
B

stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE

IN SAMENWERKING MET HET
BN 22/73

INTERUNIVERSITAIR INSTITUUT BEDRIJFSKUNDE
DELFT /ROTTERDAM

J.K. LENSTRA & A.H.G. RINNOOY KAN
TOWARDS A BETTER ALGORITHM FOR
THE JOB-SHOP SCHEDULING PROBLEM -

BA

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

MA1 H!!l'\/',XtSCl!lt

AMSTEllDAllll

, Pll.,.[n.ted at :the Mathe.ma.:Uc.a..l Cen;tJr.e, 49, 2e Boe.Jl.haavu.tJr..aa;t, Amo.te.Jl.dam.

The Mathe.ma:Uc.ai. Ce.n;tJr.e, oou.nded :the 11-.th 06 FebJc.u.aJLy 1946, ,i.,6 a. non
p1C.06U iM:ti.tu.,t,i,on a,i.m,lng at .the pll.omo.t.i..on 06 pUll.e mathe.ma.:UC-6 a.nd Lt6
a.pp..Uc.a.:Uon6. I.t).,6 .6pon6oll.ed by .the Ne.thvri.a.nd6 Gove.Jl.nmen.t .thll.ough .the
Ne.thvri.a.nd6 0Jc.ga.n,lza.:Uon 6oJc. :the Adva.nc.e.men.t 06 PUll.e Ruea.Jc.c.h (Z. W. 0),
by .the Mu.n,i.upa.U.ty 06 Am6.teJ1.dam, by .the Un,lveMUy 06 Am6.teJ1.dam, by
.the Fll.ee Un,lveMUy at Am6.teJ1.dam, a.nd by indU6:tluU.

AMS (MOS) subject classification scheme (1970): 90B35

Abstract

So far two fairly efficient branch-and-bound algorithms for the job-shop

scheduling problem have been developed: one by Charlton and Death and one

by Florian et al •• In this report we investigate the possibility of com

bining the good qualities of these algorithms into one new and hopef'u.lly

more powerf'u.l approach. Though some questions remain unanswered, the

enquiry seems worth pursuing.

1

Contents

Abstract

Contents

1. Introduction

2. Summary of previous algorithms

3. Comments

4. Towards a better algorithm?

5. Conclusion

References

1

3

5

6

9

10

17

18

3

5

1 • Introduction

The job-shop scheduUng problem can be formulated as follows:

Given the order by which each of n jobs has to pass through m machines,

and given the processing time of each operation, find the order by which

each machine has to process the jobs so as to minimize the total pro

cessing time.

The problem is generally considered to be one of the most difficult se

quencing problems and has been attacked rather unsuccesfully by many re

searchers. Recently, however, some branch-and-bound algorithms have been

developed that seen to be able to handle at least a small number of jobs

in an efficient way.

These algorithms are all based on the formulation of the problem by

means of the highly useful concept of a disjunctive graph [1]. They differ,

however, considerably with regard to the branching strategy used and the

computation of a lOIJ)er bound. We can roughly distinguish two groups of

algorithms, typical examples of each group being given by the work of

Charlton and Death [2,3] and Florian et al. [4,5], respectively. A descrip

tion of these algorithms can be found in [6]; their basic principles will

be summarized in section 2 below.

From this summary it will become apparent that ideally one should try

to combine the superior branching strategy of Charlton and Death with the

much stronger lower bound of Florian et al., as outlined in section 3.

We are at the moment engaged in an effort to effect this happy liaison.

The object of this preliminary paper is to describe some of the problems

encountered and the conclusions reached so far. Section 4 is devoted to

this matter. Obviously, a lot of work remains to be done, but the present

enquiry seems worth pursuing.

