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DETERMINISTIC SEQUENCING AND SCHEDULING 

J.K. LENSTRA 

Mathematisch Centrum, Amsterdam 

The purpose of this brief survey is to point out the relations between the 

twelve lectures in the deterministic part of the Advanced Study Institute. 

Introduction to combinatorial optimization 

1. E.L. LAWLER. Design and analysis of algorithms for combinatorial 

optimization. 

2. J.K. LENSTRA. Computational complexity of combinatorial problems. 

3. A.H.G. RINNOOY KAN. Enumerative methods. 

4. M.L. FISHER. Analysis of heuristics. 

Combinatorial optimization involves the study of problems in which an optimal 

ordering, selection or assignment of a finite set of objects has to be 

determined. Examples are routing problems (such as the celebrated traveling 

salesman problem of finding the shortest closed tour through a number of 

cities), location problems, and scheduling problems. While combinatorial 

optimization, as a subarea of operations research, is rooted in the theory 

of mathematical programming, the last years have witnessed an increasing 

application of tools from computer science. 

Lawler's lecture is an excellent demonstration of this phenomenon. After 

a discussion of a number of standard problems and some general algorithmic 

techniques for their solution, the principles of the implementation of 

algorithms are reviewed and the concepts underlying the theoretical analysis 

of algorithms are outlined. 

The second lecture provides an introduction to the theory of 

computational complexity. This theory allows us to make a formal distinction 

between well-solved problems, which can be solved by an algorithm whose 

running time is bounded by a polynomial function of problem size, and NP-hard 

problems, for which the existence of such an algorithm is very unlikely. In 

solving an NP-hard problem, one has to choose between using slow optimization 



Deterministic 2 

algorithms or fast approximation algorithms. These alternative approaches 

form the subject of the remaining two lectures. 

Rinnooy Kan illustrates the use of enumerative methods, such as dynamic 

programming and branch-and-bound. These methods are guaranteed to produce an 

optimal solution, but only after an often time consuming search through the 

set of feasible solutions. 

Fisher discusses the use of heuristics and three different approaches 

for analyzing their performance: empirical, worst-case, and probabilistic. 

Special attention is paid to the second approach: given a problem (i.e. the 

knapsack problem) and a heuristic for its solution, how does one determine 

an upper bound on the ratio between the approximate solution value and the 

optimal one? 

Deterministic sequencing and scheduling: the state of the art 

1. J.K. LENSTRA. Single machine scheduling to minimize maximum cost. 

2. M.L. FISHER. Single machine scheduling to minimize total cost. 

3. M.L. FISHER. Nonpreemptive scheduling of parallel machines. 

4. E.L. LAWLER. Scheduling precedence-constrained unit-time jobs on 

parallel machines. 

5. E.L. LAWLER. Preemptive scheduling of parallel machines. 

6. A.H.G. RINNOOY KAN. Open shop, flow shop and job shop scheduling. 

In the generic single machine scheduling problem, a number of jobs, each 

with a given processing time, has to be executed on a single machine that 

can handle at most one job at a time, subject to a variety of constraints 

that may include release· dates, deadlines, and precedence constraints; it is 

also specified whether preemption (job splitting) is allowed or not. Each 

job incurs at its completion time a certain cost, where the cost function is 

nondecreasing over time. The problem is to find a schedule that minimizes a 

given optimality criterion, which is usually the maximum or the sum of the 

job completion costs. 

The first two lectures deal with min-max and min-sum single machine 

problems, respectively. Although either of these classes contains many well­

solved and NP-hard problems to which all the tools of combinatorial 
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optimization have been applied, the relative emphasis will be on polynomial­

time algorithms in the first lecture and on enumerative methods in the 

second one. 

This model can be generalized in two directions. In the first generalization, 

each job has to be processed on any one of a number of parallel machines. 

Fisher considers the nonpreemptive case and concentrates in particular 

on the maximum completion time criterion. For this model, many results on 

the worst-case performance of approximation algorithms have been obtained. 

Lawler investigates the addition of precedence constraints to this 

model, under the assumption that all jobs have unit processing times. The 

problem is NP-hard in general, but a number of special cases can be solved 

in polynomial time. 

Lawler next surveys the preemptive case for several optimality criteria. 

The most notable recent advances in scheduling theory, concerning polynomial­

time algorithms as well as NP-hardness proofs, have been made in this area. 

In another generalization of the single machine model, each job consists of 

a set of operations, each of which has to be executed on a specific machine. 

Rinnooy Kan discusses the resulting open shop, flow shop and job shop 

models. Except for a couple of well-solved special cases, these problems are 

very Gifficult, and the presentation is mainly concerned with the systematic 

development of enumerative methods for their solution. 

Deterministic sequencing and scheduling: two recent developments 

1. B. SIMONS. On scheduling with release times and deadlines. 

2. C. U. MARTEL. Pre·empti ve scheduling of uniform machines with release 

times and deadlines. 

Suppose each of n jobs has to be executed during a given processing time 

between a given release date and a given deadline. Does there exist a 

feasible schedule? 

The nonpreemptive single machine version of this model is well known to 

be NP-hard. Simons' contribution is a polynomial-time algorithm for this 
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problem under the additional assumption that all processing times are equal. 

The method can be extended to the case of identical parallel machines. 

Martel considers the preemptive problem on uniform parallel machines 

(i.e., parallel machines of different speeds). His polynomial-time algorithm 

involves polymatroidal network flow techniques, an extension of classical 

network flow theory. 
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STOCHASTIC SEQUENCING AND SCHEDULING 

E. GELENBE 
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INTERFACES BETWEEN DETERMINISTIC AND STOCHASTIC SCHEDULING 

M.A.H. DEMPSTER 

Balliol College, Oxford/IIASA, Laxenburg 

In the following lectures attempts will be made to relate the deterministic 

and stochastic approaches to some specific scheduling problems: 

1. L.E. SCHRAGE. The multiproduct lot scheduling problem. 

2/3. E.G. COFFMAN, JR. Probability models of sequencing and packing algorithms. 

4. M. PINEDO, L.E. SCHRAGE. Stochastic shop scheduling: a survey. 

5. M.A.H. DEMPSTER. A stochastic approach to hierarchical scheduling. 

To place these contributions in perspective, it may be useful to review the 

relevance of some general considerations in stochastic optimization to the 

present context. 

When deterministic combinatorial optimization models of practical 

scheduling problems are extended to more realistic stochastic models by 

assuming various data are random variables several options in problem 

formulation arise immediately. Five important alternative assumptions present 

themselves: 

1. Is expectation of random costs or rewards an appropriate valuation 

criterion or must some more complicated stochastic optimality criterion 

be used? 

2. Are optimizing decisions to be taken before or after the random variables 

are realized? 

3. Are all data, such as processing time distributions, available at the 

outset or is a stochastic process generating arrivals to the system 

involved? 

4. Is the model posed over a finite or an infinite horizon? 

5. Are probability distributions of random variables or stochastic processes 

known completely in advance or are they known only up to certain 

parameters which must be estimated as the data is realized? 

All these questions are familiar in stochastic system theory for systems 

involving continuous decision variables - i.e. stochastic programming and 

stochastic optimal control models (see e.g. [Dempster 1980; Fleming & Rishel 

1975]). Their importance may however not as yet be fully appreciated by 
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researchers in related fields. Here we are principally interested in 

probabilistic algorithm analysis, and other questions in theoretical computer 

science and the mathematics of operations research, and in the control of 

queueing systems and networks. 

Question 1 concerns the stochastic nature of the valuation criterion 

involved in the motlel. For most stochastic scheduling models this will be 

the expected value of the (now random) criterion, such as makespan or flow­

time, used in the corresponding combinatorial optimization model. Such a 

criterion is entirely appropriate for these models in that they generally 

apply to repetitive situations in which relatively small costs or gains are 

.involved per unit time. In the contrary situation, when a once for all 

decision must be taken in the face of uncertainties involving relatively 

large gains or losses, total preference ordering of reward distributions 

using Von Neumann-Morgenstern expected utility theory is a more general tool 

(see e.g. [Luce & Raiffa 1957]). For certain scheduling models it is possible 

to establish optimality in distribution for the random criterion - i.e. the 

probability of achieving a given criterion level is everywhere at least as 

great under the optimal policy as for any other. This is of course a very 

stringent optimality criterion which guarantees optimality for any expected 

utility criterion involving a monotonic utility function. 

The second question, concerning the timing of the realization of the 

random variables in the problem, is of crucial importance for the nature of 

the analysis. If the random data is realized before optimization (or 

approximate optimization) is performed, in the present context of combinatorial 

optimization the solution of the resulting distribution problem - find the 

distribution of the optimal criterion value, or its expectation, or other 

moments - is termed probabilistic analysis of an algorithm, either optimal 

or heuristic. That is, a (multivariate) distribution is assumed for the 

problem data and the question of interest is (often) the a priori expected 

performance of the algorithm. For certain simple scheduling problems and 

parameter distributions such results may be obtained for an optimal algorithm. 

More often, in order to evaluate the performance of a heuristic algorithm, 

an upper (say) bound on the expected criterion value produced by the 

heuristic is compared with a lower (say) bound on the expected criterion 

value produced by an optimal algorithm. Once it is assumed that some of the 
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problem data is realized sequentially only after some decisions have been 

taken, the resulting decision problems generally become more difficult to 

analyze. In some simple cases - e.g. for list scheduling heuristics applied 

tom-machine scheduling problems - the analysis remains the same independent 

of the timing of the realization of the random problem data. However, this 

situation seldom applies to the case of an optimal policy for a problem with 

any complexity of structure. 

