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ENIGE NADERE INFORMATIE OVER DE STUDIEWEEK "STAPELEN EN OVERDEKKEN"

(Packing & Covering).

Bereikbaarheid van het MC.

Het Mathematisch Centrum is als volgt met het openbaar vervoer te bereiken:
vanaf het Centraal Station met de buslijnen 5 en 55, vanaf het Muiderpoort-
station met tramlijn 3, en vanaf het Amstelstation met buslijn 5 of de
metro (treinkaartjes uit de richting Utrecht naar het C.S. zijn ook geldig
op het metrotraject Amstelstation-Weesperplein). Verder is het MC ook
direct te bereiken met de tramlijnen 6,7 en 10, en de CN-buslijnen uit het

Gooi.

Voordrachten en pauzes.

De voordrachten worden gehouden in de grote collegezaal; deze bevindt zich
op de 3e verdieping.

Om 11.00 en 14.45 uur wordt gepauzeerd voor koffie, resp. thee.

Overigens hangt een koffieautomaat op de 2e verdieping.

De lunch kan worden gebruikt in de kleine collegezaal (2e verdieping). Ook
degenen die geen lunch hebben besteld zijn daar uiteraard welkom, en kunnen
er (gratis) koffie drinken.

De bibliotheek van het Mathematisch Centrum bevindt zich op de le verdieping.

Syllabus.

Aan de deelnemers wordt een syllabus met de uitgewerkte teksten van de voor-
drachten uitgereikt. Deze syllabus is tevens een voorlopige versie van een
te verschijnen deel in de serie Mathematical Centre Tracts (suggesties ter

aanvulling of verbetering worden daarom graag ontvangen).

Bijeenkomst werkgemeenschap discrete wiskunde.

Op donderdag 8 juni wordt een bijeenkomst belegd waarop het toekomstig
functioneren van een "werkgemeenschap voor de discrete wiskunde" zal worden
besproken. Deelnemers aan de studieweek zijn ook op deze bijeenkomst wel-

kom (tijd: 15.00-16.00 uur; plaats: grote collegezaal).



WATERLOO
PLEIN

T
1sWY
Ml

(W

'(\\

s,  PLATTEGROND

\"e

7
L

i
\\

\

A

4 @ MATHEMAT I SCHE CENTRUM

TWEEDE BOERHAAVESTRAAT 49

@ WISKUNDEGEBOUW U.v.A.
ROETERSSTRAAT 15

@ CN BUSSTATION
@ WEESPERPLE IN

METRO NAAR BIJLMERMEER VIA AMSTELSTATION VvV
TRAM 6 PLANTAGE PARKLAAN-STADIONPLEIN VV
TRAM 7 PLANTAGE PARKLAAN-MERCATORPLEIN vV
TRAM 10 MOLUKKENSTRAAT-VAN HALLSTRAAT vV
BUS 5 CENTRAALSTATION-AMSTELSTATION VvV
BUS 55 WEESPERPLEIN-CENTRAALSTATION VV

@ HALTE TRAM 9 CENTRAALSTATION-MIDDENWEG VV
HALTE TRAM 3 MUIDERPOORTSTAT |ON=-ZOUTKEETSGRACHT VV

@ HALTE BUS 5 CENTRAALSTATION-AMSTELSTATION VV

PLEIN

RICHTING G
001

(LINNAE 5 STR

M'DDENWEG) .

S

-—
@* STATION




SYLLABUS

STAPELEN EN OVERDEKKEN

(Packing & Covering)

Studieweek 5 t/m 9 juni 1978
STICHTING MATHEMATISCH CENTRUM



Mathematical Centre,
Tweede Boerhaavestraat 49,
Amsterdam.



This "syllabus" collects the elaborated texts of lectures to be delivered
during the study week "STAPELEN EN OVERDEKKEN" (Packing & Covering), June
5-9, 1978, organized by the Mathematical Centre.

The lectures aim at introducing the participants to various parts of
combinatorics, considered from a "packing & covering" point of view. The
main goal of the texts is to present the participant whose interest has

been roused, a more extensive discussion of the respective subjects.

Partially, the material in the present volume still has a more or less
provisional form. We hope that remarks, suggestions and criticism
obtained during the week resultg in a number of corrections, improvements
and additions. After processing the amendments a revised edition will

be published in the series Mathematical Centre Tracts.

If you have any comments, please send them directly to the paper's author

or to:

A. Schrijver,

Mathematical Centre,
Tweede Boerhaavestraat 49,
Amsterdam.
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SOME COMBINATORIAL CONCEPTS

Throughout this syllabus we assume familiarity with basic concepts from

combinatorics; here we mention some of them.

A gragh is a pair (V,E), where V is a finite set and E is a collection of
pairs in V (pairs are allowed to occur more than once in E). The elements

of V and E are called vertices (or points) and edges, respectively.

Two vertices are adjacent if they form together an edge. The adjacency matrix
of a graph G = (V,E) is a |V|xIV|-matrix with ones in positions "corresponding"
with adjacent vertices, and zeros in the other positions.

The degree, or valency, of a vertex is the number of edges containing that
vertex. The graph is regular (of degree k) if all valencies are equal (to k).
The complete graph Kn is a graph having n points, each two of them being
adjacent.

A subset V' of V is called stable or independent or a coclique if V' contains

no edges; a clique is a subset V' of V such that each pair of vertices in V'
forms an edge. Q.(G) and (J(G) denote the maximum size of any coclique and

of any clique in G, respectively. The complementary graph G of G has the

same vertex set as G, but E-has, as edges, exactly those pairs of vertices

which are not an edge of G. So O(G) = wW(G).

aKG) is the colouring number of G, i.e., the minimum number of colours needed
to colour the vertices of G such that no two adjacent points have the same
colour; so x(G) is the minimum number of stable subsets of V needed to cover V.
It is easy to see that
(1) wW(G) < g(G) and K(G) >M-.

= 7 (G)
A graph G = (V,E) is bipartite if X(G)g 2, i.e., if V can be split into two
sets V' and V" such that each edge has one point in V' and one point in V".

If E ={{v',v"}lv'e V',v"eV"} then G is called a complete bipartite graph,

denoted by K if V' =m and [V"| = n.

’
The subgraph (Vﬂ}of G = (V,E) induced by V'c V, is the graph with vertex set
V', two vertices being adjacent in {V')» iff they were adjacent in G.

A directed graph or digraph is a pair D = (V,A), where V is a finite set and

A is a collection of ordered pairs of elements of V, i.e., A €V xV. The ele-
ments of V and A are called the vertices (or points) and arrows of D, respect-

ively.



A k-(sub)set is a (sub)set having exactly k elements. ka(x) denotes the
collection of all k-subsets of a set X.

A hypergraph is a pair H = (V,E) consisting of a finite set V and a collection
¥ of subsets of V (again, a subset 'is allowed to occur more than once in x).

The elements of V and & are called the vertices (or points) and edges of H,

respectively.

H is called k-uniform if each edge of H has k elements, i.e.,iC‘Pk(V) . So
a graph is, by definition, a 2-uniform hypergraph. H is called complete
k-uniform if & = $k (V). A complete k-uniform hypergraph with n vertices is
denoted by K]:l. .
For a hypergraph H = (V,X), the hereditary closure is the hypergraph H = (V&)
where % = {V' , V'c V" for some V"e:E)I .

The dual hypergraph H* has vertex set £ and edges all sets -{Ee&: l Ve E} cE

for veV.

For a hypergraph H = (V,E) we denote

(2) ®(H) =max { V]| V'eV, |V'aE|cl for all E ek},

e =min {|¥"| ¥'ex, UE'=v},

T(H) =min{ [v'|] v'ev, IV'aEl31 for all EeX),

Y(H) = max { L{'l' £k, E, nEzl = @ for &ll distinct Ei s Ezfz‘}.
So »(H) = x(H™ and Q(H) = T(H¥).
The line graph L(H) of a hypergraph H = (V,X) has vertex set ¥, two elements
of ¥ being adjacent if their intersection is nonempty.

The incidence matrix of H = (V,%) is a |V|al%l -matrix with a 1. or O in the

positions depending from whether or not we have veg E for the "corresponding”

veV and E eX.

A t—(v,k,}\)—design (or an Sk(t,k,v)) is a pair (X,3), where X J.S a v-set and
:B is a family of k-subsets of X such that each t-subset is contained in
exactly /\ sets of 3 . The elements of X and 8 are called the points and
blocks, respectively, of the design. If A=1 the design is called a Steiner

system; if t=2 it is called a balanced incomplete block design (BIBD) (or
a Bk, Miv)).

If X is a finite set, a subset C of N is called a code, over the alphabet
X, of length n. The Hamming-distance dH(x,y) of two elements x and y of Xrl

is the number of coordinate-places in which x and y differ. In case 0¢X,



the weight w(x) of an element x €X" is the number of nonzero coordinates
of x.

If X = {0,1} a code over X is called binary. If X is a finite field and C
is a linear subspace of Xn, then C is a linear code.(Note that a (unique)
finite field with g elements (denoted by GF(q)) exists, if and only if g

is a prime-power.)

For more combinatorial bhackground information we refer to:

C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

J.A. BONDY & U,S.R. MURTY, Graph Theory with Applications, Macmillan,
London, 1976.

M. HALL, Jr, Combinatorial theory, Blaisdell, Waltham, Mass., 1967.

F. HARARY, Graph theory, Addison-Wesley, Reading, Mass., 1969.
J.H. van LINT, Coding Theory, Springer Lecture Notes in Math. 201,
Springer, Berlin, 1973.

F.J. MacWILLIAMS & N.J.A. SLOANE, The theory of error-correct
North-Holland, Amsterdam, 1977.

ing codes,






SOME BACKGROUND INFORMATION FROM LINEAR ALGEBRA
by

A. Schrijver

In this chapter we collect some results from linear algebra (in particular
from the theory of inner product spaces) which we shall need frequently in
other chapters. We assume familiarity with basic linear algebraic concepts
and manipulations like vectors, matrices and their multiplication.

First we present some notations and conventions. R" and €" denote the
n-dimensional real and complex vector spaces. For a matrix A, the matrices
At and A* are the transpose and conjugate of A, respectively; i.e., A* arises
" from At by replacing each entry of At by its complex conjugate. For a vector
X, xt and x* have a similar meaning.

Identity matrices are denoted by I, and zero vectors by O. (x,y} is the
usual inner product of vectors x and y, i.e., {x,y) = x*y. By using expressions
like {x,y?), Ax and ytA, where x and y are vectors and A is a matrix, we
implicitly assume correctness of sizes.

In this chapter we restrict ourselves to complex-valued matrices and
vectors; moreover, in sections 3 and 4 matrices and vectors are assumed to
be real-valued.

The subjects we shall discuss here are:

1. Normal matrices,
2. Hermitian and positive semi-definite matrices,
3. Closed convex cones,

4. Mathematical programming.

1. NORMAL MATRICES

A non-zero vector x and a complex number A are called an eigenvector
and an eigenvalue, respectively, of a matrix A if Ax = Ax. So Mis an eigenvalue
of A if and only if the matrix A-AI is singular. The function det(A-A) in
the variable ) is the characteristic polynomial of A. So the zeros of the
characteristic polynomial of A coincide with the eigenvalues of A. This implies
that the sum of the eigenvalues of A, counting each eigenvalue a number of

times according to its multiplicity in the characteristic polynomial, is



equal to the trace TrA of A (being the sum of the diagonal elements of A).

Call a set of vectors {xl,...,xAQ orthonormal if (xi,xj> = 3 for

ij
all i, = 1,...,n. A matrix X is called orthogonal if XX* = x*x = I, i.e.
if X_1 = X*(that is, if the set of columns of X forms an orthonormal set

of vectors).
An interesting question is the following: when does a n x n-matrix A

have an orthonormal set of eigenvectors {xl,...,xn} which is a basis for

the vector space c® 2 If, for a certain matrix A, such a basis exists, let

X be the n xn-matrix with columns XprerosX i then X is orthogonal. Furthermore,
D = X"aX is a diagonal matrix (i.e., D has zeros on off-diagonal positions),
with the eigenvalues of A on the diagonal. Hence p*D = DD*, which implies

A*A = AA*, that is, by definition, A is normal. So if A satisfies the claim
' formulated in the question then A is normal. The content of the so-called

"spectral theorem" is the converse implication.

THEOREM 1 (Spectral theorem). Let A be an n x n-matrix. Then there exists

an orthonormal basis consisting of eigenvectors of A, if and only if A

is normal.

PROOF. Let A be normal, with distinct eigehvalues AI""’Ak' It is easy
to choose, for each i =1,...,k, an orthonormal set of eigenvectors which
span the subspace {x iAx = Aix}. To show that we obtain, by joining these
sets, an orthonormal basis, it suffices to prove (i) that <{x,y) = 0 if
Ax = Aix, Ay = Ajy and i # j, and (ii) that the set of eigenvectors spans
the whole space.