6

2. Summary of previous algorithms

First, we introduce some notation. We denote then jobs by J 1, ••• ,Jn and

them machines by M1, ••• ,Mm. A job consists of a number of operations, each

performed on a specific machine. The disju:native graph is characterized by

three sets V, C and V:

Vis the set of vertlaes of the graph; there is a vertex corresponding

to every operation. Two dmnmy operations O and* are added to mark the

beginning and the end of the process. The n1 operations of J
1

are num

bered 1, ••• ,n1 in their technological order, the n
2

operations of J
2

~re numbered n 1+1, ••• ,n1+n2 , etc ••

- C is the set of directed aonju:native aras; they connect two operations

that follow each other directly for technological reasons. Vertex O is

connected to the set a of all first operations; the set S of all last

operations is connected to vertex*·

- Vis the set of disjunative aras; it contains oppositely directed arcs

connecting each pair of operations in µt' the set of operations to be

performed on Mt (t = l, ••• ,m).

To each arc in both C and Va Zength pk is assigned, corresponding to the

processing time of the operation k which is its initial vertex.

A typical example of a disjunctive graph is pictured in figure 1.

Figure 1

A disjunctive arc is settZed if the oppositely directed arc. is rejected;

this means that on some machine one operation is made to precede another

one.

At each stage of the algorithms we have a partial solution characterized

by a subset D c V of disjunctive arcs that have been settled. We denote by

M0 the set of machines that still have some unsettled disjunctive arcs.

We can now describe the two main types of algorithms that have been

reasonably succesful in solving the job-shop scheduling problem.

A. Chariton and Death [2,3]

1. For each partial solution detjrmine earliest possible starting times tk

of each operation k, disregarding all disjunctive arcs in V - D.

2. If either t. - tk;;;;:; pk or tt"'-~.:-;;;;:; p. for all pairs (j,k) € µt x µt
J "1 J

(Mt€ M0), then this partial solution is feasible: we have a complete

solution.

7

3. However, if both t. - tk < pk and tk - t. < p., then we have a conflict.
J J J .

We choose one of the conflicts heuristically and branch by settling

either one or the other of the disjunctive arcs in question.

4. A 7.,ower bound for each of these branches is given by the longest path in

the newly created directed graph, disregarding again all disjunctive

arcs in V - D.

B. FZorian et ai. [4,5]
1. At each stage we have here a set s0 (originally a) of operations, all of

whose predecessors have been scheduled. We find an operation k
0

E s0
such that

tk + pk = min {tk + pk}.
0 0 kES0

2. If k0 E µ.ti', we branch.by consecutively processing first all operations

k' e: s0 n µ.2,,•

3. For each of these branches we compute a 7.,ower bound by means of the

following steps.

a. Determine earliest possible starting times tk of all operations k € µt

(Mt E M
0
), disregarding all disjunctive arcs in V - D.

b. Also determine tai7.,s qk for each operation k E µt (Mt€ M0); qk is

equal to the sum of processing times of all operations that follow k.

c. For each Mt E M
0

, solve the one-machine problem where operations are

available at tk, take pk to process and have tails qk before they are

finished; an efficient branch-and-bound algorithm is available for this

purpose [5]. Denote the minimum time needed to completely finish all

operations on Mt_ by Ct •
•

8

d. A lower bound is given by max{Ci}.

A complete example of the latter calculation can be found in [6].

9

3. Comments

From the above summary, two points should be clear.

First, the branching strategy of Charlton and Death is much superior to

that of Florian. In the latter's algorithm all possible conflicts are set

tled; many of them may never really arise .•

Secondly, the lower bound of Florian is much stronger than that of

Charlton and Death. This is amply confirmed by actual tests [5]. Even a

much weaker version of Florian's algorithm [4] that restricted itself to

those machines Mt with Mt n 8 f ~ and consequently ignored the tails, was

sup~rior to any other algorithm existing at that time. The algorithm as

sketched in section 2 is obviously more complex from a computational point

of view, but the increased strength of the lower bound makes this algorithm

again superior to the former one. Thus we reach the very important conclu

sion that it is worth wile to spend some e:x:t'Pa computation time in order to

find stronger bou:nd.s and reduce the search tree as much as possible.

It seems therefore interesting to look for a branch~and-bound algorithm

in which

- the branching strategy is equivalent to that of Charlton and Death: if

conflicts exist in the present partial solution, branch on one of them

and proceed along the branch with the lowest lower bound;

- the computation of the lower bound is equivalent to that of Florian.

10

4. Towards a better algorithm?

Given a partial solution where a subset D € V of disjunctive arcs has been

settled, we first consider the computation of a lower bound.