Question 3 - whether or not a stochastic process of arrivals to the 

system is assumed - delimits the boundary between the static models which 

form the bulk of the problems analyzed in operations research and computer 

science and the dynamic queueing models analyzed in both disciplines. In 

computer science, the study of queueing systems has recently become of 

fundamental importance for computer system and network performance modelling 

(see e.g. [Kleinrock 1976]). Most of the models used so far differ from 

(static) stochastic scheduling models in that no active scheduling policy 

other than arrival order, possibly by priority class - is normally assumed, 

since processing times are usually taken as independent identically 

distributed random variables. A current research topic involves the extension 

of recent results for stochastic scheduling problems to models involving 

arrival processes. Such models are natural stochastic extensions of 

deterministic scheduling models incorporating job release dates. The natural 

setting for their analysis is in continuous time - although certain optimality 

results form-machine scheduling problems are so far only established in 

discrete time. Ultimately - for example, to improve our understanding of real 

job shops - it would be useful to analyze a network of m-machine problems. 

Each node of the appropriate network would be not simply a single server, but 

rather a scheduled m-machine system, so that node input and output processes 

would need to be more complicated than have so far been analyzed. Nevertheless, 

the recent general theory of the optimal control of stochastic systems driven 

by point processes should be relevant (cf. [Walrand & Varaiya 1978]). 

The next question (4), concerning the length of the planning horizon, 

is closely connected to the assumption of an arrival process in that often 

the only tractable analysis - for example, for queueing models - refers to 

the asymptotic state distribution of the system as the underlying stochastic 

processes tend to their long run (stationary) equilibrium distributions at 
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infinity. In the probabilistic analysis of algorithms for finite horizon 

scheduling problems, asymptotic analysis as the number of jobs in the system 

tends to infinity is also useful and usually involves (implicitly or 

explicitly) a time horizon tending to infinity. 

The final question concerning estimation of distributional parameters -

usually be recursive Bayesian methods simultaneous with decision making - has 

so far received scant attention in the scheduling or queueing literature 

despite the fact that it is an area of current research effort in stochastic 

programming and stochastic control theory. 

With this background the content and methods of the lectures in this 

session may be briefly described. 

In the first lecture, Schrage discusses the deterministic NP-hard multi­

product scheduling problem over a finite horizon. In this problem various 

products requiring different processing times on a single machine must be 

produced to meet given due dates. At each product change set up costs are 

incurred and products produced before their due dates may be stored upon 

payment of inventory holding costs. Schrage surveys linear programming 

approximations to the problem and he analyzes the asymptotic exactness of 

the solutions of these LP models relative to the exact integer optimum as 

the number of products in the system increase. Although product due dates 

(and more generally demands) are realistically random, so far little 

stochastic analysis of this practical problem has been undertaken. 

Coffman is concerned in the next two lectures with the probabilistic 

analysis of the performance in expectation of certain heuristics for various 

scheduling and packing problems. He first analyzes list scheduling heu~istics 

for minimizing makespan of a number n of jobs in an m identical machine 

system with random independent identically distributed processing times in 

terms of the Markov process of variations - increments to the latest 

completion time of the current jobs - defined on the job number. He analyzes 

the asymptotic state of this process as the number of jobs in the system 

tends to infinity and shows that its convergence is geometric so that its 

(asymptotic) equilibrium.tlistribution allows an accurate ·approximation of 

expected makespan even for rather small n. Similar techniques are used to 

analyze the expected performance of the next fit bin packing algorithm for 

an independent identically distributed sequence of fractional piece sizes 
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and an infinite sequence of unit capacity bins. By specializing to uniform 

distributions on the unit interval more precise analyses of more complex 

heuristics for both problems can be performed. Coffman also treats the 

expected performance of some 2-dimensional packing heuristics. 

Pinedo and Schrage in the fourth lecture survey recent optimality 

results for a number of stochastic decision problems concerned with shop 

scheduling. They are principally concerned with 2-machine shops and a fixed 

number of jobs with negative exponential processing time distributions with 

different means. The optimality criteria utilized are expected makespan and 

expected flowtime, and optimal policies are presented for open shops, flow 

shops (both with and without blocking caused by no storage between machines) 

and job shops. Some results are also presented for them-machine flow shop. 

The optimal policies are scheduling rules in which at job completions 

unprocessed jobs are assigned to machines in ascending (to minimize expected 

flowtime) or descending (to minimize expected makespan) order of expected 

processing time. These policies are for obvious reasons termed respectively 

shortest expected processing time (SEPT) and longest expected processing time 

(LEPT) . 

In the last lecture, Dempster surveys recent results in stochastic 

discrete programming models for hierarchical planning problems. Practical 

problems of this nature typically involve a sequence of decisions over time 

at an increasing level of detail and with increasingly accurate information. 

These may be modelled by multistage stochastic programmes whose lower levels 

(later stages) are stochastic versions of familiar NP-hard deterministic 

combinatorial optimization problems and hence require the use of approximations 

and heuristics for near-optimal solution. After a brief survey of distributional 

assumptions on processing times under which SEPT and LEPT policies remain 

optimal form-machine scheduling problems, results are presented for various 

2-level scheduling problems in which the first stage concerns the acquisition 

(or assignment) of machines. For example, heuristics which are asymptotically 

optimal in expectation as the number of jobs in the system increases are 

analyzed for problems whose second stages are either identical or uniform 

m-machine scheduling problems. A 3-level location, distribution and routing 

model in the plane is also discussed. 
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PROBABILITY MODELS OF SEQUENCING AND PACKING ALGORITHMS 

E.G. COFFMAN, JR. 

Bell Laboratories, Murray Hill, NJ 

Classical analyses of sequencing and packing rules have been based on 

combinatorial models. Among the important results of this research are: (1) 

complexity classifications for a variety of optimization problems (e.g. those 

concerning flow time performance measures and those concerning the number of 

resources needed to obtain a given flow time performance); (2) derivations 

of worst-case performance guarantees for simple approximation rules relative 

to optimization rules for NP-complete problems. 

Following a brief review of the above results, our presentation will 

concentrate on recent expected performance results for approximation rules, 

based on probability models describing the lengths of the jobs being 

sequenced, and the dimensions of the pieces being packed. These models are 

intermediate between the combinatorial and the fully stochastic (e.g. 

queuing) models, in the sense that all jobs (pieces) are assumed available 

at the outset; i.e., no arrival mechanism is assumed. In all models to date 

dimensions have been assumed to be independent, identically distributed 

random variables (i.i.d.r.v.'s); in some cases the distribution has been 

specialized (e.g. the uniform or exponential distribution), as a concession 

to tractability. Relative performance has been studied by comparing upper 

bounds on the expected performance of the approximation rule with lower 

bounds on the expected performance of an optimization rule. 

Following the survey of the related combinatorial results, the 

presentation will be divided into the following five sections. 

I. Expected makespans for list scheduling 

We study the makespan performance of list schedules for sets of n independent 

jobs {J1 , ... ,Jn} on m > 1 machines. List schedules are produced by selecting 

the jobs in sequence from some given but arbitrary list, and assigning them 

to machines as they become available after finishing earlier jobs. We analyze 

the expected makespan (latest finishing time), TTm,n' under the assumption 
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that the job execution times are i.i.d.r.v.'s with a distribution function, 

Pr{Jsx} = G(x), having finite first and second moments, E(J) and E(J2 ), and 

density, g (x) . 

The study of makespans reduces essentially to the analysis of the 

variations form= 2: 

V. 
1. 

= {Ji, 

Iv. 1-J. I, 
1.- 1. 

i 1, 

1 <is n. 

The {V.} form a Markov process, the distribution for V. 1 being given by 
1. 1.+ 

F V ( y) = f ~ K ( x , y) dF V . ( x) , i ~ 1 , 
i+1 1. 

FV (y) = G(y). 
1 

The density corresponding to the stochastic kernel K(x,y) is obtained as 

{
g(x+y) + g(x-y), 

k(x,y) = 
g(x+y), 

0 < y s x, 

y > X > 0. 

For the limiting variation V one finds 

1 
= E[J] [1-G(y)] 

with 

E[V] = 

A key property of the chain {v.} that can be proved is that it converges 
1. 

geometrically. From these results we find for arbitrary m that TT converges m,n 
geometrically to 

E. E[J] + E[V] - m-l E[V] 
m m 

where E[V] is the expectation of the maximum of m-1 i.i.d.r.v. 's with 

distribution FV. The fast rate of convergence allows for an excellent 

approximation to be made even for rather small n. TT may be compared to the 
m,n 

lower bound on the expected optimum, E. E[J], to assess the approximation rule. 
m 
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II. Expected makespans under algorithms of greedy type 

We use the assumptions above, except form= 2 and specialization to the 

uniform distribution on [0,1], but we examine the more promising largest­

processing-time-first (LPT) rule and a variant more amenable to analysis. 