To prove (i), suppose i # j, Ax = Aix and Ax = ij. Since

(A-AL) vy, (A-AD)*y) =
(A-AI) (A-AD*y,y) =
A-M)*(a-AT)y,y) =
<(A-AL)y, (A-AL)yY) = 0,

we know that A%y = X;&. Therefore, XZk*y = x*a%y ='i;k*y. As Ai # Aj it
follows that <x;yy = x*y = 0.
If (ii) would be false, the subspace

s ={y |[<x,y) = 0 for each eigenvector x of a}



contains a non-zero vector. Now if ye€ S then also Ay e S. (This follows
from the fact that if x is an eigenvector of A then also A¥x is an eigen-
vector, since an¥x = a®ax = AA®x for some A. Hence, if y€¢ S, {x,Ay’ =
<A*x,y7 = 0 for all eigenvectors x.) Therefore,A works as a linear trans-
formation on the space S; consequently, S contains at least one eigenvector

of A, contradicting the definition of S. 0

Otherwise formulated: a matrix A is'normal iff x*aX is a diagonal
matrix for some orthogonal matrix X. .

A subsequent question is: when do n xn—matriges Al""'Aé rave common
eigenvectors XyreoorXy forming an orthonormal basis ? That is, when does
_there exist an orthogonal matrix X such that, for each i = 1,...,(, X*Aix

is a diagonal matrix ?
Clearly, necesssary conditions are that each Ai is normal and that
AA, = Ain for i,j = 1,...,n (since diagonal matrices commute); these

1]
conditions are also sufficient.

THEOREM 2. Let be given A x n-matrices Al""'At‘ Then there exists an

orthonormal basis consisting of common eigenvectors of Al""’Al’ if and

only if A1""’Al are normal and commute with each other.

PROOF. We proceed by induction to (, the case (=1 being theorem 1.
Suppose we have normal n x n-matrices Al""’A£+1’ pairwise commuting. So
there exists an orthonormal matrix X such that X*A X, ... ,X*A

1 ¢
diagonal matrices (our induction hypothesis). Now the set of indices

X are

{},...,n} may be uniquely partitioned inbclasses such that indices i and j
are in the same class iff no matrix X’AkX (k =1,...,¢) has different
entries on the i-th and j-th diagonal positions.

So, if i and j are not in the same class, some X*Akx has different
elements on i-th and j-th diagonal positions, hence the (i,j)-th entry
of X*Ae+1x is zero (otherwise X*A‘+1X would not commute with X*AkX). Hence

X*A£+1X méy be written in the following form:

sess e

o w
m o
o O
/

PERREEEEE

O evevases
oevevenen

O esessnas
.
.
.



(possibly after permuting rows and columns), where the division into blocks

accords with the partition into classes (a zero stands for an all-zero

matrix). Since X*At+1x is normal, the matrices Bl""’Bm all are normal; so,
by theorem 1, there are orthogonal matrices Yl""’Ym such that Yl’“B1 AREE

ey ¥Y*B Y are diagonal matrices. Taking
m mm

o K
-

< O
.

. .
. .
. .
o

o O
—

O ssesanen
PR
=]

e

O evvevsns

we have that v¥(x*a X)Y is a diagonal matrix. Since, in each of the classes,

L+1

the diagonal entries of the diagonal matrices x*a X, ... ,X*Atx have constant

1
value, we also know that Y*(X*Alx)Y, e ,Y*(X*ALX)Y are diagonal matrices
(in fact, they are equal to X*Alx, cae X*ALX). Since XY is orthogonal we

arrive at the desired conclusion. [
2. HERMITIAN AND POSITIVE SEMI-DEFINITE MATRICES

Examples of normal matrices are the hermitian matrices: these are matrices

A with the property that A = A*, If A is hermitian, x®Ax is real for each vector

x, since (x*Ax)* = x®Ax. One easily derives

THEOREM 3. A matrix A is hermitian iff A is normal and has only real eigenvalues.

PROOF. If A is hermitian, then, obviously, A is normal; hence there exists an

orthogonal matrix X such that X*AX is a diagonal matrix. As X™AX again is

hermitian, all of its diagonal elements, being the eigenvvalues of A, are real.
Conversely, suppose A is normal and has only real eigenvalues. Then

X*aX is a real-valued diagonal matrix, for some orthogonal matrix X. Hence

A = XX*AXX® = X(X*ax)*x*= xx*a*xx* = a*. [0

A consequence is that real symmetric matrices only have real eigenvalues.
Now let A be a hermitian n n-matrix, with orthogonal set of eigenvectors
{xl,...,xn} and corresponding eigenvalues A12 e )An. Furthermore let 1<k < n.

Then:



PROPOSITION 4. For each vector x in the subspace generated by {kl,...,xk}

({xk,...,xn} , respectively) we have that

x*ax » Akx*x (x*ax < Akx“x, respectively) .
PROOF. Left to the reader (use {xi,xj) = 8, y. O

ij

So the largest and smallest eigenvalue of a hermitian matrix A are

equal to
x*Ax . x*Ax
max ~—o— and min iz’
x#0 x#0
' respectively.

Call a square submatrix B of A a principal submatrix of A if the

diagonal of B is part of the diagonal of A. So principal submatrices of
hermitian matrices are hermitian again. The next theorem relates the eigen-

values of a hermitian matrix with those of ots principal submatrices.

THEOREM 5. Let A be a hermitian nxn-matrix, with orthogonal set of eigen-. .’

vectors {xl,...,xn} , and corresponding eigenvalues A1> oo }An. Let

B be a principal (n-1) x (n-1)-submatrix of A, with orthonormal set of

eigenvectors {yl""’yn-l}' and corresponding eigenvalues ¥, J ... 3P -

Then

N3 v,z A 3P 2 L0 %N

2 n—lz

PROOF. Let 1<k <n. We show that Akiz Vk. By proposition 4, for éach vector
% in the (n-k+1)-dimensional subspace 5, of ™ spanned by xk,...,kn we have that
x*Ax <€ Akx*x. Similarly, for each vector y in the k-dimensional suhspace 32 of Cn-l

spanned by Yireeor¥y we have that y*By }12ky*y. By embedding appropriately

Cn_l in € we obtain a k-dimensional subspace S3 of Cn such that x*Ax 3} ka*x for all
vectors x in S3.
Since the sum of the dimensions of S,and S, equals n+l, there is a

1 3

non-zero vector x in S, nS

1 satisfying

3'
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3 : 3 .
ka x » X*Ax ka X

therefore Xké »&. In the same way one proves ekk Xk+1' O

A hermitian matrix A is called positive semi-definite if x®Ax 20 for

each vector x. The foregoing theory yields the following characterization.

THEOREM 6. A normal matrix A is positive semi-definite iff A has only

nonnegative real eigenvalues, or, equivalently, iff A = B*B for some

matrix B.

" PROOF. Left to the reader (use theorem 1 and proposition 4). [1

If A is a real-valued positive semi-definite matrix then A = BtB

for some real matrix B.
3. CLOSED CONVEX CONES.
In the sections 3 and 4 of this chapter we restrict ourselves to real

vector spaces and matrices (for a more general setting see BERMAN [17).

A closed nonempty subset C of R” is called a closed convex cone if

Ax + Py € C whenever x,y € C and X,V) 0. A powerful result is the following,

intuitively clear theorem.

THEOREM 7. Let Cc®" be a closed convex cone and let x 4 C. Then there

exists a vector w such that <w,x)» <0 and {(w,c» » 0 for all c in C.

PROOF. Since C is closed and nonempty, there exists a vector v in C which
has, among all vectors in C, minimal (euclidean) distance to x. Elementary
geometric arguments gives us that, by the convexity of C, the angle between
the vectors x-v and c-v is not acute, for each vector ¢ in C. That is, for
all ¢ in C, {v-x),c-v> 3» 0. Since 0 €C and 2veC we have that {v-x,2v-v) 3 0
and <v-x,0-vy » 0, whence {(v-x,vy = 0. This implies that w = v-x has the

required properties. [J

By calling a set of the form {yeEPI {w,y) 3 0} a closed half-plane,

theorem 7 asserts that each closed convex cone is the intersection of closed



11

half-planes.
Now define for each subset C of anthe dual cone C* of C by

ck*= {w€IRn’ {w,c? »0 for all c in C}.

Clearly, c* is a closed convex cone. The following theorem is a straight-

forward corollary of theorem 7.

THEOREM 8 (Duality theorem). A subset .C gg.mn is a closed convex cone if
and only if C = (C*)¥,

PROOF. Two assertions do not need arguments: (i) if C = (C*)* then C is
a closed convex cone, and (ii) C is a subset of (C*)¥. It remains to
argue that if C is a closed convex cone then (C*)* < C. To obtain a
contradiction suppose x ¢ (C*)* is not an element of the closed convex

cone C. Then, by theorem 7, there is a vector w such that
{w,x) < 0 € {w,c>

for all vectors c in C. Hence, by definition, we C*. However, x e (C*)*,

so, contradictorily, <w,x>» >0. @O
Examples of closed convex cones and their duals are:

(1) R", with dual cone {0};

(ii) Ri, the cone of nonnégative real-valued vectors, with dual
cone Ri;

(iii) PSD, the cone of real-valued (symmetric) positive semi-
definite n xn-matrices (conceived as vectors of length n2),
with dual cone

psp* = {a IA is an n x n-matrix such that xtAx 30 for xe Rn}.

This last example needs some argumentation (cf. Hall [ 37). The inner
product of the n x n-matrices A = (aij) and B = (bij)’ conceived as vectors
of length n2, is as follows:

n

t
a = -
<a,B> igj a;sbyy = Tr(a’B).
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Now suppose AePSD", that is, <A,B> » 0 for all real-valued positive semi-
definite matrices B. Let xe R and consider the positive semi-definite

n xn-matrix B = xxt. Since
0 < {(B,A) = (xx?,A) = Tr(xxtA) = xtAx,

certainly xtAx 2>0. Conversely, if A is an n xn-matrix such that xtAx >0 for
all xean, then also Tr(BtAB) >0 for all real matrices B. Hence Tr(BBtA) =
<BBt,A> 2 0 for all matrices B, whence, by theorem 6, AEPSD*.

Note that A is in PSD if and only if A is a symmetric element of

PSD ™.

4., MATHEMATICAL PROGRAMMING.

We finally pass on to a useful application of theorem 8, called the
"Duality theorem of linear programming". First two propositions are needed.
(To facilitate notations we shall sometimes identify vectors with their

transposes.)

PROPOSITION 9. Let Ccan be a closed convex cone and let A be an m x N—

matrix. Then the closed convex cone {Ax ] Xe C} has as dual cone the set
fwe & l wia e C ¥}

PROOF. By definition, w e {Ax l xeC}* if and only if thx)O for all xeC.

cas t
This last is equivalent to the condition: w A€ c*® U

PROPOSITION 10 (Farkas' lemma). Let Cc:lRn be a closed convex cone, let A be an
m xn-matrix and let ze R". If, for all we lRm, WtAGC’"_i_I_nM ﬁtz)o, then z = Ax
for some xeC.

PROOF. If {w,z% » 0 whenever the c®, then, by definition, z e {we R ‘

win e C* } * Hence, by proposition 9, z € {Ax |xecC} . (I

The duality theorem of linear programming is fundamental to the
theory of mathematical programming and optimization; it asserts that a
certain maximum is equal to a certain minimum. We present the theorem in

the following (general) form.
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THEOREM 11 (Duality theorem of linear programming). Let ccR” and D cR™ be

closed convex cones, let betRm and c ean, and let A be an m x n-matrix. Then

max {(c,x) l X €C; b—AxeD]} = min {(y,b) l yeD: yA-ceC‘“}',
provided that b-Ax ¢D for some x €C, or that yA-c ec® for some Y€ D*.
PROOF. By symmetry we lose no generality by assuming that b-Ax eD for

some xegC.

It is easy to check that the maximum is not greater than the minumum:

e, x) ¢ {yA-c,x) + {c,xy = {yA,x) = {¥,Ax) < <{y,Ax) + {y,b-Ax) = {y,b).

To prove the converse inequality, suppose the minimum is at least k.

This means:

(1) ye D¥, ya-ce c* = <y/b) 3k,

or, which is the same:

(2) yeD®, t>0, yA-tcec* = (y,b) 3 tk.

The existence of x € C such that b-Axe D yields

(3) yeD¥*, yaec* = (y,b) =<Ky,Ax) +<y,b-Ax) = <yA,x) +{y,b-Axy 3 0.
Combining (2) and (3) yields

(4) yeD¥ t30, yA-tceC* = <y,b) » tk,

or, by joining vectors, matrices, and cones, respectively,

A 0

(5) (y,t) ((I) — 1)€ D*x C*x R = (y,t) (_i) 30.

Application of proposition 10 implies the existence of vectors wé&D and

x€C and s 20 (since (D"xC*xR_*_)“ =DxC nR+) such that
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@ (3= (520

i.e., b =w+ Ax and -k = -cx + s.

