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ABSTRACT. This paper surveys optimality results for average cost denumerable
state semi-Markov decision processes with compact metric action sets and
unbounded one-step costs under the assumption that the underlying Markov
decision chains associated with the stationary policies are unichained.

Also an extensive discussion of simultaneous recurrence conditions on a

compact metric set of denumerable stochastic matrices is given.
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1. Introduction

We are concerned with a dynamic system which at decision epochs
beginning with epoch 0 is observed to be in one of the states of a
denumerable state space I and subsequently is controlled by choosing
an action. For any state ieIl, the set A(i) denotes the set of pure
actions available in state i. If at any decision epoch the system is
in state i and action aeA(i) is taken, then, regardless of the history
of the system, the following happens:

(i) an immediate cost c(i,a) is incurred
(ii) the time until the next decision epoch and the state at the next
decision epoch are random with joint probability distribution

function Q(.,.li,a).

For any iel and ael, let
pij(a) = Q(x,j|i,a) for jeI and t(i,a) = T tQ(dt,ili,a).
Jel O
i.e. pij(a) denotes the probability that the next state will be j and
t(i,a) denotes the unconditional mean time until the next decision

epoch when action a is taken in state i. Observe that I. (a) =1

jeIpij
for alle i,a. We make the following assumption.

ASSUMPTION 1.

(a) For any iel, the set A(i) is a compact metric set.
(b) For any iel, both c(i,a), pij(a) for any jel and t(i,a) are
continuous on A(i).

(c) There is a number e>0 such that t(i,a) = e for all iel and aeA(i).

We now introduce some familiar notions. For n = 0,1,.., denote by
Xn and a the state and the action at the nth decision epoch (the O-th
decision epoch is at epoch 0). A policy m for controlling the system
is any measurable rule which for each n specifies. which action to
choose at the nth decision epoch given the current state Xn and the
4

sequence (Xo,a l) of past states and actions where the

0°"" n-1°3n-
actions chosen may be randomised. A policy 7 is called memoryless
when the actions chosen are independent of the history of the system

except for the present state.



Define R as the class of all stochastic matrices P = (pij)° i,jeI such

that for any ieI the elements cf the ith row of P can be represented by

= Jr . ® . ]
(1.1) Pij e plj(a) ﬂl(da) for all jeI

for some probability distribution Wi{.} on A(i). Then any memoryless
policy m can be represented by some sequence (Pl’PQ"') in R such that
the ith row of Pn gives the probability distribution of the state at

the nth decision epoéh when the current state at the (n-1)st decision
epoch is i and policy 7 is used. Define F = XieIA(i)' Observe that,
under assumption 1(a), F is a compact metric set in the product topology.
For any feF, let P(f) be the stochastic matrix whose (i,j)th element is
pij(f(i)), i,jeI and for n = 1,2,... denote by the stochastic matrix
PM(E) = (pgj(f)) the n-fold matrix product of P(f) with itself. A

memoryless policy m = (Pl’P ...) is called randomized stationary when

s
P = PeR for all n>1 and iszcalled stationary when in addition P = P(£f)

for some feF. A stationary policy which prescribes to take the single action
f(i) € A(i) whenever the system is in state i will be denoted by f(w).

Observe that under any randomized stationary policy with associated stochastic
matrix PeR the process {Xn,nZO} is a Markov chain with one-step transition
matrix P.

For n = 0,1,..., denote by T the time between the nth and (n+l)st
decision epoch. A policy n* is said to be (strongly) average cost optimal
when 1lim supn+w¢n(i,ﬂ*) is less than or equal to lim supn+w¢n(i,ﬂ)

(1im infn+w¢n(i,ﬂ)) for any iel and policy w where ¢n(i,w) is defined by

E {2 _ge(X,a )X, = i}

(1.2) ¢n(i,ﬂ) =

n
k=0
E_{I0_

i
N{ZE Tk!XO = i}

with E1T is the expectation under policy w. We here assume that this

quantity is well-defined for any iel and policy 7 as is the case under the
assumptions to be given in section 3.

For the case where A(i) is finite for all i and the quantities c(i,a) and
1(i,a) are uniformly bounded counterexamples can be given showing that an
average cost optimal policy may not exist or no randomized stationary policy
may exist whose average cost is within € of the minimal average cost,
cf. Ross (1970,1971). A counterexample in Fisher & Ross (1968) shows that
an average cost optimal policy may exist but any average cost optimal policy
is non-stationary. In this counterexample it is reémarkable that for any

randomized stationary policy the associated stochastic matrix PeR is



*)
irreducible and positive recurrent °. This indicates that strong recurrency

conditions will be required to establish optimality results for the average cost
criterion.

