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Semi-Markov decision processes with denumerable state space, unbounded 
*) one-step costs and the average cost criterion 

by 

H. C. Tijms 

ABSTRACT. This paper surveys optimality results for average cost denumerable 

state semi-Markov decision processes with compact metric action sets and 

unbounded one-step costs under the as·sumption that the underlying Markov 

decision chains associated with the stationary policies are unichained. 

Also an extensive discussion of simultaneous recurrence conditions on a 

compact metric set of denumerable stochastic matrices is given. 

KEY WORDS & PHRASES: semi-Markov decision processes, denumerable state space, 

average costs, recurrence conditions, optimality results. 

*) Based on lectures given in the Postdoctoral Seminar on "!1arkov Decision 

Theory" held at the University of Utrecht, February-June, 1979. 





1. Introduction 

We are concerned with a dynamic system which at decision epochs 

beginning with epoch 0 is observed to be in one of the states of a 

denumerabZe state space I and subsequently is controlled by choosing 

an action. For any state iEI, the set A(i) denotes the set of pure 

actions available in state i. If at any decision epoch the system is 

in state i and action aEA(i) is taken, then, regardless of the history 

of the system, the following happens: 

(i) an immediate cost c(i,a) is incurred 

(ii) the time until the next decision epoch and the state at the next 

decision epoch are random with joint probability distribution 

function Q(.,. li,a). 

For any iEI and aEI, let 

00 

p .. (a) 
l] 

= Q( 00 ,jli,a) for jEI and -r(i,a) = I f tQ(dt,jli,a). 
jEI 0 

i.e. p .. (a) denotes the probability that the next state will be j and 
l] 

-r(i,a) denotes the unconditional mean time until the next decision 

epoch when action a is taken in state i. Observe that I. rP· .(a)= 1 
JE l] 

for alle i,a. We make the following assumption. 

ASSUMPTION 1. 

(a) For any iEI, the set A(i) is a compact metric set. 

(b) For any iEI, both c(i,a), p .. (a) for any jEI and -r(i,a) are 
l] 

continuous on A(i). 

(c) There is a number E>0 such that -r(i,a) ~ E for aZZ.iEI and aEA(i). 

We now introduce some familiar notions. For n = 0,1, .. , denote by 

X and a the state and the action at the nth decision epoch (the oth 
n n 

decision epoch is at epoch 0). A policy~ for controlling the system 

is any measurable rule which for each n specifies.which action to 
th choose at then decision epoch given the current state X and the 

n 
s~quence (x0 ,a0 , .•. ,Xn-l'an-l) of past states and actions where the 

actions chosen may be randomised. A policy~ is called memoryZess 

when the actions chosen are independent of the history of the system 

except for the present state. 

1 
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Define Ras the class of all stochastic matrices P = (p .. ), i,jEI such 
th i] 

that for any iEI the elements of the i row of P can be represented by 

p . . = f p .. (a) TI . ( da) for all j El 
i] A( i) iJ i 

(1.1) 

for some probability distribution TI.{.} on A(i). Then any memoryless 
i 

policy TI can be represented by some sequence (P1 ,P2 , .. ) in R such that 

th . th f P . h b . . e i row o gives t e pro ability distribution of the state at 
th . . n · 

then decision epoch when the current state at the (n-l)st decision 

epoch is i and policy TI is used. Define F = X. 1A(i). Observe that, 
iE 

under assumption l(a), Fis a compact metric set in the product topology. 

For any fEF, let P(f) be the stochastic matrix whose (i,j)th element is 

p .. (f(i)), i,jEI and for n = 1,2, ... denote by the stochastic matrix 
JJ n 

P (f) = (p .. (f)) then-fold matrix product of P(f) with itself. A 
iJ 

memoryless policy TI= (P 1 ,P2 , ... ) is called randomized stationary when 

P = PER for all n~l and is called stationary when in addition P = P(f) 
n 

for some fEF. A stationary policy which prescribes to take the single action 

f(i) E A(i) whenever the system is in state i will be denoted by f(oo). 

Observe that under any randomized stationary policy with associated stochastic 

matrix PER the process {X ,n~O} is a Markov chain with one-step transition 
n 

matrix P. 

For 

decision 

th n = 0,1, ... , denote by T the time between then and (n+l)st 
n 

epoch. A policy TI* is said to be (strongly) average cost optimal 

when lim sup ¢ (i,TI*) is less than or equal to lim sup ¢ (i,TI) n-+oo n n-+oo n 
(lim inf ¢ (i,n)) for any iEI and policy TI where¢ (i,TI) is defined by n-+oo n n 

( 1. 2) ¢ (i,rr) = 
n 

E'IT{I~=Oc(Xk,ak)jxo = i} 

E'IT{I~=o 'klxo = i} 
' n 

with E is the expectation under policy TI. We here assume that this 
TI 

quantity is well-defined for any iEI and policy TI as is the case under the 

assumptions to be given in section 3. 