By Kelly's well-known critical-path algorithm we first determine for each

operation k on M1 € M
0

the earliest possible starting time tk. The length

of the critical path is equal tot*, the earliest possible starting time of

vertex*· If the partial solution is feasible, t* is also the time needed

to process all the jobs.

We next have to define the tails qk. In Florian's algorithm qk was taken

to be equal to the sum of the remaining processing times. Here, however, we

can define qk to be equal to the length of the longest path from vertex k

to vertex* minus the processing time pk of operation k. We can easily find

qk by working backwards from vertex* to find the latest possible starting

time Tk of vertex k. Then qk is given by

(1)

Just as in Florian's algorithm we now want to solve the one-machine problem

on each machine Mi€ M
0

•

There is an important difference, however. Within our set-up it is quite

possible that one or more disjunctive arcs on Mi have been settled during a

previous branching operation. Suppose for instance that the disjunctive arc

from operation j to operation k has been settled. Is it now possible that

an optimal solution to the one-machine problem inevitably has k preceding j?

It is easy to see that at least operation k will not be preceding opera

tion j directly. Indeed, if the disjunctive arc from j to k has been set

tled, we have obviously

(2)

and

or

(3)

11

Now if k would precede j directly (figure 2(a)), we would interchange the

two operations (figure 2(b)) and retain a feasible schedule because of (2).

It cannot have got worse, since j now finishes earlier than previously but

still not before k because of (3); all other operations have not been moved.

t. p. q.
IJ J . J

I (a)

tk pk qk

t. q.
IJ J

I (b)
tk pk qk

Figure 2

This result is, however, not extendable to a more general result. A counter

example is constructed in what follows.

It is easy to see that we need at least 5 operations for this example.

In the optimal solution operation k has to be preceded by at least one other

operation because otherwise j could be inserted before kin view of (2);

likewise j has to be followed by at least one operation in view of (3), and

k and j have to be separated by at least one operation because of the rea

soning above.

We now construct an example with 5 operations where the only optimal

solution inevitably contradicts a previously settled disjunctive arc.

Suppose the disjunctive arc from 1 to 2 has been settled; the further data

are given in table 1. Then the only optimal solution to this particular

one-machine problem is given by the sequence (3,2,4,1,5); see figure 3.

k

1

2

3

4

5

tk pk qk

0 2 3

2 1 2

0 2 5

3 2 6

7 2 2

Table 1

1 :

2:

3:

4:
5:

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3

12

From the preceding discussion, it is clear that we have to take already

settled disjunctive arcs into account whiie solving the one-machine problems.

This will effectively increase the bound. No particular problems are expected

in adapting the one-machine solution algorithm to these added precedence

constraints. Although an extra feasibility check has to be added, the total

number of feasible solutions is substantially reduced. The net effect of

these two changes remains to be seen.

Having found optimal values Ci for each Mi E M0 , a lower bound LB is

given by LB= max{Ci}.

We proceed along that branch among those created recently, that has the

lowest lower bound. We now-want to find out if this particular (partial)

solution is feasible. We could do this by using the Charlton-and-Death

criterium for a conflict which would require each operation to be able to

start at the earliest possible starting time tk. It is, however, perfectly

possible that an operation k starts after tk but that the overall schedule

is still feasible in the sense that all operations can be finished before

t* and all previously settled disjunctive arcs are respected. So we settle

for a broader definition of conflict that is more complex from a computa

tional point of view, but will hopefully further reduce the search tree -

something that is badly needed indeed (see the final remark in [5]).

In searching for this conflict, we want to make as mu.oh use as possibZe

of the optimaZ sequende found on each machine Mi during the Zower bound

computation. We divide the search for a possible conflict in two stages:

1. First, we look at each machine Mi to find out if there is a sequence of

operations on Mi that allows every operation k to start on Tk at the

latest. (If this is the case we say that there is a 1-feasibZe solution

on Mi.)

2. If there is a 1-feasible solution on each Mi, we try to find out if the

schedules on each machine can be combined to form an overall feasible

(or m-feasibZe) solution.

The following result concerns the first stage.

Theorem 1. The optimal solution to the one-machine problem on Mi is

1-feasible if and only if Ci~ t*.

