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A comparison of Nystrom-Runge-Kutta and linear multistep methods for second 

order differential equations with slowly and rapidly oscillating solutions 

by 

P.J. van der Houwen 

ABSTRACT 

Numerical experiments are reported of the application of a Nystrom­

Runge-Kutta method and two linear three-step methods to a class of second 

order differential equations without first derivatives, the solution of 

which is assumed to consist of slowly and rapidly oscillating functions, 

the latter being small in magnitude. 
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1. INTRODUCTION 

This note studies numerical aspects of several algorithms designed 

for special second order differential equations of the form 

(I.I) = f(x,y), 

where 3£/ay is assumed to have negative eigenvalues with a very large 

spread. Such equations arise from the partial discretization of hypePbolic 

differential equations (e.g. the wave equation) and are characterized by 

the occurrence of slowly and rapidly oscillating components in the solution, 

the rapidly oscillating functions being small in magnitude with respect 

to the slowly varying functions. We will respectively consider a third 

order, explicit three-step method, a second order, implicit three-step 

method and a second order, explicit Nystrom-Runge-Kutta method. These 

formulas are designed for the integration of hypepbolic equations, that 

is they possess a relatively large interval of stability. In our numerical 

experiments we did not choose systems originating from hyperbolic partial 

differential equations, but we simulated such a situation by selecting 

scala.P differential equations and initial values whose solutions are some­

thing like 

(1.2) y(x) = s(x) + sin(wx) + cos(wx), 

where s(x) is slowly varying function, ls(x)I >> 1 and w >> 1. Thus, we 

try to compute a function which behaves as shown in figure 1.1. 

Fig. 1.1. Slowly varying solutions with 

rapidly oscillating perturbations 
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Since we are not interested in,the rapid oscillations which are super­

posed on the drift function s(x), we would like to integrate with integra­

tion steps which are not prescribed by the rapid oscillations but rather 

by the function s(x). 

From the numerical experiments, it may be concluded that the explicit 

three-step formula is the most accurate one, but requires relatively small 

integration steps; the implicit formula when applied with a single Newton 

step for the solution of the implicit equations yields a modest accuracy 

but remains stable for large steps and is therefore suitable for obtaining 

quickly a rough approximation to the solution. The Nystrom-Runge-Kutta 

method is more accurate than the implicit one and more stable (larger steps) 

than the explicit one. This method is to be preferred in situations where 

the Jacobian matrix 1s not available or when its LU-decomposition is too 

expensive. 

2. AN EXPLICIT THREE-STEP FORMULA OF THIRD ORDER 

In reference [2] an explicit three-step formula of third order is 

given characterized by a relatively large interval of strong stability. 

This formula reads 

(2. l) 

h being the step length x 1-x and y presenting the numerical approxima-
n+ n n 

tion to the exact solution y(xn). When the Jacobian matrix af/ay has nega-

tive eigenvalues 6, this formula is stable when 

(2. 2) 

3. AN IMPLICIT THREE-STEP FORMULA 

In [2] also a family of implicit formulas is derived which are un­

conditionally stable provided that af/ay has a negative spectrum. This 



3 

family is given by 

(3. I) 

+ ih2[(1+£)f l + 2(1-£)£ + (1-E)f 1J , 
n+ n n-

-+ where O < £ < 2. This implicit system has to be solved for y 1• In order 
n+ 

to maintain the unconditional stability, we use modified Newton-Raphson 

iteration to obtain after one interation step the approximation 

(3. 1 ') 

where af"/ay is some approximation to a1/ay at the point (x y ). 
n, n 

This formula requires one £-evaluation per integration step and, assuming 
-+ -+ that af/ay is a slowly varying func.tion, occasionally the evaluation of 

af/ay plus an LU-decomposition. In our experiments we have used formula 

(3.1'). It should be observed, however, that (3.1') is of first order, 

whereas formula (3.1) is of seaond order (cf. [2]). This is easily seen by 

deriving the truncation error of (3.1'). An elementary calculation yields 

that the residu left by substituting a sufficiently differentiable func­

tion y(x) into (3-1') is given by 

(3.2) 

Thus, only for autonomous equations and exact Jacobian evaluations we have 

second order accuracy. Of course, by performing a second interation step 

we always have second order accuracy, but also an additional function 

evaluation and more storage is needed when implemented on a computer. 

In view of our class of hyperbolic problems we have chosen E = 1. 