For the case where A(i) is finite for all i and the quantities c(i,a) and 

,(i,a) are uniformly bounded counterexamples can be given showing that an 

average cost optimal policy may not exist or no randomized stationary policy 

may exist whose average cost is within E of the minimal average cost, 

cf. Ross (1970,1971). A counterexample in Fisher & Ross (1968) shows that 

an average cost optimal policy may exist but any average cost optimal policy 

is non-stationary. In this counterexample it is remarkable that for any 

randomized stationary policy the associated stochastic matrix PER is 
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*' irreducible and positive recurrent , . This indicates that strong recurrency 

conditions will be required to establish optimality results for the average cost 

criterion. 

In general we can only say that for fixed initial state we may restrict ourselves 

to the class of memoryless policies. More precisely, by a slight modification of 

the proof of Theorem 2 in Derman & Strauch (1966), we have the well-known result 

that for any fixed i 0 EI and policy TIO a memoryless policy TIM can be found such 

that for any kEI, Borel set A~A(k) and n~O 

(1.3) Pr {X =k 
TT n ' 

m 

We further state as general result that if a finite solution {g,v(i)liEI} 

exists to the average cost optimality equation 

(1.4) v(i) = min {c(i,a) - g,(i,a) + E p .. (a)v(j)} for all iEI 
aEA(i) jEI lJ 

such that 

(1.5) lim ~ E {lv(X )I IX0 =i} = 0 for any iEI and policy TT 
n TT n n-+<x> 

then any stationary policy f(oo) such that the pure action f(i) minimizes the 

right side of (1.4) for all iEI is strongly average cost optimal. 

Weshall focus our attention on the existence of a finite solution to the 

average cost optimality equation and the existence of a strongly average cost 

optimal policy. In this paper we shall present for the unichained case a rather 

complete theory for the denumerable state semi-Markov model with unbounded one-step 

expected costs and the average costs as optimality criterion. For the unichained 

case this theory encompasses the finite state space model and the special cases 

of the denumerable state space model studied so far in the literature. 

*)cf.also Fisher (1968) for the deep result that inf fEFTTj(f) > 0 for all jEI 

provided that A(i) is finite for all i and for any fEF the stochastic matrix P(f) 

is irreducible and positive recurrent where {TT.(f),jEI} is the unique stationary 
J 

probability distribution of P(f). In case transient states are allowed and 

µi 0 (f) < 00 for all iEI and fEF for some common recurrent state O where µi 0(f) 

denotes the mean number of transitions until the first return starting from i 

and using f( 00
}, it is an open question whether inffEFTTO(f) > 0. 



4 

This literature was initiated by the papers of Derman (1963), Taylor (1965) and 

Ross (1968) under the very restrictive assumption of uniformly bounded functions 

c(i,a) and T(i,a) and under the assumption of a common positive recurrent state 

for the stationary policies. This work was considerably extended in Hordijk 

(1974,1976) and Federguen & Tijms (1978) and in a recent paper of Federgruen, 

Hordijk and Tijms (1978b) a rather complete theory for the unichained case has 

been established. Extensions of this theory for the unichained case to the 

important case of 11 communicating" Markov decision chains (cf. Bather (1973) and 

Hordijk (1974)) will probably involve the other assumptions given in section 3 

below but will require quite different proof techniques as possibly linear 

programming or fixed point methods. 

To establish this results for the average cost criterion, a thorough analysis 

of recurrence properties of the collection of underlying stochastic matrices 

P(f), fEF will be essential. This analysis will be presented in detail in section 2. 

In the final section 3 we outline how to derive the optimality results for the 

average cost criterion. 

2. Recurrence conditions for a collection of denumerable stochastic matrices. 

We consider a set P = (P(f),fEF) of stochastic matrices P(f) = 
(p .. (f)), i,jEI having a denumerable state space I where the parameter set Fis 

l] 

a compact metric space. Note that, for any fEF, p1.J.(f) 2 0 and I. 1p .. (f) = 1. 
]E l] 

Throughout this section we make the following assumption. 

Assumption (a) For any i,jEI, the function p .. (f) is continuous on the compact 
l] 

metric set F. 

(b) For any fEF, the stochastic matrix P(f) has no two disjoint 

closed sets. 

For any fEF, denote by the stochastic matrix Pn(f) = (p~.(f),i,jEI the 
l] 

n-fold matrix product of P(f) with itself for n = 1,2, .... Note that for any 

i,jEI and n2l the function p~.(f) is continuous on F. For any i 0 EI, AcI and fEF, 
l] 

define the taboo probability 

(2.1) n=l,2, ... 

i.e. t~A(f) is the probability that under the stochastic matrix P(f) the 

first return to the set A takes more than n transitions starting from state i. 
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For any iEI, AcI and fEF, define the (possibly infinite) mean recurrence time 

(2.2) 

n 
We write t.A(f) = t .. (f) and µ.A(f) = µ .. (f) for A= {j}. Consider now the 

l l] l l] 

following simultaneous recurrence conditions on the set P = (P(f),fEF). 

