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1. Model and method 

I.I. Introduction 

The well known models of Howard [2] and Jewell [3] assume a finite 

state and action space. Also, these models assume that the costs incurred 

during the time interval between two successive epochs at which the 

decision maker intervenes depend only on the state at the beginning of 

that interval and the action taken in that state. A similar assumption is 

made for the transition times and transition probabilities. 

In many decision problems these assumptions are not satisfied (cf. 

the example below). In this paper we shall treat techniques that may 

attack these problems, where we assume an infinite planning horizon and 

the long-run average cost as criterion. These techniques are not "ready­

made" techniques and their final form depends heavily on the structure 

of the decision problem considered. 

In the next section we shall carry point by point the elements of 

our model. In this presentation we shall not pursue mathematical rigourous­

ness everywhere. The various concepts will be illustrated on the basis of 

the next example~ 

Production problem*) 

The production of a continuous product can be realised on a finite 

number of production levels ti, i = O, I, ... , N with i O = O. The product 

is kept in stock. The storage capacity is limited to a quantity M. 

Orders arrive according to a Poisson-process with a mean of A per 

unit of time. The order size y__ is a non-negative random variable with a 

given distribution function F(y) with finite mean and variance. The order 

size is assumed to be independent of the arrival process. Orders are ful­

filled immediately by the available stock. If the size of an order ex­

ceeds the available stock then the supply is replenished by an emergency 

purchase. 

The production can be controlled by switching over to another product­

ion level. There is no lead time needed to perform a change of production 

level. The following costs are involved in the operation of this system: 

*) 
Thie problem has been solved by P.J. Weeda in Chapter 6 of [5]. 



2 

a) production costs c (i) per unit of time for level£., i = O, 1, ••• 
p 1 

••• , N with c (0) = O. 
p 

b) costs c (i,j) of switching over from level£. to level£., 
q 1 J 

i, j = 0, ••• , N. 

c) costs c per unit.of product of an emergency purchase. 
r 

d) stockholding costs c per unit of time per unit of product. 
s 

1.2. The elements of the model 

(A) In our model the state of the system is described by a point in 

a finite dimensional Cartesian space X. The state space Xis chosen 

in such a way that at each point of time the state of the system can 

be described by a point of X. 

(B) We define some basic process that describes for each initial 

state the evolution of the system when the decision maker takes no 

interventions. This process is called the natural process and is 

assumed to be a stro'Yl{J Markov process. 

(C) For each state x~X, there is a set D(x) of feasible decisions 

in state x, where D(x) is a closed subset of a finite dimensional 

Cartesian space. We disti'Yl{Juish between nuU-decisions and interventions. 

A null-decision does not interrupt the natural process. An intervention 

is a decision which interrupts the natural process and causes an instan­

taneous (possibly random) cha'Yl{Je of the state of the system (since the 

state of the system is specified at each point of time, it is no restric­

tion to assume that the change of the state takes no time). 

When an intervention has a deterministic effect we shall often 

identify the interven~ion with the state which results from that inter­

vention. The elements (A) - (C) must be chosen in such a way that th·e 

following property holds. 

(D) There is a non-empty closed set A;) consisting of states in which 

the null-decision is not feasible, i.e. in each state of A
0 

the decision­

maker has to intervene always. Any feasible intervention in a state of 

In this paper any set As Xis assumed to be a Borelset. 
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A has to result into a state that does not belong to A0 with probability 0 . 
I. Also, there must hold that from each initial state xEX the natural 

process reaches the set A0 within a finite time with probability I. 

Before we proceed, we illustrate the points (A) - (D). 

Productionexample.We specify the state of the system by two state vari­

ables, an integer i for the production level and a real variables for the 

stocklevel, where i = 0, ... , N and O ~ s ~ M. So the state space is given 

by 

X = {x = (i,s)li = 0,1, ..• , N; 0 ~ s ~ M}. 

We define the natural process as follows. When the initial state is (O,s) 

with O < s ~ M, the system remains in this state until the next epoch at 

which an order arrives. At that epoch the system assumes state 

(O,max(O,s - v)) where y_ is the size of that order. Once the natural 

process is in state (0,0), the natural process remains in that state for­

ever. When the initial state is (i,s) with i > 0 ands< M, the system 

continues to produce on the productionlevel i, where a decrease of the 

stock level occurs when an order arrives (an emergence purchase is done, 

when the size of the order exceeds the available stock). The natural 

process remains in state (i,M) forever as soon as this state is taken on. 

A decision in this problem has a deterministic effect. We identify 

any decision with the state into which the decision results. We forbid 

the null-decision in the states (O,O) and (i,M) (I~ i ~ N). In state 

(i,M) we only permit the intervention (O,M). Hence 

D(O,O) = {(O,j)II ~ J ~ N}; D(i,M) = {(O,M)I for I~ i ~ N}; 

D(i,s) = {(j,s)jO ~ j ~ N}, otherwise. 