Let x1 ~ x2 ~ ••• ~ xn be the order statistics of n samples from u[0,1]. We 

prove the bound on the expected final variation of processor finishing times 

E[V] ~ '~ l E[Z,] n li= i 

where z. is the positive part of X. - l· . X .. Details are provided to show 
i l i J<i J 

that E[V J = 0(-) where the multiplicative constant is small. 
n n 

In the variant studied, jobs are assigned two at a time, one to each 

processor in LPT order, the larger being placed on the processor with the 

earlier availability (if n is odd J is placed simply on the processor having 
n 

earlier availability). This algorithm is subject to a more precise analysis 

showing that the expectation of the final variation is 1/n. 

III. Expected performance of next-fit one-dimensional bin packing 

Somewhat similar to §I above we approximate the solution for finite problems 

by results obtained for the asymptotic case n ➔ 00 • We assume an infinite 

sequence of bins <B.> whose common capacity is taken, without loss of 
i 

generality, to be 1. We assume an infinite sequence of pieces <P > whose 
i 

sizes are i.i.d.r.v. 's drawn according to a distribution G(x) on [0,1]. 

We study the efficiency of the Next-Fit fule whereby the bins are packed 

in the sequence B ,B2 , ••• as follows. First, pieces are drawn in sequence 
1 . 

from the list and placed in B1 until a piece, say P, is encountered which 

will not fit into the remaining unused capacity of B1 • At that point, starting 

with P, B2 is packed in an identical manner; the first piece not fitting in 

B2 commences B3 , etc. Next-Fit performance is analyzed by examining the 

Markov chain {L.}, where L. is the level of B. once B. 1 has started. Once 
i i i i+ 

again, 

FL (y) = f~ K(x,y)dFL (x), 
i+l i 

FL (y) = K(l,y). 
1 
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Solving for K(x,y) 

r' JY fy-w 1-G(l-w-s) 
dFS (s) dG (w) , y > 1 

= { n=O 1-~ 0 1-G(l-x) - x, 
K(x,y) n 

o, y :;;; 1 - x, 

where FS is the distribution of the sum of n i.i.d.r.v.'s from G(x). A key 

result h~s been that FL converges geometrically to the limiting distribution 

FL. From this result itihas been shown that there exists a constant y such 

that for any m 

lmL - \~ l E[L,JI :;;; y li= 1 

-where Lis the expected value of FL. Thus, the limiting-distribution results 

lead to an approximation for the finite case. 

Specializing to P ~ u[0,1] one finds 

K(x,y) = r -
0, 

L = 3/4, 

and a constant y such that 

1-x < y :;;; 1, 

0 :;;; y :;;; 1-x, 

IV. Expected performance of more effective rules in bin-packing 

The distribution of piece sizes is specialized to u[0,1]. An algorithm is 

introduced whose performance, although not as good as the better approximation 

rules, is much more amenable to analysis. Basically, the algorithm scans a 

list of pieces in order by size, alternating between right-to-left and left­

to-right, attempting to pair larger and smaller pieces in the same bin. If n 

is the length of the list, it is shown that the expected number of bins used 

by the algorithm is at most 

n ( n ) 1/2 ( 1/2) 2 + 21r + o n • 

n 
The term 2 + o(n) is best possible in the sense that a lower bound for any 
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packing rule can be shown to be 

The analysis involves the use of a certain random walk. 

v. Recent results in the expected performance of two-dimensional packing rules 

In this research simple level-oriented approximation rules are studied for 

the problem of minimizing the length of a given strip necessary to pack 

orthogonally a collection of rectangles. Using methods similar to those 

already mentioned bounds on expected lengths are derived. 
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AN ELEMENTARY INTRODUCTION TO STOCHASTIC PROCESSES 

M.A.H. DEMPSTER 

Balliol College, Oxford/IIASA, Laxenburg 

This lecture is aimed at providing an intuitive understanding of the rigorous 

foundations of stochastic process theory as a foundation for the more 

advanced lectures on the topic at this Institute. It is based on excerpts 

from [Dempster 1970]. Definitions and results will be stated precisely within 

the framework of Kolmogorov's axiomatic approach to probability theory (see, 

for example, [Ross 1976; Tucker 1967]), but few proofs will be given. 

The treatment will begin with a quick review of elementary axiomatic 

probability theory - including the concepts of probability space, random 

variables and vectors, their distributions and moments, independence, 

conditional probability and expectation, and Bayes' theorem. Participants 

will be expected to study the relevant sections of [Dempster 1970, §§1,2] 

before the lecture. 

The lecture will concentrate on classification and analytic representation 

of stochastic processes, their moment properties and long run behaviour 

[Dempster 1970, §6] and on an elementary introduction to finite state Markov 

chains in discrete time [Dempster 1970, §7]. The latter topic is intended to 

lead to the treatment of countable state Markov chains in continuous time 

useful in queueing theory [Gelenbe & Mitrani 1980, Ch.1] and to provide 

background for the study of Markov and semi-Markov decision processes and 

other discrete state stochastic systems [Cinlar 1975, Ross 1970]. 
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A STOCHASTIC APPROACH TO HIERARCHICAL SCHEDULING 

M.A.H. DEMPSTER 

Balliol College, Oxford/IIASA, Laxenburg 

Practical hierarchical planning problems typically involve a sequence of 

decisions over time at an increasing level of detail and with increasingly 

accurate information. For example, for manufacturing operations a 3-level 

hierarchy of planning decisions in terms of increasingly finer time units is 

often utilized. The first level concerns medium term planning which works 

with projected monthly production averages and is primarily concerned with 

the acquisition of certain resources. The next level treats weekly production 

scheduling, while the third level is concerned with the real-time sequencing 

of jobs through various machine centres on the shop floor. The first two 

levels can currently be handled adequately by deterministic linear progrannning 

and combinatorial permutation procedures, but the third realistically involves 

a network of stochastic m-machine scheduling problems whose natural setting 

is in continuous time. 

More generally, many hierarchical planning problems can be modelled by 

multistage stochastic programmes whose later stages (lower levels) are 

stochastic versions of familiar NP-hard deterministic combinatorial 

optimization problems. Hence they usually require the use of approximations 

and heuristics for near-optimal solutions. 

Recently, computer-based planning systems have become popular for 

practical multilevel decision problems [Dempster et al. 1981A]. In principle, 

the performance of such systems can be evaluated relative to optimality for 

the appropriate multi-stage stochastic progrannning model. 

This paper primarily reports on_a programme of research conducted 

jointly with M.L. Fisher, B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan. 

After a brief survey of distributional assumptions on processing times 

under which SEPT and LEPT policies remain optimal form-machine scheduling 

problems [Coffman 1981; Weber 1979; Weiss & Pinedo 1980; Pinedo 1981; 

Frederickson 1981], results are presented for various 2-level scheduling 

problems in which the first stage concerns the acquisition (or assignment) 

of machines [Dempster et al. 1981B]. For example, heuristics which are 
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asymptotically optimal in expectation as the number of jobs in the system 

increases are analyzed for problems whose second stages are either identical 

or uniform m-machine scheduling problems. A 3-level location, distribution 

and routing model in the plane is also discussed [Beardwood et al. 1959; 

Fisher & Hochbaum 1980; Hochbaum & Steele 1981; Marchetti Spaccamela et al. 

1981]. 
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ANALYSIS OF HEURISTICS 

M.L. FISHER 

University of Pennsylvania, Philadelphia 

This lecture will closely follow sections 1 and 2 of [Fisher 1980]. Results 

on the analysis of scheduling heuristics will be deferred to the advanced 

lectures on scheduling. A discussion of the analysis of scheduling heuristics 

is also available in [Garey et al. 1978]. 

1. Introduction 

1.1. Why study heuristics? 

1.2. Short history of the study of heuristics 

1.3. Three different approaches for measuring the performance of a heuristic 

(a) Empirical 

(b) Worst-case analysis 

(c) Probabilistic analysis 

2. Fundamentals of worst-case analysis 

2.1. Definition of the worst-case performance ratio of a heuristic 

2.2. Illustration of determining the worst-case performance ratio for various 

knapsack heuristics 

(a) Greedy heuristics 

(b) Partial enumeration [Johnson 1974; Sahni 1975] 

(c) Dynamic programming with rounded data [Ibarra & Kim 1975; Lawler 

1979] 

2.3. General observations on the knapsack results 
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SINGLE MACHINE SCHEDULING TO MINIMIZE TOTAL COST 

M.L. FISHER 

University of Pennsylvania, Philadelphia 

1. Introduction and definition of the generic single machine mini-sum problem 

2. Polynomially solvable cases 

2.1. Min weighted completion [Smith 1956] 

2.2. Min number of late jobs [Moore 1968] 

3. Min weighted tardiness 

3.1. NP-complete [Lenstra et al. 1977] 

3.2. Conditions on an optimal sequence [Emmons 1969] 

3.3. Exact algorithms 

(a) Dynamic programming [Held & Karp 1962; Srinivasan 1971; Baker & 

Schrage 1978] 

(b) Pseudopolynomial [Lawler 1977] 

(c) Branch-and-bound 

- Assignment relaxation [Rinnooy Kan et al. 1975] 

- Lagrangian relaxation [Fisher 1973, 1976, 1981; Held & Karp 1971] 

3.4. Analysis of heuristics 

(a) Greedy [Fisher & Krieger 1981] 

(b) Fully polynomial approximation scheme [Lawler 1977] 
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NONPREEMPTIVE SCHEDULING OF PARALLEL MACHINES 

M.L. FISHER 

University of Pennsylvania, Philadelphia 

For simplicity, I will restrict attention to the case of identical parallel 

machines and general process times. Results for many variations on this base 

case are reviewed in [Graham et al. 1979]. 