Storage is then limited and the damping effect on the higher harmonics 

(o<<O) is of order IO/lh2ol, o being the eigenvalue of af/ay of the cor­

responding harmonic. 
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•• 4. A TWO-POINT NYSTROM-RUNGE-KUTTA FORMULA 

In reference [l], Nystrom-Runge-Kutta formulas are proposed with an 

extended real stability interval. A typical example is the two-point formula 

of second order 

+ + 2+ + . + 2-f7<" + + 
= yn + hy' + !h f(x +½h,y +}hy'+\h t (x +µh,y +µhy')), n n n n n n n 

+ + 
Yn+l-yn + 

= 2 ---- - y' h n 

where\= .06373440810 andµ= .4935439997, and wheref"'"Gx,y) is a function 

satisfying the relation 

(4. 2) a1 ~ aT' 
~ = -::;: 
ay ay 

When this relation is approximately true, we have stability when 

(4. 3) 

Evidently, relation is satisfied when we choose 7' = £. In practice, how­

ever, it may be advantageous to replace f by a "cheaper" function r. The 

effect of introducing 7' is restricted to the h4-term and higher order terms. 

This may be concluded from the following. Replace T' by fin formula (4. 1) 
➔ + 

and denote the differences with the resultiug Yn+l and y ~+I vectors by 
+ +, 

byn+l and byn+l' respectively. We then find 

(4.4) 

Hence, we may expect that the use of "cheap" f*-functions will be profitable 
+ +, 

when by 1 and by are of the order of magnitude of the tolerances n+ n+l 
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-+ -+, 
prescribed for Yn+l and Yn+l 

5. NUMERICAL EXPERIMENTS 

The algorithms (2.1), (3.1') with£= 1 and (4.1) were designed to 

integrate the large systems of differential equations with a large negative 

spectrum which originate from the semi-discretization of hyperbolic initial 

value problems. When the data are smooth, slowly varying functions, the 

solution of such systems consists of a large number of oscillating components, 

the rapid oscillations, however, being small in magnitude when compared 

with the slowly oscillating components. These rapidly oscillating functions 

correspond to the large negative eigenvalues of 'cJf/'ay and they are re­

sponsible for the development of instabilities when the negative interval 

of stability of the numerical algorithm is too small with respect to the 

integration step used. Such is nearly always the case when the integration 

step is chosen by only considering slowly varying components and ignoring 

the unwanted rapid oscillations. Only when the algorithm used has a strong 

damping effect on the higher harmonics and when the length of the stabili-

ty interval in terms of the integration step desired, has the order of 

magnitude of the maximal frequency of the unwanted oscillations, only then 

the integration process will be stable. It may be remarked that a similar 

situation arises in the integration of stiff differential equations of 

first order where the solution consists of slowly and rapidly decaying 

components, the latter being small in magnitude. 

The algorithms mentioned above do have relatively large stability 

regions and a more or less strong damping effect on the higher harmonics; 

it is the purpose of this note to compare their mutual efficiency. As test 

problems we chose single equations of which the solutions consist of a 

slowly varying function and a very rapidly oscillating function. The initial 

values were chosen such that the oscillating component is very small in 

magnitude. In this way we simulate in a simple manner what is going on in 

a hyperbolic problem where one has to cope with hundred or thousand coupled 

differential equations. All experiments were carried out on a Hewlett-Packard 

67. 

The results of our experiments are indicated by listing the accuracy 
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obtained and the computational effo,rt involved. As a measure of accuracy 

we took the number sd of significant digits, i.e. 

(5.1) 
10 

sd = - logl 
y -y(x) 

n n I; 
Yn 

the computational effort of each experiment was expressed in numbers of 

right hand side evaluations. In (3.1') we did not count the evaluation of 

af*/ay neither did we count the computational effort to perform the LU­

decomposition. In many cases this is justified by the observation that in 

actual computation the Jacobian matrix is only occasionaly reevaluated. 

In all test problems the integration step h was chosen in such a way 

that the quantity h2 1af/ayl assume.s the values 56, 14, 3.5 and .875, 

respectively. Algorithm (3.1') is expected to be stable for all values of 

h, algorithm (4.1) is unstable for the largest h-value and stable for the 

other ones, and algorithm (2.1) is expected to be stable for the two 

smallest h-values and unstable for the larger step sizes. 

Finally, in case of the three~step formulas the starting values were 

provided either by the analytic solution or, .when the analytic solution is 

unknown, by applying algorithm (4.1) with f* = f and a sufficiently small 

integration step (in the following (4.1) will always denote the formula 

with f* = f, whereas (4.1*) will be used when f* ~ f is meant). 

5.1. A linear equation 

Consider the equation 

(5.2) y" = -</ (y-10-sin x)-sin x. 

The general solution is given by 

(5.3) y = 10 + sin x + a sin(wx) + b cos(wx), 

where a and bare the integration constants. For large values of w this 

solution consists of a slowly varying component 10 + sin x and two rapidly 
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oscillating components a sin(wx) and b cos(wx). Let us choose a= b = O, i.e. 

(5.4) y(O) = IO, y' (0) = I. 

Analytically, the solution is slowly varying and, as can be seen from (5.2), 

the value of y" is bounded by I. Numerically, however, y does not exactly . n 
equal IO+ sin(x) so that y" = f(x ,y) may becomevery large for large n n n n 
values of w, that is rapidly oscillating components will be introduced into 

the numerical solution. 