Clearly, the set A
0 

= {(0,0)} u {(i,M)jl ~ i ~ N} satisfies point (D). 
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(E) We will consider only the class z of stationary strategies. A strat­

egy ze:Z adds to each state x a decision z(x)e::D(x). Let A be t;he set of z 
states in which strategy z dictates an intervention. It is required that 

A is a closed set and that for any intervention the resulting state 
z 

does not belong to A with probability I. *) 
z 

In fig. I we present for ·the productionproblem with N =Ia particular 

strategy 

A = A (I) u A (Z) 
z z z 

i=O 
Fig. I 

i=l 

(F) When the natural process is controlled by a strategy ze:Z, then the 

resulting process is called the decision process. It is required that for 

any decision process the number of interventions in a finite time is finite 

with probability I. 

Remark I. In the decision process corresponding to strategy z an inter­

vention occurs when the system assumes a state of A . By A 2 AO and z z 
point (D), any intervention transfers instantaneously the system into a 

state which does not ~elong to AO with probability I. Hence the decision 

process is independent of the definition of the natural process on A
O

• 

In other words, we have some freedom in defining the natural process. How­

ever, the result of the natural process and a strategy must agree with 

"reality". This remark may be useful for the determination of the functions 

k(x;d) and t(x;d) which will be introduced in point (H). 

*)Th' l . is atter requirement may be weakened somewhat. 
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(G) For any strategy zEZ and any zEX, let I be the nth future intervention 
-n 

state *) when strategy z is used and the initial state is x ( observe .!_
1 

need not be x when xEAz). The process {.!u,n ~ I} is called the decision 

process in A. z 

It can be shown under general conditions that {I} is a Markov process 
-n 

wi th discrete time parame_ter. 

(H) Choose now -two empty subsets 

such that in the natural process with probability leach of these subsets 

is reached from each initial state within a finite time. We now associate 

to each state xEX and decision dED(x) random walks ~i and ~i' i = 1,2. 

The walk ~I (resp. ~
2

) has x as initial state and during this walk the 

system is subjected to the natural process. The walk ~l (resp.~
2

). ends 

as soon as the system assumes a state of A01 (resp. A02 ). The walk ~l 

(resp. ~
2

) has x as initial state too. But now in state x decision dis 

made, by which the system is transferred (instantaneously!) into some 

state and from that state on the system is subjected to the natural process. 

The walk ~l (resp. ~
2

) ends as soon as the system assumes a stat~ of 

AOI (resp. A02 ). 

Let k
0 

(x) and k
1 

(x;d) be the expected costs**) incurred during 

~I and ~I' respectively.For the determination of the costs the walks are 

assumed to be "left open and right closed". However, the costs of the 

decision dare included in k
1
(x;d). Let t

0 
(x) and t

1 
(x;d) be the ex­

pected duration of ~ 2 and ~ 2, respectively. Now, for xEX and dED(x), 

define 

(I) k(x;d) = kt' (x;d) - k
0 

(x) and t (x;d) = t 1 (x;d) - t 0 (x). 

*) In this paper we underline random variables. 

**) h 1 It is supposed that there is a given cost structure on t e natura pro-

cess and that there are associated direct decision costs with each in­

ter~ention. For convenience the costs are assumed to be non-negative. 
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Observe that k(x;d) = t(x;d) = 0 if d =null-decision.By a proper 

choice of A
01 

and A
02 

the determination of k(x;d) and t(x;d) may become 

very simple. Also, observe that the functions k(x;d) and t(x;d) not 

depend on any particular strategy. Hence we need only once and for all to 

determine these functions. 

Finally, it is assumed that the functions k(x;d) and t(x;d) are 

bounded. 

J.3. The criterion function and the functional equations 

In point (G) we have defined for a strategy zEZ the imbedded process 

{I}. This process will play an important role in our considerations. 
-n 

For ease of presentation we assume throughout this paper that for each 

strategy zEZ the as~ociated Markov process {I} has no two disjoint 
-n 

ergodic sets. 

For each zEZ, xEX and any set Ac X, let 

p(n)(A;z;x) = probability that I belongs to the set A when the 
-n 

strategy z is used and xis the initial state. 

We make the next assumption. 

Assumption.For each strategy zEZ the associated Markov process 

{I} satisfies the Doeblin condition. 
-n 

We refer to Doob [1] for the definition of the Doeblin condition. 

Remark 2. A useful criterion can be given to verify the Doeblin condition. 