1. Minimize sum of job completion times [Conway et al. 1967] 

2. Minimize time to complete all jobs 

2.1. NP-hard [Lenstra et al. 1977] 

2.2. Exact algorithms 

(a) Branch-and-bound [Bratley et al. 1975; Stern 1976] 

(b) Dynamic programming [Lawler & Moore 1969; Rothkopf 1966] 

2.3. Approximation methods 

(a) Longest process time [Graham 1966, 1969] 

(b) Partial enumeration [Graham 1969] 

(c) Multi fit [Coffman et al. 1978] 

(d) Dynamic programming and rounding [Sahni 1976] 

3. Variable number of machines and stochastic process times [Dempster et al. 

1981A, 1981B] 

4. A large-scale real example 

4.1. Description of the problem and its economic significance 

4.2. Relationship of this problem to research on theoretical algorithms 

4.3. Importance of stochastic elements 
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ON STOCHASTIC ANALYSIS OF PROJECT-NETWORKS 

W. GAUL 

Universitat Karlsruhe 

If the activity-completion-times of a project-network are random variables, 

the project-completion-time is a random variable the distribution function 

of which is difficult to obtain. 

Thus, after a survey on results to determine bounds for the mean and 

the variance and bounding distribution functions for the distribution 

function of the project-completion-time, a new approach using stochastic 

programming for a cost-oriented project scheduling model is presented. 

Completion-time estimates for the random activity-completion-times have to 

be computed where planned time-reductions increase costs and nonconformity 

with the actual realizations of the random activity-completion-times yields 

additional compensation costs (gains). Taking into consideration a prescribed 

project-completion-time constraint the expected costs for performing the 

activities according to the computed activity-completion-time estimates are 

minimized. The solution procedure constructs a finite sequence of non­

stochastic network circulation problems. 

Examples of application-relevant size can be presented. 
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SINGLE SERVER QUEUES 
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SCHEDULING IN COMPUTER SYSTEMS AND NETWORKS 
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DISCRETE TIME STOCHASTIC SCHEDULING 

J.C. GITTINS 

Keble College, Oxford 

The optimality criterion under consideration in this lecture is that of 

maximum expected total discounted reward, where rewards are associated with 

the completion of each job. This choice is natural when the jobs under 

consideration are substantial projects, more of which may become available 

as time goes by. In the limit as the discount factor tends to one it is 

equivalent to minimising a weighted version of the total expected flow-time. 

It is plausible that a policy which maximises the expected discounted 

reward per unit time up to an arbitrary time depending on the durations of 

the various jobs, and then continues, stage by stage, in the same way, 

should be a good policy. In fact [Gittins 1979,1982] such a policy, called 

a forwards induction policy, is often optimal. When this is so optimal 

policies often reduce to giving priority at each stage to that job for which 

the value of a certain index, which typically varies as work progresses on 

the job, is largest. 

The circumstances under which forwards induction policies are optimal 

will be discussed, and the forms of the appropriate indices. These 

circumstances include certain types of precedence constraints between jobs. 

To a considerable extent the lecture will be based on [Gittins 1979,1982]. 

The other references listed are also relevant. 
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DESIGN AND ANALYSIS OF ALGORITHMS FOR COMBINATORIAL OPTIMIZATION 

E.L. LAWLER 

University of California, Berkeley 

0. Introduction 

Much of the material I propose to present is "bread-and-butter" for computer 

scientists. Other material is well known to the operations research community. 

Because of the diverse backgrounds of participants in this conference, I have 

chosen to emphasize very basic topics, but to try to indicate one or two 

results that may be new even to those who are familiar with most of the 

subject area. 

Topics to be discussed are: 

1. Standard problem formulations of combinatorial optimization. 

2. Generally applicable techniques for solving combinatorial problems, e.g. 

divide-and-conquer, dynamic programming, branch-and-bound. 

3. Fundamental data structures needed for the implementation of algorithms. 

4. "Time" and "space" as measures of the effectiveness of combinatorial 

algorithms. 

5. Methods for analyzing time and space requirements of specific algorithms. 

6. Possible trade-offs between time and space. 

7. Techniques for establishing lower bounds on time. 

1. Standard problem formulations 

Certain standard combinatorial optimization problems occur with considerable 

frequency in the subject area of deterministic scheduling. Among these are: 

Traveling Salesman Problem, 

Assignment Problem, 

Knapsack Problem, 

Quadratic Assignment Problem, 

Bin Packing Problem, 

Set Covering Problem, 

Chromatic Number Problem. 
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It will be indicated, by example, how each of these problem types arises in 

scheduling theory. 

2. Techniques for solving combinatorial optimization problems 

Sometimes it is possible to formulate and solve a combinatorial problem by a 

standard and well understood technique, e.g. linear programming, network 

flows, the "greedy" algorithm. Often it is necessary to devise a special 

algorithm for the problem at hand. 

One general approach is that of "divide-and-conquer". As an example, 

consider sorting by merging. To sort n numbers, divide them into two sets of 

nearly equal size <l~J and r~l>, sort these smaller sets (by recursive 

application of the same procedure) and merge the two sorted sets, with at 

most n-1 additional comparisons. Let c(n) denote the number of comparisons 

required, in the worst case, to sort n numbers by this method. For simplicity, 

let n = 2k. Then we have: 

c(n) (1) 

c(1) = 0, 

and so 

c(n) = n log n - n + 1. 

Dynamic programming is another useful technique. Consider the case of a 

single-machine sequencing problem in which there are n jobs, j = 1,2, .•. ,n, 

for each of which there is a specified processing requirement p. and a cost 
J 

function f .. If job j is completed at time t, the 
J 

cost incurred for job j is 

f. (t). The object is to sequence the jobs so that 
J 

the sum of the costs is 

minimized. Let S.::. {1,2, .•. ,n}, and let F(S) denote the minimum cost of a 

schedule for the subset S. Then: 

where 

F(S) = min {F(S-{k}) + fk(p(S))}, 
kES 

( 2) 
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and with the initial condition 

F(l1J) = 0. 

There are 2n subsets S for which equation (2) is to be solved, and each 

equation requires at most n additions and n-1 comparisons. Hence the time 

and space requirements are O(n2n) and 0(2n),· respectively. 

Branch-and-bound is a widely applicable technique for solving combinatorial 

optimization problems. For example, one could devise an algorithm in which 

each node of the branch-and-bound search tree is identified with a sequence 

IT ( S) for some subset of jobs S. "Branching" can then be performed on the 

choice of the next job k ES. A possible lower bound on the cost of completing 

the sequence is given by: 

As another example, consider the problem of determining whether a given 

digraph G = (N,A) contains a Hamilton path between two specified nodes. Let 

N = {0,1, ••• ,n,n+1} and suppose a Hamilton path is sought from node Oto node 

n+1. A well-known method of solution by dynamic programming is as follows. 

For arbitrary S ~ {1,2, •.• ,n}, let F be a Boolean-valued function such that: 

r1 
if there is a path from node 0 to node j passing through 

each of the nodes in S exactly once (and through no other 
F(S,j) = t nodes), 

otherwise. 

Then we have the recurrence 

where 

=r 0 

if there is an arc from k to j in G, 

otherwise, 
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The value of F({l,2, .•. ,n},n+l) can be computed in O(n22n) time and O(n2n) 

space. 

A very dramatic reduction in space requirements can be effected by the 

use of the principle of inclusion and exclusion. (This idea is due to R.M. 

Karp.) Let w(S) denote the number of walks of length n+l from node Oto node 

n+l which do not pass through any nodes ins. (A walk is like a directed 

path, but with repetitions of arcs permitted.) By inclusion and exclusion, 

the number of Hamilton paths is equal to 

3 For given S, w(S) can easily be computed in O(n) time and O(n) space. It 

follows that the existence of a Hamilton path can be determined in O(n32n) 

time and only O(n) space (in addition to the space required to specify the 

digraph). 

Although the same trick can be applied to the problem solved by recurrence 

(2), it appears that the time-space trade-off which can be achieved is not 

nearly so impressive. 

Estimates of the time requirements for branch-and-bound algorithms are 

nearly always horrifying. The effectiveness of branch-and-bound algorithms 

must generally be demonstrated by empirical tests. (One remarkable exception 

is a branch-and-bound algorithm devised by D. Matula for the purpose of 

finding a subgraph of maximum connectivity.) 

3. Data structures 

It is usually not possible to make a meaningful theoretical analysis of the 

efficiency of an algorithm without anticipating some details of implementation. 

This means thinking about data structures, which we review briefly. 

A sequence of n numbers may be stored in an array or in a list. An array 

can be thought of as a sequence of consecutive locations in memory. Pictorially: 

1 2 3 4 n 

A list consists of a set of records, presumably dispersed throughout memory, 
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joined together by links or pointers. Pictorially: 

....._____.,· I ~...____._______.· I 1 
list header 1 2 3 n 

An array is easy to program and provides access to any given element in 

constant time. However, it is not well suited for adding and deleting elements, 

and there may be severe complications if the size of the array is not known 

in advance, or if its size changes dynamically. A list is more complicated 

to program, and does not provide easy access to any given element. (O(n) time 

is required.) However, it is well suited for insertions and deletions, and 

it is particularly well suited for applications in which the number of elements 

is not known in advance, or the number changes dynamically. 