In general we can only say that for fixed initial state we may restrict ourselves
to the class of memoryless policies. More precisely, by a slight modification of
the proof of Theorem 2 in Derman & Strauch (1966), we have the well-known result
that for any fixed ioel and policy T, @ memoryless policy m,, can be found such

M
that for any keI, Borel set A<A(k) and n20

(1.3) Prﬂm{Xn=k, an€A|XO=1O} = PrﬂO{Xn=k, aneAlxozlo}.

We further state as general result that if a finite solution {g,v(i)|ieI}

exists to the average cost optimality equation

(1.4)  v(i) = min {c(i,a) - gr(i,a) + 2 p..(a)v(j)} for all iel
aeA(i)  jer M

such that

(1.5) 1lim % Eﬂ{|v(Xn)l|XO=i} = 0 for any iel and policy 7

n->e

()

then any stationary policy f such that the pure action f(i) minimizes the
right side of (1.4) for all iel is strongly average cost optimal.

Weshall focus our attention on the existence of a finite solution to the
average cost optimality equation and the existence of a strongly average cost
optimal policy. In this paper we shall present for the unichained case a rather
complete theory for the denumerable state semi-Markov model with unbounded one-step
expected costs and the average costs as optimality criterion. For the unichained

case this theory encompasses the finite state space model and the special cases

of the denumerable state space model studied so far in the literature.

*) cf. also Fisher (1968) for the deep result that inf FeF

provided that A(i) is finite for all i and for any feF the stochastic matrix P(f)

ﬂj(f) > 0 for all jeI

is irreducible and positive recurrent where {vj(f),jel} is the unique stationary
probability distribution of P(f). In case transient states are allowed and
uio(f) < o for all ieI and feF for some common recurrent state 0 where uio(f)
denotes the mean number of transitions until the first return starting from i
)

FTro(f) > 0.

and using f(oo , 1t is an open question whether inf

fe



This literature was initiated by the papers of Derman (1963), Taylor (1965) and
Ross (1968) under the very restrictive assumption of uniformly bounded functions
c(i,a) and 1(i,a) and under the assumption of a common positive recurrent state
for the stationary policies. This work was considerably extended in Hordijk
(1974,1976) and Federguen & Tijms (1978) and in a recent paper of Federgruen,
Hordijk and Tijms (1978b) a rather complete theory for the unichained case has
been established. Extensions of this theory for the unichained case to the
important case of '"communicating" Markov decision chains (cf. Bather (1973) and
Hordijk (1974)) will probably involve the other assumptions given in section 3
below but will require quite different proof techniques as possibly linear
programming or fixed point methods.

To establish this results for the average cost criterion, a thorough analysis
of recurrence properties of the collection of underlying stochastic matrices
P(f), feF will be essential. This analysis will be presented in detail in section 2.
In the final section 3 we outline how to derive the optimality results for the

average cost criterion.

. Recurrence conditions for a collection of denumerable stochastic matrices.

We consider a set P = (P(f),feF) of stochastic matrices P(f) =
(pij(f)), i,jeI having a denumerable state space I where the parameter set F is

a compact metric space. Note that, for any feF, pij(f) > 0 and zjeIpij(f) = 1.

Throughout this section we make the following assumption.

Assumption (a) For any i,jel, the function pij(f) 18 continuous on the compact
metric set F.
(b) For any feF, the stochastic matrix P(£f) has no two disjoint

closed sets.

For any feF, denote by the stochastic matrix P(£) = (p?j(f),i,jel the
n-fold matrix product of P(f) with itself for n = 1,2,... . Note that for any

eI, AcI and feF,

i,jeI and n>1 the function p?j(f) is continuous on F. For any iy

define the taboo probability
(2.1) tIi1 A() = X n. 5 () ... D, (£), n=1,2,.
0 il,..,inEI\A 071 n-1"n

i.e. tgA(f) is the probability that under the stochastic matrix P(f) the

first return to the set A takes more than n transitions starting from state i.



For any iel, AcI and feF, define the (possibly infinite) mean recurrence time

o

n
n=1 tiA(f).

(2.2) uiA(f) =1+ 7z
. n _ _ _ope .
We write tiA(f) = tij(f) and uiA(f) = uij(f) for A = {j}. Consider now the

following simultaneous recurrence conditions on the set P = (P(f),feF).

Cl. There is a finite set K and a finite number B such that
uiK(f) < B for all iel and feF.
C2. There is a finite set K, an integer vz1 and a number p>0 such that

T pY.(f) > o forall iel and feF.
jeK +J

C3. There is an integer vzl and a number p>0 such that for all feF

. . v v o
(2.3) inf { & mlnrpi j(f),pi j(f)]} =z p

il,i el Jjel 1

5 2

C4. There is an integer vzl and a number p>0 such that for any feF a probability
distribution {ﬂj(f),jel} (say) exists for which

| = poL(£) - % m.(f)| < (l—p)Ln/?J for all iel, Acl
jeA 3 jeh

] and nz1.

where |x| denotes the largest integer less than or equal to x.