Let zEZ. In case there is a finite set E ~ X, an integer u ~ I and a 

positive number p such that 

(2) p(u)(E;x;z) ~ p for all xEA, 
z 

then for strategy z the process {I} satisfies the Doeblin condition. 
-n 

In the problems we encountered the condition (2) appeared to be 

satisfied. 



Now, by the theory of Markov processes (cf. Doob), there is a proba­

bility measure q(A;z) such that 
n 

lim ¼ I p(k)(A;z;x) = q(A;z) 
n~ k=l 

Further, for any A~ X, 

(3) q(A;z) = JA p(I)(A;z;x) q(dx;z). 
z 

for all XEX. 

THEOREM I. For each strategy ZEZ, the long-run average cost is indepen­

dent of the initial state and equals with probability I 

(4) f A k(x;z(x))q(dx;z) / f A t(x;z(x))q(dx;z). 
z z 

Proof. We will briefly sketch the proof. Suppose that strategy zEZ is 

applied and that at epoch O the system is in state XEX. Let T(x;z) be the 

expected duration of the time until the next epoch at which the system 

reaches a state of A. Let K(x;z) be the expected costs incurred during 
z 

this time interval, where we only count any decision cost incurred at 

epoch O and where we consider this interval left open and right closed 

for the other costs. Then, by using standard ergodic theorems, it can be 

shown (see De Leve [4])that the long-run average cost equals with 

probability I 

(5) JA K(x;z)q(dx;z) / IA T(x;z)q(dx;z). 
z z 

Now, by the definitions of K(x;z) and k(x;z(x)), 

(6) k(x;z(x)) = K(x;z) + JA k0(I)p(l)(dl;z;x) - k0(x), xEX. 
z 

By an interchange of the order of integration and (3), 

(7) 

7 
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From (6) and (7), 

(8) IA k(x;z(x))q(dx;z) = JA K(x;z)q(dx;z). 
z z 

Similarly, IA t(x;z(x))q(dx;z) = IA T(x; z)q (dx;,z) From this-, 
z z 

(5) and (8) the theorem now follows 

The average cost can also be found by solving a set of functional 

equations. This set of functional equations will play a basic role in our 

considerations. 

THEOREM 2. Let zEZ. Then 

(a) the set of equations 

(9) c(z;x) = k(x;z(x)) - r(z)t(x;z(x)) + Ec(z;!1), 

has a solution. 

XEX 

(b) For any solution of (9) holds that r(z) equals the expression given 

in (4), i.e., r(z) represents the long-run average cost. 

(c) Let y be an arbitrary state in X. If the condition c(z;y) = 0 is 

added to (9), then the resulting set of equations has a unique solution. 

Proof. We refer to De Leve [4] for a proof of (a). The proofs of (b) and 

(c) are standard (cf. Howard [2])and are omitted. 

Remark 3. 

( 10) 

Since k(x;z(x)) = t(x;z(x)) = 0 for xtA, we have 
z 

for xtA. 
z 

Hence~ in fact it is s~fficient to solve (9) for xEAz. 

Definition 1. A strategy z* is called optimal if r(z*) ~ r(z) for all ZEZ. 

1.4. Basic tools 

In this section we shall give a number of results which justify the 

solution techniques that will be treated in the,final section. 
' 



Let us fix a strategy z1EZ and a solution (r(z
1
), c(z

1
;x)) of the 

set of functional equations (9) with z = z
1

• Our first goal is to improve 

strategy z1• We need the following definitions. 

Definition 2. For any xEX and dED(x), 

where u is the state in which the system is transferred by decision d 

in state x. 

It is not difficult to verify that 

(12) c(z1(x).z1;x)= c(z1;x) Pnd c(d.z
1

;x) = c(z
1

;x) ford= null­

decision. 

The proof of the first part of (12) is a simple exercise in the use of 

conditional expectations. The other part of (12) follows simply from 

k(x;d) = t(x;d) = 0 for d = null-decision. 

Definition 3. For any ZEZ, 

(13) 
={c(z(x).z1;x) 

Ec([z]z
1

;_!.) 

for xEA 
z 

for xiA z 

where I is the first state the system takes on in the set A when the 
z 

system is subjected to the natural process and xis the initial state. 

The following theorem is basic (for its proof, see De Leve [4] ). 

THEOREM 3. Let z be a strategy such that 

for all xEX, 

then r(z) ~ r(z 1). When the inequality signs are reversed, the theorem 

remains true. 

9 



COROLLARY. Let z* be a stra~egy such that 

c(z*;x) = min c([z]z*;x) 
Z€Z 

then strategy z* is optimal. 

for all xEX 

If we start with a strategy z1 and we want to find a better strategy, 

then this corollary suggests to look for a strategy z
2 

satisfying 

(14) c([z
2

Jz
1

;x) = min c([z]z
1

;x) 
Z€Z 

for all xEX. 