A list is a particularly good way to implement a stack, which operates 

as a LIFO storage device. By providing a pointer to the last entry in a list, 

one can implement a queue, which operates in FIFO mode. 

A priority queue is a data structure which is intended to support the 

operations 

FINDMAX, 

DELETEMAX, 

INSERT X. 

A dictionary is a data structure which is intended to support the 

operations 

FIND X, 

INSERT X, 

DELETE X. 

Dictionaries are commonly implemented by means of hash tables and search 

trees. Properly constructed hash tables allow dictionary operations to be 

performed in effectively (but not theoretically) constant time. 

A very useful type of data structure is one which performs the operations 

FIND X, 

UNION i,j, 
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where FIND X means "find the name of the equivalence class of which Xis a 

member", and UNION i,j means to join the existing equivalence classes i and j. 

4. "Time" and "space" 

When analyzing algorithms the computer scientist ordinarily does not try to 

estimate "time" in the sense of milliseconds of running time or "space" in 

the sense of words of storage. Instead, he adopts some measure which abstracts 

and (hopefully) approximates these notions. Example: In the case of algorithms 

for sorting, it is common to count only the number of comparisons performed. 

Two measures of time and space are commonly employed: worst case and 

average case. Worst case analysis is usually easier, but pessimistic. Average 

case analysis is often complicated by the difficulty of determining a realistic 

probability distribution for problem instances. 

We mention here the concept of polynomial-time boundedness, and the 

reasons for its importance. 

5. Analysis of time and space requirements 

Worst-case estimates of time requirements of combinatorial algorithms are 

obtained in various ways: by loop-counting, by solution of recurrence relations 

like (1), or by direct counting arguments, as in the case of the dynamic 

programming equations (2). 

6. Time-space trade-offs 

One well-known example of time space trade-off is "depth-first" vs. "breadth­

first" search in branch-and-bound. 

7. Methods of lower bounding 

The methodology of lower bounding has been most highly developed in the case 

of algorithms based on comparisons of key values, e.g. for problems in sorting 

and searching, merging lists, and so forth. Lower bounding arguments may 

involve: 



(1) combinatorial analysis of decision trees, 

(2) arguments involving "adversaries" or "oracles", 

(3) analysis of state descriptions. 
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Possibly the most common lower bound is the "information theoretic" 

lower bound: If there are N possible answers, and these are to be obtained 

by making comparisons only, then any algorithm for solving the problem must 

make at least flog2Nl comparisons, in the worst case. Thus, for example, at 

least flog2n!l = O(n log n) comparisons must be performed, in the worst case, 

by any algorithm which sorts n numbers. 

It should be noted that the information-theoretic lower bound for sorting 

can be applied to show that certain scheduling algorithms are "optimal", e.g. 

Smith's rule for minimizing total weighted completion time. 
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SCHEDULING PRECEDENCE-CONSTRAINED UNIT-TIME JOBS ON PARALLEL MACHINES 

E.L. LAWLER 

University of California, Berkeley 

Scheduling of unit-time jobs on parallel machines is generally an easy matter 

if the jobs are independent. Such problems can often be formulated and 

solved as assignment or transportation problems. When precedence constraints 

exist, the problems become much more interesting and challenging. 

One of the older and more important results of deterministic scheduling 

theory is a simple and elegant algorithm of T.C. Hu [Hu 1961] for the 

scheduling of unit-time jobs on any number of identical machines, when the 

precedence constraints are in the form of a rooted tree. Brucker, Garey and 

Johnson [Brucker et al. 1977] succeeded in generalizing Hu's procedure (which 

simply minimizes the length of the schedule) to minimize maximum lateness, 

provided the precedence constraints are in the form of an intree. They also 

showed that the corresponding problem is NP-hard for outtrees. 

Another substantial advance occurred when Fujii, Kasami and Ninomiya 

[Fujii et al. 1969, 1971] provided a polynomial algorithm for the scheduling 

of unit-time jobs on two machines, with completely arbitrary precedence 

constraints. Soon after, Coffman and Graham [Coffman & Graham 1972] suggested 

a faster algorithm; a variation of this algorithm by Gabow [Gabow 1980] 

enables one to find a minimum-length schedule in nearly linear time. Garey 

and Johnson [Garey & Johnson 1976, 1977] have provided algorithms for 

minimizing maximum lateness, even in the presence of arbitrary release dates 

for jobs. 

We shall review the algorithms mentioned above, and also indicate some 

recent results from [Simons 1980; Warmuth 1980; Dolev 1981; Garey et al. 1981]. 

We conclude by noting that the "three-processor" problem is one of the 

most vexing open questions in deterministic scheduling. 
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PREEMPTIVE SCHEDULING OF PARALLEL MACHINES 

E.L. LAWLER 

University of California, Berkeley 

In this lecture we review a number of algorithmic results concerning the 

preemptive scheduling of parallel machines. We shall generally assume the 

machines are uniform, i.e. differing only in the speed with which they can 

process jobs. 

Topics to be covered include: 

(1) Minimizing the sum of completion times [Gonzalez 1977]. 

(2) Minimizing schedule length [Gonzalez & Sahni 1978]. 

(3) Minimizing schedule length, with release times (or alternatively, 

minimizing maximum lateness) [Sahni & Cho 1979; Labetoulle et al. 1979]. 

(4) Minimizing the weighted number of late jobs [Lawler 1979]. 

(5) Coping with precedence constraints. 

In the case of the last topic, we shall point out similarities with 

procedures for dealing with unit-time tasks. 
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COMPUTATIONAL COMPLEXITY OF COMBINATORIAL PROBLEMS 

J.K. LENSTRA 

Mathematisch Centrum, Amsterdam 

The inherent computational complexity of a combinatorial problem obviously 

has to be related to the computational behavior of algorithms designed for 

its solution. This behavior is usually measured by the running time of the 

algorithm (i.e., the number of elementary operations such as additions and 

comparisons) as related to the size of the problem (i.e., the number of bits 

occupied by the data). 

If a problem of size n can be solved by an algorithm with running time 

O(p(n)) where pis a polynomial function, then the algorithm may be called 

good and the problem well solved. These notions were introduced by Edmonds 

[Edmonds 1965] in the context of the matching problem; his algorithm can be 

implemented to run in O(n3 ) time on graphs with n vertices. Polynomial 

algorithms have been developed for a wide variety of combinatorial 

optimization problems [Lawler 1976]. On the other hand, many such problems 

can only be solved by enumerative methods which may require exponential time. 

When encountering a combinatorial problem, one would naturally like to 

know if a polynomial algorithm exists or if, on the contrary, any solution 

method must require exponential time in the worst case. Results of the latter 

type are still rare, but it is often possible to show that the existence of 

a polynomial algorithm is at the very least extremely unlikely. One may 

arrive at such a result by proving that the problem in question is NP-complete 

[Cook 1971; Karp 1972]. The NP-complete problems are equivalent in the sense 

that none of them has been well solved and that, if one of them would be 

well solved, then the same would be true for all of them. Since all the 

classical problems that are notorious for their computational intractability, 

such as traveling salesman, job shop scheduling and integer programming 

problems, are known to be NP-complete, the polynomial-time solution of such 

a problem would be very surprising indeed. For practical purposes, this 

implies that in solving those problems one may just as well accept the 

inevitability of a bad (superpolynomial) optimization algorithm or resort to 

using a good (polynomial) approximation algorithm. 
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SINGLE MACHINE SCHEDULING TO MINIMIZE MAXIMUM COST 

J.K. LENSTRA 

Mathematisch Centrum, Amsterdam 

Suppose n jobs are to be processed on a single machine, subject to release 

dates and precedence constraints. The problem is to find a schedule that 

minimizes the maximum job completion cost. 

If no preemption (job splitting) is allowed, the case of equal release 

dates if solvable in O(n2) time [Lawler 1973] and the case of arbitrary 

release dates is NP-hard in the strong sense [Garey & Johnson 1977; Lenstra 

et al. 1977]. 

The latter result is still true if no precedence constraints are specified 

and the maximum lateness is to be minimized. This problem has received ample 

attention in the literature. It possesses an interesting symmetric structure 

[Lageweg et al. 1976] and has important applications in job shop scheduling 

theory [McMahon & Florian 1975; Lageweg et al. 1977]. Branch-and-bound 

algorithms have been designed in [Baker & Su 1974; McMahon & Florian 1975; 

Lageweg et al. 1976] and approximation algorithms have been theoretically 

analyzed in [Kise et al. 1979; Potts 1980]. A polynomial time optimization 

algorithm for the special case of equal processing times was proposed in 

[Simons 1978]. 

If preemption is permitted, the most general case of arbitrary release 

dates, arbitrary precedence constraints and arbitrary nondecreasing cost 

functions is solvable in O(n2) time [Baker et al. 1980], which generalizes 

the result of [Lawler 1973]. 
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PREEMPTIVE SCHEDULING OF UNIFORM MACHINES WITH RELEASE TIMES AND DEADLINES 

C.U. MARTEL 

University of California, Davis 

Given n jobs each of which has a release time, a deadline, and a processing 

requirement, we examine the problem of determining whether there exists a 

preemptive schedule on m uniform machines which completes each job in the 

time interval between its release time and its deadline. An O(mn5) algorithm 

is presented which uses a generalization of network flow techniques to 

construct such a schedule whenever one exists. This algorithm is then used 

with search techniques to find a schedule which minimizes maximum lateness. 
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Pinedo & Schrage 1 

In this paper a survey is presented of some of the recent results in 

stochastic shop scheduling. The models dealt with include open shops, flow 

shops and job shops. For the majority of the models we shall call a policy 

optimal if it minimizes the expected completion time of the last job, i.e. 

the expected makespan. We discuss the difficulties encountered when other 

objectives are desired. The two machine open shop is discussed in detail. 