Cl. There is a finite set Kand a finite number B such that 

C2. There is a finite set K~ an integer vzl and a number p>O such that 

I: p~ .(f) 2 p for all id and fEF . 
. K lJ JE 

C3. There ~s an integer vzl and a number p>O such that for all fEF 

( 2. 3) { Z: 
jd 

C4. There is an integer vzl and a number p>O such that for any fEF a probability 

distribution hr/f) ,jd} (say) exists for which 

J Z: p~.(f) - I TI.(f)J :,; (1-p)Ln/'LI for aU id, AcI 
jEA lJ jEA J 

and nzl. 
where Lxl denotes the largest integer less than or equal to x. 

C5. For any fEF there is a probability distribution {TI.(f),jEI} such that 
J 

P~.(f) ➔ TI.(f) uniformlu in (i,f)Eixf as n-¾O ~or anu jEI. 
l] J • ~· • ~ 

C6. There is a finite number B such that for any fEF a state sf exists for 1uh1'.ch 

µ. (f) :,; B for aU id. 
lSf 

C7. There is a finite set Kand a finite number B such that for any fEF a state 

sfEK exists for which 

µ. (f) :,; B for aU id. 
lS • 

f 

C8. There is an integer vzl and a numbe1~ p>O such that for any fEF a state sf 

exists for which 
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C9. There is a finite set K, an integer vzl and a number p>0 such that for 

any fEF a state sfEK exists for which 

p~ (f) 2 p for all iEI. 
lSf 

Cl0. There exists an integer vzl, a number p>0 such that for all i 1 ,i2EI 

and fEF a state j exists with 

The simultaneous recurrence conditions Cl and C2 were first considered in Hordijk 

(1974). The condition C2 was called the simultaneous Doeblin condition since 

under C2 for any fEF the stochastic matrix P(f) satisfies the so-called Doeblin 

condition from Markov chain theory. The simultaneous recuirence conditions C3 

and C4 were first studied in Federgruen & Tijms (1978). In analogy to Markov 

chain terminology the conditions C3 and C4 are called a simultaneous scrambling 

and quasi-compactness condition respectively. We not that the right side of (2.3) 

is called the ergodic coefficient of the stochastic matrix P(f) and the probability 

distribution {TT.(f),jEI} in C4 is the unique stationary probability distribution 
J 

of P(f). Also note that under C3, C4, CS and CB for any fEF the stochastic matrix 

P(f) is aperiodic. Finall½ the condition Cl0 is a generalization of C4 and allows 

for periodicity. 

We shall now present a number of relationships between the above simultaneous 

recurrence conditions. The discussion is based on Hordijk (1974), Federgruen & 

Tijms (1978) _and Federgruen, Hordijk & Tijms (1978a). 

THEOREM 2 . 1. 

(i) Suppose that for any fEF the stochastic matrix P(f) has a unique statio~ary 

probability distribution {TTj(f),jEI} (say). Then for any jEI the function 

TT.(f) is continuous on F if and only if the collection ~{TT.(f),jEI}] is 
J J 

a tight collection of probability distribution, i.e. for any E>0 there is a 

set K(E) such that 

(2.4) 6 TT.(f) 2 1-E for all fEF. 
jEK( E) J 

(ii) The conditions Cl and C2 are equivalent. Further, condition C2 implies the 
. h d" · ( )*) t&g tness con &t&on 2.4 , 

*) The condition C2 is much stronger than the tightness condition (2.4). It would be 

interesting to know other sufficient conditions for (2.4). It is our conjecture 

that (2.4) is satisfied when a finite sei: K Pxist-s s11f""'h t-h;:,+ "'"'"' 
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THEOREM 2.2. 

(i) If the stochastiq matrix P(f) ~s aperiodic for any fEF3 then condition C2 

implies condition C3. 

(ii) The condition C3 implies condition C4. 

THEOREM 2.3. 

(i) The condition cs implies the conditions C2 and C9. 

(ii) The conditions C-3 3 C4 3 C5 3 C8 and C9 are equivalent. 

THEOREM 2.4. 

(i) Each of the conditions C2 3 C6 and C10 implies condition C7. 

Summarizing the above theorems we have 

THEOREM 2.5. 

(i) The conditions C1 3 C2 3 C6 3 C7 and ClO are equivalent.*) 

(ii) If the stochastic matrix P(f) is aperiodic for any fEF 3 then the conditions 

Cl-ClO are equivalent. 

We now give the proofs of these Theorems. 

Proof of Theorem 2.1. 

(i) Suppose first that for each E>O we can find a finite set K(E) such that 

* (2.4) holds. Now, let {f ,n2l} be any sequence in F such that f ➔f as n➔ro. 
n n 

Choose hEI. We shall now verify that 

To do this, let ah be any limit point of {Tih(fn),n2l}. By the well-known 

diagonalization method, we can choose a subsequence {nk,k2l} of integers 

for which 

*) 

lim TI.(f ) = TIJ. (say) exists for all jEI such that Tih=~· 
k-~ J nk 

It appears from the proof of Theorem 2.S(i) that it is no restriction to 

require in ClO that the states j = j(i1 ,i2 ,f) belong to a finite set. 
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For any fEF we have that {TT.(f)} is the unique probability distribution satisfying 
J 

TT.(f) = 
J 

z: 
iEI 

p .. (f) TT.(f) 
l] l 

for all jEI. 