In case z
2 

appears to be identical to z
1 

we have found an optimal strat­

egy. The suggestion above will be performed in two steps. First we 

improve strategy z
1 

by the Policy Improvement Operation. 

Policy Improvement Operation. For each xEX, determine 

(15) c*(z
1
;x) = min c(d.z

1
;x). 

dcD(x) 

Strategy z1
1 is constructed by adding to each state x a minimizing 

decision, where we agree that we choose z1
1 (x) = z 1(x) when z

1
(x) is a 

minimizing decision. 

(16) 

By the above agreement and (12), we have 

::i A 
- z 

1 

Proof. By Theorem 3 it suffices to show that c([z 1'Jz1;x) ~ c(z
1

;x} for all 

x. Since c*(z 1;x) = c(z
1
'(x) , z 1;x), it follows from (13) that 

for all xEA t • 
zl 
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Hence, by ( 13), for xii.A ' 
. zl 

where the last equality follows from (10) and (16) by conditioning on the 

first entry in the set A.'. This ends the proof. 
zl 

By (16) it will be clear that we need a mechanism which may reduce PPP 

the set A 1 • We give the following definition 
zl 

Definition 4. For any closed set A with A 2 A0 , 

(17) XEX, 

where a is the first state in A taken on by the system when the initial 

state is x and the system is subjected to the natural process. 

Observe c(A.[z1 'Jz1;x) = c*(z1;x)for xEA. We now introduce: 

Cutting mechanism (optimal stopping) Let F be the class of all closed 

sets A satisfying 

(18) 

It can be shown that An BEF when A,BEF. Define now 

and ~uppose that this intersection set belongs to F. Define strategy z
2 

as follows 

for xEA', 
zl 

otherwise. 

THEOREM 5. The strategy z
2 

satisfies the relation (14) *). 

*)By Theorem 3, r(z
2
)~r(z

1
). More general, let A be a set satisfying (18), 

and let zA(x)=zj(x) for XEA and zA(x)=null-decision, otherwise. Then 

r(zA)~r(z 1), by c(A.[z1Jz 1;x)=c([zAJz 1;x) for all x, (18) and Theorem 3. 
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We refer to De Leve [4] for the proof of this theorem. 

Remark 4. The determination of the set A', can be seen as an optimal z 
stopping problem. Let us consider the nathral process. 

Suppose that the natural process may be stopped in each state-of the set 

A,, where we have to stop the natural process as soon as it takes on a 
z 

stAte in A
0

• The natural·process may not be stopped outside Az,• When the 

natural process is stopped in state x a cost c*(z
1

;x) is incuried. Under 

general conditions we have that the set A' is equal to the smallest z' 
1 

optimal stopping set (cf.[6]). 

1.5. The solution techniques 

First we specify the elements (A) - (D) and we determine the (x;d) -

functions k(x;d) and t(x;d). 

I DIRECT APPROACH. Determine z*EZ such that 

c(z*;x) = min c([z]z*;x) 
ZEZ 

for all xEX • 

Then, by the Corollary of Theorem 3, strategy z* is optimal. However 

in most cases an optimal strategy can be determined only in an iterative 

way. 

II ITERATIVE APPROACH 

Let z = z(n-l) be the strategy obtained at the end of the (n-I)th step 

of the iteration procedure (start in step I with an arbitrary strategy of 

Z). The nth step runs as follows 
( 

(a) Functional equations. Choose a state yEX. Determine the unique 

solution (r(z), c(z;x)) of (cf. (9) and (10)) 

c(z;x) = k(x;z(x)) - r(z)t(x;z(x)) + Ec(z;_!.1), xEX 
c(z;y) = O. 

(b) Policy Improvement Operation. For each XEX, determine (cf.(11)) 



c*(z;x) = min {k(x;d) - r(z)t(x;d) + Ec(z;u)}. 
de:D(x) 

Construct strategy z' by adding to each state x a minimizing decision, 

where we choose z'(x) = z(x) when z(x) is a minimizing decision. 

(c) Cutting mechanism (oRtimal stopping) Determine the smallest set A 

satisfying (18). Denote this set by A',, and define strategy z(n) by 
z 

z(n)(x) 
{ 

z' (x) 

= null-decision, 

End of the nth step. 

It can be shown (see [4]) that 

lim r(z(n)) = inf r(z) • 
n-+<x> ze:Z 

for xe:A', , 
z 

otherwise • 

In [6] the theory given in [4] has been specialized to the case of a 

finite number of states and a finite number of decisions. For this case 

the iterative method converges after a finite number of steps (see [6]). 

13 
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2. The motorist Froblem (Chapter 5 in [SJ). 