So xeC, b-Ax = weD and cx 2k, or: the maximum is at least k. D

By specializing cones C and D we obtain:

m
IR+:

(i) taking C = R: and D

[l

max{(c,x),x),O, Axgbl- min {(y,b}ly'zo, yAzc}' H
(i1) taking C = R" and D = R|:

maxf(c,x)’Axéb} = min{(y,b)‘y}, 0, yA = c} .
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Eigenvalue methods

by

Willem Haemers

1. INTRODUCTION

A packing of a finite collection of sets is a subcollection, consisting
of mutual disjoint sets. This can be reworded in graph theory as follows.
Let G be the graph whose vertices are the sets; two vertices are adjacent
iff the sets have an element in common. Now a packing corresponds to an
induced subgraph of G having no edges. Such a subgraph is called an inde-
pendent set or a coclique.

If we have a number of packings, covering all sets in the collection
we may as well assume that these packings have no set in common. This cor-
responds to a colouring of G, that is, a'colouring of the vertices of G
such that adjacent vertices have different colours (i.e. a partition of the
vertices into cocliques).

Naturally we are mainly interested in large cocliques and few colours.
We denote the maximal size of a coclique in G by 0(G). The minimal number
of colours one needs to colour G is the colouring number of G, denoted by

¥(G). Let G denote the complement of G. Then we easily have:

THEOREM 1.
(1) v(G) = a(G);
(ii) y(G)

[\

E%%T, where v is the number of points of G.

From now on we take without loss of generality {1,...,v} to be the vertex

set of G; so v := |G|. The adjacency matrix of G is the vxv matrix A defined
by
1, iff i and j are adjacent,.
()5 = .
0, otherwise.

Note that A is symmetric with zero diagonal. The eigenvalues of G are the
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eigenvalues of its adjacency matrix. We denote these eigenvalues by

Alz cee ZAV (we may do so because of th, 0.3*)). Of course isomorphic graphs

have the same eigenvalues, although their adjacency matrices may be different.
A graph is regular of degree k if all vertices have degree (valency)

k. A graph G is bipartite if y(G) = 2. The following theorems are well-

known (mostly consequences of Perron-Frobenius' theorem on nonnegative

matrices), cf. [7].

THEOREM 2. Let G be a connected graph on v vertices with adjacency matrix

A and eigenvalues AIZ ves ZAV. Then

(i) If G is regular of degree k then k = Xl;

(ii) Xl has an eigenvector consisting of only positive coordinates;

(111))\1 > IAVI; equality holds iff Ai = _Av+1—i for all i € [1,v], i.e.
iff G is bipartite.

In this chapter we will look for bounds for y(G) and a(G) in terms of the

eigenvalues of G. A first result due to D. Cvetkovic in this direction is

a direct’consequence of th.0.5.
THEOREM 3. (Cvetkovic [15]).
a(G) < min(|{i | A; S0 L i | Ay 20D

PROOF. If B is a principal submatrix of A with eigenvalues vl,...,va, then
on applying th.0.5 repeatedly we get Ai > Vn—a+i for all i. If B = 0 then

= = > < i
vy vy 0, hence Aa > 0 and An—a+1 < 0. This proves the theorem. []

A different type of bound is due to A.J. Hoffman.

THEOREM 4. (Hoffman [16]). If G is regular of degree k then
-A

oy

PROOF. A and J commute with each other. By th.0.2 A and J havi i common

a(G) <= v

basis ofkeigenvectors. Hence the smallest eigenvalues of A - J is Xv.
-ty o ] Z

Now A - - J haﬁ ? principal submatrix - -?;!-J of size a(G);thﬁf fubmatrix

has eigenvalue - Vv 0(G) . On applying repeatedly th.0.5 we get - Vva(G)Z)\v,

which yields the desired inequality. 0

*)
"th.0.3" refers to theorem 3 of chapter 0 "Some background information on
linear algebra".
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In future sections we prove theorems which have th. 4 as a cerollary. For

convenience we define B(G) = v E:fi-for a regular graph of degree k.
v

EXAMPLE Let G be the pentagon:

N
Then we see G = é, o(G) = 2, y(G) = 3,

01 0 0 1

1 01 0 O
A=1{0 1 0 1 0O},

0 01 01

1 0 0 1 O

AJ=2J,A2=AAt=J+I—A.

Hence (A + (% + %/5)I) (A +(%—%/§)I)(A—ZI) = 0. Now, since Tr A = 0 and
det A € Z, we have A\ = 2, AZ = A3 = -4 + 45, A4 = AS = -% - %/5, Th.3
gives a(G) < 2. Theorem 4 gives a(G) < v5 = B(G). Combining theorem 3 with
1 we obtain y(G) 2 2%. Combining theorems 1, 2 and 4 gives:

COROLLARY 5. (Hoffman [5]). If G is regular then

M

> - —

Y(G) 21 -
v

In the next section we shall see that corollary 5 holds for arbitrary

graphs. This result is due to A.J. Hoffman.
2. INTERLACING OF EIGENVALUES

Let A and B be two square matrices having only real eigenvalues
AIZ N an and v12 e va, respectively (m £ n). If for all 1 £ i < m
we have A, 2 v, 2 A ., then we say that the eigenvalues of B interlace
i i n-m+i
the eigenvalues of A. Theorem 0.5 implies that this property holds if B is
a principal submatrix of the hermitian matrix A. This we used in proving
theorems 3 and 4. We shall now prove interlacing of eigenvalues in other

cases, in order to obtain further bounds for a(G) and Y(G).

*
LEMMA 6. Let S be a complex mXn matrix such that SS = I. Let A be a hermi-
. . . * ., .
tian nxn matrix. Then the eigenvalues of SAS interlace the eigenvalues of

A.
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PROOF. Let T be a (n-m)Xn matrix such that its rows form an orthonormal
basis for the orthogonal complement of the row space of S. So R := [g]

* -1
satisfies R = R =, Now

* *
SAS SAT

* *

SAS is a principal submatrix of the hermitian matrix RAR . Thus we have
% .

interlacing of the eigenvalues. Now since RAR is similar to A the lemma

has been proved. [

Remark that if S = (I 0) then SAS* is a principal submatrix of A. Hence
theorem 0.5 is a special case of lemma 6. We are now able to prove the

announced generalization of corollary 5, due to A.J. Hoffman [5].

THEOREM 7. For any graph G

>

1
> - T
Y(G) 21 py
v
PROOF. Let Cl,...,cY represent the partitioning of the vertices of G accord-

ing to the different colours of a colouring. Let x = (xl,...,xv) be an

eigenvector belonging to Al. We define the Yy x v matrix S by
0 if i § C,
J

x., if i e C,
J J

~t. Yot . . : . Qs .
So S j =x, SS =D, where D is a diagonal matrix with positive diagonal
entries, because of th. 2 (ii). Put S := D~%§. Then SSt = I and lemma 6
implies:
(1) The eigenvalues of SASt interlace the eigenvalues of A.
From the definition of S it is clear that:

(2) All diagonal entries of SASt are zero.

Furthermore SAStD%j = SAgtDi%D%j = SAX = Alsx = AlD—%ggtj= AlD%j, hence

(3) Al is an eigenvalue of SASt.

Let vlz e 2vY be the eigenvalues of SA$t. Then (1) and (3) imply Al =V

Together with (2) and (3) this implies X v, = -v, = =-A,. By (1) we have
v i=2 1 oyt 1

v, Z}\v—y+i' hence i=v§Y+2 AL s—)\l. Thus v 2 1 - T 0



Using theorem 2 we see that if G is bipartite we have equality in theorem 7.

The way corollary 5 follows from theorem 4 suggests that the generalization

of theorem 4 for nonregular graphs would be a(G) < 3 X . This, however, is
17
not true. The star provides a counterexample. Indeed, the eigenvalues of a
Ay
star are Al = VYv-1, Al = .= Av—l = 0, Av = -vv-1, hence v X1y = Lv,
whilst a(G) = v-1. Later in this section we prove a generalization of theo-

rem 4 for nonregular graphs. In order to do so we need another theorem on

the interlacing of eigenvalues (see [2]).

. , 2 :
THEOREM 8. Let A be a hermitian nXn matrix, partitioned into m block

matrices Aij' such that all Aii are square matrices:

11 - Alm’
A= : .
Am1 oo Amm

Let B denote the mxm matrix whose ijth entry equals the average row sum of
Aij' for all i,j € [1,m]. Then the eigenvalues of B interlace the eigen-
values of A.

PROOF. Let di denote the size of A, for all i € [1,m]. We define the mxn
matrix S

1...1t 0...0 0...0 ... 0...0
0...0 1...1 0...0 ... 0...0
§=1]0...0 0...0 f...1 ... 0...0 | .

- ——
9y ) d3 4G
Put D = diag(dl,...,dm), then ggt =D, B = D—1§A§t. Define S := D—%g then
SSt = I. Now lemma 6 implies that the eigenvalues of SASt interlace the
eigenvalues of A. On the other hand sast = D %8a8% ™ = p™? = p%8D ™, which

is similar to B. This proves the theorem. []
THEOREM 9. ([2]). For any graph G with minimal degree k in We have

1'v
k2_ =\, AV
min 1

a(G) = v

PROOF. We apply th.8 with m = 2 on the adjacency matrix A of G.
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0 P
B = '
Pyr Pop
where b,, = a(G)blz/(Z—u(G)). Let v, 2 v, be the eigenvalues of B. Then
Det B = —b12 b21 = -b12 a(G)/(v-a(G)) = VyV,- Th.2.8 implies -v Vv, s—Alxv.

Hence b12 0(G)/(v-0(G)) < - Alkv' so

—Alxv
0(G) £ v 4/ .
b MAy
. < . .
Using kmin < b12 we obtain the required result. 0

In the above proof we only used part of theorem 8, namely Al < < AV
for all i € [1,m]. This in fact is well known and commonly used under the

name "Higman-Sims technigque", see [4].

=X, A

If G is a star, then v 3 lv = v-1, so in this case the bound of th.9
k7, =2, A
min "1'v

is sharp. If G is regular of degree k we have Xl =k = kmin; hence in this

case theorem 9 reduces to theorem 4. If we take m = 1 then theorem 8 implies
that the average row sum of a hermitian matrix cannot exceed the largest
eigenvalue. This result can be used in proving the following inequality due
to Wilf [14].

THEOREM 10. y(G) < 1 + Al.
PROOF. Let T be an induced subgraph of G having the smallest possible num-
ber of vertices such that y(I') = y(G). Assume ' has a vertex x of degree

< y(I') - 1. Discard x to obtain T. Now Y(F) = vy(T') - 1, but x is adjacent

to less than y(?) vertices of I', hence at least 1 colour does not occur
among the neighbours of x. But then we can give x that colour, which contra-
dicts y(I') = y(G). Thus the minimal and hence also the average degree of T
is not smaller than y(T) -1. If vy is the largest eigenvalue of T we now

know: y(I') - 1 < v, <A 0

1 1°
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3. ASSOCIATION SCHEMES

So far we have obtained several bounds for o(G) and r(G) in terms of the eigen-
values of the adjacency-matrix of the graph G. The problem remains that, given
a graph G, it is not always easy to compute the eigenvalues. In this section we
shall discuss special types of graphs for which the eigenvalues are relatively
easy to obtain; so the derived bounds are useful here. However, it will turn
out, that, because of the special situation, we can find other bounds. Almost
all results of this section can be found in DELSARTE's thesis [1] (cf. Mac-
WILLIAMS & SLOANE [8]).

A set of graphs Gl""’Gn forms an association scheme if their adjacency

matrices Al""'An satisfy the following conditions:

n
(1) igl A, =0 -1,
n
(2) AA, = ;E p‘ Ay + p0 I, for all i,j = 1,...,n, for some integers pe .
i3 7 =1 Tigt T iy ! Tl i3

Condition (2) means: if two vertices x and y are adjacent in Gl’ then the
number of vertices z adjacent to x in Gi and adjacent to y in Gj' is equal to
the constant pfj (independent from which adjacent pair of G%we have chosen),
for i,j,c = 0,...,n. For convenience we put AO := I,

Observe that Gi is regular of degree Piir because the degrees of the vertices
of Gi are on the diagonal of Ai. The matrices AO,...,An commute with each

other; indeed, (2) implies

$ e S gt t
(3) AR = Z) iRy = ééb pi iRy = (AiAj) = A

Clearly, the matrices A.,...,A span a commutative (n+1)-dimensional algebra
0] n

, the so-called Bose-Mesner algebra of the association scheme. Another basis

for P , the basis of minimal, orthogonal idempotents, is given in theorem 11.

THEOREM 11. There exists a basis J.,...,J_ for , such that J.J. = 8..J.,
0 n — —_ Tij ij i

for all i,j =1,...,n.

