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Summary

It is shown that a system of equations of (qualified) integer-valued
functions is equivalent to a linear combination of the equations.
As applied to linear functions in integer varisbles with integer

coefficients the results improve two theorems by Mathews.
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Introduction

Recently (1970) S.E. Elmaghraby and M.K. Wig [1] republished two
theorems due to G.B. Mathews (1897) [3].

These theorems show that a pair of linear equations with strictly
positive coefficients in non-negative integer variables is equivalent
to a single equation, which is a linear combination of the original
ones. By repeated application a system of such equations can either
be reduced to a single equation or is shown to be infeasible.

In this way, a linear programming problem in integer variables is
reduced to a knapsack problem, which might be less difficult to

solve than the original problem. The coefficients in the knapsack-

constraint. however, tend to be rather large.

In the present paper it is shown that, under certain conditions, a
system of equations of integer valued functions is equivalent to

a linear combination of the original equations. The result is applied
to the linear case and leads to an equation with smaller coefficients
than those obtained by Mathews.



2. General

Let fi(x) (i =1, «.., m) denote integer-valued functions, defined

for x € D, where D is an arbitrary domain.

Define:
s, = sup (£, (x) l £.x) =0 (3=1, ..,i-1,i41, o, m))
(1)
s, = inf (£, (x) I £.(x) =0 (j=1, ..0ui-1,i41, ooy m))
for 1 = 1, 2, +0., M.
Theorem 1
If the system of equations
fi(x) = 0 (i=1, ..., m) (2)
has a solution then
S- f_OiS. (i=1’ ° 0 a0y m)n (3)

Proof

If x solves fi(x) = 0 with either 0 < s, or 0 > 8. then, by (1),
fj(x) 4 0 for at least one j. This completes the proof.

Define

T ¢ 2 SUD (fm_1(x) | fj(x) =0  (j=1, ve., m=2))
()
t < inf (£ (x) | £(x) =0 (§=1, .0y m2))
Theorem 2
If
- < tm—1 <0 i-Tm-T < (5)

then for each integer Amr1



with : Ayoq > max <—tm—1’ ?m—1) (6)
the system
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£, (x)
(1)
ﬁm_1(x) * A, fm(x) =0

Proof

Note that T > S and t. , < s . If the relation t <0<T
m-1 — “m~1 m-1 — "m~1 n-1 — " — "m-1
does not hold the system is infeasible and equivalent to any infeasible

equation. So tm—1 <0 5-Tm~ may be assumed without loss of generality.

1

Any x solving (2) evidently solves (7). Now assume x is a solution
of (7). It is obvious that fm(x) = 0 implies fm_1(x) = 0 and con-
versely, thus the theorem holds if x € D implies fm(x) =0 or

fmF1(x) = 0. The only remaining case to be considered is

both £ (x) 0
° m-1 (8)
and £, (x) +0 .

Then (7) yields

-fm-1(x)
f (x) = $ 0 and integer (9)
m A
m-1
hence
Ifm_1(x)l LA (10)
and, by (5) and (6),
efther fmrT(X) < tmr1
(11)
or fm_1(x) > Tm_19



b

contradicting (4), as x solves (7).

This completes the proof.

Now define, for i = 1, ..., m~1,

T, > sup (£, (x) | fj(x) =0 (§=1, veey i-1))
(12)
t, < inf (£, (x) | fj(x) =0 (=1, coey i=1)).
‘Theorem 3
If -o<t, <O<T, <w (i=1, vvuy m=1) (13)

1 1

then for each set of integers

A; > max (—ti, Ti) (i=1y o0y m=1), (14)
the system
fi(x) =0 (i=1, +0e, m) (2)

is equivalent to the single equation

m
2 M, £, (x) =0 (15)
l-_"] . N
where
i-1
M. = I X., (16)
Proof

The proof by induction is straightforward, and omitted.

It should be noted that, by teking Ay =2 (i=1, ..., m=1)
with

A > max(max(~t, ,T. ) [ i=1, ..., m-1) (17)

equation (15) becomes



At

o~

! fi(x) = 0. (18)

If the functions fi(x) (i=1, ..., m-1) are bounded

and

R, = max fi(x) - min fi(x) (i=1, ...y m=1) (19)

then

A > max (Ri | i=1, ouy m-1) (20)
satisfies (17).