5.1. Problemformulation 

A motorist has decided to effect an accident insurance under the 

following conditions. The insurance runs for one year. The premium for the 

first year amounts E0 • If no damages have been claimed during i successive 

years i = 1, 2 or 3 the premium is reduced to E .• After four years of 
1 

damagefree driving no further premium reduction is granted, so the premium 
* remains E3 • The premium is due on the first day of the premium year.) The 

own risk amounts a0 • 

The numb~r of accidents is assumed to be•Poisson-distributed with a 

mean of A per year. It is assumed that the damages caused by the accidents 

are mutually independent random variables, which have a commoR distribution 

function F(s) with finite mean and variance. Furthermore the damages are 

assumed to be independent of the Poisson-process, which generates the 

accidents. 

The problem of the motorist will be to decide whether to claim a 

damage or not. The solution of the problem will be a strategy that speci­

fies his decisions in every possible situation. This strategy will be opti­

mal if it minimizes the expected average costs per year in the long run. 

In view of the premium reduction, it will be unprofitable to claim 

damages which are not much larger than a0 • Once a damage is claimed, it 

will be profitable to claim all damages that exceed a0 during the remain­

ing part of the year. Hence his decisions will also depend on the time of 

the year and the premium paid at the beginning of that year. So we dis­

tinguish between four types of year, for each premium one. 

Our task will be to determine for each premium year a function s(t) 

with the following property: If at time tan accident occurs with damages 

and no damages have been claimed since the last payment of premium, thens 

*> It is no restriction to assume this is January 1. 



should be claimed ifs> s(t). The strategy is completely fixed by this 

function. The optimal strategy will be the function s(t) that minimizes 

the (expected) average costs per year in the long run. 

The solution of this problem by our method will start with the appli­

cation of the strategy-independent notions in section 5.2. In this section 

the state space, the natural process, the feasible decisions, the set A0 
and the functions k(x;d) and t(x;d) will be determined. In section 5.3 the 

functional equation (9) is specified to the situation met 

in this problem, after which the optimal strategy is determined using the 

15 

direct approach given by (19). Finally in section 5.4 some.numerical results 

will be given. 

5.2. The strategy-independent notions 

In order to define the state space in this problem the relevant in­

formation at each point of time is c©nsidered. The following information 

will be of interest: 

(1) whether an eventual damage is covered or not; 

(2) whether an accident happens or not; 

(3) the amount of the last paid premium Ei, i = O, 1, 2, 3; 

(4) the date and time of the day considered; 

(5) the extend of the damage; 

(6) whether a damage has been claimed since the last payment of 

premium or not. 

In figure 5.1. the state space is presented. 

At the t-axis we distinguish: 

a) Four points: E., i = O, 1, 2, 3. In these states the corresponding 
1 

premium has to be paid; damages are no longer covered by insurance. 

b) Four intervals of one year*> li < t < li + 1, i = 1, 2, 3, 4. The 

t-component of the state runs through li < t < li + 1 if and only if 

*> li = 11, 12, 13, 14 if i = 1, 2, 3 and 4 respectively. 

ft 
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the last premium paid was E. 1 , one or more damages have been claimed 
].-

that year and coming damages are still covered by insurance. 

c) Four intervals of one year: 2i .::_ t < 2i + 1, i = 1, 2, 3, 4. The t­

component of the state runs through 2i < t < 2i + 1 if and only if the 

last premium paid was E. 1 , no damages have been claimed up tot 
].-

since the last payment of premium and coming damages are still covered 

by insurance. 

s 

._ _ __._ _ __,.__...._ ____ ~ 
21 22 23 24 25 t 

Figure 5.1 The state space 

The s-variable is zero unless at least one damage has been claimed 

that year and moreover the coming damages are still covered by insurance. 

In that case the s-component denotes the extend of the last claim. 

The u-variable is zero unless at least one damage has been claimed 

that year and coming damages are still covered by insurance. In that case 

the u-component denotes the time elapsed since the first claim that year. 

Note that the s-component can only be different from zero if 

li .::_ t < li + 1, i = 1·, 2, 3, 4. Consequently the state space consists of: 

a) 4 points E. i = o, 1, 2, 3; 
l. 

b) a 3-dimensional subspace (t,s,u) with 11 < t < 15; 

c) a 1-dimensional interval 21 < t < 25. 

Next the natural proces is described. This process can start in each 

state of the state space. In accordance with the premium paid the system 
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run, through one of the time intervals 2i .::_ t < 2i + 1 i = 1, 2, 3, 4, if 

no damage has been claimed that year. If no accident happens during the 

rest of the year the system is transferred to E .• Since in the natural 
1 

process no premiums are paid the system will stay there forever. However, 

if at time t' during the·year an accident occurs the system is transferred 

. to (t'-10,s' ,O) wheres' denotes the damage. Since during the natural 

process irrespective of their extends all damages are claimed the system 
\ 

will stay in the 3-dimensional part of the state space for the remaining 

part of the year. Then the u-component is increasing with time. The s­

component only changes if a second, third, etc. accident happens. At the 

end of the year the system is transferred to E0 where it stays forever. 