PROOF. By theorem 0.2 there exists an orthogonal matrix S (whose rows are

eigenvectors of Ai) and diagonal matrices Di such that SAiSt = Di' for i =

e
1,...,n. It is clear that DO""’Dn span an algebra P isomorphic to 9.
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Write
n
(4) R = V0 & ... @ Vm’
where VO,...,Vm are the common eigenspaces of DO""'Dn' Define the diagonal

matrices ro,...,rﬁ by

(5) (r)..= 1 if ejEVl
33 0 if e 4V,
J 1

where e. denotes the j-th unity vector. Then these matrices are linear independent

r .

)''m

~
and any matrix in ﬁ is a linear combination of ro,...
~
Let D € P be a matrix with m+1 different eigenvalues. We know that

. n
i
(6) D = jgo a; Dy
for some coefficients aij' for all i 20. Hence

(7) D =

for some coefficients bj. This implies that D has at most n+l distinct eigen-
values, hence mn.

~
Thus ré,...,[m form a basis for ﬂ , som = n. Putting, for i = 1,...,n,

(8) J, = s°fs
we have the required Ji's. 0

We easily see that %uJ must be one of the Ji's; without loss of generality we
set J = luJ.
o v

Let us express the two bases we have for %, in each other:

(9) A

n
3 izb Pj(i)Ji, for j =0,...,n,

n
(10) v, = kg Q (113, for j = 0,...,n.
Formulas (9) and (10) define the numbers Pj(i) and Qj(i). In fact, Pj(O),...,Pj(n)

are the eigenvalues of Aj, for (9) implies
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(11) AjJi = Pj(i)Ji,

for i,j = 0,...,n.

We define the matrices P and Q by

(12) (P),. := Pj(i) and (Q)

i3 = Qj(i)-

ij
Then (9) and (10) imply PQ = QP = vI.
Put

0

(13) Vi = Piy

i (the degree of Gi), and Vi := rank J;-

LEMMA 12. Po(i) =Q (i) = 1 and Pi(O) = Vi Qi(O) = V..

0 i

PROOF. Po(i) = 1 and Pi(O) =v, follow from (11). Qo(i) = 1 follows from (10).
Taking traces on both sides of (10) yields Qj(O) = trace Ji = rank Ji = Yi' 0

n

2> i i) =
THEOREM 13. = vin(l)Qz(l) vrj 6jl'
PROOF. Use J;3, = J, 8jl and (10) to obtain

=L ; _ 1 . m
(14) 5jtJj = =t zin(l)Ai) (%Ql(k)Ak) =2 Jé{Qj(l)Qt(k) %—pikAm.

<

Take traces on both sides to get the required identity. o

Theorem 13 is a so-called orthogonality relation. Such a relation also holds

for the Pj(i)'s:
3 §
(15) %0 Vin(l)FZ(l) = v.vj. 50 -

This is an immediate consequence of PQ = QP = I. In particular it follows

that

A &
(16) Qj(l).— v, Pi(J)-
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Let Y’c{l,...,v}, where {1,...,v} is the (common) vertex set of the graphs
Gi' Define for each i = 1,...,n,ai to be the average degree of the subgraph

of Gi induced by Y. That is

. IE; 0 (¥xv)]

(17) a; R 7 I

where Ei is the collection of adjacent pairs (x,y) in Gi’ Put ay = 1. Then

(18) fvl = f a,.

i=0 i

The vector a = (ao,...,an)t is called the inner distribution of Y. The follow-

ing theorem is due to DELSARTE [1].

THEOREM 14. If a is the inner distribution of a set Y, then QEa;O, or,

equivalently,

n

(19) i§o a;0(i) >0, for all j = 0,...,n.

PROOF. Let = (Vypeeer )t be the characteristic vector of Y then
Y 1 Yy

_ 1 t
(20) a, = T§T~y Ay-
Using (10) we have
g e g
(21) 15 2,9 = T Y (;Ey Q3 (1)A)y =
v t v t t t
=y Jd = o= J. J. 0. D
vy ¥ 0 S Ty YY)y

We say that a graph G is in an association scheme if its adjacency matrix

is in the Bose-Mesner algebra F, that is, if the edge set of G is the union

of the edge sets of some of the Gi's. Let us write

(22) G =6a~ $enCir
if Ac,{l,...,n} , and G is the "union" of the Gi with igA.
If Yc {1,...,y}represents a coclique in GA then, clearly, a, = 0 whenever

i € A. So theorem 14 directly implies:
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THEOREM 15. ForiAc{l,...,n}, one has
$
A(Gy) € max{i=0 ail a, = 1, ay = 0 if j €4, aj > 0 and
n

.Zoain(i) 20 for j = 1,...,n}' .
By the duality theorem of linear programming (theorem 0.11) the maximum
of theorem 15 is equal to
n n
(23) min { T bil by=1, Zp.P. ()€ 0 if 3 ¢a{o}, by 0 for 3=0,...,n} .

This bound on & (G,) therefore is called the linear programming bound. One

can apply linear programming techniques to obtain its value.

A more direct upper bound for cocliques in graphs of an association scheme is

given by the following theorem.
THEOREM 16. o(G,). & (G) < v.

PROOF. Define A', := diag('lo,. .é,'ln) and Av := diag(vo,...,vn) . Then we can
rewrite theorem 13 as Vbt' = 0"A Q. With PQ = vI this implies

(24) Ar,P = QtA .
Let Y and Z denote the vertex sets corresponding to o((GA) and O((ESZ) , with

inner distributions a = (ao,. ..,an)t and b = (bo,.. .,bn)t, respectively.

Then aibi = 0, unless i = 0, so

_ ot ta-l
(25) l—aobo—ab-—aﬂvb,

since v0 = 1. Hence

(26) v = vatA;lb = atQPA;lb = a%% A;,thb,

on applying (24). Now write

n
(27) a%o A;lgtb = iEo(A;,lgi"a)i(gtb)i =
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n
£t -1t ot £t
(9%a) ,(@°b)  + fél(éﬁ,g a),(@B), » (97a) (@),

because of theorem 14. Lemma 12 gives that the first column of Q equals j,

hence
t t toLt i
(28) (Qa)y @by =3ajb=]|yl.]z[. [T
Now let us look at some examples of association schemes.

Let X be the set of vectors of length n, with entries from {0,...,q-1}.

We define the Hamming distance of two vectors x and y from X to be the

number of coordinate places in which x and y differ. Let Gi be the graph
with vertex set X, two vertices being adjacent iff their Hamming distance

is i. Then G1""’Gn form an association scheme; schemes obtained this way

are called Hamming schemes. The eigenvalues Pi(j) of Gi are given by

i
G o L i- 3. n-j
(29) P,(3) =X, (3) = D @D (g

Ki(x) is the Krawtchouk polynomial of degree i in the variable x (see [1]).

A second example is obtained by taking for X the set of all (0,1)-vectors

of weight n and length m; the Johnson distance of two vectors x and y from

X is, by definition, half of the Hamming distance. Let Gi be the graph with
vertex set X, two vertices being adjacent iff their Johnson distance is i.

The eigenvalues of these "Johnson schemes" are:

i
. . i-¢ n-€ n-j. m-n+l-j
(30) Py(3) = B;(3) = L -1 (P T

Ei(x) is the Eberlein polynomial of degree 2i in the variable x (see [1]).

If G is a non-trivial graph in an association scheme with two classes (i.e.,

n = 2), then G is a so-called strongly regular graph. It can be seen that

the linear programming bound of a strongly regular graph equals G(G);
moreover, in this case, Q(G) %(Eﬁ = v. (For other association schemes the
bounds of theorem 15 and 16 are mostly better than %(GA).)

The pentagon is an easy example of a strongly regular graph.



27
4. THE SHANNON CAPACITY
Let be given graphs G and H, with vertex sets V = {1,...,n} and W = {1,...,m},

respectively. We define the product G.H to be the graph with vertex set V xwW,

two vertices (v',w') and (v",w") being adjacent iff

(1) vi=v" or v' and v" are adjacent, and w=w" or w' and w" are adjacent.
Let Gt denote the product of ! copies of G. Clearly m(Gc) SIV]{ so we may
define

(2) €©G) := sup \j w(ch

¢

This number, first defined by SHANNON [13], is called the Shannon capacity of

G.

If we consider the vertices of G as letters in an alphabet, two vertices being
adjacent iff the letters are "confoundable", then we can interprete d(Gt) as
the maximum number of e—letter messages such that any two of them are incon-
foundable in at least one coordinate place.

Clearly ®(G) € ©(G), and ©(G) can be different from &(G). Indeed, let G be
the pentagon. Then X(G) = 2, and G(GZ) = 5, hence G(G))Vgi

We shall see that for any regular graph we have @(G) < @(G). In case of the
pentagon we saw @(G) = VE?, thus §(G) = Vgi The determination of the Shannon
capacity of the pentagon was an unsolved problem for over twenty years, until

LOVASZ [B] solved this problem by proving the mentioned upper bound.

Let G = (V,E) be a graph, with V = {1,...,n}. LOVASZ [6] defined SN(G) as

follows.

(3) A(G) = min {max _—_J;Tf | CsUy,...,u are unit vectors in any euclidean
* (cui) space such that uu, = 0 if i and j are

distinct non-adjacent vertices} .

In this expression cu; and uiuj denote inner products. Lovdsz showed that

A(G) is an upper bound for €(G) as follows.

LEMMA 17. K(G)< Q(G).
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PROOF. Suppose c,ul,...,u achieve the minimum (3). Let, without loss of
generality, {1,...,k} be a stable set in G such that k = (G).
Now, by Pythagoras' theorem, since Uyre..,uy are pairwise orthogonal:
' 2 X 2
(4) 1=c" 3 L (cu))” » X/ &(G),
i=1

which implies the desired inequality. O

Let,for vectors a = (al,...,ak) and b = (bl""'bl) the Kronecker-product acb

be the vector of lenght'kt:
(5) adb = (albl’a1b2'""albe’a2b1' ..... e eceeen ,akbL).
LEMMA 18. X(G.H) <€ R(G) .X(H).

PROOF. If c,ul,...,un and d,vl,...,vm achieve the minimum (3) for G and H,

respectively, then ce¢d,u ovl,u OVoyees U0V U0V yu_ov

1 1 AL PEEEE R ET RS KA
satisfy the contions mentioned in (3) for the graph G.H. Since furthermore

1 _ 1. 1
(6) ?a§ 5 = max 7 « max 5
((Cad)(uiovj)) i (cui) j (dvj)

it follows that &(G.H) ¢ &(G).& (8). [
Now one can immediately deduce from lemmas 17 and 18:

THEOREM 19. &(G) <€ X (G).

L

e ] )
PROOF. ©(G) = Slélp an(G‘) ssxtlp a6t < srclp awGt =%). |

The following theorem gives several descriptions of §(G).(cf. LOVASZ (6]) .
THEOREM 20. (@) %&F

(a) min{mgx |c,u1,...,un are unit vectors such that uiuj=0 if i#j,{i,j}qE} =

1 (Cui) 2
(b) min{levA |A=(aij) is a symmetric nan-matrix such that aij=1 if {i,j]¢ Eg =
(c) max{i?% bij\B=(bij) is a symmetric p.s.d. matrix such that TrB=1,and bij=0 if{i,j}EI

(a) max{%z(dvj)zl d,vl,...,vn are unit vectors such that vivj=0 if {i,j}eE}.
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Here levA denotes the largest eigenvalue of A, and p.s.d. means positive

semi-definite.

PROOF. (a) € (b). Suppose A achieves the minimum of (b), and let >\= levA.

Hence AI-A = WWt, since AI-A is p.s.d. Suppose W has rows Wireeo oW, and let

c be any unit vector such fhat wci=0 for all i. Set

c + LA

(7) u, = ——s—;
oW

straightforward checking shows that Crlyy. sy satisfy the claims of (a),

and that levA ymax 1/(cu.)2.
i i
* (b) £ (c). Expression (c) is equal to
(8) max { BaJ | B €PSD; B#I = 1 and BE,, = 0 if §1,5}exl,

where M#N = Tr (MtN) and Eij is the (0,1)-matrix having ones only in the (i,j)-th
and (j,i)-th positions. By the duality theorem of convex programming (theorem

0.11) we find that (c) is equal to

. | A - *
(9) min {)\,r\,fijelR (for fl,j}e E) such that AI + j%jfijl-lij J € PSD } .

Putting A = J - Zf .E,., this is easily seen to be the same as:
i,j 1] 1]

(10) min «[/\ [t\etR, A=(aij) is a symmetric nan-matrix such that aij=1 whenever

{i,j}q E, and AI - A is positive semi-definite}

which, in turn, equals (b).

(c) € (d). Let B be achieving the maximum in (c) and set B = th (this is possible

since B is positive semi-definite). Let W have rows Wireeo W . Set

n
LA Zwi
(11) v, = >—— , and d = ;4.
AT XA
Now d,vl,. AN satisfy the claim of (d). Moreover,straightforwardly,
b2 2 _ z 2 _(T.AHZ 2 z 2.
(12) S(av)® = TeB. & (av) T = (F W) S av)” Y (Sl av ) =

2 2 2
(Taw)?=@Zw)?=(Fwp?=2Z »

i,3 7ij
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(the inequality follows from the Cauchy-Schwartz inequality) .