The values of the Mi are minimized by minimizingthe‘ki,
but will, in general, depend on the ordering of the equations.

If x ¢ D implies

< < 1= . -
si__fi(x)__Si (i=1, vuey m=1) (21)
Ti = Si and ti = s, can be used. Then the Mi sre independent of
the ordening of the equations. The Mi are absolutely minimal if

x € D implies fi(x) =0 (i=1, ..v, m=1).

The righthand sides of (12) seem independent of the equations
fj(x) =0 (j=i, ..., m). However, implications of these equations
may be used in the definition of D. These implications must be

considered again while solving (15).

It should also be noted that theorem 3 requires f1(x) to be bounded
on D, fe(x) must be bounded on D n {xlf1(x) = 0} etec.

However, fm(x) may be unbounded on D n {x|f1(x) = .., = fm_1(x) = 0},

Finally, it is clear that any integer valued function ui(x) Z-Ai

for ¥ € D can be used instead of Ai.



-

3. The linear case

3.1 General

Consider a system of m linear equations in n varisbles, with integer

coefficients. The variables are bounded and required to be integers.

. X. = a, (i=1, .o, m), (22)

fi(x) = 1 13 73 10

il >3
o

D ='{(x1, coey xn) | o j_xj §_Bj, xj integer }. (23)

Define, for i=1, ..., m,

n n-
U, = .. B. | a,.>0)+ a.,. 0, | a.. <0
i ~§ (a5 | 1ij ) -Z (a5 95 | 25 )
g=1 J=1
(2k)
n n
. = LS » L ) < - . 3 . » > L]
! -Z (a5 85 | a5 < 0 ¥ L (a5 a5 ] ey > 0)
J=1 J=1
Clearly, us j_fi(x) U (i=1, ooy m),

1 > - -
and for each set of integers Ai max (Ui asgs 84 ui) the system

(22) is equivalent to

)
a. X. = a (25)
j=1 9 9 0
where
m
a; = .Z 8 5 A1 Ay eee AL, (j=0, 1, ..., n) (26)
i=1 ‘
or, if A > max A,
i 1
T i-1
a, = a.. A (3=0, 1, +ves n). 2
3 i§1 13 J=U, 1y s ( 7)'

The equivalence is not certain if, for any i % m, a,

< u. or
10 1

Ui < aiO’



T

But then the system apparently is an infeasible one. This qualification

18 not repeated in the sequel.

If, for any i, u, = Ui the i-th equation is superfluous, because

x € D implies that the equation holds, and can be deleted.

Sharper bounds on fi(x) can be obtained by using (12):

Define, for i=1, ..., m,

n
V. = maximum of Z 8.. X. ‘ (28)
i j=1 3T

subjeet to

1
L ooy xs = ey (=1, oo, d-1),
) (29)

a, < x. < B, (i=1, voes 1),

and - n
v, = minimum of - X a.. X.,
i =1 1) J

also subject to (29).

To compute Vi and vi a number of linear programming problems must
be solved, but the relations between the problems can be exploited.
If any of the problems is infeasible the original problem also is
infeasible. If all problems are feasible it is worthwhile to
optimize an arbitrary objective function subject to (22) and

o < xs < Bj.

The sharperbounds on fi(x) yield smaller lower bounds for the Aia
However, Ai > 2 can be assumed without loss of generality, because
Ai = 1 implies that the corresponding equation is guperfluous. Con-
sequently, the multipliers M, = A, Ay o A; > 2*1 and the
coefficients aj may turn out to be rather large. If the a, have

greatest common divisor ¥ 1division will result in smaller coefficients.

&
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The A. are bounded from below only, and might be selected to lead

to a ;educible equation (25). If the system of equations was obtained
by adding slack variables to a system of inequalities, reduction of
the system certainly results in an irreducible equation. It is

also possible to multiply some of the eqautions by -1 to obtain

both positive and negative coefficients in a column. If an equation
is multiplied by o, ]a] > 1, the lower bound for Ai inereases.

It might be worthwhile to divide each equation by the greatest common
divisor of its coefficients before introducing slacks and reducing
the system.

Finally, system (22) might imply sharper bounds on xj than those
specified in (23), the sharper bounds can be substituted cf. Zionts
Ch].