C5. For any feF there is a probability distribution {ﬂj(f),jel} such that
p?j(f) +~ﬂj(f) uniformly in (1,f)eIxF as n»>e for any jel.

C6. There 78 a finite number B such that for any feF a state s_ exists for which

b

uisf(f) < B for all iel.

C7. There is a finite set K and a finite number B such that for any feT a state

s €K exists for which

£

u., (f) < B for all iel.
isg

C8. There s an integer vzl and a number p>0 such that for any feF a state Se
exists for which

pY (£f) 2 p for all iel.
isg



C9. There 1s a finite set K, an integer vzl and a number p>0 such that for

any feF a state s_eK exists for which

f
p? (f) = p for all iel.
is
f
C10. There exists an integer vzl, a number p>0 such that for all il,iQEI
and feF a state j exists with

. v k
.(£), Zk:lpi

min {Z;_ pk
Bt 2

1P; j(f)} >p.

The simultaneous recurrence conditions Cl and C2 were first considered in Hordijk
(1974). The condition C2 was called the simultaneous Doeblin condition since
under C2 for any feF the stochastic matrix P(f) satisfies the so-called Doeblin
condition from Markov chain theory. The simultaneous recurrence conditions C3
and CY were first studied in Federgruen & Tijms (1978). In analogy to Markov
chain terminology the conditions C3 and C4 are called a simultaneous scrambling
and quasi-compactness condition respectively. We not that the right side of (2.3)
is called the ergodic coefficient of the stochastic matrix P(f) and the probability
distribution {ﬂj(f),jel} in C4 is the unique stationary probability distribution
of P(f). Also note that under C3, C4, C5 and C8 for any feF the stochastic matrix
P(f) is aperiodic. Finally, the condition C10 is a generalization of Cl4 and allows
for periodicity.

We shall now present a number of relationships between the above simultaneous
recurrence conditions. The discussion is based on Hordijk (1974), Federgruen &

Tijms (1978) and Federgruen, Hordijk & Tijms (1978a).

THEOREM 2.1.

(1) Suppose that for any feF the stochastic matrix P(f) has a unique stationary
probability distribution {nj(f),jel} (say). Then for any jel the function
nj(f) 18 continuous on F Zf and only if the collection [{ﬂj(f),jsl}] 18
a tight collection of probability distribution, i.e. for any €>0 there is a

set K(e) such that

(2.4) r  7m.(f) 2 1-e for all feF.
jeK(e)

(ii) The conditions Cl and C2 are equivalent. Further, condition C2 implies the

tightness condition (2.4)*)

*)

interesting to know other sufficient conditions for (2.4). It is our conjecture

that (2.4) is satisfied when a finite set K exists snch that <inm w (FY ¢ o

The condition C2 is much stronger than the tightness condition (2.4). It would be



THEOREM 2.2.

(i) If the stochastic matrix P(f) is aperiodic for any feF, then condition C2
implies condition C3.

(ii) The condition C3 implies condition Ch.

THEOREM 2.3.
(i) The condition C5 implies the conditions C2 and C9.
(ii) The conditions C3, Cu4, C5, C8 and C9 are equivalent.

THEOREM 2.4.
(i) Each of the conditions C2, C6 and C10 implies condition C7.

Summarizing the above theorems we have
THEOREM 2.5.
)
(i) The conditions Cl1, C2, C6, C7 and Cl0 are equiualent.*’
(ii) IF the stochastic matrix P(f) is aperiodic for any feF, then the conditions
C1-C10 are equivalent.

We now give the proofs of these Theorems.

Proof of Theorem 2.1.

(1) Suppose first that for each €>0 we can find a finite set K(e) such that
(2.4) holds. Now, let {fn,nZl} be any sequence in F such that fn+f* as noe,

Choose heI. We shall now verify that

. _ *
lim ﬂh(fn) = ﬂh(f ).
n—>o
To do this, let oy be any limit point of {ﬂh(fn),nZl}. By the well-known
diagonalization method, we can choose a subsequence {nk,kZl} of integers

for which

ii: nj(fnk) = s (say) exists for all jeI such that ™ o .

)

It appears from the proof of Theorem 2.5(i) that it is no restriction to

require in Cl1l0 that the states j = J(i f) belong to a finite set.

19i23



For any feF we have that {ﬂj(f)} is the unique probability distribution satisfying

m.(f) = © p..(f) m,(f) for all jel.
] jer I *

Taking fzfn , letting k- and using both the continuity of pij(f) and
k
Proposition 18 on p. 232 in Royden (1968), we find

*
m. = I p..(f)m. for all jeIl.
J ier 3 *

Further, using (2.4) we have

L m.=1
jel
Together the above relations and the fact that P(£*) has a unique stationary

=ﬂh(f*) as

probability distribution imply ﬂj = ﬁj(f*) for all j. In particular o

was to be proved.
Suppose next that nj(f) is continuous on F for each jeI. Let now

{Kn,nzl} be any sequence of finite subsets of I such that

K X for all n2l1 and lim Kn:I.