(a) (a). If d,vl,...,vn and Crlyyene by achieve the maximum (d) and

minimum (a), respectively, then

2 2 - 2 2 .2
(13) il- (cui) (dvi) = Zi((Cod) (uiovi) € (cevd)” = c".da" =1

(the inequality follows from the fact that the vectors ujev, are pairwise

orthogonal). (13) implies the required inequality. D

From theorem 20 many properties of {(G) can be derived.

-THEOREM 21. If G is regular, then R(G) < (S(G).
PROOF. If D is the adjacency matrix of a regular graph, then D and J commute,
n .
A=J - . i i
so -XF;D has largest eigenvalue @(G) Moreover, A satisfies the

claim mentioned in (b) of theorem 20. [

Since ®K(G) ¢ Q(G), ' theorem 4 follows.

THEOREM 22. If G is the pentagon, then 6(G) = §(6) = V5.
PROOF. A(G) for the pentagon equals V? [j

Moreover Lovdasz derived from theorem 20:

(14) X (G.H) = QA(G) .Q(H); .
(15) (G). §(G) 2n, with equality if G is vertex-transitive;
(16) N(G) = Q (G) if G is regular and edge-transitive.

From (16) it follows that, for odd n,

_ n.cos(®/n)

(17) R = T es /)"

where Cn is the circuit with n points, and
(18) X (K(n,k)) = (

n—1)
k-1""
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where K(n,k) is the graph with vertices all k-subset of a fixed n-set, two
of them being adjacent iff they are disjoint (K(n,k) is "Kneser's graph").
Since K(n,k) is a graph in a Johnson scheme its eigenvalues, and hence its
X-value, can be derived from the Eberlein-polynomials. As a corollary of

(18) we have the Erdés—Ko—Rado theorem, saying that (K(n,k)) =(£:i), i.e.,

the maximum number of pairwise intersecting k-subsets of an n-set is (ﬁ:i)

(cf. the chapter "Uniform hypergraphs"). By (15) we have
————-_n, ,n-1, _n
(19) A (K(n,k)) = {k)/(k_l) =%

It is an open problem whether,in .general, G(K(n,k)) = n/k (see the chapter
"Uniform hypergraphs").
" In [3] the existence of graphs G with 6(G) <Y (G) is shown as follows.

THEOREM 23. Let G = (V,E) be a graph, with vertex set {1,...,n}, and let A = (ai

be an n xn-matrix (over any field) such that a;; = 1, foralli, and aij =0

if {i,3} ¢ E. Then ©(G) <rank(a).

PROOF. Since, if ¢t(G) = k, A has an identity submatrix of size k, it follows
that ®(G) €rank(a). In the same way one shows that u(GL)g rank(Ael), where
Aet denotes the Kronecker product of { copies of A. As rank(Aez) = (rank(A)f
we conclude that ©(G) ¢ rank(A). o

Theorem 23 generalizes a result of LOVASZ [B].
Now if G is the "Schlédfli-graph" (having 27 vertices, cf. SEIDEL [12]), the
matrix A = I - D (where D is the adjacency matrix of G) has rank 7, whereas

NG) = 9. So B(G)<N(G).

For an approach unifying both Delsarte's linear programming bound and Lovdsz'
A-function, see McELIECE, RODEMICH & RUMSEY [9) and SCHRIJVER [11} (it turns
out that for graphs G in an association scheme the "convex programming
bound" Q(G) can be determined by linear programming, in a way similar to
Delsarte's linear programming bound) .

See ROSENFELD tld] for relating {(G) with "distance geometry".

.)
J
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UNIFORM HYPERGRAPHS
by

A.E. Brouwer & A. Schrijver

INTRODUCTION

Let X be a fixed n-set (an n-set is a set having n elements). Consider the
set ¢i(x) consisting of all k-subsets of X. There are various problems of
. a "packing & covering"-nature offered by the setﬁ>k(x). In this chapter we
shall deal with some of them, mainly grouped round the following four

questions:

1. what is the maximum number of pairwise disjoint sets in ?&(X) ?
2. What is the maximum number of pairwise intersecting sets in ?&(X) ?
3. What is the minimum number of classes into which ?&(x) can be
split up such that any two sets in any class are disjoint ?
4. What is the minimum number of classes into which $L(X) can be

split up such that any two sets in any class intersect ?

We shall first give, in brief, the answers to these questions; they are
treated more extensively in the section 1-4. To streamline answers we assume,
for the moment, that n is at least 2k (for smaller n the questions are not
problematic) .

The answer to the first problem is trivially LE] (1x; and Ix1 denote the lower
and upper integer part of a real number x, respectively).

The answer to the second question is easily seen to be at least (2:1): take
all k-subsets containing a fixed element of X. The content of the Erdés-Ko-
Rado theorem (1961) is that you cannot have more: (2:1) indeed is the answer
to question 2.

The answer to the third question must be at least

(1) F}I:’/'L_E_J‘l

since each of the classes partitioning the (E) elements of ?L(X) contains at
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most fn/k; elements. In 1973 Baranyai proved that indeed ii(x) can be split

up in this many classegmgonsisting of pairwise disjoint sets. This is particularly
interesting in case n is a multiple of k: then this splitting yields (n 1)
partitions of X, containing each k-subset exactly once.

In a similar manner we have that the answer to question 4 must be at least

o,
(2) ) /(n— y = M

k-1
An upper bound for the answer is given by the following construction (where
we may suppose, without loss of generality, that X = {1,...,n}): let Ki be
the collection of k-subsets of X whose smallest element is i (i=1,...,n);
then

(3) K K

Kyr Koo ovee 0 Ky oprt? Koo o0 %
are n-2k+2 classes of pairwise intersecting k-subsets of X, with union $&(X).
So the answer to problem 4 is at most n-2k+2. Kneser conjectured in 1955
that n-2k+2 indeed is the answer; in 1977 Lovdsz was able to prove this

conjecture, using homotopy theory and topology of the sphere.

We may set the problems described above in the language of graphs. The graph
K(n,k), usually called a Kneser-graph, has, by definition, the set $&(X) as
vertex set, two vertices being adjacent iff they are disjoint (as k~subsets).
Now let, for any graph G, X(G), wW(G) and J(G) be its stability number, clique
number and colouring number, respectively. It is easy to see that

(4) w(G) = &(G), W(G) < §(G) and < ¥,

m(G)
where v is the number of vertices of G. The solutions to the problems 1-4

above may be translated as follows.

1. ®(K(n,k))
2. KA (K(n,k))
3 ¥ (K@, k)
4. g (X(n,k))

It

Ln/KJI

),
qk3jlkj

n-2k+2.

1]

L]

]

In particular, if k divides n, the inequalities in (4), for G = K(n,k), pass

into equalities.
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In this chapter we shall discuss the above mentioned and related problems.
In sections 1,2,3 and 4 we go further into the problems 1,2,3 and 4, respect-

ively.
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1. COLLECTIONS OF PAIRWISE DISJOINT SETS.

Let n and k be natural numbers such that k¢n. Let X be an n-set. In this
section we consider problems asking for the maximum size of collections of
disjoint or "almost" disjoint sets in ?&(x), and in some derived collections.
The first question which rises is easy to answer: what is the maximum number
of pairwise disjoint sets in 9k(X) ? Answer: Lﬁj. However, this question has

some more difficult and more interesting generalizations.

A first direction of generalization investigates the maximum number D(t,k,n)
of k-subsets of X such that no two of them intersect in t or more elements.
So D(1,k,n) = Lp/kj. The problem to determine D(t,k,n) is a genuine packing
problem: D(t,k,n) is the maximum number of pairwise disjoint sets ?l(Y) for
Y’e?i(x). Its covering pendant is the problem to determine C(t,k,n) being
the minimum number of k-subsets of X such that each t-subset is contained in
at least one of them. So C(t,k,n) is the minimum number of collections iL(Y)
(for Yeﬁi(x)) covering the collection ?Q(X).

It is easy to see that D(t,k,n) = C(t,k,n) if and only if there exists a

t-(n,k,1)-design (i.e., a collection of k-subsets of X such that each t-subset
is in exactly one of them). '

The investigations into the functions C(t,k,n) and D(t,k,n), and their design-
theoretical aspects have assumed such large proportions that they will be
dealt with in the separate chapter "The Wilson theory and packing and covering”.
In that chapter, usually, when considering C(t,k,n)-problems, t and k are
assumed to be fixed, while the behaviour of C(t,k,n) as a function of n is
viewed. Now C(n-k',n-t',n) is the minimum number of (n-t')-subsets of X cover-
ing each (n-k')-subset. Passing to complements, one can conceive this as
Turdn's problem: what is the minimum number T(n,k',t') of t'-subsets of X

such that each k' subset contains one of them as a subset ? So
(1) C(n-k',n-t',n) = T(n,k',t").

The distinction between the investigations into C and into T does not rest on

We may view the problems to determine D(2,k,n), C(2,k,n) and T(n,k,2) as
graph-theoretical problems: D(2,k,n) is the maximum number of pairwise edge-

disjoint complete graphs Kk in Kn; C(2,k,n) is the minimum number of complete
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subgraphs Kk in Kn covering all edges of Kn; and T(n,k,2) is the minimum
number of edges in a graph on n vertices containing no k pairwise nonadjacent
poinEs. So (;) - T(n,k,2) is the maximum number of edges in a graph on n
vertices containing no clique of size k.

The Turdn-like problems will be considered more extensively in the chapter

"Turdn theory and the Lotto problem".

Now look at a second generalization of our main problem. Call a subset
. _ 4 ; - = =
le... de of X x... xX = X~ a k-hypercube if IYII = sl = lel = k. Now

we may ask for the maximum number H(d,k,n) of pairwise disjoint k-hypercubes

in Xd. So H(1,k,n) = |n/k|. Furthermore

PROPOSITION 1. H(d+1,k,n) € L%.H(d,k,n)_‘ .

+
PROOF. Suppose there are h pairwise disjoint k-hypercubes in Xd 1. The number

of points contained in the union of these k-hypercubes equals h.kd+1. For
any x € X, the number of points contained in Xd x{x} is at most kd;H(d,k,n).
So the total number h.kd+1 is at most n.kd.H(d,k,n), which implies that

h {L]%.H(d,k,n)J. gd

COROLLARY 2. H(d,k,n) < %% % :
(Rl o k-4
d times

By a straightforward construction one sees that, if k divides n, H(4,k,n) =
(ﬁod, so in those cases the inequality passes into equality. This happens

also if 4 = 2.
THEOREM 3. H(2,k,n) = l.E LEJJ
. Ry = 2 2 .
PROOF. Suppose X = {O,...,n-l}, and let Z = R/zn be the circle of length n;
so z° is a torus. We identify Z with the interval [0,n), in which we count

modulo n. Let n = ak + b, where a and b are integers such that 0gb <k-1.
Let

S R

Choose in Z2 the squares Ek,x+k) x[v,y+k) with
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an, 2888, ..., (p—1)(%“—,§),

(3) (X,Y) = (010)1 (-E-I—p-)l P )

respectively. That is, the vertices (x,y) lie equidistantly on a spiral of
the torus with a rotations. In the following figure a copies of the torus are

unrolled and glued together.

T mE A
O

Inspection of the figure yields that disjointness of the squares follows from

§
(4) (i) a;f‘-;k,fand (ii) a.% < n.

(i) implies that square numbered 1 is disjoint from square numbered 0. (ii)
implies that square numbered a still has points in torus copy I. (i) again
gives that square numbered a is "high" enough to be disjoint from square
numbered 0O'.

Now we have p disjoint squares, of side k, in Zz. Since ch;zz, the inter-
section SnX2 is a k-hypercube in X2, for any équ;re S. So the intersections

of the squares with X2 form a packing of p k-hypercubes in X2. []

Again, problems of dimension 2 can be formulated in the language of graphs.
H(2,k,n) can be conceived as the maximum number of edge-disjoint Kk'k's in
Kn,n' BEINEKE fs]showed that the maximum number of edge-disjoint subgraphs
Kk,l of Km,n (sueh that the "k-sides" of Kk,l coincide with the "m-side" of

K
m,n) equals

(5) min § L%l.%.u , l%l.%ﬂ ;

that is, the maximum number of kat—rectangles (i.e., sets Y1 xYé such that

'Y1) =k andiY2|=£ ) in a set X, x X, with |X1|= m.and|X,| = n, is equal to (5).

1 2 2‘
This can be proved in a manner similar to the proof of theorem 3.

Theorem 3 proves equality in corollary 2 for d = 2. This cannot be generalized

to arbitrary d, since it can be shown that H(4,2,5) € 30 = L%[%t%[%]jlj(note
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that H(3,5,2) = 12). In fact it can be shown that if k is not a divisor of

n, then the inequality of corollary 2 is strict for some 4.

