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Surnary 

It is shown that a system of equations of (qualified) integer-valued 

functions is equivalent to a linear combination of the equations. 

As applied to linear functions in integer variables with integer 

coefficients the results improve two theorems by Mathews. 
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1. Introduction 

Recently (1970) S.E, Elmaghraby and M.K. Wig [1] republished two 

theorems due to G.B. Mathews (1897) [3]. 

These theorems show that a pair of linear equations with strictly 

positive coefficients in non-negative integer variables is equivalent 

to a single equation, which is a linear combination of the original 

ones. By repeated application a system of such equations can either 

be reduced to a single equation or is shown to be infeasible. 

In this way, a linear programming problem in integer variables is 

reduced to a knapsack problem, which might be less difficult to 

solve than the original problem. The coefficients in the knapsack­

constraint, however, tend to be rather large. 

In the present paper it is shown that, under certain conditions, a 

system of equations of integer valued functions is equivalent to 

a linear combination of the original equations. The result is applied 

to the linear case and leads to an equation with smaller coefficients 

than those obtained by Mathews. 
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2. General 

Let f.(x) (i = 1, ••• , m) denote integer-valued functions, defined 
l 

for x € D, where Dis an arbitrary domain. 

Define: 

s. = sup (f.(x) I f. (x) = 0 (j=1, ... ,i-1,i+1, • .. , m)) 
l l J 

s. = inf (f.(x) I f. (x) = 0 (j=1, ••• ,i-1 ,i+1, ••• , m)) 
l l J 

for i = 1 , 2, •• • , m. 

Theorem 1 

If the system of equations 

f. (x) = 0 
l 

(i=1, ••• , m) 

has a solution then 

s. < 0 < s. 
l - l 

(i=1, ••• , m). 

Proof 

If x solves f.(x) = 0 with either O < s. or O > S. then, by (1), 
l l l 

f.(x) f O for at least one j. This completes the proof. 
J 

Define 

Theorem 2 

If 

- 00 < t < 0 < T 
m-1 - - m-1 

< 00 

then for each integer A 1 m-

( j = 1 , ••• , m-2) ) 

( j = 1 , • , • , m-2 ) ) • 

( 1 ) 

(2) 

(3) 

(4) 

(5) 
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with A 
1 

> max (-t 
1 

, T 
1 

) 
m- m- m-

the system 

f.(x) = O 
J. 

(i = 1, ••• , m) 

is equivalent to 

Proof 

f.(x)=O 
J. 

(i = 1, •.• , m-2) 

(6) 

(2) 

Note that Tm_ 1 .::_ Sm_ 1 and tm_ 1 .::, sm_ 1. If the relation tm_ 1 .::, 0 .::._ Tm_ 1 

does not hold the system is infeasible and equivalent to any infeasible 

equation. Sot 
1 

< 0 < T .
1 

may be assumed without loss of generality. 
m- - - m-

Any x solving (2) evidently solves (7), Now assume xis a solution 

of (7). It is obvious that f (x) = 0 implies f 
1
(x) = 0 and con-m m-

versely, thus the theorem holds if x € D implies f (x) = 0 or 
m 

f 
1
(x) = 0, The only remaining case to be considered is m-

both 

and 

Then (7) yields 

hence 

fm_ 1(x) + 0 

f (x) + 0 m 

and, by (5) and (6), 

efther 

or 

+ O and integer 

(8) 

(9) 

( 10) 

( 11 ) 



-4-

contradicting (4), as x solves (7), 

This completes the proof. 

Now define, for i = 1, ... , 

T. ~ sup (f.(x) f. (x) 
1 1 J 

t. < inf (f. (x) I f. (x) 
1- 1 J 

Theorem 3 

If - 00 < t. < 0 < T. < 00 

1 - - 1 

m-1, 

= 0 

= 0 

then for each set of integers 

A. > max (-t., T.) 
1 1 1 

the system 

f.(x) = 0 
1 

(j=1' 
•• 0 ·' 

i-1)) 

(j=1, 
•• 0 ' 

i-1 ) ) • 

(i=1, ... , m-1) 

( i= 1 , ... , m-1 ) , 

(i=1, ... ,m) 

is equivalent to the single equation 

m 

I 
i=1 

where 

M. f.(x) = 0 
1 1 

i-1 
M. = II A. 

1 j=1 J 

Proof 

The proof by induction is straightforward, and omitted, 

It should be noted that, by taking A. = A (i=1, ••• , m-1) 
1 

with 

A > max(max(-t. ,T.) 
-- 1 -·- 1 

,equation ( 15) becomes 

1 = 1, •.. , m-1) 

(12) 

(13) 

(14) 

(2) 

( 15) 

( 16) 

( 17) 
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m 

I 
i=1 

"i-1 
f. (x) = O. 