Taking f=fnk' letting k-+m and using both the continuity of pij(f) and 

Proposition 18 on p. 232 in Royden (1968), we find 

for all jEI. 

Further, using (2.4) we have 

Z: TT.=1 
jEI J 

* Together the above relations and the fact that P(f) has a unique stationary 

probability distribution imply TTj = TTj(f*) for all j. In particular ah=TTh(f*) as 

was to be proved. 

Suppose next that TT.(f) is continuous on F for each jEI. Let now 
J 

{K ,n~1} be any sequence of finite subsets of I such that 
n 

K =>l< for all n~l and lim K =I. 
n+l- n n n-+m 

Define for n=l,2, ... 
' 

a (f) = 
n 

Z: TT. ( f) , fEF. 
jEK J 

n 

Then a (f) is continuous on F for all n~l. Further, we have for any fEF that 
n 

a 1(f)~a (f) for all n~l and lim a (f) = 1. 
n+ n n n-+m 

Now, by Theorem 7.13 in Rudin (1964), it follows that a (f) converges to 1 
n 

uniformly in fEF as n-+m. Hence for each £>0 we can find a finite n such that 

a (f)~l-£ for any f F which verifies (2.4). 
n 

(ii) We shall prove that condition C2 with triple (K,v,p) implies that for some 

finite constant B 
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and that this result implies in its turn that for any s>O a finite set K(s) 

and an integer v(s) exist such that 

I p~.(f) ~ 1-s for all iEI and n~v(s). 
jEK(s) lJ 

The latter inequality has a consequence that condition C2 implies the 

tightness relation (2.4), since it is well-known from Markov chain theory 

(cf. Doob (1953)) that a stochastic matrix P(f) which is unichained and satisfies 

the Doeblin condition has a unique stationary probability distribution 

{TT.(f),jEI} such that 
J 

l. 1 
n 

k lm - E p .. ( f) = TT.(f) for all i,jd. 
n 

k=l 
l] J n-l-00 

with triple (K,v,p) V 
Suppose now that C2 holds. Then, tiK(f) s 1-p for all iEI 

and fEF and so, for all m:?:1, 

m [m/v] 
tiK(f) s (1-p) for all iEI and fEF, 

using the fact that t7K(f) is non-increasing in m~l. Now, by (2.2), we get 

µiK(f) s B for all iEI and fEF for some constant B. From this result on, we 

proceed as follows. Fix O<s<l and choose O<y<l such that (1-y) 2 ~ 1-s. Then 

we can find an integer N~l such that 

(2.5) N 
tiK(f) s y for all iEI and fEF. 

To prove this, suppose to the contrary that for any m~l a state iEI and a fEF 

can be found such that t:K(f)>y. Since this probability is non-increasing in m, 

we have by (2.2) µiK(f)>l+my which gives a contraction by choosing m large enough. 

We next show that there is a finite set A such that 

(2.6) 
m 

E p .. (f) ~ 1-y for all iEK, lsmsN and fEF. 
. A lJ JE 

To do this, fix iEK and lsmsN. In the same way as in the last part of the proof of 

(i), we find that for any y>O a finite set A(y) exists with E. A( )p~.(f):?: 1-y 
JE y l] 

for all fEF. By this result and the finiteness of K, we get (2.6). Now, using 

(2.6)-(2.7) and defining t:K(k,f) as the probability that the first return to 

the set K occurs in state k at the nth transition, we find 
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which completes the proof. 

Proof of Theorem 2.2. 

(i) Suppose first that C2 with triple (K,v,p) holds and that every P(f) is 

aperiodic. We shall then verify condition C3. Since for any fEF the stochastic 

matrix P(f) satisfies the Doe~lin condition, has no two disjoint closed sets and 

is aperiodic, we have ·from Markov chain theory that every P(f) has a unique 

stationary probability distribution br.(f),jEI} (say) such that 
J . 

(2.7) lim p~.(f) = TI.(f) for all i,jEI. 
n-+<» l] ] 

n Since C2 implies r. Kp .. (f) ~ p for all iEI, fEF and n~v, we have 
] E l] 

(2.8) L TI.(f) ~ p for all fEF. 
jEK J 

Define now 

(2.9) Fk = {fEF!Tik(f) ~ l~I} for kEK. 
I I 

where !Kl denotes the number of states in K. Then, by (2.8) 

Using part (ii) of th. 2.1 and the fact that Fis a compact metric space, it 

follows that for any kEK the set Fk is closed and hence compact. For any iEI 

and kEK, define 

By (2.7), n(i,k,f) exists and is finite. Using the fact that Pn(f) is continuous 

on F for each n~l, it is immediately verified that for each iEI and kEK the set 

{fEFkjn(i,k,f)~a} is closed for any real a, i.e. for each iEI and kEK the function 

n(i,k,f) is upper semi-continuous on the compact set Fk. 