It is straightforward to see that H(d,k,n) = O(K(n,k) ), where the product

graph is defined in the chapter "Eigenvalue methods". So

d

(6) sup\/ H(4,k,n) = sup M(K(n,k)d) = B(X(n,k))

a d

equals the Shannon-capacity of K(n,k). In the chapter "Eigenvalue methods"
an upper bound of %—for BO(K(n,k)) is given, but it is still an open problem

whether this upper bound can be actually reached; so we have the

PROBLEM. Is sup \‘7 H(d,k,n) = % ?

d

The answer is obviously "yes" if k divides n, but for no other values of k
and n we know an answer, For k=2,n=5, the simplest unknown case, ETETHT

is the complement of the Petersen-graph. To calculate (6) in this case we
cannot adapt the construction of the proof of theorem 3 too straightforwardly:
that constiuction yields "connected" k-hypercubesg of {0,...,n-1}é (i.e., the
projections onto the components are connected in the cyclic ordering). The
maximum number of disjoint connected 2-hypercubes of {b,...,n—l}d is equal

to
d
(7) oC ),

where Cn is the circuit on n vertices. LOVASZ [Sf](cf. "Eigenvalue methods")

showed that,.for odd n,

d
def d, _ n.cos(W/n) _n
(8) Oy = Sgp\/?‘_‘gr?" = Ticos(m/n) <2'

whence Q(CS) = Ygt Since this number is smaller than 5/2 we cannot use the
construction of theorem 3 to answer the problem affirmatively for k=2, n=5

(for some calculations of o«Ci) see BAUMERT, et al.[ﬁJ ).
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2. INTERSECTING FAMILIES

2.1. The Erdés-Ko-Rado theorem

Let k and n be natural numbers such that 2k {n, and let X be a n-set. The
base of this section is the following theorem of ERDOS,KO & RADO [31] .

THEOREM 1 (The Erdds-Ko-Rado theorem). The maximal number of pairwise inter-
n—l) '

secting k-subsets of an n-set is'(k_1

PROOF. Evidently, the bound (i:i) can be reached.

Let ﬁ be a subset of ?L(x) such that no two sets in ﬁ are disjoint. Let C
be the collection of all cyclic orderings of the set X; so IC]= (n-1)!
Make a (0,1)-matrix M, with rows indexed by U and columns indexed by ﬁ R
as follows. The entry of M in the (C,A)-position is a one if and only if
the set A occurs consecutively in the cyclic ordering C; that is, if and
only if A induces a (cyclic) interval on C (CE€ZC, AeP) .

It is easy to see that the sum of the entries in any column of M equals
k! (n-k)! So the total number of ones in M is equal to lﬂ\.k!(n—k)!

We are ready once we have proved that the number of ones in each row is
at most k, since it then follows that the total number of ones is at

most k. |€| = k. (n-1)!, which yields
[p-k!(n-k)! < k.(n-1)!,

ie., Iplg (}’::1). _

So let C e £ be the index of an arbitrary row. We may suppose that X =
{1,...,n} and that C represents the usual cyclic ordering of {1,...,n}
modulo n. We have to prove that there are at most k sets in P occurring
as an interval in C. To this end, underline any number from 1,...,n which
is the first element (mod n) of an interval, of length k, being an element
of P . Moreover, encircle any number j whenever j-k (mod n) is underlined;
thus encircled numbers are numbers directly following the last element of
an interval in ? . So no number will be both undeflined and encircled,
since 9 contains no disjoint sets (n > 2k).

Now view any encircled number, say, j. Then the n-2k subsequent numbers

j+1,...,Jtn-2k (mod n) cannot be underlined since any interval starting in
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one of these points is disjoint from the interval starting in j-k (which is in
ﬁ). It follows that there are at least n-2k numbers neither underlined nor
encircled. Since the number of underlined numbers is equal to the number

of encircled numbers, there cannot be more than k underlined numbers, i.e.

the sum of the entries in the row indexed with C is at most k. [

This method of proof is due to KATONA [50,52] (for a generalization, see GREENE,
KATONA & KLEITMABI@Z] ; for a proof using the "Kruskal-Katona theorem", see
DAYRIBI&@;for a proof using eigenvalues, see LOVASZ [Sﬂ (cf. chapter 1 )).

The proof may be easily adapted to show that we may replace the condition

P C‘Dk(n) by: all sets in ﬁ have at most k elements, and no two of them

. are contained in each other.

FRANKL[Eﬂ generalized the proof above to obtain that lplg(;:i) whenever

B c q)k(N), ik/(i-1) £ n, and any i sets in P have nonempty intersection.

2.2. Sharper bounds
Elaboration of the proof also shows that, in case 2k ¢ n, the bound (ﬁ:i)
only can be achieved by "stars", i.e., by collections consisting of all
k-subsets of X containing a fixed element of X. HILTON & MILNER[@ﬂ (answer—
ing a question of ERDés, KO & RADO[Bﬂ ) proved that collections ﬁ of
pairwise intersecting k-subsets of X which are not a star (that is,(\ﬁ = @),
have at most 1 + (n-l) - (n-k—l

k-1 k-1
be attained; Hilton & Milner also showed that all collections achieving the

) elements (this bound can easily seen to

bound are isomorphic).
MEYER[Bﬂasked for the minimum size of a maximal (under inclusion) collection
of pairwise intersecting k-subsets of X; he conjectured that the set of

lines in a finite projective plane achieves this minimum.

2.3. Larger intersections

ERDOS, KO & RADO ESﬂ also proved the following extension of theorem 1. Let
0 € t € k. The maximal number of k-subsets of X such that any two of them
intersect in at least t elements, is equal to (E:t), provided that n is
large enough (with respect to k and t). Let n(k,t) be the smallest number
such that for all n } n(k,t) the maximum is attained only by collections

of k-subsets of X containing a fixed t-subset of X. So n(k,1) = 2k+1.
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After earlier estimates given by ERDOS, KO & RADO [31] and HSIEH [48] ’
FRANKL [35] determined n(k,t) for t 2 19; he found that n(k,t) is about
(k-t+1) (t+1)+1 if t 2 19, and that, for all t, (k-t+1)(t+1)+1 < n(k,t)

< 2(k-t+1) (t+1)+1.

A related conjecture of Erddés, Ko & Rado is that, if k is even and n = 2k,
the maximum number cof k-subsets of X which pairwise intersect in at least
two elements is equal to ‘z((]r:) - (;2}]:)2) .

KATONA [52] observed that if a t-(n,k,1)-design exists (i.e. a collection
3) of k-subsets of X such that each t-subset of X is in exactly one set

of 9 ; cf. chapter ), then certainly the maximum cardinality of a collect-
ion of k-subsets, pairwise intersecting in at least t elements, is (;:E) .

For let 9 be such a collection and let P be a t-(n,k,1)-design. So

_D. ... .(n-t+1)
12l = ko ... (k-t+1)°

For each permutation W of X let Td be the design {-nAl Ae@!‘ , where
WA ={n'x l X € A}.
So PI\HD contains at most one set, for any permutation Ti, since any two

sets in ‘ﬁ% have intersection at most t-1; hence
nt 3 ¥ |pavdl,
hy

where T ranges over the set of permutations of X. The right hand side of
this inequality is equal to the number of triples A e,\, DeD , T permutation,
such that wD = A. For fixed A and D the number of permutations W such that

D = A,is equal to k! (n-k)! Therefore

_ n. ... .(n-t+1) _
nt y MAIDL K- = [pLE oerny K (e
and the required upper bound for f\ follows.
The following question was asked by FRANKL [-33] : does there exist an ¢ 0
such that if k < (%+€&)n, Pc ﬁ)k(n) and |AaBaC\|3 2 whenever A,B,C € P , then
(Me @22
= k-2 .
FRANKL r34}elaborated the following problem of Erdds, Rothschild & Szemeredi:
given t and O {c <1, what is the maximum cardinality of a collection ﬁ of

k-subsets of X such that lAn Bl >t whenever A,B € ﬁ , and for all x e X:

l-[Aeﬁl xeA}l( clN ?
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2.3. The Hajnal-Rothschild generalization

HAJNAL & ROTHSCHILD[&4] generalized the Erdés-Ko-Rado theorem as follows.
Let ﬁ be a collection of k-subsets of X such that each subcollection P'

of P with more than r elements, contains two sets which intersect in at

least t elements; then

If] <

r . .
S _q i+l ro n-it
Fet] (-1) (i)(k—ith
provided that n is large enough with respect to k,r,t, i.e., n ) n(k,r,t).
Clearly, in case r = 1, this result reduces to the Erddés-Ko-Rado theorem.
If we put t = 1, Hajnal & Rothschild's theorem passes into: if Pcfpk(n)

contains no r+l1 pairwise disjoint sets then

n n-r
IM < ¢h - 5,

provided that n » n(k,r,1); ERDOS 26 conjectures that for all n

Il < max { Fh, -

this was proved for k = 2 by ERDOS & GALLAI[QQ].
ERDOS [26] showed that n(k,r,1) ¢ c

=

k.r, and KATONA[éﬂ conjectured that
n(k,2,1) = 3k+1 (taking all k-subsets of a fixed @k—ﬁrsubset of X in case

n = 3k, shows that 3k+1 is the smallest number we may hope for).

2.4. A relation with Turdn's theorem

CHVATAL [édl has designed the following framework generalizing both the
Erdés-Ko-Rado theorem and Turdn's theorem (cf. chapter ). Call a collect-
ion $ of sets m-intersecting if any m sets in B have nonempty intersection.
Let f(n,k,m) be the maximum cardinality of a collection P of k-subsets of

X such that for all ﬁ' c P: P' is m-intersecting implies Pf is (m+1)-inter-
secting.

So f(n,k,1) = (i:i), for n 22k, is equivalent to fhe Erdés-Ko-Rado theorem;
£f(n,2,2) = L%n%J, is the content of TURAN's theorem[éS,Gé] and TURAN [éﬂ
asked (in another terminology) for the number £ (n,k,k).

CHVﬁTALJ?@ proved that f(n,k,k-1) = (i:i) if n ) k+2. ERDéS[ﬁﬂ wondered
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whether f(n,k,2) = (;{l:i) if k» 2 and n),%k; CHVATAL [20] extended Erdds'
question to the conjecture that f(n,k,m) = (E:i) whenever kD> m and
n > mn%l.k. So this has been proved for k = m+l1, and for m = 1. For some

more results see BERMOND & FRANKL[H] .

2.5. Some further related problems and results

HILTON [46] showed that, if 1<{¢h<k<n, h+tk { n, and f\ consists of pairwise
intersecting subsets A of X with h <|A| ¢ k, then '

k
Il 2 (o1,

i=h ‘i-1
KLEITMANBB] proved that if h+k € n and ?xand 8 consist of k-subsets and h-
subsets, respectively, of X such that AnB # #§ for Aef\ and BeJ , then
lpl > (2:1) implies \8‘ < (g:i); HILTON@S] generalized this result.
KATONA F1] (cf. TARJAN [64]) proved the following conjecture of EHRENFEUCHT &
MYCIELSKI [25): let A, L

,Am be k-subsets of X, and let B
h-subsets of X, such that Ai n Bj # @ iff i # j; thenm ( (h]-:k).

e 'Bm be
ERDE)S & RADO [32] proved that, given natural numbers ¢ and k, there is a
number ¢C(k) such that if [\ is a collection of k-sets with pc(k) elements,
then i\ has a subcollection ‘\' of cardinality c with the property: if

A,B € ﬁ' then AnB =)\ P' . They conjectured that one can take

‘#c (k) € (cc')k for a certain absolute constant c'. SPENCER[62] proved an
upper bound for ¢c(k) of order about ck.k! (cf. ERDOS [28] ).

2.6. Permutations

An analogue of the Erdds-Ko-Rado theorem, due to FRANK & DEZA [36] is:
let Tibe a collection of permutations of X such that for all T(l, TI'2 € ]T
there is at least one x €X such that TTlx = 1T2x; then IT” < (n-1)!

More general is the conjecture of Deza & Frankl: if for any two 171, 112 ET\-
there are at least t distinct elements Xl’ ce. ,xt in X such that

Wx; =T,x,, for i = 1,...,t, then [TT] < (n-t)!

In a way similar to Katona's method using t-designs mentioned above, one
can derive this bound for t = 2 from the existence of a collection P of
permutations of X such that for all distinct xl,x2 ¢ X and for all distinct

yl,yzex there is exactly one permutation Q in P such that RXy = ¥y and
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sz = ¥Y,- The existence of such a collection P is easily seen to be equivalent
to the existence of a set of n-1 mutually orthogonal latin squares of order

n; so the conjecture is true, in case t = 2, for prime powers n. (See also
BANDT [1] .)

Above we have considered mainly intersection problems for collections of
sets with a fixed size. For a more extensive survey of (also more general)
intersection problems and results we refer to ERDOS & KLEITMANléd],
KATONA [52], GREENE & KLEITMAN[43] .