For this model optimal policies are presented in case the jobs have 

exponentially distributed processing times. For flow shops two different 

versions are treated: (1) infinite storage space between the machines (no 

blocking), and (2) no storage space between the machines (blocking possible). 

Optimal policies can be found easily for both versions when there are two 

machines and the jobs have exponentially distributed processing times. Some 

additional results are presented for them machine case with and without 

intermediate storage. Optimal policies are presented also for the two 

machine job shop when the jobs have exponentially distributed processing 

times. 
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ENUMERATIVE METHODS 

A.H.G. RINNOOY KAN 

Erasmus University, Rotterdam 

The only way to solve a scheduling problem to optimality is often to submit 

it to an enumerative approach in which all feasible solutions are implicitly 

or explicitly considered. Although the time required by such approaches 

generally grows as an exponential function of problem size in the worst case, 

the average case behavior of some of the more sophisticated methods can be 

quite satisfactory. 

To avoid the inspection of every single feasible schedule, one usually 

tries to find sharp lower bounds on the quality of a subset of schedules; if 

the lower bound exceeds the value of a schedule found already, the subset 

can be discarded. Dynamic programming techniques [Held & Karp 1962] can be 

viewed as a special case of these branch-and-bound approaches [Lawler & Wood 

1966]. 

The design of a successful enumerative method is strongly problem 

dependent. We will illustrate the principle by describing several enumerative 

approaches [Fisher 1976; Held & Karp 1962] to the problem of minimizing the 

total costs of scheduling a number of jobs on a single machine. 
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OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS 

A.H.G. RINNOOY KAN 

Erasmus University, Rotterdam 

In multi-operation models a job consists of a number of operations, each of 

which has to be executed on a particular machine. If the operations can be 

executed in any order (though not simultaneously), we have an open shop 

model. If the operations have to be executed in a prespecified order, the 

model is called a flow shop if this order is the same one for each job and a 

job shop if this is not necessarily the case. 

For all these models, the criterion that has been studied most 

frequently is the minimization of the time required to process all the jobs. 

Barring a few exceptions that occur when the number of machines is equal to 

two [Johnson 1954] or when preemption is allowed [Gonzalez & Sahni 1976] all 

these problems are very difficult and can only be solved to optimality by 

enumerative methods [Lageweg et al. 1977,1978]. Both special cases that can 

be solved efficiently and branch-and-bound techniques for general cases will 

be discussed. In the case of the general job shop problem, an ingenious 

problem representation known as the disjunctive graph model [Roy & Sussmann 

1964] will pay a crucial role. 
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DISCRETE STATE STOCHASTIC SYSTEMS 

S.M. ROSS 

University of California, Berkeley 

We will present some of the major results in Markov chain theory and then 

consider applications to (i) modelling of algorithmic efficiency, (ii) 

optimal computer list scheduling, and (iii) theory of runs. The first 

application is an attempt to obtain a simple model so as to give an intuitive 

feel as to why the simplex algorithm of linear programming performs much more 

efficiently in practice than one might suppose by a consideration of worst 

case principles. The second application deals with the determination of the 

optimal way to reorder a list of elements when every unit of time an element 

is selected with some fixed (but unknown) probability and no memory of 

previous selections is allowed. 

Some results on time reversible chains will also be considered. 
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MULTI-SERVER QUEUES 

S.M. ROSS 

University of California, Berkeley 

We will survey a variety of multiserver models in which the arrival stream 

is a Poisson process. In particular, we will consider the Erlang loss model 

in which arrivals finding all servers busy are lost. In this system, we 

assume a general service distribution. We will also consider finite and 

infinite capacity versions of this model. Another model of this type is the 

shared processor system in which service is shared by all customers. 

Another model to be considered is the G/M/k in which arrivals are in 

accordance with a renewal process and the service distribution is exponential. 

We will analyze this model by means of the embedded Markov chain approach. 
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Schrage 1 

An NP-hard problem of considerable practical interest is the multi-product 

lot scheduling problem. In its simplest form there are P products to be 

scheduled on a single machine over a finite interval (0,T). Associated with 

each product i is a due date d., 
l. 

a per unit time holding cost h.' 
l. 

a processing 

time pi and a changeover cost vector C .. which is the cost of starting 
J l. 

production on i if the machine previously produced product j. In practical 

problems one might wish to treat the d. and p, as random variables, although 
l. l. 

this feature is typically disregarded by solution procedures. Example 

situations might be a television manufacturer who produces several different 

styles and sizes of televisions on a single line or a chemical processor who 

produces several different chemicals in batches on a single expensive machine. 

We briefly summarize previous approaches to this problem starting with the 

work of Manne, Dzielinski, Gomory, Lasdon and Terjung and then analyze LP­

like approximations to this model and provide bounds on the closeness of the 

LP solution to the exact IP solution as the problem size gets large. 
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ON SCHEDULING WITH RELEASE TIMES AND DEADLINES 

B. SIMONS 

IBM, San Jose 

Simons 1 

We shall discuss problems in which there are n jobs and 1 or more identical 

parallel machines. Each job becomes available for running at its release 
' 

time, must be completed by its deadline, and cannot be interrupted once it 

has started to run. Can we determine in polynomial time whether or not a set 

of jobs has a feasible schedule if: 

1. each job has unit processing time and the re1ease times and deadlines 

are integers; 

2. each job has arbitrary processing time and the release times and 

deadlines are integers; 

3. each job has unit processing time and the release times and deadlines 

are real numbers; 

4. each job has unit processing time, the release times and deadlines are 

real numbers, and there may be two or more release time/deadline 

intervals for each job? 

The answers to the first two questions had been known for some time. We shall 

survey these results, discuss a simple algorithm which resolves the third 

question, and show why the last question probably has no fast algorithm. 

We shall also discuss how with an additional cost of only O(log n) time 

we can minimize the maximum tardiness for instances of problem 3 for which 

there is no feasible schedule. 
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MARKOV DECISION PROCESSES 

G. WEISS 

Tel-Aviv University 

This introductory lecture is intended to outline some of the basic ideas of 

discrete time Markov decision processes, with particular stress on the finite 

decision space case, which avoids measure theoretic problems - the coverage 

follows in part the presentation in [Ross 1970]. The list of references 

includes some of the more important papers in the development of the subject; 

two other texts are [Derman 1970] and [Bertsekas 1976]. 

The topics covered are: The optimality principle of dynamic programming 

- state space and decision space. The elements of Markov decision processes -

state space, decision space, transition law and immediate return function. 

Policies - general, Markov and stationary. Classification of problems -

discounted, positive, negative and average return per period. Optimal return, 

the optimality equation and optimal policies. Contraction mappings and the 

discounted case. Solution via successive approximation, policy iteration, or 

mathematical programming. The negative and positive problems. The average 

return per period problem. Comments on general state and action spaces. 

Extension to semi Markov decision processes. 

References 

R. BELLMAN (1957) Dynamic Programming, Princeton University Press, Princeton, NJ. 

D.P. BERTSEKAS (1976) Dynamic Programming and Stochastic Control, Academic 

Press, New York-. 

D. BLACKWELL (1962) Discrete dynamic programming. Ann. Math. Statist. ~,719-726. 

D. BLACKWELL (1965) Discounted dynamic programming. Ann. Math. Statist. 36, 

226-235. 

D. BLACKWELL (1965) Positive dynamic programming. Proc. 5th Berkeley Symp. 

Mathematical Statistics and Probabiiity, 415-418. 

E.V. DENARDO (1967) Contraction mappings in the theory underlying dynamic 

programming. SIAM Rev. ~,165-177. 

C. DERMAN (1970) Finite State Markovian Decision Processes, Academic Press, 

New York. 



R. HOWARD (1960) Dynamic Programming and Markov Processes, MIT Press, 

Cambridge, MA. 

A. HORDIJK (1974) Dynamic Programming and Markov Potential Theory, 

Mathematical Centre Tracts 51, Mathematisch Centrum, Amsterdam. 

Weiss 2 

S.M. ROSS (1970) Applied Probability Models with Optimization Applications, 

Holden Day, San Francisco. 

R.E. STRAUCH (1966) Negative dynamic programming. Ann. Math. Statist. E, 
871-890. 



Weiss 3 

SCHEDULING STOCHASTIC JOBS ON SEVERAL MACHINES 

G. WEISS 

Tel-Aviv University 

Unlike the wide range of solved problems in deterministic scheduling and the 

results on scheduling general stochastic jobs on a single machine (see 

previous lectures), only little is known about scheduling stochastic jobs on 

several machines. 