Now, by Proposition 10 on p.161 in Royden (1968) we have that for each iEI 

and kEK the function n(i,k,f) assumes a finite maximum on Fk. Hence, using the 

finiteness of K, we can find an integer µ~1 such that 

(2.11) n(i,k,f) ~µfor all iEK, kEK and fEFk. 
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Next define for any kEK 

We now verify that for each kEK the set Sa= {fEFk!m(k,f)~a} is closed for any 

* real a. Fix kEK and an integer a>l. Suppose that f ES for n~l and that f +f as 
n a n 

n~. Then we can find a subsequence {nh,h~l} of integers, and integers r arid t 

with is:c,:c;a-1 and r:c;t:c;r+µ such that p~k(fn ) :,; p/(2IK!) for all h~l. Hence, by 

the fact that p!k(f) is continuous on F, Be find p~k(f*):,; p/(2!KI) and so 

* f ES . We have now proved that for any kEK, the function m(k,f) is upper 
a 

semi-continuous on the compact set Fk. Hence there exists an integer N~l such that 

m(k,f)<N for all kEK and fEFk. 

For any kEK and fEFk, we have by (2.10)-(2.12) 

Hence for any kEK and fEFk, 

Using this result, we now find for any kEK and fEFk, 

~ . [ v+µ+N(f) v+µ+N(f)] > 
L, min p. . ,p. . _ 

jEI il] i2J 

~ . [ v+µ+m(k,f)(f) N-m(k,f)(f) v+µ+m(k,f)(~) N-m(k,f)(r)] ~ 
L, min p. k pk. ,p. k - pk~ -

jd il J i2 ~ 

which verifies C3. 

Proof of Theorem 2.2. 

(ii) The proof of this theorem proceeds along the same lines as that of theorem 1 

in Anthonisse & Tijms (1977). 

Assume C3 holds with the pair (v,p). Fix fEF and AcI. For n=l,2, .. define 

inf. I iE 
n 

L AP .. (f). 
]E i] 
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By induction, it follows from D~:1(f) = I,. Ip.k(f) pknJ.(~) that 
- l] '<E l 

( 2 .13) M s M and m 1 ~ m for all n~l. 
n+l n n+ n 

For any number a, let a+ and a- be defined by a+= max(a,O) and a-=min(a,O). 
+ -Then, a= a +a and for any sequence {a.,jEI} of numbers such that 

+ J -
I. IJa. 1<00 and I. Ia. = 

JE ]' J J 
0 we have I.a. = - I.a .. Further, we note that 

J J J J 
(a-b)+ = a-min(a,b) for any pair of numbers a,b. Fix now iEI and n>v. Then, 

n 
I p .. ( f) 

. Al] 
]E 

n 
I p .(f) = 

. A rJ JE 

v v n-v 
I {p.k(f)-p k(f)} I pk. 

kEI i r jEA J 

= { \) (f) \) (f)}+ I p.k - prk 
kEI l 

s {M -m } 
n-v n-v 

= {M -m }{1- I min[p~k(f), prvk(f)]} s 
n-v n-v kEI l 

s (1-p)(M -m ). n-v n-v 

Since i and r were arbitrarily chosen, it follows that 

M -rn s ( 1-p) {M -m } for all n~v. 
n n n-v n-v 

Hence, since M -m is non-increasing in n~l, 
n n 

(2.14) M -m s (1-p)Ln/vJ for all n~l. 
n n 

( f) = 

Together, (2.11) and (2.12) imply that for some finite non-negative number TI(A) 

lim M = lim m = TI(A). 
n n n-+oo n-+oo 

Further for any n~l, 

(2.15) m s TI(A) s M and m s 
n n n 

n 
I p .. (f) s M 

• A lJ n JE 
for all iEI . 

It now follows from (2.12) and (2.13) that 

n I Ln/vl I I p .. (f) - TI(A) s (1-p) - for all n~l. 
. Al] 
]E 
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Since this relation holds for any A.=_I, it follows that 1r(.) is a probability 

measure on the class of all subsets of I which completes the proof. 

Proof of Theorem 2.3. 

(i) Suppose that condition cs holds. Since for any i,jEI and n~l the function 

p~.(f) is continuous on F, it follows from CS that for any jEI the function 7T.(f) 
l] 

is continuous in fEF. Now, by Theorem 

number 6>0 such that 

(2.16) E 1r.(f) ~ 6 for all fEF. 
jEK J 

2.l(i) we can find a finite set Kand a 

By CS and the finiteness of K, we can find an integer v~l such that 

p~.(f) ~ 1r.(f) - o/(2IKJ) for all iEI, fEF and jEK where !Kl denotes 
l] J 

J 

the number of states in K. Together this inequality and (2.14) imply condition C2. 

Further, we get from (2.14) that for any fEF there is a state sf such that 

1r (f) ~ 6/IKI and sop~ (f) ~ o/(2IKI) for all iEI and fEF. This inequality 
Sf lSf 

verifies condition C9 which completes the proof of part (i). 