D
n+l— n
n->o

Define for n=1,2,...
a (f) = z w.(f), feF.
n oK
I€%
Then an(f) is continuous on F for all n2l. Further, we have for any feF that
a_ .(f)za (f) for all nzl and lim a (f) = 1.
n+l n e D

Now, by Theorem 7.13 in Rudin (1964), it follows that an(f) converges to 1
uniformly in feF as n»«. Hence for each €>0 we can find a finite n such that

an(f)Zl—s for any f F which verifies (2.4).

(ii) We shall prove that condition C2 with triple (K,v,p) implies that for some

finite constant B

uiK(f) < B for all iel and feF



and that this result implies in its turn that for any >0 a finite set K(e)

and an integer v(e) exist such that

$  p..(f) > 1-e for all ieI and n>v(e).
. ij
jeK(e)
The latter inequality has a consequence that condition C2 implies the
tightness relation (2.4), since it is well-known from Markov chain theory
(cf. Doob (1953)) that a stochastic matrix P(f) which is unichained and satisfies
the Doeblin condition has a unique stationary probability distribution

{ﬂj(f),jeI} such that

n
lim-i X
n —

B.(f) = 7.(f) for all i,jel.
P’J J
n>e k -

1
Suppose now that C2 with triple (K,v,p) holds. Then, tiK(f) < 1-p for all iel
and feF and so, for all m>1,

t?K(f) < (1-p)t™Ve0r 211 ieT and fer,

using the fact that t?K(f) is non-increasing in m2l. Now, by (2.2), we get
uiK(f) < B for all ieI and feF for some constant B. From this result on, we
proceed as follows. Fix 0O<e<l and choose 0<y<l such that (l—y)2 > 1-e. Then

we can find an integer N21 such that
N .
(2.5) tiK(f) < v for all iel and fef.
To prove this, suppose to the contrary that for any m2l1 a state ieI and a feF
can be found such that t?K(f)>y. Since this probability is non-increasing in m,
we have by (2.2) uiK(f)>l+my which gives a contraction by choosing m large enough.

We next show that there is a finite set A such that

(2.6) I p?j(f) > 1-y for all ieK, 1<m<N and feF.

jeA
To do this, fix ieK and 1<m<N. In the same way as in the last part of the proof of
(1), we find that for any y>0 a finite set A(y) exists with ZjeA(y)pEj(f) > 1-v

for all feF. By this result and the finiteness of K, weget (2.6). Now, using
(2.6)-(2.7) and defining t?K(k,f) as the probability that the first return to

the set K occurs in state k at the nth transition, we find



10

N
sy s 3 3 R (k) zopitTh
i K ‘e A kj

. . (f) = (1—Y)(1—tIfIK(f))2 (l—y)2 > 1-¢
jea * © n=1 keK ot ‘

which completes the proof.

Proof of Theorem 2.2.

(i) Suppose first that C2 with triple (K,v,p) holds and that every P(f) is
aperiodic. We shall then verify condition C3. Since for any feF the stochastic
matrix P(f) satisfies the Doeblin condition, has no two disjoint closed sets and
is aperiodic, we have from Markov chain theory that every P(f) has a unique

stationary probability distribution {nj(f),jel} (say) such that

(2.7)  1lim p?j(f) = wj(f) for all i,jel.

n->«

Since C2 implies ZjeKP?j(f) > p for all ieI, feF and n2v, we have

(2.8) T m.(f) > p for all feF.
jeK ]

Define now

(2.8) F_ = {feF|m (£) = b1} for keK,

where |K| denotes the number of states in K. Then, by (2.8)

Using part (ii) of th. 2.1 and the fact that F is a compact metric space, it
follows that for any keK the set Fk is closed and hence compact. For any iel

and keK, define
' . . n p
(2.10) n(i,k,f) = mln{nlepik(f) > ET?TJ for feFk.