Most of the results are for jobs whose durations are exponentially 

distributed - for such jobs there is usually no distinction between preemptive 

and nonpreemptive schedules, and between continuous and discrete time 

schedules. In particular, if only two machines are involved, some problems 

can be solved by fairly direct methods. Bruno and Downey [2] use an exchange 

argument to show that SEPT (shortest expected processing time) and LEPT 

(longest expected processing time) rules respectively minimize expected 

values of Ic. and of C for two parallel machines. Pinedo and Weiss [14] 
l. max 

prove the latter by examining the last remaining job, and Pinedo. [12] uses 

similar arguments to partially characterize optimal schedules for maximizing 

expected value of C .. Minimization and maximization of C has a 
max max 

reliability interpretation. For the two machine flowshop with exponential 

job durations on both machines, Cunningham and Dutta [6] prove by an exchange 

argument that a rule equivalent to Johnson's [11] rule for deterministic jobs 

minimizes expected value of C • Some very simple cases of two machine open 
max 

shop can also be treated [8]. The calculation of the expected values of Ic. 
l. 

and C for a given schedule is in itself a nontrivial problem, and various 
max 

efficient algorithms·exist. 

Form machines and n exponential jobs, scheduling on parallel machines 

was investigated with increasing generality by several authors [1;2;7;9;14; 

16;20;21]. Weiss and Pinedo [21] consider m uniform machines in parallel, 

with preemptions, and show that SEPT and LEPT minimize expected Ic. and 
l. 

expected C respectively, as well as optimizing various other expected cost max 
criteria. The proof is by using Markov decision processes in continuous time. 

When machines are identical the schedules are nonpreemptive. 

Optimality of LEPT and SEPT preemptive scheduling rules form parallel 
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identical machines is investigated by Weber [17;18;19], for jobs whose 

* durations belongtoMHR (monotone hazard rate) or MHR families, defined as 

follows: there is a basic job duration distribution with a monotone hazard 

* rate (a PF2 type probability density for MHR), and the various jobs start 

at different ages along that distribution. Using an elegant induction argument 

in discrete time, both on the time and on the jobs, he shows the optimality 

of SEPT for minimizing Ic., and of LEPT for minimizing C and for maximizing 
i max 

the time to the first machine idleness (the Nylon Stocking problem of Cox [4], 

also life time of a series system with m components and n spares in 

reliability). For some of these problems, the optimality is in the strong 

sense of stochastic majorization, and job arrivals (equivalently release 

dates) as well as varying numbers of machines are allowed. 
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DETERMINISTIC AND STOCHASTIC SCHEDULING PROBLEMS WITH TREELIKE PRECEDENCE 

CONSTRAINTS 

J. BRUNO 

University of California, Santa Barbara 

In this talk we survey the known results for sequencing unit execution time 

tasks on parallel machines subject to treelike precedence constraints. We 

shall discuss the intree and outtree versions of this problem and for each 

of these contrast the known results for deterministic versus stochastic 

processing times. 
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A COMBINED VEHICLE ROUTING AND INVENTORY ALLOCATION PROBLEM 

A. FEDERGRUEN, P. ZIPKIN 

Columbia University, New York 

We consider the combined problem of allocating inventories of a scarce 

resource available at some central depot among a given set of delivery points 

while grouping these locations in minimal cost vehicle routes. A stochastic 

demand pattern is assumed at each of the delivery points: In each point the 

inventory carrying and shortage costs depend upon the end of period inventory 

levels. Two solution approaches are discussed, an estension of the r-opt 

method used for deterministic vehicle routing problems, and a generalized 

Benders decomposition algorithm which achieves the exact solution when 

pursued till convergence. 

The final part of the talk briefly discusses extensions of the basic 

model incorporating additional complications such as: (1) multiple commodities, 

(2) multiple age classes for perishable products, (3) dynamic allocation 

procedures. 
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PROBABILISTIC ANALYSIS OF THE LPT PROCESSOR SCHEDULING HEURISTIC 

G.N. FREDERICKSON 

Pennsylvania State University 

We consider the following processor scheduling problem: Assign n tasks with 

known execution times tom identical processors, with no preemptions, so as 

to minimize the finish time. The problem has been shown to be NP-hard [Karp 

1972], indicating that there is probably no polynomial time algorithm to 

solve it. As a consequence, polynomial time approximation algorithms have 

been developed that guarantee a constant worst-case bound on the ratio of 

the cost of a heuristic solution to the cost of an optimal solution. For 

example, the LPT heuristic (largest processing time first) has been shown 

[Graham 1969] to have a bound of 4/3 - 1/(3m). The best algorithm to date is 

MULTIFIT, with a bound of 6/5 [Coffman et al. 1978; Friesen 1981]. It has 

been observed by several authors that the worst-case bounds for these 

heuristics are not indicative of average performance, which simulation results 

suggest is considerably better. Unfortunately, relatively little probabilistic 

analysis has been applied to heuristics for any of the NP-hard problems 

[Karp 1977; Lueker 1978]. 

In this paper, we analyze the average performance of the LPT heuristic, 

under the assumption that task times are drawn from a uniform distribution 

on (0,1]. (This distribution is chosen for the sake of tractability, but we 

note that simulations of various heuristics have been made using this 

distribution [Coffman et al. 1978].) We bound the ratio of the expected 

finish time for the heuristic to the expected finish time of an optimal 

preemptive schedule •. (This type of ratio was employed in [Frederickson 1980] 

to analyze the average performance of two simple bin packing heuristics.) We 

show that this ratio is 1 + O((m-1) 2/n2) for the LPT heuristic, confirming 

analytically that the heuristic does do well on average. For the case m = 2, 

we also demonstrate that this ratio is 1 + n(1/n2). 
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ON THE EVALUATION OF NON-PREEMPTIVE STRATEGIES IN STOCHASTIC SCHEDULING 

K. D. GLAZEBROOK 

University of Newcastle upon Tyne 

A collection of stochastic jobs is to be processed by a single machine. The 

jobs must be processed in a manner which is consistent with a precedence 

relation but the machine is free to switch from one job to another at any 

time; such switches are costly, however. 

A general model is proposed for the above problem. Sufficient conditions 

are given which ensure that there is an optimal strategy given by a fixed 

permutation of the job set. These conditions are then used as a starting 

point for the important task of evaluating permutations as strategies in 

more general circumstances where no permutation is optimal. 
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MODELLING FOR MULTIPROCESSOR PROJECTS 

U. HERZOG 

Universitat Erlangen-Nurnberg 

Important performance problems for multiprocessor computer systems have been 

discussed, .modelled and investigated since many years. These fundamental 

results are - although derived without experience with real systems - still 

of great importance. 

Nowadays, however, there are several multiprocessor-projects operational. 

Experiences with such experimental systems give us a deeper insight and many 

impulses for performance modelling. 

This contribution discusses two multiprocessor projects at the University 

of Erlangen-Nuremberg and related performance problems. 

EGPA, the Erlangen General Purpose Array 

Goal of the EGPA-project is to design powerful general purpose computers by 

means of hierarchically structured, modulary extendable multiprocessor 

systems. A pilot-implementation with five AEG-Telefunken control-computers 

is in operation. Software and hardware monitors allow to investigate the 

internal flow of information and to detect bottlenecks in hardware, system 

software and application programs, as well. 

Rather than running independent tasks on different processors one also 

tries to take advantage of the parallelism inherent in many problems, i.e. 

application programs are decomposed into sets of cooperating subtasks and 

processed in parallel, when possible. So we many increase not only the 

throughput of a system: run-times (and therefore response-times) for 

individual application programs may be reduced significantly, too. Then, 

however, difficult coordination problems (synchronization between tasks, 

data- and load-sharing, etc.) may occur and have to be considered in modelling 

such systems. Measurements also show that system overhead due to interprocessor 

communication can be significant and has to be taken into account. Realistic 

modelling is possible by introducing a new class of queueing systems. 
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DIRMU, a Distributed Reconfi.gurable MUltiprocessor kit 

Goal of the DIRMU-project is to implement and test a module-computer kit for 

dedicated and user-configurable multimicrocomputer systems. Prototypes for 

basic elements (general purpose processors, memories, etc.) have been built 

ar,d can be used to construct efficient multiprocessor networks for given sets 

of user problems. 

When implementing such specialized computer networks a major problem is 

to allocate subtasks and data in order to guarantee performance requirements, 

fault tolerance and reasonable cost, as well. These questions and related 

modelling activities will be discussed in general and by example. 
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ON THE DELAY FUNCTIONS ACHIEVABLE BY NON-PREEMPTIVE SCHEDULING STRATEGIES IN 

M/G/1 QUEUES 

I. MITRANI 

University of Newcastle upon Tyne 

For a queueing system in equilibrium, the delay function, W(x), is defined 

as the expected time spent in the queue by a job whose required service is x 

(x ~ 0). In an M/G/1 queue with a given arrival rate, A, and distribution of 

required service times, F(x), the delay function depends on the job scheduling 

strategy employed. A function W(x) is said to be achievable in that queue if 

there exists a scheduling strategy such that the corresponding delay function 

is W(x). 

This note addresses the problem of characterising the set of delay 

functions that are achievable by non-preemptive scheduling strategies. That 

is, scheduling decisions are made at service completion instants only; the 

selection of the next Job to be served may be influenced by the required 

service times of the jobs in the queue and by the past queue behaviour 

(during the current busy period), but not by future arrivals. The idea is to 

generalise some existing results which are valid when F(x) is a step function 

with a finite number of jumps (i.e. when the set of required service times 

is finite). That generalisation leads to an integral equality constraint and 

a set of integral inequalities which the achievable functions W(x) must 

satisfy. In addition, it is shown that the set of those functions is convex, 

and its extreme elements are given. This allows the construction of scheduling 

strategies whose delay functions approximate a pre-defined, achievable delay 

function W(x) to any.accuracy. 