1 

If the functions f.(x) (i=1, ••• , m-1) are bounded 
1 

and 

R. = max f.(x) - min f.(x) 
1 1 1 

(i=1, ••• , m-1) 

then 

" > max ( R . I i = 1 , • • • , m- 1 ) 
1 

satisfies ( 17). 

The values of the M. are minimized by minimizing the ". , 
1 · 1 

but will, in general, depend on the ordering of the equations. 

If X € D implies 

T. = S. and t. = s. 
1 1 1 1 

the ordening of the 

x € D implies f.(x) 
1 

( i = 1 , • • • , m- 1 ) 

can be used. Then the M. are independent of 
1 

equations. The M. are absolutely minimal if 
1 

= 0 ( i = 1 , , • • , m- 1 ) • 

The righthand sides of (12) seem independent of the equations 

( 18) 

(19) 

(20) 

(21) 

f.(x) = O (j~i, ••• , m). However, implications of these equations 
J 

may be used in the definition of D. These implications must be 

considered again while solving (15). 

It should also be noted that theorem 3 requires f 1(x) to be bounded 

on D, f 2(x) must be bounded on D n {x!f,{x) = O} etc. 

However, fm(x) may be unbounded on D n {xlr1(x) = ••• - fm_ 1(x) = O}. 

Finally, it is clear that any integer valued function µ.(x) > "· 
1 - 1 

for x € D can be used instead of " .• 
1 
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3. The linear case 

3, 1 General 

Consider a system of m linear equations inn variables, with integer 

coefficients. The variables are bounded and required to be integers. 

n 
f. (x) = I a .. x. = aio (i=1, • • • , m), 

J. j=1 J.J J 
( 22) 

D = { (x1, • 0 • , X ) a-; < x. < (3 • ' x. integer }. 
n J - J - J J 

(23) 

Define, for i=1, ... , m, 

n n 
u. = I (a .. (3 • a .. > o) + I (a .. Ct • a .. < o) 

J. j=1 J.J J J.J j=1 J.J J J.J 

(24) 

n n 
u. = I (a .. (3 • a .. < o) + I (a .. a. a .. > 0). 

J. j=1 J.J J J.J j=1 J.J J J.J 

(i=1, ••• , m), 

and for each set of integers A. > max (U.-a. 0 , a. 0- u.) the system 
J. J. J. J. J. 

(22) is equivalent to 

n 
I a. x. = ao 

j=1 J J 

where 
m 

a. = I a .. A1 A2 ... A. 1 (j=O, 1 ' . .. , n) 
J i=1 J.J J.-

or, if A > max A. 
J. 

J. 
m i-1 

a. = I a .. A (j=O, 1 , • • 0 , n). 
J i=1 J.J 

The equivalence is not certain if, for any if m, aiO < ui or 

u. < a.
0

• 
* J. 

(25) 

(26) 

(27) 
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But then the system apparently is an infeasible one. This qualification 

is not repeated in the sequel. 

If, for any i, u. = U. the i-th equation is superfluous, because 
l. l. 

x € D implies that the equation holds, and can be deleted. 

Sharper bounds on fi(x) can be obtained by using (12): 

Define, for i=1, ••• , m, 

n 
V. = maximum of l a .. x. 

l. j=1 l.J J 

subject to 

n 
I 8kj x. = 

j=1 J 

a,. < x. < a. 

and· 

J - ·J -

v. = minimum of 
l. 

also subject to (29), 

J 

81cc (k=1, 

(j=1' 

n 
I 

j=1 
a .. x., 

l.J J 

. .. ' i-1), 

• 0 • , n), 

(28) 

(29) 

To compute V. and v. a number of linear programming problems must 
l. l. 

be solved, but the relations between the problems can be exploited. 

If any of the problems is infeasible the original problem also is 

infeasible. If all problems are feasible it is worthwhile to 

optimize an arbitrary objective function subject to (22) and 

The sharperbounds on f.(x) yield smaller lower bounds for the A .• 
l. l. 

However, A. > 2 can be assumed without loss of generality, because 
l. -

A. = 1 implies that the corresponding equation is superfluous. Con-
1. • 1 

sequently, the multipliers M. = x1 x2 ••• A. 1 > 21
- and the 

l. 1.- -

coefficients a. may turn out to be rather large. If the a. have 
J J 

greatest common divisor f 1 division will result in smaller coefficients, 
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The A. are bounded from below only, and might be selected to lead 
J. 

to a reducible equation (25). If the system of equations was obtained 

by adding slack variables to a system of inequalities~reduction of 

the system certainly results in an irreducible equation. It is 

also possible to multiply some of the eqautions by -1 to obtain 

both positive and negative coefficients in a column. If an equation 

is .multiplied by a, lal > 1, the lower bound for A. increases. 
J. 