By (2.7), n(i,k,f) exists and is finite. Using the fact that P'(£) is continuous
on F for each n21, it is immediately verified that for each ieI and keK the set
{feFk|n(i,k,f)2a} is closed for any real o, i.e. for each iel and keK the function

n(i,k,f) is upper semi-continuous on the compact set Fk.
Now, by Proposition 10 on p.161 in Royden (1968) we have that for each iel

and keK the function n(i,k,f) assumes a finite maximum on F, . Hence, using the

e
finiteness of K, we can find an integer p21l such that

(2.11) n(i,k,f) < u for all ieK, keK and fery .
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Next define for any kekK

(2.12) m(k,f) = min{nZl!pEk(f) > for all n<m<n+,} for feF

p
2Kl k*
We now verify that for each keK the set Su = {feFklm(k,f)Za} is closed for any
real o. Fix keK and an integer a>1. Suppose that fnesa for n21 and that fn+f* as
n>», Then we can find a subsequence {nh,h>l} of integers, and integers r and t
with 1<r<o-1 and r<t<r+y such that Pkk(F ) < p/(Q[K’) for all h21. Hence, by
the fact that pkk(f) is continuous on F, ge find pkk(f ) < p/(2|K|) and so
f* € Sa' We hdve now proved that for any keK the function m(k,f) is upper

semi-continuous on the compact set Fk. Hence there exists an integer N21 such that

m(k,f)<N for all keK and feF .

For any keK and feFk, we have by (2.10)-(2.12)

£)+u-n(i 2
G E) (2)5p (15105 () nUG ORI (o) 5 07 eor a1 sex.
41K]|
Hence for any keK and feFk,
pz;u+m(k j':)(f) p) pz.(f)pH;m(k’f)(f) > for all iel.
jek T |K|2
Using this result, we now find for any keK and feFk,
r minlp) (e), z+“+N(f)]
jEI +1J 27
£ minlp v+p+m(k, f)(f) N m(k f)(f) v+u+m(k f)( )pN -m(k f)( £)7 >
Pi x ik ki
jel 1 o
p3 N-m(k,f) p3
> 5 Z k (£) = ] for all il’iQEI’
4[x| ! 4|

which verifies C3.

Proof of Theorem 2.2.

(ii) The proof of this theorem proceeds along the same lines as that of theorem 1
in Anthonisse & Tijms (1977).
Assume C3 holds with the pair (v,p). Fix feF and AcI. For n=1,2,.. define

. n.
= = f
Mo Fsup. g J€Apl](f) and m 1nfi€I ZjeApij(’)'
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By induction, it follows from pigl(f) =3 (£) pEj(f) that

kelpik

\/ < > >
(2.13) Mn+l < Mn and moq oz for all n>1.

For any number a, let a’ and a~ be defined by at = max(a,0) and a =min(a,0).
Then, a = a++a- and for any sequence {a.,jeI} of numbers such that
z. Iaj[<w and . .a. = 0 we have Zﬁag = - Zjag. Further, we note that

Jel 1173
(a-b)T = a-min(a,b) for any pair of numbers a,b. Fix now ieIl and n>v. Then,

)

n n Vv Vv n-v
2 p..(f) - zp .(f) = I A{p, (£)-p,(H)} T p . (£f) =
jeA * jea ¥ ker K rk 5en 3
Vv AY + n-v Y Vv - n-v
= {p, (£) - p (D)} zZp . (£f)+ z {p. . (f)-p ()} I p, . (£)
kel ik rk jeA k3 kel ik rk jeA k3
v v + _
< {Mn_v—mn_v} z {pik(f) - prk(f)} =
kel
= {1 -m_ H1- T minlpy, (£), p(£)]} <
n-v n-v ik 77 Frk T -
kel
<

(1-p)(M__ -m _ ).

Since 1 and r were arbitrarily chosen, it follows that

M-m < (1-p) {M -m__} for all n2v.
n n n-v n-v

Hence, since Mn—mn is non-increasing in n21,

Ln/v]

(2.14) Mn—mn < (1-p) = for all n>1.

Together, (2.11) and (2.12) imply that for some finite non-negative number m(A)

1im M = 1lim m_ = 7w(A).

oo D e D
Further for any n21,
(2.15) m_ < 7m(A) <M and m_ < I p?.(f) < M for all iel.

n n n - .0 Fij n
JjeA

It now follows from (2.12) and (2.13) that

Ln/v]

| ¢ P?j(f) - m(A)| < (1-p) for all nx1.

jeA
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Since this relation holds for any AcI, it follows that w(.) is a probability

measure on the class of all subsets of I which completes the proof.

Proof of Theorem 2.3.

(i) Suppose that condition C5 holds. Since for any i,jel and n=1 the function
p?j(f) is continuous on F, it follows from C5 that for any jel the function ﬂj(f)
is continuous in feF. Now, by Theorem 2.1(i) we can find a finite set K and a

number 6>0 such that

(2.16) © w.(f) =2 8§ for all feF.
jeK

By C5 and the finiteness of K, we can find an integer vzl such that
pzj(f) > ﬂj(f) - §/(2|K|) for all ieI, feF and jeK where |K| denotes
the number of states in K. Together this inequality and (2.14) imply condition C2.
Further, we get from (2.14) that for any feF there is a state Sg such that
L (f) 2 8/|K| and so pzs (£f) = 6/(2|K|) for all ieI and feF. This inequality

£ f
verifies condition C9 which completes the proof of part (i).
(ii) Since C9 implies C8 and in its turn C8 implies C3 and since C4 implies

C5, this part follows by using theorem 2.2.(ii) and theorem 2.3(i).