(ii) Since C9 implies CB and in its turn CB implies C3 and since C4 implies 

CS, this part follows by using theorem 2.2.(ii) and theorem 2.3(i). 

Proof of Theorem 2.4. 

To prove the theorem we shall use a classical perturbation of the stochastic 

matrices P(f), fEF. Fix any number, with 0<,<1 and let P = (P(f),fEF) be the 

set of stochastic matrices P(f) = (p .. (f)), i,jEI such that for any fEF and 
l] 

i,jEI: r .(f) 
for j t- l 

l] 
p .. = l] 

1 - T + Tp .. ( f) for j = i ll 

Note that, by p .. (f) ~ 1 - , > 0 for all iEI and fEF, the stochastic matrix P(f) ll 
is aperiodic for all fEF. Also note that for any i,jEI the function p .. (f) is 

l] 

continuous in fEF and for any fEF, the stochastic matrix P(f) has no two disjoint 

closed sets. Define for the stochastic matrices P(f) the taboo probabilities 
-n 
tiA(f) and the mean recurrence times wiA(f) as in (2.2) and (2.3). 
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By induction on n, it is straightforward to verify that for any fEF 

(2.17) -n 
t .. (f) = 

l.J 

n 
I (~)(1-,)n-k,kt~.(f) for all n = 0,1, ... and 

k=O l.J 
i,jd with i;ij, 

-0 where t .. (f) 
l.J 

0 = t .. (f) = 1. From the relations (2.3) and (2.17) we get 
l.J 

(2.18) 
µ .. (f) µ .. (f) = _1. ___ 1 __ 

l.J T 
for all i,jEI with i;ij and fEF. 

We note that this relation is intuitively clear by a direct probabilistic 

interpretation. 

Suppose that the condition C2 holds with triple (K,v,p). Then, by 

p .. (f) ~ ,p .. (f) for all i,jEI and fEF, we have 
l.J l.J 

-v 
I p .. ( f) 

. K l.J JE 

\) \) 
~ T L p .. ( f) ~ T p 

. K l.J JE 
for all iEI and fEF . 

Hence, the condition C2 applies to the set P = (P(f),fEF). Moreover we have 

that any stochastic matrix P(f), fEF is aperiodic. Now, by the combination of 

theorem 2.2 and part (ii) of theorem 2.3, it follows that condition C9 applies 

to the set P. Now, by invoking (2.18), it follows that the condition C7 holds 

for the set P = (P(f),fEF) as was to be proved. 

Suppose that condition C6 holds. Then, by invoking again (2.18), we have 

that condition C6 applies to the set P. Hence there is a finite number B such 

that for any fEF there exists a state sf such that 

(2.19) 
(X) 

1 + It~ (f) ~ B for all iEI. 
n=l 1.sf 

F~x now O<y<l. Since for any fEF and iEI the taboo probability t~ (f) is non-
1.sf 

increasing inn, it follows that there is an integer N~l such that (cf. (2.5)) 

( 2. 20) t~ (f) ~ y for all iEI and fEF. 
l.Sf 

Together the inquality (2.20) and the fact that pkk(f) ~ 1-T for all kEI and 

fEF imply 
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This shows that condition CB applies to the set f>. Next by part (ii) of 

theorem 2.3 condition C9 applies to the set r. Since C9 implies C7, it follows 

that condition C7 applies to the set P. Now by invoking again (2.18) we have 

that condition C7 holds for the stochastic matrices P( f), fEF as was to be 

verified. 

Finally suppose that condition C10 holds. Then, by p~.(f) z Tkp~.(f) for 
- l] _ - l] 

all i,jEI, fEF and nzl, we have that ClO applies to the set? with p replaced 

by pTv. Since ClO applies to P, we can find for any i 1 ,i2d and fEF a state j 

and integers t 1t 2sv such that 

\) 

2E2.,_ 
\) 

Then, by p .. (f) z 1-T > 0 for all iEI and fEF, it follows that C3 applies to P. 
ll 

Now, by part (ii) of Theorem 2.3 we have that C9 and consequently C7 apply 

to P. Then, by (2.16), it follows that C7 applies to P which completes the proof. 

Proof of Theorem 2.5. 

(i) Since C7 trivivally implies Cl and C6, we have by Theorem 2.l(ii) and 

Theorem 2.4 that Cl, C2, C6 and C7 are equivalent. Since we have shown in Theorem 

2.4 that C10 implies C7, it remains to verify that C7 implies ClO. Now, by C7 

and (2.2), it follows that for any O<y<l we can find an integer vzl such that 

for any fEF we have t~ sy for all id. This implies ClO. 
lSf 

(ii) This part is an immediate consequence of Theorem 2.2(i), Theorem 2.3(ii) 

and Theorem 2.5(i). 

We conclude this section with a result due to Isaacson and Luecke (1978) 

which roughly states the under the scrambling condition C3 the "subdominant 

eigenvalues" of the stochastic matrices P(f), fEFare uniformly below 1. 