3.2, Positive coefficients

Any system of linear equations in bounded variasbles is equivalent
to one with aj = 0 and aij > 0. The transformation to obtain uj =0
is obvious.

If‘-a.:.Lj < 0, Wiﬁh J + 0 ﬁhe introduction of a varisble yj > 0 and
an additional equation xj+y5 = Bj’ together with the substitution

a,. X, =4a.. B. - a.. y. give the desired result.
iJ 4J id 4 1J %4
As the system

z 8., X. =D
=1 13 73 1
0

& 8, X. =D (39e)
L 2§ 7 2

J=1

is eguivalent to
n
jZ1 (a1j + tazj) xj =D, + th,
(301)
n
. = +
jZ1.(sa1J + a2 ) x sb1 b2

provided st + 1, even an equivalent system with strictly positive

coefficients can be obtained.
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Mathews [3], as cited by Elmaghraby and Wig [ 1], gave two theorems

on (30a) with positive coefficients and oy = 0:

a, .
L > b, must hold

1. If the system is feasible the inequality b2 = 1
2J

for at least one J.

8,
2., For any positive integer X subject to A > max b2 Al > b, the

an 1
system (30a)is equivalent to J 2
n
.+ Ix, = + ..
321 (a1J Aaza)xJ b, Ab,

Indeed, if Xj is not restricted to be integer the problem

n
maximize a,. X.
=1

. 1
j Jd J
(31)
n
subject to Z a’2j x'j = b2
J=1
xj_>__0 (J=15 vees 1)

ig solved by taking

b
2 .
—-. if ) =,3_|
x =
j 2 (32)
0 :'ij=|=31
a1. 8.1.
where —ls = max — .
Q.. N a_ .
23 J 2]

e

n .
ThusO<Za,.x.<b—1-‘l""
_—j=1 13 79 — 2 a,.

and both theorems follow immediately from the theorems of the present

paper.

a. .
Interchanging the row-indices in b Ll > b, leads to the statement that

2 a 1
2]
a2. a1, b1 a1.
b1 -a—-‘l _>_b2 must hold for at least one j, or, if min E,—J_-(-B— < max —a—‘l

. 13 J 23 2 4 2J
does not hold then .
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(30a) has no integer solution.

. . 1. .
Equations (30a) 1mply,xj_i'6j = min ,(57—0
5 I ..

and x: > q,

1
; = max ( (bi -

1 . 1 1

.. B ), 0) with o. and B.

J =12 %3 k=1 1J K J J
k

J

[ [ e T
w

rounded to the appropriate integer. It is not difficult to solve

(31) and its minimizing equivalent with the additional constraints
1 1

o, < x., < B..

d— J = Jd

The additional constraints xj + yj = Bj’ if introduced, may be

ignored during the reduction of the system. One of the substitutions

xj = Bj'— yj or yj = Bj - xj will transform the final equation

into an equivalent one with non-negative coefficients and the

original number of variables.

Final remarks

Now consider system (22) again and assume oF > 0. Relation (27)
admits the following interpretation:

1j"§°’%mj) represents aj in the system with base A.

Thus computation of the aj is superfluous, or smounts to nothing
but their representation in a different system. Consequently, any
method to solve (25) with a; > 0, can be used to solve (22). If
other operations than comparing aj's are necessary a value for A
must be determined.

The same remarks apply to (26), where the aj are represented in a
possible unfamiliar system, with a different number of ‘digits' for

each position.,

s > 1,

8., > i
Ir alJ > 0 1t may be assumed that aOJ
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The conclusion is that a system with aij > 0 leads to aj of such
a magnitude that multi-length arithmetic is required while solving

(25). But then the representation a; = (a coes amj) might be

153°
used. The multiplication of selected rows by -1 will not help much

if the system was obtained from a system of inequelities. In this

m-1

case the slack varisble in the m-th row will have A, A, «.o A 4 > 2

as coefficients.

If the original problem has all é’ij > 0 negative elements should
be introduced., At least two methods are available, multiplication
of a row by -1, and the substitution aij xj =a,. B.-~a.. y..

. S ij 55 1Y
(with oy = 0). The substitution x; = Bj -y has no effects.