Proof of Theorem 2.4.

To prove the theorem we shall use a classical perturbation of the stochastic
matrices P(f), feF. Fix any number T with 0<t<l and let P = (P(£),feF) be the
set of stochastic matrices P(f) = (iij(f)), i,jel such that for any feF and

i,jel:
Tpij(f) for § # i

i]
1-1+ Tpii(f) for j = i

Note that, by iii(f) >1 -1 >0 for all iel and feF, the stochastic matrix P(f)
is aperiodic for all feF. Also note that for any i,jeI the function pij(f) is
continuous in feF and for any feF, the stochastic matrix P(f) has no two disjoint
closed sets. Define for the stochastic matrices P(f) the taboo probabilities

%?A(f) and the mean recurrence times ﬁiA(f) as in (2.2) and (2.3).
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By induction on n, it is straightforward to verify that for any feF

n
(2.17) E?j(f) = 3 (]Iz)(l-T)n—kat];j(f) for all n = 0,1,... and

k=0 i,5el with i#3,

where %gj(f) = tgj(f) = 1. From the relations (2.3) and (2.17) we get

_ u..(£f)
(2.18)  ug4(f) = —Eiﬁ-- for all i,jel with i#j and feF.

We note that this relation is intuitively clear by a direct probabilistic
interpretation.

Suppose that the condition C2 holds with triple (XK,v,p). Then, by
ﬁij(f) > Tpij(f) for all i,jel and feF, we have

z 5?.(f) > 1’ 3 p..(f) = 1% for all iel and feF.
jeK ] jeK +J
Hence, the condition C2 applies to the set P = (P(f),feF). Moreover we have
that any stochastic matrix §(f), feF is aperiodic. Now, by the combination of
theorem 2.2 and part (ii) of theorem 2.3, it follows that condition C9 applies
to the set F. Now, by invoking (2.18), it follows that the condition C7 holds
for the set P = (P(f),feF) as was to be proved.

Suppose that condition C6 holds. Then, by invoking again (2.18), we have
that condition C6 applies to the set P. Hence there is a finite number B such

that for any feF there exists a state Sg such that

oo

(2.19) . (f) = 1+ I t._ (f) <B for all iel.
is _.is

£ n=1 £
Fix now 0<y<l. Since for any feF and ieI the taboo probability %28 (f) is non-
increasing in n, it follows that there is an integer N>1 such that (cf. (2.5))
(2.20) T, (£) <y for all ieT and feF.

£
- Together the inquality (2.20) and the fact that ﬁkk(f) > 1-t for all keI and
feF imply

5?8 (£) = (1-0)V 1(1-y) for all ieI and feF.

£
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This shows that condition C8 applies to the set P. Next by part (ii) of
theorem 2.3 condition C9 applies to the set P. Since C9 implies C7, it follows
that condition C7 applies to the set P. Now by invoking again (2.18) we have
that condition C7 holds for the stochastic matrices P(f), feF as was to be

verified.

k

Finally suppose that condition C10 holds. Then, by iij(f) > T P?j(f) for

all i,jeI, feF and n2l1, we have that C10 applies to the set F with p replaced

by pt”. Since C10 applies to P, we can find for any i ,i.eI and feF a state j

1°72

and integers Qlﬂzgv such that
L Y L, v
p.l.(f) > 2L and p.oL(f) = £L.
1,3 v 1,3 v

Then, by ﬁii(f) > 1-t > 0 for all iel and feF, it follows that C3 applies to P.
Now, by part (ii) of Theorem 2.3 we have that C9 and consequently C7 apply
to P. Then, by (2.16), it follows that C7 applies to P which completes the proof.

Proof of Theorem 2.5.

(i) Since C7 trivivally implies Cl and C6, we have by Theorem 2.1(ii) and
Theorem 2.4 that Cl, C2, C6 and C7 are equivalent. Since we have shown in Theorem
2.4 that C10 implies C7, it remains to verify that C7 implies C10. Now, by C7

and (2.2), it follows that for any O<y<l we can find an integer v=1 such that

for any feF we have t?s <y for all ieI. This implies C10.
b
(ii) This part is an immediate consequence of Theorem 2.2(i), Theorem 2.3(ii)

and Theorem 2.5(1).