For a more general approach of intersection problems - see DEZA, ERDas &

FRANKL [éj].
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3. EDGE COLOURING OF UNIFORM HYPERGRAPHS AND BARANYAI's THEOREM

3.1. Colourings

Let H = (X,E) be a hypergraph with vertex set X and edge set E. A
(vertex) p-colouring of H is a partition C=={Ci!i.sp} of X into p (possibly
empty) subsets ('colours'). We consider four successively stronger require-

ments on the colouring.

(i) C is called proper if no edge containing more than one point is mono-
chromatic, i.e. (E e EAE c Ci) = |E| < 1.

(ii) C is called good if each edge E has as many colours as it can possibly
have, i.e., [{ilE.n c; # #}| = min(|E], p).

(iii) C is called fair or equitable if on each edge E the colours are rep-
resented as fairly as possible, i.e.,

e
— < |Enc,| < IEl for i =1,...,p.

(iv) C is called strong if on each edge E all colours are different i.e.,

|IE n Cil <1 fori=1,...,p.

(This is just the special case of a good or fair colouring with p colours
when p = max{|E| |E € E}.) Instead of asking for an equal partition over

the edges one may ask for an equal partition of colours over the points:

(v) A proper colouring is called equipartite if for i = 1,...,p we have

Xl . < MIx
Lpd~™ ICil - p °
Dually one defines a (proper, good, fair, strong, equipartite) edge p-
colouring of H as such a p-colouring of " = (E,XL the dual of H (where

X € X is identified with Ex = {E € E|lx € E}).

EXAMPLE 0. For p 2 |X| the partition of X into singletons is an equipartite
and strong p-colouring. Hence any H has a proper, good, fair, strong and

equipartite p-colouring for some p.

In the case of proper or strong colourings the only interesting question
is for the minimum number of colours needed (which number is usually called
X(H) resp. y(H) in case of vertex-colourings and ? (H) resp. q(H) in case of

edge-colourings) since here adding unused colours does not change the
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property. In the case of good, fair or equipartite colourings we really want

to know for which p such a colouring exists.

EXAMPLE 1. Let H = (X,E) be a simple (undirected) graph (i.e. E c PZ(X))'
By VIZING's theorem, if

p 2 max §(x) + 1
XeX

then H has a good (hence fair & strong) edge p-colouring. By GUPTA's

theorem, if

p <max §8(x) - 1
xeX

then H has a good edge p-colouring (but not necessarily a fair one, and
certainly no strong one).

[Here (and below) 6(x) = lExl = |{Elx € E € E}|.]

EXERCISE 1. Determine the minimal p for which there exists a proper edge

p-colouring of Kﬁ. [K: = (x,Pk(x)) where [X]| = n.]

2
EXERCISE 2. Verify that the complete graph K, [=K7] has a fair edge p-
colouring unless p = 2 or 6, a good edge p-colouring unless p = 6 and an

equipartite edge p-colouring unless p = 1.

EXERCISE 3. [J.-C. FOURNIER] Let H = (X,E) be a graph. Then H has a good

edge 2-colouring iff no component of H is an odd cycle.

3.2. Baranyai's theorem

Let |X| = n. The hypergraph H = (X,Pk(x)) is called the complete k-
uniform hypergraph, written Kﬁ. In this case BARANYAI [1973] provided a

complete solution for the edge-colouring problems by proving

THEOREM 1. Let H = Kﬁ and write N = (E), the number of edges of H. Then

(i) H has a good edge p-colouring iff not

M n™l n . B N - n M n7l
N/ =S <p<N/LTJ,1.e.1ff PSLT{Jor > *

T

(ii) H has a fair edge p-colouring iff

A nl_
Lpdx ~
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where A = %? is the degree (valency) of each point.
7

s _r n
(iii) q(H) = N/ L% -
COROLLARY. H has a l-factorization (a strong colouring where each colour is

a partition of X) iff kl|n.

PROOF. (Necessity) This part of the proof will be valid for any regular
k-uniform hypergraph on n points with N edges. Let C be any edge p-colouring

of H and define for x € X
cx) := [{ilE nc; # B},

the number of colours found at point x.

. n . n N . PV
(i) p < N/ Lk’ i.e., L% 4 < o means that there exist two non-disjoint
edges with the same colour, i.e.,3dx: c(x) < 8(x) = A.
Mn™l, Mn™
p > N/ * Ji.e., x

each point i.e. 3x: c(x) < p.

N
> E—means that not every colour occurs at

But for a good edge p-colouring we have Vx: c(x) = min(§(x),p).

(ii) By definition of a fair edge colouring we have for each i

A k Al
Lpasalals 5
and hence
A n’l T ATn
Lpax <l&al<e 7 %o

Averaging over i we find the stated condition.
I 1
(iii) qH) 2 N/ L% | immediately follows from (i). Obviously

q(H) = A is possible only when k|n.

REMARK. (i) and (iii) can be formulated more generally as follows:
For a regular hypergraph H = (X,E) let v(H) be the maximum cardinality
of a set of pairwise disjoint edges in H, and let p(H) be the minimum car-

dinality of a set of edges covering all vertices.
(i) can be stated as: If

V() < —'%'— <o,

then H does not have a good edge p-colouring,

(iii) can be stated as:
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r 7

1E|
v (H)

q(H) 2

(Sufficiency) .

In fact we shall prove slightly more, since we need it later. Let s be
a positive integer, and H = (X,E) be a hypergraph. Then define sH= (X,sf) to
be the hypergraph with thé same vertices as H, but with each edge from H taken
with multiplicity s. Obviously v(sH) = v(H) and p(sH) = p(H). A colouring of
sH with p colours is sometimes called a fractional colouring of H with g =-§
colours..We show here that sKﬁ has a good or fair edge p-colouring iff p
satisfies the conditions (i) resp. (ii), where now N = s(i).
A hypergraph (X,E) is called almost regular if for all x,y € X we have

|6(x)—6(x)| < 1. Now we have

t
THEOREM 2. [Baranyail. Let al,...,at be natural numbers such that %Llai=N:=(;B.
e iF
The the edges of sKﬁ can be partitioned in almost regular hypergraphs (X,Ej)
such that IEj] = ay (1 £3=<+t).

It is easily verified that theorem 1 follows from theorem 2:

-
(i) 1f p < N/ r;£L~ then use theorem 2 with s = 1, t = p and
k
- - =T e TR
ay = ...=a 4, = T ova = ) <

n . _r n 1
If p 2 N/ L e thennuse theorem 2 with E = N/ Lx and
3P T e T A TR B TN e
This also proves (iii) and the corollary.

. . A nl T An
= — —_ = —_— - < <
(ii) Write fo LD Jk and f1 LD ok If pfo < g < pf1
then use theorem 2 with ; = p and ay = ... = aﬁ = LfErJ + 1
and ag+1= =at=L?thereg=N—pL-§J.

Vi fO < a, < f1 guarantees that we get a fair colouring.

Theorem 2 will be proved in section 6 as a consequence of much more general

theorems.

3.3. Normal, balanced and unimodular hypergraphs

DEFINITION. A hypergraph H = (X,E) is called balanced if for any odd cycle

3grEgrayrByre s EyprBpit T 3
(where a; ai+_1
Ei contains at least three vertices of the cycle.

€E € E (0 £ i< 2p)) there is an i (0 < i < 2p) such that

Note that for graphs balanced means the same as bipartite (no odd circuits).
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EXAMPLE 2. X = R, E = {E ¢ R| E connected} yields a balanced hypergraph.
PROPOSITION 1. The dual of a balanced hypergaph is balanced. [J

PROPOSITION 2. H = (X,E) is balanced iff for each A ¢ X the subhypergraph

Hy = (a,{E n A] E € E}) has x(HA) < 2.

PROOF. (if) Obvious from the definitions. (only if) Induction on [|X]|.
Let (X,E) be a balanced hypergraph, and let G = E n PZ(X)' Let a € X be a

non-cut point of the bipartite graph (X,G). H is balanced, hence by

x\{a}
induction it has a proper bicolouring: X\{a} = Cy*C,- Since (X,G) is bi-
partite and a is not a cut point all neighbours of a in this graph have
the same colour, say C;. But then X = C, + (C, U {a}) is a proper bicolour-

1 1
ing of (x,BE). 0O

THEOREM 3. [Bergel. Let H = (X,E) be balanced. Then for each p H has a good

vertex p-colouring.

PROOF. Let C = {Cil i < p} be a best possible vertex p-colouring, i.e., one
with maximal I_ c(E) [where c(E) is the number of colours of edge En].

If C is not gogd then for some E ¢ E we have c(E) < min(|E|,p).

Since c(E) < |E| there is a colour i with.lci nE|l = 2.

Since c(E) < p there is a colour j with ch n El = 0.

Since H is balanced H has a good 2-colouring (C.,uC,) = C! + C!'.
CiUCj i ] 1 J

Replacing Ci and Cj by Ci and C5 we obtain a colouring with larger value

of % c¢(E). Contradiction. [
EecE

COROLLARY. Let H be balanced. Then for each p H has a good edge p-colouring.

COROLLARY. Let H be balanced. Then

H) = El.
Y (H) max IE]
q(H) = max 6(x),

XeX

H has min |E| disjoint transversals,
EecE

H has min §(x) disjoint point covers.
¢ xXeX

DEFINITION. A hypergraph H = (X,E) is called normal if for each partial
hypergraph H' = (X,E') of H [i.e. E' ¢ E] we have q(H') = A(H') [where
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A(H) denotes the.maximal degree of a hypergraph H: A(H) = max §(x)].
xeX

By the second line of the second corollary a balanced hypergraph is normal.

PROPOSITION 3. [LOVASz]. Let H=(X,E) be normal and E ¢ E. Then H' = (X,E+{E})
is normal too. That is, increasing the multiplicity of edges leaves a normal

hypergraph normal.

THEOREM 4. [LOVASZ] H = (X,E) is normal iff for each partial hypergraph H'
we have V(H') = T(H'). [Where v(H) is the maximum cardinality of a set of
pairwise disjoint edges and tT(H) is the minimum card. of a transversall(set

of points meeting every edge).]
COROLLARY. [BERGE & LAS VERGNAS]. Let H = (X,E) be balanced. Then v(H) = T(H).

COROLLARY. H = (X,E) is balanced iff for all H' = (X',E') with X' c X,
E' c {EnX'| E € E} we have v(H') = T(H') (or:y(H') = ga%IIEl, or:
€
q(H') = max 8'(x), or H' has min |E| disjoint transversals, or: H' has
XeX EeE! '
min §'(x) disjoint point covers).
XeX
DEFINITION. A hypergraph H = (X,E) is called unimodular if its incidence
matrix is totally unimodular (i.e. each square submatrix has determinant

0 or *1).

THEOREM 5. [GHOUILA-HOURI]. H is unimodular iff for each A < X the sub-

hypergraph HA has a fair vertex 2-colouring.
COROLLARY. A unimodular hypergraph is balanced.

Note that for (multi)graphs unimodular is equivalent to bipartite. If a

hypergraph is unimodular, then so is its dual and any partial éub—hypergraph.

THEOREM 6. [BERGE]. Let H = (X,E) be unimodular. Then for any p H has a fair

vertex p-colouring.
PROOF. Similar to the analoguous one in the balanced case. []

3.4. The r-partite case

. r
Let X be partitioned into r subsets: X = I X4 and let n = |x]|,
i=1
n, = IXi{. The hypergraph H = (X,E) with E = {E ¢ Pk(X)IVi: |E n Xil < 1}

is called a complete r-partite k-uniform hypergraph, written K '
178y
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When ng=...=n = m then H is written Ktxm' Here the problems are not

yet solved, but the following is known:

- For K§Xm Zs. BARANYAI proved the analogue of theorem 1 (and corollary).

The results are exactly the same when we read there n = mr, N = (i)mk,

s = GZpah
- For k = r C. BERGE showed that K; n has the edge-colouring prop-
1rec1ty
erty (ECP), that is q(H) = max 6(x).
xeX r-1
In this case, when n, > n, 2 .. 2 nr this means that gq(H) = _ﬂ ni.
i=1.
Then J.C. MEYER showed that K; n has a good p-colouring for any
1reeerDy
p 2 1 (explicitly constructing one).
Finally Zs. BARANYAI & A.E. BROUWER showed that Kil n has a fair
reeerny

p-colouring for any p = 1 as a corollary from the‘theory in the
previous sections and the fact that the 1Xr matrix (11...1) is totally

unimodular:

The arguments ran along the following lines:
Let R = {1,2,...,r} and let a hypergraph H = (R,E) be given.