It is clear that a slight modificetion of the problem, e.g.
aij H ='aij + 1 for some elements, may have considerable effects
on the coefficients of the final equation. This possibly sheds some

light on experiences with integer linear programming algorithms.

The linear case may be extended to. gystems of polynomial equations
with integer coefficients and integer variables.

Extention to systems of inequalities is not straightforward, x < 1
and y < 1 imply x + 10y < 11 but the converse is not true.

In general, the lexicographic¢al ordering is not applicable if in-

equality in each separate component is required.

Polynomials in bivalent (zero-one) verisbles are the Pseudo-Boolean
functions. Bivalent polynomials in bivalent variables are the Boolean
functions in Pseudo-Boolean representation. In case of Boolean
equations the present approach is related to the methods of

Fortet and Camion, cf. Hammer and Rudeanu [2], chep. III, §h.
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Examples

4,1 Internal stability

An undirected graph consists of a set of vertices (nodes) and a set
of edges (lines). Each edge connects (is incident to) exactly two
vertices. For each pair of vertices at most one edge incident to
both vertices exists.

Label the vertices 1, 2, ..., n and label the edges 1, 2, cococ, M

The edge-node incidence matrix of the greph is defined as

1 if edge i incident to vertex J

85 = (36)
0 otherwise,

thus aij has exactly two positive entries in each row.

A subset of the set of vertices is called internally stable if no

edge connects two vertices in the subset.

Any solution of

n
) oa.. x. <1 (i=1, vuvy m),
j=1 iJ 4d
(37)
X, e {0, 1} (3=1y 40y 1),
describes an internally steble set.
A maximel internally steble set is found by solving
n
maximize Dox.
j=1
subject to
T T Li- T oLi-1 T oo
) () 3 a..) x. + ) 3 s. = ) 3 , (38)
b “ ij .5 i
Jg=1 1i=1 i=1 i=1
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.............

Consider the problem

£,= =%, + 3%, - 5X3 - x) + hxs + xg = -2
£, = 2x, - 6x2 + 3x3 +o2x) - 2x5 + Xq =0
f3 = x5 = 2x3 +x) + Xg +x8 = -1 (39)
Xj € {O, 1} (j=1, s g 5) 9 xj ZO (j=6’ 73 8)'
Evidently
-7T==1=5~« 1.2 f, 5_3 +h+5 =12 ,
-8=-6-2 Sf,22+3+2+8=15, (ko)
-2=-2 S Lo,
as the system implies ¢ <5, x? < 8 and x8'§,1.
These bounds are rather crude, because the implication Xy 1 is ignored

and each bound is independent of the remaining constraints.

It follows that A1 = 15, Ae = 16 and A, = 5 can be-used. One of them

3
is superfluous, after rearranging the constraints the system is

equivalent to

f3 + 5f1 + 75f2 =~ 1 - 1k,

or

msx1 - h3hx2 + 198x3 +'.1.h6xh -‘129x;‘+ 5x6 4'75x *+ xg = -15Q

T
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In [1] the same problem leads to

55284 x, + 14092 v

+

+
+

+ 43359 x. + 165852 Yy

+ 82926 x

+
+

45526 v

+
+

+ 56367 x - 1k092 ¥,

+
+
-+

57451 x 55284 Vs

+
+

276k42 x7 +

292679 .

14092 ¢

+

1083 xg

This equation is ‘irreducible, 1083 = 3 x 19 x 19, 14092 contains
neither factor 3 nor 19.

The substitutions

y1 = 1 - x1 . x2 =1 - y2, y3 = 1 = x3, 'yh =1 - xu, y5 = 1 - xs,

lead to
41196 x, + 142493 v, * 37400 xg ¥ ko275 x),
2167 %5 + 1h092 X + 27642 X + 1083 xg = 120326,
4.3 Another example
Consider the system
f=2x+2y = 3
g=2x+3y=hf’
h=3x+L4y=5
0 < x< 1
0y=1

X, ¥ = integer.

This system has no solution, even if x and y are not required to
be integers.

Subject to £ = 3,g . = 3% andg =k,
' min
5 max
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Thus the system reduces to

s}
{t
1}

W

2x + 2y

(133
+
[
]
]

\O

5x + Ty

and

£ + h(g+h) = 22x + 30y = 39.
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