We conclude this section with a result due to Isaacson and Luecke (1978)
which roughly states the under the scrambling condition C3 the '"subdominant
eigenvalues'" of the stochastic matrices P(f), feFare uniformly below 1.
Therefore let X be the Banach space of all bounded complex-valued functions
on I with ||x]|| = SuPieIIX(i)l' For any matrix A = (aij)’ i,jeI such that A
corresponds to a linear operator from X to X, define o(A) and cp(A) as the

spectrum and point spectrum of A respectively, i.e.

o(A) = C \{Ae@[A—AI is 1-1 and on to}
and

OP(A) = {xe€]A-AT is not 1-1} = {A]|Ax = Ax for some x # O}.
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Let r(A) be the spectral radius of A, i.e. r(A) = sup{|r||xec(A)}. In case A is a

stochastic matrix, define
B(A) = sup{|Ar||Xec(A), A#£1}.

It is well-known that in case I is finite, then o(A) = GP(A). Moreover, in case A
is a finite stochastic matrix which has no two disjoint closed sets and is
aperiodic then the eigenvalue A=1 has multiplicity one and any other eigenvalue of
A is less than 1 in absolute value so that B(A) represents the subdominant
eigenvalue of A.

For any stochastic matrix P = (pij)’ i,jeI, define

§(P) = 1 - inf £ min(p., .,p. ),
.. . i,3°%1i.3
11,1261 Jel 1 2
i.e. the delta coefficient of P is one minus the ergodic coefficient of P. If the
stochastic matrix P has a (unique) stationary probability distribution {ﬂj,jeI};
then (see the proof of Theorem 3.5 in Isaacson & Luecke (1978)),

p(P-P*) = inf [6(P™)IY™ = 1im ra(Pn)]l/n,

nx1 n->©
where P* is the stochastic matrix with identical rows given by {ﬂj,jel}. Moreover,
by the theorems 3.5 and 3.8 in Isaacson & Luecke (1978) we have the next
theorem.
THEOREM 2.6.
Suppose that C3 holds with triple (v,p). Then

B(P(£)) = r(P(£)-P*(£)) < (1-p)L/V

for all feF.
Tt is an open question whether the converse of the theorem holds, that is
whether C3 holds when any P(f), feF is strongly ergodic and B(P(f)—P*(f)) is

is uniformly below 1.
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3. Optimality results for the average cost criterion

We first need some notation. For any set AcI, define the random variable
N(A) = inf {n21[X _eA},

i.e. N(A) denotes the number of transitions until the first return to the
set A where N(A) = = if XnéA for all nzl. Also for any Acl and feF, define
the taboo probability

(3.1) (f) = Pr

. {Xn:j’ X, ¢A for I<ks<n-1[X =i},

n
APi5 ()

i,jel and n = 1,2,....

Observe that

{(N(A)|X =i} =1+ L I ,po.(£).
0 n=1 35¢A A¥i

(3.2) E

£()

In addition to assumption 1 of section 1 we now introduce the following

assumption.

ASSUMPTION 2.

(a) There is a finite set K such that for any iel the quantities u (1) and

* . .
y (i) are finite where

N(K)-1 *
(3.3) swpE { = Tk!XO=i} = u (i) for all iel
feF £ k=0 )
and
N(K)-lI ’ .
(3.4) sw E _{ I J|e(X ,a)|lX =i} =y (i) for all iel.
feF f( ) k=0 k2 k 0

(b) For any feF, the stochastic matrix P(f) has no two disjoint closed sets.

(c) For any iel, both Zj j(a)u*(j) and Zj€Ipij(a)y*(j) are continuous on A(i).

eIPi
In words, assumption 2(a) requires the existence of a finite set K such that
the supremum over all stationary policies of both the expected time ant the

total expected absolute cost incurred until the first return to the set K are

finite for any starting state. To satisfy assumption 2(a) in applications it
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may be necessary to exclude in certain states those actions which are far

from being "optimal', e.g. in an M/M/c queueing system with a controllable
number of operating servers we may consider only policies under which all c
servers will be operating when the queue size exceeds some large value. In
case the quantities c(i,a) and t(i,a) are uniformly bounded and the set
(P(f),feF) of stochastic matrices satisfies one of the conditions C1-Cl1l0 of
section 2 then assumptions 2(a) and 2(c) hold with bounded functions u* and y*.
Using results from positive dynamic programming, it is readily verified that
assumption 2(a) is equivalent to the Liapunov condition requiring the existence
of a finite set K and a finite non-negative function x(i), ieI such that

(cf. Federgruen, Hordijk & Tijms (1978b))
(3.5) |e(i,a)| + 1(i,a) + = pij(a)x(j) < x(i) for all iel and aeA(i).
J£K ‘
By assumption 1(c) and 2(a), we have

(3.6) E

*, . :
{N(K)|X02i} S-E—éil for all iel and feF.
£=)

(=)

Define

8

- n . .
(3.7) qij(f) = n§l Kpij(f)a iel, jeK,

i.e. qij(f) is the probability that at the first return to the set K the
()

transition occurs into state j starting from state i and using policy f

Observe that, by (3.6),

(3.8) % q..(f) = 1 for all iel.
R iy
JekK

For any feF, define for ieI and jeK the (possibly infinite) quantity

(3.9) vij(f) = expected number of returns to the set K until the first

transition into state j occurs starting from state i

(=)

and using policy f

We now have the following Theorem, see Federgruen, Hordijk & Tijms (1978b).
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THEOREM 3.1. Suppose that the assumptions 1-2(a),(b) hold. Then

(a) For any feF, the finite stochastic matrix (qij(f)), i,jeK has no two
disjoint closed sets.