The presentation is informal, relying on intuitive arguments rather 

than rigorous proofs. The results should therefore be treated as conjectures 

at this stage. 
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P. NASH, R.R. WEBER 

University of Cambridge 

Nash & Weber 1 

A large number of stochastic scheduling problems can be reduced to problems 

in deterministic optimal control by a dynamic programming formulation over 

suitable spaces of functions. The basis of the method is to seek an allocation 

of processor effort for every future time, to be followed only until some 

event (usually an arrival or completion) occurs. This allocation is optimized 

on the assumption that an optimal schedule will be followed after the first 

event. Control theorists call the resulting strategy a closed-loop controller. 

This approach has produced a number of theoretical results, and can in 

principle be used as the basis of a computational method. In practice, the 

derived deterministic control problems are complicated, and the computational 

requirements for a realistic application prohibitively great. 

A modification of this approach is possible, which leads to much simpler 

control problems. This is to seek sequential open-loop scheduling strategies, 

rather than fully closed-loop ones. That is, we still look for an allocation 

of processor effort for every future time, but now to be followed only until 

some fixed or possibly random review time, and optimize this allocation 

without reference to what happens after the review. This calculation is 

carried out sequentially, at each review time. The resulting schedules are 

sub-optimal, but in many cases approximate optimal schedules quite well. In 

a number of cases, the sequential open-loop strategy is actually optimal, if 

the review period is small enough. 

In this paper, we discuss some models for which the closed-loop formulation 

leads to as-yet unsolved control problems, but where the sequential open-

loop formulation has analytic solutions. Among these are a number of 

different single and parallel processor models, including models where jobs 

leave before completion and models where the cost of waiting is itself a 

discrete-state random process. As well as analytic results, some computational 

results are presented which compare the performance of open- and closed-loop 

strategies and illustrate the behaviour of the open-loop sequential strategy 

as the review period changes. 



Nash & Weber 2 

References 

The use of dynamic programming to reduce the stochastic scheduling problem 

to a deterministic optimal control problem is described in 

P. NASH, J.C. GITTINS (1977) A Hamiltonian approach to stochastic resource 

allocation. Adv. in Appl. Probab. ~,55-68. 

P. NASH (1979) Controlled jump process models for stochastic scheduling. 

Internat. J. Control 29,1011-1025. 

P. NASH (1974) Optimal Allocation of Resources between Research Projects, 

Ph.D. Thesis, University of Cambridge. 

R.R. WEBER (1982) Scheduling jobs with unknown processing requirements on 

parallel machines to minimize makespan and flowtime. J. Appl. Probab., 

to appear. 

The basic optimal control theory underlying these papers can be found in 

E.B. LEE, L. MARKUS (1968) Foundations of Optimal Control Theory, Wiley, New 

York. 

Approaches related to the open-loop formulation for the stochastic scheduling 

problem appear in 

M. ALAM (1979) An application of modern control theory to a time-dependent 

queueing system for optimal operation. Internat. J. Systems Sci • .!Q., 

693-700. 

C.H. SCOTT, T.R. JEFFERSON (1976) Optimal regulation of service rate for a 

queue with finite waiting room. J. Optim. Theory Appl. 20,245-250. 

The theory of maximum principles for discrete state, continuous-time Markov 

processes is discussed in, for example, 

R. RISHEL (1974) Lecture notes in economic and mathematical systems 107, 

Springer, Berlin. 

D.D. SWORDER (1969) IEEE Trans. Automat. Control AC14.9. 

The following paper considers the reduction to discrete semi-Markov decision 

problems of controlled jump process models in general. 

A.A. YUSHKEVITCH (1981) On reducing a jump-controllable Markov model to a 

model with discrete time. SIAM J. Probab. Theory Appl. 25,1. 



STOCHASTIC DOMINANCE IN ALLOCATION AND SCHEDULING PROBLEMS 

P. NASH, R.R. WEBER 

University of Cambridge 

Nash & Weber 3 

The aim in many stochastic allocation and scheduling problems is to minimize 

in expectation or distribution the time required to meet a certain objective. 

An example is the problem of minimizing makespan for a number of jobs on 

parallel processors. Although for many problems there exists a strategy 

minimizing in expectation the time to meet the objective, it is only for 

rather special problems that there exists a stochastically dominant strategy 

minimizing the time in distribution. When a stochastically dominant strategy 

does exist, it is usually easy to construct, since it can be found by just 

maximizing the one-step probability of meeting the objective. 

This paper discusses the problem of determining when a problem has a 

stochastically dominant strategy. We consider this question first in a quite 

general class of Markov decision problems, and illustrate the results by 

applying them to a number of stochastic scheduling and allocation problems. 

The main result is a way of deriving sufficient conditions for the one-step 

look-ahead strategy to be dominant, in terms of simple conditions on the 

* transition matrix P associated with this strategy, of the form 

* -1 QP Q ~ 0, 

for certain matrices Q. This result essentially tells us that stochastic 

dominance of the one-step look-ahead strategy is guaranteed by certain sorts 

of easily checkable dominance among the rows of the associated transition 

matrix. We show how a number of already-known and some new results for 

scheduling, customer-assignment and search problems can be easily derived by 

this route. 
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ON THE COMPLEXITY OF STOCHASTIC SCHEDULING PROBLEMS 

M. PINEDO 

Georgia Institute of Technology, Atlanta 

For any deterministic scheduling problem, one can formulate a stochastic 

counterpart. Stochastic models with exponentially distributed processing 

times, due dates and release dates usually have a rather "nice" structure. 

It will be mainly with these models with which we will deal. For determining 

the optimal policy, i.e., the policy that minimizes either the expected 

makespan or the expected flow time, in any class of policies, one might have 

to develop algorithms which will have a certain complexity. In some cases 

these optimal policies can be determined in polynomial time, in other cases 

it is not clear whether they can be determined in polynomial time or not. 

And in some very special cases we will be able to prove that we have no 

polynomial time algorithm. Often, when a deterministic scheduling problem 

can be solved in polynomial time, it turns out that the same model with 

processing times and other relevant data exponentially distributed also can 

be analyzed in polynomial time. Examples of models where this is the case 

are F21 !E(C ), J21 IE(C ). This, however, is not always the case. An 
max max 

exception for example is 02! IE(C ), where the exponential version is much 
max 

harder that the deterministic version. 

However, on the other hand, when a deterministic problem is NP-complete 

it does not imply that determining the optimal policy (in any particular 

class of policies) for the same model with exponentially distributed data is 

a hard problem, too. We discuss a number of models where the deterministic 

version is NP-complete and where for its counterpart with all data 

exponentially distributed, we have "nice" optimal policies in several classes 

of policies. Examples of these models are: 

(1) Pl le [Weber-; Weiss & Pinedo 1980]; max 
(2) lld.=aliw.u. [Derman et al. 1978; Pinedo-]; 

J J J 
(3) lld.=dliw.T, [Pinedo-]. 

J J J 
Of the last problem (3) it has not been determined yet whether the 

deterministic version is NP-complete or not. However, the structure of the 

deterministic version of this problem is certainly not as "nice" as the 
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structure of the exponential version. These three examples indicate that 

problems with exponential distributions often have nicer structures than 

problems with deterministic distributions. So, in these cases, having less 

information with regard to the processing times makes it easier to determine 

the optimal policy. 

In some cases it turns out that the optimal policy for the deterministic 

model has the same structure as the optimal policy for the same model with 

exponential distributions, which makes us conclude that optimal policies for 

these stochastic problems cannot be determined in polynomial time, when the 

deterministic version is NP-complete. 

llprec,p.=lliw.C., and its stochastic 
J J J 

[Lawler 1978]. 

An example is the deterministic problem 

counterpart llprec,p.~exp(l) IE<Iw.C.) 
J J J 

Determining the complexity of an algorithm for finding the optimal 

policy turns out to be less hard for one particular class of policies. 

Consider the class of policies where the decision-maker is required to 

determine all his actions for the whole duration of the process, in advance, 

at time t = 0 and may not deviate from this predetermined course when more 

information becomes available during the process. We will call this class of 

policies the class of static policies, in contrast to the class of dynamic 

policies, where the decision-maker is allowed to make his decisions 

sequentially. The problem of determining the optimal policy in the class of 

static policies, when distributions are exponential, usually has a very 

special structure. Such a problem can be compared easily with other 

deterministic problems. It is now possible to reduce well-known deterministic 

NP-complete problems to the problem of determining the optimal policy in 

the class of static policies for models with exponential distributions. For 

example, it is shown that LINEAR ARRANGEMENT is reducible to 

llprec,p.~exp(l) ,d.~exp(µ.) IE(LU,). Several other examples are presented, 
J J J J 

too. 

Only for very special cases we are able to reduce the problem of 

determining the optimal policy in the class of static policies to the problem 

of determining the optimal policy in classes of preemptive and non-preemptive 

dynamic policies. 
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SEQUENTIAL PROJECT SELECTION (MULTI-ARMED BANDITS) AND THE GITTINS INDEX 

P. WHITTLE 

University of Cambridge 

A direct proof is given of the optimality of the Gittins index policy, and a 

related identity demonstrated for the loss function. Especial attention is 

paid to the case when new projects also arrive in a statistically homogeneous 

stream. A number of general results are obtained of which those derived by 

J.M. Harrison etc. are shown to be a special case. 
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