Therefore let X be the Banach space of all bounded complex-valued functions 

on I with !Ix!! = sup. 1 ix(i)I. For any matrix A= (a .. ), i,jd such that A lE l] 
corresponds to a linear operator from X to X, define o(A) and 0 (A) as the 

p 
spectrum and point spectrum of A respectively, i.e. 

and 

o(A) = C \{AE{jA-AI is 1-1 and on to} 

0 (A)= {AEflA-AI is not 1-1} = {AIAx = AX for some x t O}. 
p 
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Let r(A) be the spectral radius of A, i.e. r(A) = sup{!>..J !>..rn(A}}. In case A is a 

stochastic matrix, define 

S(A) = sup{i>..J\>..rn(A), >..;il}. 

It is well-known that in case I is finite, then a(A) = a (A). Moreover, in case A 
p 

is a finite stochastic matrix which has no two disjoint closed sets and is 

aperiodic then the eigenvalue >..=l has multiplicity one and any other eigenvalue of 

A is less than 1 in absolute value so that S(A) represents the subdominant 

eigenvalue of A. 

For any stochastic matrix P 

o( P) = 1 - inf L 
i 1 ,i2d jd 

= ( p .. ) , i , j EI , define 
l] 

i.e. the delta coefficient of Pis one minus the ergodic coefficient of P. If the 

stochastic matrix P has a (unique) stationary probability distribution br.,jEI}; 
J 

then (see the proof of Theorem 3.5 in Isaacson & Luecke (1978)), 

* where P is the stochastic matrix with identical rows given by {1r.,jd}. Moreover, 
J 

by the theorems 3.5 and 3.8 in Isaacson & Luecke (1978) we have the next 

theorem. 

THEOREM 2.6. 

Suppose that C3 holds with triple (v,p). Then 

S(P(f)) = r(P(f)-p*(f)) ~ (1-p)l/v for all fEF. 

It is an open question whether the converse of the theorem holds, that is 

whether C3 holds when any P(f), fEF is strongly ergodic and S(P(f)-P*(f)) is 

is uniformly below 1. 
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3. Optimality results for the average cost criterion 

We first need some notation. For any set AcI, define the random variable 

N(A) 

i.e. N(A) denotes the number of transitions until the first return to the 

set A where N(A) = 00 if X iA for all n~l. Also for any AcI and fEF, define 
n 

the taboo probability 

(3.1) n 
Ap· .. ( f) = 

l] 

Observe that 

i,jEI and n = 1,2, ..... 

00 

( 3. 2) E (oo){N(A)IXo=i} = 1 + E E Ap~.(f). 
f n=l jiA l] 

In addition to assumption 1 of section 1 we now introduce the following 

assumption. 

ASSUMPTION 2 . 

* . (a) There is a finite set K such that for any id the quantities u (i) and 

Y*(~) _r_,• 't h .:. are J 1..-ni e ?.J ere 

(3.3) 
N(K)-1 

sup E (oo){ E 'k!X0=i} = 
fEF f k=0 

* u (i) ;or all iEI 

and 

(3.4) 
N(K)-1 

sup E ( 00 ) { E J c ( Xk , ak ) ! ! XO= i } = 
fEF f k=0 

* . y (i) for all iEI. 

(b) For any fEF., the stochastic matrix P(f) has no t?.Jo disjoint closed sets. 

* . * . (c) For any id., both E. Ip .. (a)u (J) and E. Ip .. (a)y (J) are continuous on A(i). 
] E l] ] E l] 

In words, assumption 2(a) requires the existence of a finite set K such that 

the supremum over all stationary policies of both the expected time ant the 

total expected absolute cost incurred until the first return to the set Kare 

finite for any starting state. To satisfy assumption 2(a) in applications it 
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may be necessary to exclude in certain states those actions which are far 

from being "optimal", e.g. in an M/M/c queueing system with a controllable 

number of operating servers we may consider only policies under which all c 

servers will be operating when the queue size exceeds some large value. In 

case the quantities c(i,a) and T(i,a) are uniformly bounded and the set 

(P(f),fEF) of stochastic matrices satisfies one of the conditions Cl-Cl0 of 

section 2 then assumptions 2(a) and 2(c) hold with bounded functions u* and y* 

Using results from positive dynamic programming, it is readily verified that 

assumption 2(a) is equivalent to the Liapunov condition requiring the existence 

of a finite set Kand a finite non-negative function x(i), iEI such that 

(cf. Federgruen, Hordijk & Tijms (1978b)) 

(3.5) jc(i,a)j + T(i,a) + E p .. (a)x(j) ~ x(i) for all iEI and aEA(i). 
jiK l] · 

By assumption l(c) and 2(a), we have 

( 3. 6) 

Define 

(3.7) 
00 

u*(i) 
~--'--for all iEI and fEF. 

e: 

q .. (f) = E Kp~.(f), id, jEK, 
J.J n=l lJ 

i.e. q .. (f) is the probability that at the first return to the set K the 
l] (oo) 

transition occurs into state j starting from state i and using policy f . 