The two feasible decisions inthe st·atesE. i = O, 1, 2, 3 are the 
1 

null-decision and the decision involving the payment of the premium E .• 
1 

The respective transformations are E. + E. and E. + (2i+l,O,O). In states 
1 1 1 

(t,s,O) an accident has just occured and the decisionmaker can suppress 

the claim if he wants. In that case the respective transfermation is 

(t,s,O) + (t+lO). Note that a claim corresponds with a null-decision. 

This is in accordance with the fact that in the natural process all 

damages are claimed. In the states (t,s,u) with u > 0 only null-d~cisions 

are feasible. If an accident occurs in a state with u > 0 the decision 

not to claim is of course a bad decision and is considered to be in­

feasible for that reason. Also in the states t with 21 .::_ t < 25 only null­

decisions are feasible. In figure 5.2 states have been marked with two 

feasible decisions. 

E 
1 

u 

s 

__ _._ ___ ..._ _______ ➔ 

21 22 23 24 25 t 

, Figure 5.2 States with more than one feasible decision 
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From now on only strategies are considered which dictate payment of 

premium in the states E., i = O, 1, 2, 3. By its definition the set 
]. 

AO consists of the states in which each strategy dictates an intervention. 

In this problem the states Ei, i = 0, 1, 2, 3 and the states _( t, s, u) with 

11 .::_ t < 15, s .::_ aO and u = 0 constitute the set A
O 

because each strategy 

dictates the payment of premium and suppression of the claim if the 

damage does not exceed the own risk. So we have: 

(5.1) 

The non-empty subsets AO 1 and AO 2 
of the set AO are chosen in such 

' , 
a way that the most simple expressions for the functions k(~;d) and t(x;d) 

are obtained. Here we choose: 

(5.2) = {E., 
]. 

i = O,1,2,3} 

and consequently for the associated stochastic walks it follows: 

(5.3) 

and 

(5.4) 

To abbreviate the notation we write .!o and ~d respectively. 

Consider the .!o-walk having (li+T,s,O) as initial state. During the 

walk .!o the system is subjected to the natural process. In the natural 

process each damage is claimed. The damages at time Tis thus claimed 

and (the costs min(s,a
0

) are incurred. For each damage which occurs in the 

natural process we have the expected costs 

(5.5) F(ds) 

The expected number of accidents in a fraction 1 - T of a year is 



equal to A(l-L). Hence the expected costs incurred during the walk .!o 
are given by: 

(5.6) 

The expected duration of the walk .!o is obviously: 

(5.7) 

Since decisions lead to deterministic transitions in this problem 

they will be denoted by the resulting states. 
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During the ~d-walk starting in x = (li+L,s,O) the claim is suppressed 

and the system is transformed to stated= 2i + L. After this transform­

ation the system is subjected to the natural process up to the end of the 

year. At that moment either state E0 is taken on if a second accident 

occurred or state E. if no Aeonnd accident occurred. The expected 
1 

duration t 1 (x;d) of the ~d-walk for x = (li+L,s,O) and d = 2i +Lis 

given by: 

(5.8) 

and the expected costs by: 

(5.9) 

By (5.6) (5.9) and referring to {l) the following 

relations are obtained for the functions k(x;d) and t(x;d) with 

x = (li+L,s,O) and d ·= 2i + L: 

(5.10) 

(5.11) t(li+L 1 s,0;2i+L) = 0. 
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Finally the k- and t-functions for the states E. 1 , i = 1, 2, 3, 4 
1-

are determined. The !4)-walk having Ei-l as initial state endS:immedia~ely in 

that state because Ei-l ~ A
011 

= A
012

• In the natural process no premiums 

are paid. Hence k0 (Ei_1) = t 0 (Ei_1) = O. Next we consider the ~d-walk 

having E. 
1 

as initial state. The payment of premium in state E. 
1 

trans-
1- 1-

forms the system into state 2i. The ~d-walk is from state 2i on subjected 

to the natural process. At the end of the year the walk ends either in 

state E
0 

or state Ei. The expected duration of the ~d-walk is thus one 

year. The expected costs of the ~d-walk consists of the premium Ei-l and 

the expected costs incurred during the year in the natural process. So 

we obtain 

(5.12) t(E. 1 ,2i) = 1, 
1-

(5.13) k(E. 1'2i) = E. l + Ak(ao>· 1- 1-

* Suppose that z is an optimal strategy satisfying 

(5.14) c(z*;x) = min c([z]z*;x) 
* * Z€Z 

where (r(z ),c(z ;x)) denotes a solution of 

riction to assume that (cf. Theorem 2(b)), 

(5.15) 