Define H(ny,...,n,.) = (X,E(nl,...,nr)) where X =

I R

X,, n, = |X,| and
i’ Y i

i=1
E(mg,...,n) = {E e P(X)IVi: |x; nEl <1 & {illxi n E| # 0} ¢ E}.
Define Ho(nl,...,nr) to be the hypergraph-with vertices R and edges E but

each edge E € E with multiplicity _ﬂE n, .
ie
With these notations we have for H = Kk that H = Kk .
r Ngyeee Dy NyreesrDy

THEOREM 7. If Ho(nl,...,nr) has a fair edge p-colouring then H(nl,...,nr)

has one too.

COROLLARY. If H is unimodular then H(nl,...,nr) has a fair p-colouring for
any p =2 1.

COROLLARY. If H has a fair edge p-colouring and Tl n, does not depend on
i€E

E (e.g. whenn, = ... = nr and H is k-uniform) then H(nl,...,nr) has a

1
fair edge p-colouring.

k
Hence all above mentioned results on Kn a follow from this theorem
1,..., T
(and theorem 1).

EXERCISE 4. [BROUWER]. Show that q(Ki q r) = ptg+e when p 2 g 2 r and € = 0
r ’

unless p=qg=r 2 1(2)orp~-1=q=1r = 0(2) in which case ¢ = 1.
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3.5. Parallelisms

A pargllelism or l-factorization of a hypergraph H = (X,E) is a parti-
tion E = iﬁl Fi where each Fi is a parallel class or l-factor, that is, a
partition of X. In other words, a parallelism of H is a strong edge-colour-
ing of H with §(H) colours; obviously this is possible if and only if H

has the edge-colouring property, i.e. q(H) = §(H).

REMARK. Let w (H) be the maximum cardinality of a set of pairwise inter-
secting edges (clique) in H. Obviously A(H) < w(H) < g(H) for any H.
V. CHVATAL conjectured that if H is hereditary, i.e. if E' ¢ E ¢ E implies

E' ¢ E, then A(H) = w(H), i.e. some maximum clique is a star.
Concerning the edge-colouring property for hereditary hypergraphs we have:

THEOREM 8. [A.E. BROUWER & R. TIJDEMAN]. Let H = k]; = (X,P<k(x)) where
|X] = n. Tnen H has the edge-colouring property (and hence a fair p-colour-
ing for any p) iff

(i) n < 2k and Rg—k_l has the edge-colouring property.

or

(ii) n > 2k and

either n = 0 (mod k) ‘and n 2 k(k-2)
-1 (mod k) and n = %k(k-2)-1.

il

"

or n

Not much is known when iﬁ does not have the edge-colouring property.

J.-C. BERMOND proved for k = 3 and n =1 (mod 3), n = 7 that

1

-3, _ =3 [n-41
a(K) = A(KY) + =

C. BERGE & E.L. JOHNSON showed for k 4 and n > 2k that

-~ - r -
ifn =1 (mod 4) then q(KD) = AKY) + (n(n-5)71 ,
n n 9
if n = 2 (mod 4) then q(kY) = A} + R@IDT
n n 6
They also showed that K- has the edge-colouring property.

N N2yee.rDy
When parallelisms exist we may study then as geometrical objects, or look
for parallelisms with special properties, (cf. P.J. CAMERON.) Let {Fili < q}
be a fixed parallelism on (X,E). We say that Y is a subspace of X when Y c X

and for each i the collection {F|F ¢ Fi and F c Y} is either empty or a
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partition of Y. In this case the non-empty ones among these collections form
a parallelism on (Y'EY) where EY = {E|E ¢ E and E < Y}.

LIn geometrical terms: Y is a subspace of X when for y € Y and E € Y the
unique line F containing y and parallel to E is contained entirely within
v.] .

Now let (X,E) = Kﬁ. By theorem 1 (corollary) a parallelism exists iff k|n.

Let Y be a proper subspace, and |Y| = m. As P.J. CAMERON showed, m < %n (for:

the 6n_1) colours used to colour P, (Y) colour E—_-E-(m—l) k-subsets of X\Y,
k_1n—m m-1 n-m %—1 n-m-lk k-1
n-m < < n-
so that m (k—l) Sb( X ), hence (k—l) < ( k-1 ) and consequently m < n-m).
Conversely it seems to be true that 2|Yj < |x| and |X| = |Y| = 0 (mod k)

suffices to guarantee the existence of a parallelism on (the k-subsets of)
X with subspace Y. Zs. BARANYAI & A.E. BROUWER proved this for k < 3 and
for k arbitrary, n > mk or m|n. In case m|n there even exists a parallelism

on X with % disjoint subspace of size m.

EXERCISE 5. [R.M. WILSON]. Show that for k = 2 the existence of a parallelism
on Kn with a subparallelism on Km for n 2 2m is equivalent to the fact (proved
by A.B. CRUSE) that any symmetric Latin square of order m can be embedded. in

a symmetric Latin square of order n iff n 2 2m.

3.6. Baranyai's method

Baranyai (see BARANYAI [ 3],[ 4]1,[ 5] and BROUWER [15]) proved a large
number of very general theorems (sometimes so general as to be unintelligi-
ble) all to the effect that if certain matrices exist then hypergraphs exist
of which the valency pattern and cardinalities are described by those matri-
ces. A first example is
THEOREM 9. Let |X| = n, H = (X,E) where E = §1 Pki(x) (the k, not necessary-

i=
ly different). Let A = (Aij) be a sxt matrix with nonnegative entries such
t

that for its row sums j§1 aij = (;ﬁ) holds. [For k < 0 or k > n we read
n = i

(k) = 0.1
Then there exist hypergraphs Hij = (X’Eij) such that

(1) lEl:]I = aij'

t
(ii) Pk (X) = . E,. (1 <1i<g),
i j=1 13

s
(iii) (X, I E,.) is almost regular (1 < 3j < t).
i=1 1J
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Note that for k1>= cee = ks = k this implies theorem 2. If £ is an integer,

let £ ~ d (and d & £) denote that either £ = L4l or £ = (d1 holds.

LEMMA 1. For integral A we have

A _aram o ral la La/nt’
Lnd | n-1- n n-1

LEMMA 2. H = (X,E) is almost regular iff for some (and then each) a € X
we have that HX\{a} is almost regular and SH(a) ~ %.EEE IE|.

LEMMA 3. Let (eij) be a matrix with real entries. Then there exists a

matrix (eij) with integral entries such that

(1) €5 ] éij for all i,J,

(ii) Z e,. ~ elj for all j,

I e,
i
(iii) X e,. 8T €,. for all i,
. 1 j 1]
LN L €, ..
i,j 1] i3 1]
PROOF. Fulkerson's integrity theorem in networks: if we have integral upper
and lower bounds on the flows in the edges of a network, and there is a real

flow, then there is an integer flow. [

Proof of theorem 9. By induction on n = |X|. If n = 0 the theorem is true.

The induction step consists of one application of lemma 3. We may suppose

that for i < s we have 0 < ki < n. Let eij = :% aij' the average degree of

the hypergraph (X,Eij) we want to construct.

: ‘o . . _ ,n-1 _ ,n-1
We find positive integers eij with I eij = (k.~1)’ z (aij eij) = (k-) and
1 J i j i
Te,.N=-Ik, a,..
i 1J n j 1 1]
Let a € X and apply the induction hypothesis to X' = X\{a} with s' = 2s,
LI "= ' = - < i < o= - ' = P
t t, ki ki' ki+s ki 1 (1<izx<s), aij aij eij' a(i+s)j eij

[That this is the proéper thing to do is seen by reasoning backward: when
we have Eij and then remove the point a, Eij is split up into the class of
edges that remain of size ki and the class of edges that have now size ki-l.

The latter class has cardinality Eij on the average.]

By the induction hypothesis we find hypergraphs Fij and Gij such that

| =a,,-e,., 6., = iy

|F
ij Tij

ij

F..=P (X)), G,.=P (%)
§ ij ki § ij ki~1
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E (Fij + Gij) is almost regular.

Defining Eij = Fij u {eufal | G ¢ Gij} we are done. [J

Sketch of the proof of theorem 8.

(i) the 'only if' part rests on estimates of (sums of) binomial coefficients.
E.g. if n > 3k and n Z 0 or -1 (mod k) then a parallelism cannot exist
since each parallel class (color) must contain at least one edge of size

at most k-2 but I (2) < (i:i), so that there are not enough small

i<k-2
sets.

(ii) The 'if' part follows from theorem 9: Let A = Zk (2_1) be the degree
- i< -
of Kﬁ. If there exists a A X k matrix D such that

(i) D has nonnegative integral entries

(ii) d,., j=n for all i £ A

1 1]

{ii) T a,, = () for all § < k
i=1 J

> M~

then ﬁﬁ has parallelism. (Pf: exercise).
It turns out that in all cases a suitable matrix D can be found (or

at least: can be proved to exist). [

A more general multipartite version (see BROUWER [15] for the regular case,

BARANYAI [5] for the almost reqular case) is:

THEOREM 10. Let Dyreeerm be positive 1ntegers, and let K = (ktj)tsr,sz be
a matrix of integers, where 0 < ktj < n, (t <r). Let Q = {Ql""'Qp} be a

partition of {1,2,...,s}, and suppose that

#{]IJ € Qi' (kljlkzjr---lkr.

. r
_ i
J) = (kl'k2""'kr)} < r=T )

for all i £ p and all integer vectors (kl,kz,u..,kr).

Then ihere exist O-1 matrices (etjl)tSr,jSS,KSn such that
t
(i) £i1 etjl = ktj for all t,j.

(ii) the vectors (etjﬂ)tSr,ZSnt are different for‘j € Qg

(iii) the matrices (eth)ZSn ,3<s are almost regular for all t,
s

< ' < .
21 etjﬂ'l 1 for 2,2 n

s
that is, I.Z e £
j=1 i=

il
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Even more general, let for each t a forest hypergraph Ft on the set
{1,2,...,s} be given (i.e., a hypergraph such any two of its edges are
disjoint or comparable). Then we may also require that all matrices

(

<
eth)ZSnt,jeF are almost regular, for all F € Ft' t <r.

The proof is similar to that of theorem 9. (Use induction on r.)
The results about the existence of parallelisms with subspaces of a given

size follow as corollaries of this theorem.
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4. PARTITIONING INTO INTERSECTING FAMILIES

Let n and k be natural numbers such that n } 2k, and let X be an n-set. Call

a subset ﬂ of Ti(x) a clique if any two elements of intersect. This section

is occupied with the question of determining the minimal number of cliques
needed to cover ﬁ’k(x), and with related questions.

As said in the introduction, the minimal number of cliques to cover i&(x) must be
at least "m/k! and at most n-2k+2. KNESER's conjecture r54] (1955) states

that n-2k+2 indeed is the minimal number. This problem can be visualized by
considering the Kneser-graph K(n,k) (cf. the introduction): Kneser conjectured
that the chromatic number X(K(n,k)) of K(n,k) is equal to n-2k+2.

For k = 1 or 2,Kneser's conjecture is easy to prove; GAREY & JOHNSON [391 proved
" the conjecture for k = 3. In 1977 LOVASZ [Sé] was able to prove Kneser's con-
jecture for general k, using algebraic topology and Borsuk's antipodal theorem;
also in 1977 BARANY [2] showed that Kneser's conjecture immediately follows

from Borsuk's theorem and a theorem of Gale from 1956. Below we give Bardny's
proof method. First we give the two ingredients of the proof.

da+1

Let Sd be the d-dimensional sphere, i.e. Sd = {xcﬁi I x| = 1}. BORSUK's

antipodal theorem [143 says that if Sd is covered with d+1 closed subsets,

then one of these subsets contains two antipodal points (for a proof see

DUGUNDJI [24] ). Simple topological arguments show that we may replace in
Borsuk's theorem "closed" by "open". [Borsuk's theorem is also equivalent to:
for each €7 0, the chromatic number of the Borsuk-graph B(d,€) is at least
d+2, where the Borsuk-graph B(d,£) has vertex-set Sd, two vertices being
adjacent iff their euclidean distance is at least 2-§¢ (in fact (B(4,£)) =
d+2 if ¢ is small enough)J

GALE"s theorem[%é] states that one can choose 2k+d points on Sd such that

each open hemisphere contains at least k of these points. PETTY [60] (cf.

SCHRIJVER [61] ) found that one can take for these points the points

€ Sd, where

Wi ot tYokaa
v
i i .0 .1 .d a+1
wi = "Vi"' and vi = (=1)"(1,i7, ... ,i) e R ,
for i = 1,2,3, ... (The proof consists of showing that for each non-zero

real polynomial p(x) of degree at most d there exist n distinct natural

numbers i between 1 and 2k+d such that (—l)lp(i) :) 0, which is not hard.)
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We now prove Lovdsz' Kneser-theorem with Birdny's method.

THEOREM 1. (LOVASZ[sé] ). The minimal number of cliques needed to cover i>k(x)
is equal to n-2k+2.

PROOF. Let d = n-2k. Suppose we could divide ?k(x) into n-2k+1 = d+1 cliques,
say ﬁl’ eee ¢ ﬁd& We may assume that X is embedded onto Sd such that any
open hemisphere of Sd contains at least k 