Observe that, by (3.6), 

(3.8) E q . . (f) = 1 for all iEI. 
• K l.J JE 

For any fEF, define for iEI and jEK the (possibly infinite) quantity 

(3.9) v . . (f) = expected number of returns to the set K until the first 
l] 

transition into state j occurs starting from state i 

d • 1• f(oo) an using po icy . 

We now have the following Theorem, see Federgruen, Hordijk & Tijms (1978b). 



THEOREM 3.1. Suppose that the asswnptions 1-2(a),(b) hold. Then 

(a) For any fEF~ the finite stochastic matrix (qij(f)), i,jEK has no -tu,10 

disjoint closed sets. 

(b} For any iEI and J0 EK~ the probabilitu q •. (f) &S continuous on F. 
V -iJ 

(c) There is a finite nwnber Bauch that for any fEF a state sfEK exists 

for which v. (f)sB for all iEI and 
lSf 

N({sf})-1 

(3.10) E (oo){ Z: t(Xk,ak)IXo=i} s u-!--(i)+B for au id 
f k=0 

and 

N({sf})-1 

(3.11) E (oo){ Z: lc(Xk,ak) ! IXo=i} s y*(i)+B for aU id. 
f k=0 

19 

This Theorem is essential in establishing the optimality result for the 

average cost criterion. To do this, we shall use a standard technique 

developed in Taylor (1965) and Ross (1968). We first analyse a discounted cost 

model and therefore define for any iEI, policy TT and discount factor S>0 

(3.12) 

Furhter, let 

oo -SI:n-1 
= E { I: e k=O 

TT n=0 

(3.13) Vs(i) = inf Vs(i,TT) for iEI. 
TT 

It is not difficult to verify that for any S>0 the quantity v6(i,TT) is 

well-defined for any iEI and policy TT and that, for some constant c 6, 

Moreover, cf. Federgruen, Hordijk & Tijms (1978b) 

(3.15) V S(i) = min {c(i,a) + 
-S-r(i,a) 

I: p .. (a)VS(j)} for all iEI, e 
aEA(i) . I lJ JE 

where for any stationary policy 
( 00) 

fs such that the action f 6(i) minimizes 

right size of ( 3 .15) for all id holds 

(3.16) 'l 0 (1°,f~ 00
)) = V (') f 11 . I µ µ S 1 or a lE . 

the 
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Using Theorem 3.1 and (3.16) it can be shown that for any fixed state SEI 

* * there exists finite constants S >0 and c such that for all 0<S<S 

For any S>0, let fSEF be such that f 8(i) minimizes the right size of (3.15) 

for all id. Now, using (3.17), assumption l(a) and the diagonalization method, 

we can find a sequence { Sk} with S +0 
k 

as k-+oo, a constant g, a function v(i), id 

and an action a(i)EA(i) for any i I such that 

(3.18) lim SkVS (s) = g, lim VS (i)-VS (s) = v(i) and lim fS (i) = a(i) for all iEI. 
k~ k k~ k k k~ k 

Then we obtain by using (3.15) the following Theorem (see Federgruen, Hordijk & 

Tijms (1978b)) 

THEOREH 3.2. Suppose that the asswnptions 1-2 hold. Then there exists a constant 

g and a function v(i), iEI such that 

(3.19) I vc i) I sup _ _.__ _ ___._ __ 

id u*(i)+y*(i) 
< 00 

satisfying the average cost optimality eauation 

(3.20) v(i) = min h(i,a)-gT(i,a) + I: p .. (a)v(j)} for all id. 
aEA(i) jEI l] 

The assumptions 1-2 are in general not enough to guarantee that an average 

cost optimal stationary policy exists as follows from the fact that the assu111ptions 

1-2 are satisfied in the counterexample of Fisher & Ross (1968) in which example 

any average cost optimal policy is non-stationary. In case the condition (1.5) 

holds, then any stationary f(oo) such that the action f(i) minimizes the right 

side of (3.20) for all iEI is (strongly) average cost optimal and has gas its 

average cost for any starting state i. It has been shown in Federgruen, Hordijk & 

Tijms (1978b) that a sufficient condition for (1.5) is given by 

(3.21) -n * * lim P (f)(u +y) = 0 for all fEF 
n-+oo 

with Pn(f) is then-fold matrix product of the substochastic matrix P(f)=(-6 .. (f)), 
- l] 

i,jEI with itself where p .. (f) = p .. (f) for iEI and jiK and p .. (f)=0 for iEI 
l] -i] l] 
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Under the assumptions 1-2 and condition (3.21) we have that for any 

solution {g,v(i),iEI} to (3.21) such that (3.19) holds, the constant g is 

uniquely determined as the minimal average expected cost per unit time. 

Under the additional assumption that for any strongly average cost optimal 

stationary policy the total expected costs incurred until the first return 

to the finite set K is finite for any starting state when the one step costs 

in state i are given by u*(i)+y*(i), the function v(i), iEI is uniquely 

determined uv to an additive constant as can be shown by using the proof of 

Lemma 3 in Hordijk, Schweitzer & Tijms (1975). 
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