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1. INTRODUCTION

Let P be an NxN Markov matrix whose (i,j) element is Pij (1,3=15...,N),
1.€., Pij > 0 and zj Pi5=1' Let T be an N component column vector whose ith
element is ‘I‘i where Ti > 0 for i=1,...,N, and let g be an N component
column vector whose ith element is q; (i=14...,N). The triple (P,T,q) can
be thought of as a semi-Markov reward process with transition probabilities
pij’ expected transition times T. and one-transition rewards q;. It ig
assumed that the Markov matrix P has a single recurrent chain. Let state
N be a recurrent state of the Markov matrix P.

In each iteration of Howard's [2] well known policy-iteration algo-

rithm a set of linear simultaneous equations must be solved. For the single

chain case this set of equations is of the following type:
gl + v=gq+Pv, (1)

where g is an unknown scalar and v is an unknown N component column vector
whose ith element is v, (i=1,...,N). It is important to have an efficient
method for solving (1). For the case where P is an aperiodic Markov matrix
Morton [4] has given a simple iterative scheme to solve (1).

The purpose of this note is to demonstrate that a solution of (1) can
be found by solving two sets of linear simultaneous equations which are
more easy to tackle éhan (1). In our approach we need not require that P
is aperiodic . Despite the fact that our approach is implied in the paper

of Derman and Veinott[1], the theorem below seems to have passed unnoticed.
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2. RESULTS

We first introduce some notation. Let T" be the N-1 component column
vector whose ith element is Ti’ let q* be the N-1 component column veqtor
whose ith element is ;> and let R be the N-1 component row vector whose
ith element is Pyi (i=1,...,N=1). Denote by Q the (N-1)x(N-1) matrix whose
(i,J) element is P;; (i,5=1,...,0-1) . Observe that Q" - 0 as n - =, since
N is a recurrent state of the Markov matrix P.

We have the following theorem (cf. Derman and Veinott [1] and Theorem 1

of Morton [4])
THEOREM. Let the colum vector x=(x;,...,xy ,) be the unique solution to
*
x=q +Qx, (2)
and let the columm vector y=(y1,...,yN_1) be the unique solution to
*
y=T +Qy . (3)
Define the scalar g by
g=(q+Rx)/(T+Ry) , (%)
and define the N component column vector vz(vl,...,vN) by
v; = x; - gy; for i=1,...,N-1 , vy =0 . (5

Then g,v satisfy equation (1).

Proof. Let us first observe that both (2) and (3) have a unique solution,

since Qn > 0 as n »> =, Denote by v* the N-1 component zolumn vector whose
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ith element is Vs (i=1,...,N=1). From (2), (3) and (5),
g + v = gl + ¢ + Qx-g(T"+Qy) = ¢* + Q(x-gy) = " + v ,

while from (4) and (5) it follows that

*
g‘IIN-'-vN q_N+RX"gRy=q_N+R(X-@)=qN+RV °

Using-vN = 0 the theorem now follows.

Observe that g in (4) can be interpreted as the ratio of the expected
return earned during a cycle and the expected length of a cycle, where a
cycle is defined as the time interval between two successive visits to the
recurrent state N. It is well-known that this ratio equals the long-run
average return.

Remark. Suppose that pyy=1-o; > 0 for i=1,...,N=-1. Let 2, be an arbitrary
N-1 component column vector, and for n>1 define Z, by z, =P + an_1, where

b is a given N-1 component column vector. Let z be the unique solution to

z=b+Qz. Define for any n>1,

wl(i)=z, (1)+(1=0y) ™" ming{z (3)-z, ()} for i=t,...,N-1,

and
u.l:l'(i)=zn(i)+(1—0ti)-1 maxj{zn(j)»zn_T(j)} for i=1,...,N-1 .

Then, for any n>1, uﬁ(i)fp(i)fpﬁ'(i) for i=1,...,N-1, where un'(i) is
nondecreasing in n to z(i) and uﬁ'(i) is nonincreasing in n to z(i) for

all i. The proof of this assertion is a slight modification of proofs given
by Macqueen [3] and is based on the following fact: If Tu<Tw then u<w,
where the transformation T is defined by Tu=u~-(b+Qu) for any N-1 component
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column vector u.
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Remark. It is straightforward to extend the analysis above to the case of
a general Markov matrix P; in this case the set of simultaneous equations
g=Pg and gT+v=q+Pv has to be solved where g and v are unknown N component

column vectors.
REFERENCES.

1. C. DERMAN AND A.F. VEINOTT Jr., A sclution to a countable system of
equations arising in Markovian decision processes, Ann. Math. Statist.
38 (1967), 582-58k.

2. R.A. HOWARD, "Dynaric programming and Markov Processes", Wiley, New York,
1960.

3. J.B. MACQUEEN, A modified dynamic programming method for Markovian
decision problems, J. Math. Anal. and Appl. 14 (1966), 38-L43.

4, T.E. MORTON, Undiscounted Markov renewal programming via modified

successive approximations, Opns. Res. 19 (1971), 1081-1089.