In table 5.1 the number of correct digits sd and the number N of right 

hand side evaluations are given for integrating until the point 

(5. 5) X 
e 

Table 5.1 Results for problem (5.2)-(5.4) 
2 

at x = 2.3.66 for w = 1000 
e 

N 

10 

20 

40 

80 

(2. 1) 

<<O 

<<O 

8.5 

>IO 

(3. I ') 

J.9 

2. I 

2.4 

2.7 

(4. I) 

<<0 

<<0 

3.4 

5.0 

(4. I*) 

<<O 

.5 

1.8 

1.4 

As expected the implicit formula (3.1 1 ) is to be used when a rough 

picture of the solution is desired for less computation time. As soon as 

high accuracy is wanted, formula (2.1) is superior. The Nystrom-Runge-Kutta 

formula (4.1) with f* = f is inferior in this example. Also the "economized" 

version (4.1*) with 
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saving the evaluation of sin xis not of help which may be explained by 

applying estimate (4.4); for the smallest integration step 
I . 

h = [.875/laf/cy!J 1 ~ .03 we find 

sin x, 
n 

~ 1.7 sin x 
n 

thus, at some points (sinx ~±1) the solutions obtained by (4.1) and (4.1*) 
n 10 

have less than one significant digit in connnon (- log(ty~+l/yn+l)). 

5.2. A non-linear problem 

Consider the initial value problem 

(5. 6) 

y(O) = 10, y'(O)=l. 

Evidently, the solution is given by 

(5. 7) y(x) = 10 + sin x. 

All neighbouring integral curves, however, will contain oscillating compo­

nents with frequencies of order 300w2. The same series of experiments as 

done in the preceding section yields at the point x defined by (5.5) the 
e 

results listed in table 5.2 (in applying (3.1') we took af*/ay = -300w2) 

Table 5.2 Results for problem (5 .6) at X = .43 
2 e 

for w = 100 

N (2.]) (3.1') (4. 1) 

10 <<0 2.4 <<0 

20 <<O 2.7 <<0 

40 8.2 3.0 5. l 

80 9.0 3.4 6.7 



A comparison of table 5.1 and 5.2 reveals that the three algorithms 

show a similar behaviour for the linear problem (5.2) and the non-linear 

problem (5. 6). 

5.3. A problem where "cheap" right hand side evaluations are allowed 

Consider the initial value problem 

2 3 3 y" = -w (y -10 ) + c(x) 

(5.8) 

y(O) = 10, y' (0) = 0 

where c(x) is some complicated function of x. By choosing in (4.1) 

this formula becomes effectively a "one-function-evalutaion" method and 
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by virtue of its large stability interval is able to integrate with twice 

as large integration steps as formula (2.1). In the following tables a few 

results are presented. 

Table 5.3 Results for problem (5.8) at the point 

x = .432 ••• with w2 = 100 and c(x) = exp(-x); 
e 

y(x) ~ 9.99998840 
e 

N (2. 1) (3. l 1 ) 

10 <<0 5.5 

20 <<0 5.5 

40 6.5 5.5 

80 7.4 5.5 

(4. 1) (4.1") 

<<0 <<0 

<<0 4.6 

4.7 5.2 

5.3 7.8 



Table 5.4 Results for problem (5.8) at the point x = .432 ••• e 
with w2 = 100 and c(x) = 10 exp(-x);y(x) ~ 9.9998838 

e 

N (2. 1) (3.1') (4. 1) (4. 1 *) 

10 0 5.3 << 0 0 

20 0 5.3 << 0 4.4 

40 5.4 5.3 4.8 4.3 

80 6. I 5.3 4.8 6.3 

5.4. Damping of higher harmonics 

Finally, we study the damping effect of the three algorithms on the 

rapidly oscillating components. We shall do this by integrating the initial 

value problem 

(5. 9) 

y(O) = 10, y' (0) = 0 

with perturbed initial values, that is we take y(O) = 11, y'(O) = 1. 

Integration is performed using the maximal integration step allowed by the 

stability condition of the formula. In case of the unconditionally stable 

formula (3.1 '), integration is performed with the steps used in the other 

formulas 

Table 5.5 Propagation of initial errors at xe.= .4 for w = 100 

Algorithm h x~/h y -y(x) reduction/step n n 

(2. 1) .01 40 .0058 .88 

(3. I ') .01 40 .000027 • 77 

(3 o] I) .02 20 .000002 .52 

(4. I) .02 20 .0767 .88 
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Table 5.5 shows that the implicit algorithm (3.1') has the strongest 

damping and algorithm (2.1) and (4.1) are comparable in this respect. 

Furthermore, we see that algorithm (3.1') reduces errors more ash is larger; 

this is in agreement with the asymptotic behaviour of the amplification 

factor (compare the discussion in section 3). 
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