It might be worthwhile to divide each equation by the greatest common 

divisor of its coefficients before introducing slacks and reducing 

the system. 

Finally, system (22) might imply sharper bounds on x. than those. 
J 

specified in (23), the sharper bounds can be substituted cf. Zionts 

[4] 0 

3.2. Positive coefficients 

Any system of linear equations in bounded variables is equivalent 

to one with a.= 0 and a .. ~ O. The transformation to obtain a.= 0 
J J.J J 

is obvious. 

If-a .. ~ O, with j + 0 the introduction of a variable y. > O and 
J.J J -

an additional equation x.+y. = S., together with the substitution 
J J J 

a .. x. = a .. S. - a .. y. give the desired result. 
J.J J l.J J J.J J 

As the system 

n 
I e.,1 . x. = b 

j=1 ·J J 1 

n 
= b I a2j x. 

J 2 

(30a) 

j=1 

is equivalent to 

n 
I (a1j + ta2j) x. = b 1 + tb2 j=1 J 

(30b) 
n 
I (sa1j + a2j) x. = sb

1 + b2 
j=1 J 

provided st+ 1, even an equivalent system with strictly positive 

coefficients can be obtained. 
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Mathews [3], as cited by EJJnaghraby and Wig [1], gave two theorems 

on '(Joa) with positive coefficients and a. = 0: 
J 

a.1. 
1, If the system is feasible the inequality b2 ..2J. ~ b

1 
must hold 

a2j 
for at least one j. 

a1. 
2. For any positive integer A subject to A> max b2 _!.J. ~ b

1 
the 

j a2j 
system (30a)is equivalent to 
n 
l (a

1
. + Aa2 .)x. = b + Ab2., 

j=1 J J J 1 

Indeed, if x. is not restricted to be integer the problem 
J 

subject to 

n 
maximize l a

1
J. x. 

j=1 J 

n 
I a2J· x. 

j=1 J 
= b 

2 

x. > 0 
J 

is solved by taking 
b2 

if 
x. = a2j 

J 

0 if 

where 

(31) 

(j=1, ... ,n) 

j = J 1 

(32) 

J + J 1 

and both theorems follow immediately from the theorems of the present 

paper. 

a1 . 
Interchanging the row-indices in b

2 
_!.J. ~ b

1 
leads to the statement that 

a2j 
a2. 

b1 ..bl;:_ b2 must hold 
a1. 

' J 
does not hold then 

a1. b 1 a1. 
for at least one j, or, if min _!.J. < - < max _!.J. 

j a2j - b2 J a2j 
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(30a) has no integer solution. 

Eguations (30a) imply 

and 1 x. > a. = 
J - J 

max 
i=1,2 

D 1 :::: x. < .., • 
J - ,] 

(-1- (b. 
a. . i 

J.J 

min 
i=1 ,? 

n 
I 

k=1 
k=j 

b. 
(-l-) 

a .. 
lJ 

rounded to the appropriate integer. It is not difficult to solve 

(31) and its minimizing eguivalent with the additional constraints 
1 1 

CL < X, < S .• 
J - J - J 

The additional constraints x. + y. = S., if introduced, may be 
J J J 

ignored during the reduction of the system. One of the substitutions 

x. = S. - y. or y. = S. - x. will transform the final eguation 
J J J J J J 

into an eguivalent one with non-negative coefficients and the 

original nUlllber of variables. 

3,3 Final remarks 

Now consider system (22) again and assUllle a .. .::_ O, Relation (27) 
lJ 

admits the following interpretation: 

(a . , . , . ,a . ) represents a. in the system 11ith base A. 
lJ mJ J 

Thus computation of the a. is superfluous, or amounts to nothing 
J 

but their representation in a different system. Conseguently, any 

method to solve (25) with a.> O, can be used to solve (22). If 
.. J -

other operations than comparing a.'s are necessary a value for A 
J 

must be determined. 

The same remarks apply to (26), where the a. are represented in a 
J 

possible unfamiliar system, with a different ntlll1ber of 'digits' for 

each position. 

If a .. > 0 it may be assUllled that a0j > 1 , 
lJ -

m m i-1 so ao > I A.1 ... A. 1 > I 2 • 
i=1 l- i=1 

' 
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The conclusion is that a system with a .. > 0 leads to a. of such 
lJ J 

a magnitude that multi-length arithmetic is required while solving 

(25). But then the representation a.= (a1 ., ••• , a .) might be 
J J mJ 

used. The multiplication of selected rows by -1 will not help much 

if the system was obtained from a system of inequalities. In this 
m-1 

case the slack variable in them-th row will have A1 A2 ••• Am_ 1 ,::_ 2 

as coefficients. 