Consequently, by (10), 

(5.15a) * c(z ;x) = 0 

for all X€X, 

* (9) with z =z. It is no rest-

for xiA *, 
z 

since E
0 

is the next intervention state when in state x the null-decision 

is(made (claim!). We shall now demonstrate that a function s(t) determines 

Az* • To do this, we fix state x =(s,t,O) with ll~t<l5 and s>a
0

• Let z be 

a strategy which dictates the null-decision in state x. Then, by (13) and 

z(E
0

) =z*(E
0
), we have c([z]z*;x) = c(z*;E

0
) =O. From this and (5.14), 
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(5.16) * c(z ;x)~O. 

An intervention in state x (do not claim!) transfers the system into state 

t+10. Now, by (9), (10), (5.10), (5.11), 

(5. 17) * . * c(z; t,s,O) = s-a
0 

+ c(z ;t+10) 

From (5.16) and (5.17), 

(5. 18) * s-a
0 

+. c(z ;t+IO)~ O 

for x = (t,s,O)EA *. 
z 

for x = (t,s,O)EA * 
z 

Nexc let z be a strategy which dictates an intervention in state x. Then, 

by (13), (II), (5.10).and (5.11), 

(5. 18a) - * * c([z]z ;t,s,O) = s-a
0 

+ c(z ;t+IO). 

Now, by (5.14) and (5.18a), 

(5. 19) * * c(z ;t,s,O) ~ s-a
0 

+ c(z ;t+IO). 

From (5.15a) and (5.19), 

(5.20) * s-a
0 

+ c(z ;t+IO) ~ 0 for x = (t,s,O)iA *· 
z 

Since the left side of (5.20) is a linear increasing function of s, it 

follows from (5.18) and (5.20) that A* is determined by a function 
z 

s(t) (>a
0

) satisfying 

* (5.21) s(t)-a
0 

+ c(z ;t+IO) = O for all ll~t<15, 

where x=(t,s,O) belongs to A* 
z 

is indifferent on the boundary 

Next we shall demonstrate 

(5.22) 

and from (5.17) and (5.22), 

if and only if s~s(t). Observe that it 

s(t) of A* to claim or not to claim. 
z 

how s(t) can be found. From (5.21), 
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(5.23) c(z*;t,s,O) = s - s(t) for a
0 

< s 2_ s(t). 

Fors~ a0 by (5.10) and (5.11) we have (c.f~ (91- l, 

(5.24) c(z*;t,s,O) = c(z*;t+lO) = a0 - s(t). 

Furthermore holds for c(z*;E.), i = 1, 2, 3: 
1 

(5.25) c(z*;E.) = 
1 

lim 
tt2i+l 

c(z*;t), 

or by (5.22) and (5.25): 

(5.26) c(z*;E.) = a -
1 0 

Summarizing our results: 

c(z*;x) = 

lim 
ttli+l 

s(t). 

0 for x £:. E0 U{11 2- t < 

U{ll < t < 

3 
(5.27) a - lim s(t) 0 ttli+l 

for X e:. LJ E., 
i=l 1 

15,s > 

15,s > 

a - s(t) 
0 

for Xe::{ 11 < t < 15,s 2_ a0 ,u 

s(t) ,u = O} 

O,u > ,O}' 

= O}, 

s - s(t) for xe:{11 < t < 15,a
0 

< s < s(t) ,u = O}, 

a - s(t-10) 0 for x E:{ 21 < t < 25}. 

From functional equation (9) it follows for x = 

i = 1, 2, 3, 4: 

E. 1, J_-

(5.28) c(z*;E. 1) = k(E. 1 ;2i) - r(z*) t(E. 1 ;2i) + c(z*;2i). 
1- 1- 1-

By substitution of (5.12) and (5.13) in (5.28) it follows: 
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(5.29) 

From (5.27) and (5.29) we obtain: 

for i = 1, 

(5.30) s(li) 

- r(z*) + lim s(t) 
t+li 

for i = 2, 3, 4. 

Furthermore we have the relation: 

(5.31) lim s(t) = 
t+14 

lim s(t). 
t+l5 

For x = (t,s,~) with a0 < .s ~ s(t) and t = li+T it.follows (c.f. ,(9)), 

(5.32) c(z*;t,s,O) = 

k(t,s,O;t+lO) - r(z*) t(t,s,O;t+lO) + 
00 

I 
-AT 

+ c(z*;E.) Ae ! d'l" 1 + 
]. 

li+l-t 

li+l-t -AT s(t+.
1

) 

J Ae 1 
d'l"l I c(z*;t+.1 ,y,O) F(dy) + + 

0 0 

li+l-t -AT "" 
+ I Ae l d'l"l f c(z*;E0) F(dy). 