(b) For any iel and jeK, the probability qij(f) 18 continuous on F.

(c) There is a finite number B auch that for any feF a state s €K exists
for which Ve (£)<B for all iel and

£
N({sf})—l
(3.10) E y{ % (X, 5a,) |, 71 < u(i)+B for all iel
£ k=0
and
N({Sf})—l
(3.11) Ef(m){ kio le(X 5a ) [[X=1) < v (i)+B for all iel.

This Theorem is essential in establishing the optimality result for the
average cost criterion. To do this, we shall use a standard technique
developed in Taylor (1965) and Ross (1968). We first analyse a discounted cost
model and therefore define for any iel, policy m and discount factor B>0

o —BZE:é (X
(3.12) vV (i,m) =E { L e -
B T
n=0

»a, )
Kk c(X ,a )Ix =1i}.
n"n 0

Furhter, let

(3.13) Vv _(i) = inf V_(i,m) for iel.
B - B

It is not difficult to verify that for any B>0 the quantity VB(i,ﬂ) is

well-defined for any ieI and policy w and that, for some constant c

g

(3.14) [Vp()] < cgy"(3) for all iel.

Moreover, cf. Federgruen, Hordijk & Tijms (1978b)

(3.15) VB(i) = min . {c(i,a) + e—BT(i’a) R pij(a)VB(j)} for all ieI,
aeA(i) jel

()

where for any stationary policy fB such that the action fB(i) minimizes the

right size of (3.15) for all iel holds

(=)

(3.16) VB(l,fB

) = VB(i) for all ielI.
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Using Theorem 3.1 and (3.16) it can be shown that for any fixed state sel

there exists finite constants 6*>0 and c¢ such that for all O<B<B*
(8.17) [BVg(s)| < c and |V (i)-Vy(s)] < c(u*(i)+y"(1)) for all iel.

For any B8>0, let f_eF be such that fB(i) minimizes the right size of (3.15)

B
for all ieIl. Now, using (3.17), assumption 1(a) and the diagonalization method,
we can find a sequence {Bk} with B, >0 as k»~, a constant g, a function v(i), iel

and an action a(i)eA(i) for any i I such that

(3.18) 1im BkVB (s) = g, 1lim VB (i)—VB (s) = v(i) and 1lim fB (i) = a(i) for all ieI.
koo k ko k k koo k

Then we obtain by using (3.15) the following Theorem (see Federgruen, Hordijk &

Tijms (1978b))

THEOREM 3.2. Suppose that the assumptions 1-2 hold. Then there exists a constant
g and a function v(i), iel such that

(3.19) sup ———LZL;)J———— < w

iel u(i)+y (1)

satisfying the average cost optimality eaquation

(3.20) v(i) = min {t(i,a)-gt(i,a) + I p..(a)v(j)} for all iel.
aeA(i) jel +J
The assumptions 1-2 are in general not enough to guarantee that an average
cost optimal stationary policy exists as follows from the fact that the assumptions
1-2 are satisfied in the counterexample of Fisher & Ross (1968) in which example
any average cost optimal policy is non-stationary. In case the condition (1.5)

holds, then any stationary f(m)

such that the action f(i) minimizes the right
side of (3.20) for all iel is (strongly) average cost optimal and has g as its
average cost for any starting state i. It has been shown in Federgruen, Hordijk &

Tijms (1978b) that a sufficient condition for (1.5) is given by

(3.21) 1lim P™(£)(u"+y™) = 0 for all feF
n—>«e
with PP(f) is the n-fold matrix product of the substochastic matrix P(f)=(§ij(f)),
i,Jjel with itself where ﬁij(f) = pij(f) for ieI and j¢K and ﬁij(f)zo for iel
and jeK.
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Under the éssumptions 1-2 and condition (3.21) we have that for any
solution {g,v(i),ieI} to (3.21) such that (3.19) holds, the constant g is
uniquely determined as the minimal average expected cost per unit time.
Under the additional assumption that for any strongly average cost optimal
stationary policy the total expected costs incurred until the first return
to the finite set K is finite for any starting state when the one step costs
in state i are given by u*(i)+y*(i), the function v(i), iel is uniquely
determined up to an additive constant as can be shown by using the proof of

Lemma 3 in Hordijk, Schweitzer & Tijms (1975).
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