If the original problem has all a .. > O negative elements should 
lJ 

be introduced. At least two methods are available, multiplication 

of a row by -1, and the substitution a .. x. =a .. S.- a .. y .• 
lJ J lJ J lJ J 

(with a.= 0). The substitution x. = S. y. has no effects. 
J J J J 

It is clear that a slight modification of the problem, e.g. 

a .. : =a .. + 1 for some elements, may have considerable effects 
lJ lJ 

on the coefficients of the final equation. This possibly sheds some 

light on experiences with integer linear programming algorithms. 

The linear case may be extended to. systems of polynomial equations 

with integer coefficients and integer variables, 

Extention to systems of inequalities is not straightforward, x < 1 

and y .'.:. 1 imply x + 10y .::_ 11 but the converse is not true. 

In general, the 11.e,?Cicograpb,ical ordering is not applicable if in­

equality in each separate component is required, 

Polynomials in bivalent (zero-one) variables are the Pseudo-Boolean 

functions. Bivalent polynomials in bivalent variables are the Boolean 

functions in Pseudo-Boolean representation. In case of Boolean 

equations the present approach is related to the methods of 

Fortet and Camion, cf, Hammer and Rudeanu [2], chap. III, §4. 



, -12-

4. Examples 

4.1 Internal stability 

An undirected graph consists of a set of vertices (nodes) and a set 

of edges (lines). Each edge connects (is incident to) exactly two 

vertices. For each pair of vertices at most one edge incident to 

both vertices exists. 

Label the vertices 1, 2, ••• , n and label the edges 1, 2, ••• , m. 

The edge-node incidence matrix of the graph is defined as 

[ if edge i incident to vertex j 

a .. = {36) 
J.J 

otherwise, 

thus a .. has exactly two positive entries in each row. 
J.J 

A subset of the set of vertices is called internally stable if no 

edge connects two vertices in the subset. 

Any solution of 

n 
l a .. x. < 1 

j=1 J.J J 
(i=1, ••• , m), 

(37) 

x. e: { 0' 1} 
J 

(j=1, ••• , n), 

describes an internally stable set. 

A maximal internally stable set is found by solving 

n 
maximize I 

j=1 
x. 

J 

subject to 

n m 
i-1 

m 
i-1 

m i-1 I ( I a .. ) x. + I s. = I 3 (38) 
' j=1 i=1 J.J J i=1 J. i=1 

x. e: {O, 1} {j =1, ••• , n) 
J 

s. e: {O, 1} (i=1, ••• , m). 
J. 
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Consider the problem 

5x· 
3 
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= 

= 

= 

x. € {O, 1} (j=1, ..• , 5) , x. > 0 (j=6, 7, 8). 
J J 

Evidently 

7 = 5 = 12 , 

8 - - 6 - 2 .::_ f2 ::_ 2 + 3 + 2 + 8 = 15 , 

- 2 = - 2 

as the system implies x6 ::_ 5, x
7 

.:. 8 and x8 .:. 1 • 

-2 

0 

--1 

These bounds are rather crude, because the implication x
3

::.: 

and each bound is independent of the remaining constraints. 

( 39) 

(40) 

is ignored 

It follows that A1 = 15, A2 = 16 and A
3 

= 5 can be-used. One of them 

is superfluous, after rearranging the constraints the system is 

equivalent to 

or 
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In [1] the same problem leads to 

55284 x 1 + 14092 y 1 + 

+ 43359 x2 + 165852 y2 + 

+ 82926 x
3 

+ 45526 y3 + 

+ 56367 x
4 

+. 14092 y
4 

+ 

+ 57451 x5 + 55284 y
5 

+ 

+ 14092 x6 + 27642 x
7 

+ 

+ 1083 x8 = 292679 , 

This equation is :·irreducible, 1083 = 3 x 19 x 19, 14092 contains 

neither factor 3 nor 19, 
The substitutions 

y = 1 - X , 
1 1 

X =1-y, 
2 2 

lead to 

41196 x
1 

+ 142493 y2 + 37400 x3 + 42275 x4 
2167 x

5 
+ 14092 x6 + 27642 x

7 
+ 1083 x8 = 120326. 

4,3 Another example 

Consider the system 

f = 2x + 2y = 3 

g = 2x + 3y = 4 

h = 3x + 4y = 5 

0 < X < 

x, y = integer. 

y = 1 - X , 
5 5 

This system has no solution, even if x and y are not required to 

be integers. 

Subject to f = 3, g . = 3~ and g 
min max 

= 4. 
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·Thus the system reduces to 

and 

f = 2x + 2y = 3 

g + h = 5x + 7y = 9 

f + ~(g+h) = 22x + 30y = 39, 
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