0 s(t+. 
1

) 

(Substitution of (~.10), (5.11) and (5.27) in (5.32) leads to: 

(5.33) c(z*;t,s,O) = 

-A (li+'l" -t) (a _ 
s - ao + e O lim 

ttli+l 
s(t)) + 
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li+l-t -h s(t+. 
1

) 

J 
1 

dTl J (y-s(t+T 1)) + e dF'('y) + 

0 ao 
li+l-t -h 

I° J 
1 

+ >..e• dTl (a0-s(t+.1)) dF(y). 

0 0 

After substitution of s = s(t) and (5.29) the differentiation of (5.33) 

with respect tot leads to: 

(5.34) 
ds(t) 

dt 

00 00 

J (y-s(t)) dF(y). 

s(t) 

By partial integration this functional equation can be written in the 

more simple form: 

(5.35) = 1 

sJt) 
ds(t) /\ 

dt 
(1-F(y-)) dy. 

Except a translation along the t-axis the boundary s(t) is deter­

mined by (5.35). In other words the boundary of Az* for i = 1, 2, 3, 4 

are in the t-direction translated parts of one curve satisiying (5.35). 

The location of each part on this curve has to be determined from the 

relations (5.30) and (5.31). 

Suppose that r(z*) is known, then s(ll) is solved from (5.30). From 

the curves= s(t) we find lim s(t). From (5.30) we obtain s(l2). 
tt12 

Similarly we compute· lim s(t), s(13), 
tt13 

lim s(t), s(14) and 
tt14 

lim s(t). 
ttl5 

If r(z*) is not known its value is determined by relation (5.31). 

It should be noted that the functional equation (5.35) has an 

analytical solution in the case the damage per accident is exponentially 
-µs 

distributed. We have then for F(s) = 1 - e : 



(5.36) 
ds(t) 

dt 
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The solution of (5.36) is given by: 

(5.37) 

where the c. 
1 

s(t) 

-µao 

1 A(t+c.)e 
= a0 + - ln { l+e 1 

} 
µ ' 

i = 1, 2, 3, 4 are integration constants each corresponding 

to the time intervals li < t < li + 1, i = 1, 2, 3, 4. If the distribution 

of the damage is not exponential we have to solve (5.35) numerically in 

most cases. 

5.4 Some numerical results. 

The following numerical data are used: 

E
2 

= 1.2 

E
3 

= 1.1 

ao = 0.4. 

For these data and A= 2 accidents per year five distributions with 

the same expectation were investigated. The type of distribution, its 

expectation and coefficient of variation are given in the following table: 

Number of Type of distribution Expectation Coefficient 
curve of variation 

( 1 exponential 1 1 

2 gamma 1 1/3 

3 log normal 1 1 

4 log normal 1 1/3 

5 log normal 1 3 

The densityfunctions are sketched in figure 5,3 
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f(s) 
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Figure 5.3. The five used damage distributions 

s 

The corresponding optimal strategies are presented in figure 5.4. 

From these results it can be deduced that for distributions with the same 

mean and variance the optimal strategy are nearly the same. Further, if 

the variance increases the boundary of Az* moves upwards. The results were 

obtained by a computer program especially written for this problem. 
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28 A quality control ptoblem~1 

Consider a machine that produces each day a pr~duct whose quality will 

be identified with one of the integers I, ••• ,M. At the beginning of each 

day the machine may be inspected. The costs of an inspection are equal to 

J. An inspection is done when the decision maker wants to find out the 

quality of the product that will be produced that day. After an inspection 

he knows this quality. When he thinks that this quality (say i) is not 

acceptable, he decides to a revision of the machine. The revision costs 

are R(i). Both the time needed to inspect the machine and the time needed 

to revise the machine may be neglected. After a revision the machine pro­

duces that day a product of quality M. The production costs incurred at a 

day are given by p(i) when the machine produces that day a product of 

quality i,(I ~ i ~ M). 

If the machine produces at day ta product of quality i, then, with 

probability p .. , at the beginning of day t + I the machine will be in a 
l.J 

condition to produce a product of quality j(I ~ j ~ M), and, with proba-

bility piO' the machine will be defect at the beginning of day t +I.We 

assume P:fo<l and piO + pit + ••• + piM = I for all I ~ i ~ M. When the ma­

chine is defect at the beginning of a day, the machine is repaired. The 

repair costs are R(O) and the repair time may be neglected. After a repair 

the machine produces that day a product of quality M. 

It is assumed that the machine becomes eventually defect when never a 

revision occurs. 

The decision maker wants to determine a strategy for inspecting and 

revising the machine such that the long-run average costs per day are 

minimal. 

The elaboration of this problem will be sent to the participants before 

november I, 1973. 
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