-1hAµ( 2) + [l+M(D)]-l [KA(l-p)+hDM(D)-hf M(x)d:x:J. (3) 
0 
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PROOF. For each initial state the process {X(t)} will eventually enter state 

0 with probability 1 and the expected costs incurred until the first return 

to state Oare finite. Using this it is a simple matter to show that 

limt~ EZ(t)/t is independent of the initial state(cf. p. 161 in Ross[6J). 

The Theorem now follows after some algebra from (1), (2), part (b) of 

Theorem 1, and Theorem 2. 

Remarks. 1. For each initial state, limt~ Z(t)/t = limt~ EZ(t)/t with 

probability 1(see Theorem 3.16 in Ross[6J). 

2. The smallest value o~ D with D + J: M(x)dx = KA(1-p)/h minimizes (3). 

3. The derivation above can be extended straightforwardly to cover the M/G/1 

alternating priority queue with 1-jobs and 2-jobs where the server is turned 

off when the system is empty and the server is turned on when (V1,v2 )ER 

where V. denotes the workload of i-jobs and Risa two-dimensional region 
1 

APPENDIX 

Consider a Markov chain x0 ,x1,x2 , •.• with stationary transition 

probability function P(•,·) on (X,B) where Xis a Borel set of a finite 

dimensional Euclidean space and Bis the class of all Borel sets A~X. Let 

Pn(·,·) be then-step transition probability function, n~O. That is, Pn(x,A)= 

Pr{XnEAIX0=x}. We make the following assumption. 

Assumption. There is some state(say states) such that 

Pr{Xn=s for some n~1lx0=x} = 1 

E(NIX =s)<~ where N=inf{n~1lx =s}. 
0 n 

for all XEX, (4) 

(5) 

THEOREM 4.{a) For some measure TI, limn~ n-1 l~=O pk(x,A)=TI(A) for all XEX 
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and AEB. 

(b) TI is the unique probability measure with TI(A)=f :rx,A)TI(dx) for all AEB. 

(c) For initial state x0=s, limn-+«> n-1 l~=O Ef(Xk)= f xf(x)TI(dm) for any 

real-valued Baire function f such that J lf(x)ITI(dx) is finite. 
X o 

PROOF. Let Pn(x,A)=Pr{X EA, X ~s for 1~~nlx0=x} for n~1, and let P (x,A)= s n -~ . s 

P0(x,A). Define fn(x)=Pr{N=nlx0=x} for n~1, and let f 0(x)=1. Then (cf. p. 

365 in Vol. 2 of FELLER[4J), for any x and A, 

n n ) ,n n-k ) ( ) p (x,A) = Sp (x,A + lk=O p (s,A fk X, n=O, 1 , . • • • (6) 

Since l~ 
Also, by 

f (s)=1, the relation (6) with x=s constitutes a renewal equation. 
n 

(5), both l nf (s) and L Pn(s,A) are finite. Now, by applying the 
n s 

Key Renewal Theorem (seep. 292 in Vol. 1 of Feller[4J), for any AEB, 

. -1 ,n k ,m n ,m 
limn-+«> n lk=O P (s,A) = ln=O sp (s,A)/ ln=O nfn(s). (7) 

For any AEB, define TI(A) as the right side of (7). Clearly., TI is a proba­

bility measure. By (4), lmo f (x)=1 and Pn(x,A)+O as n➔m for all x and A. 
n s 

Part (a) now follows from (6) and (7). Using part (a) it is easy to show 

that TI satisfies the steady state equation in part (b) (cf. pp. 133-134 in 

BREIMAN[2]). Since the Markov chain {X} has no two disjoint closed sets, TI 
n 

is the unique probability measure satisfying this equation (see Theorem 7.16 

in Breiman[2]). To prove part (c), let m be a finite measure on (X,B) such 

that m(A)>O if and only if SEA. Then, by (4), m(A)>O implies Pr{X EA infini-
n 

tely oftenlx0=x}=1 for all XEX, that is, {Xn} satisfies the recurrence 

condition of Harris (cf. pp. 206-207,, in JAIN[5J). Part (c) now follows from 

Theorem 3.3 in Jain[5]. 
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