13

Proof. Denote by Bk the starting time of operation kin the optimal solution

to the one-machine problem on Mt. We have by definition

max {Bk + p + qk}
ke:µ k

t
then obviously

so by (1)

or

Bk:,; Tk

= C t

for all k € µt

for all k € µt'

(4)

i.e., the solution is 1-feasible. Conversely, if~:,;

then (4) follows easily, and therefore Ct:,; t*.

Tk for all k € µt'

(Q.E.D.)

Remark. We note in passing (with Florian [5]) that solving the one-machine

problem with tails qk is equivalent to solving a one-machine problem with

due-dates~= Tk + pk, where the objective is to minimize the maximum

lateness L , iateness being defined as the difference (negative or posi-max
tive) between finishing time Bk+ pk and due-date~•

This equivalence is easily proved as follows:

.Another way of

to L :s; O.
max

max {Bk + pk + qk} =
ke:µt

= max {Bk + pk + t* Tk - pk} =
ke:µt

= t + max {Bk + pk - ~} =
* ke:µt

= t* + L . max

stating the above theorem J.S then that ct :,; t is equivalent
*

At this stage of the proceedings, there are two possibilities: either

Ct> t* for at least one t, or Ct:,; t* for all t. We will successively

consider these possibilities in what follows.

14

Suppose first that there are some machines, say Mi1, ••• ,M1s, for which the

solution to the one-machine problem is not 1-feasible:

C n. > t
JvJ * (j = 1, ••• ,s).

In view of the remark above we may draw the conclusion that no 1-feasible

solution on Mt· can then be found at all: the minimum L is strictly
J max

positive, so at least one operation will have to start after Tk.

Following the terminology of Charlton and Death, we now have a aonfl,iat

on M11, ••• ,M 18 • Like them, we want to branch by settling a disjunctive arc,

not already in D, in either one or the other direction.

Although we are still investigating possibilities for a better branching

strategy, we think the strategy described below has at least the advantage

of being computationally simple and may lead to quite acceptable results.
. \

a. SeZeat the maahine M1 . for whiah
J

Ci j = max{ Ci} •

(This effec~ively reduces the n~ber of one-machine problems that we have

to solve during the lower bound computation; as soon as we have found
. < . that Ci0 > t* for some t 0 we will only be interested in those machines

that might conceivably produce a still higher c1 .)

b. On M1 . find the pair of operations (j,k) suah that
J

min{tj + pj - tk,tk + pk - tj}

is mazimaZ and branch by settZing a disjunative ara between J and k

either in one or the other direction.

(Such a disjunctive arc cannot have been settled already, because in this

case both tj + pj - tk and tk + pk - tj are non-positive.)

We realize that, in choosing this branching strategy, we do not use the

information provided by the one-machine solution (except in step a). Though

we are still exploring ways to use this information in step bas well, there

seems at the moment no way of doing so without running into serious computa

tional trouble.

15

Suppose now that Ct~ t for all t. We would like to conclude that in this

case:

Bk+ pk~ Bk+1 (5)

for every pair of opera:tions (k,k+1) (k € µ
1

,k+1 € µ
1
,) whereby k+1 directiy

foiiows k for technoZogicai reasons.

If this conclusion would be justified it would immediately imply that all

m 1-feasible solutions could be combined into 1 m-feasible solution.

The proof of (5) would have to be based on interfering properties of the

one-machine problems. The following theorem at least assures us that the

conflict between two machines will not be too serious.

Theorem 2. If operation k €µtis directly followed by operation k+1 € µt'

and if Ct$ t*, then

Proof. Since Ct~ t*, we have from theorem 1:

tk ~Bk~ Tk

Evidently (cf. (3)) :

or

Tk +pk~ Tk+1

Combining (7) and (8) we get (6).

. (6)

(7)

(8)

(Q.E.D.)

Although the above theorem effectively bounds the seriousness of the conflict

between Mt and M1 ,, such a conflict nevertheless might create nasty problems.

If (5) would be correct, these problems would disappear at once. At the

moment, however, we cannot present a proof of (5), nor, of course, of the

equivalent statement that if Bk+ pk> Bk+1 for some (k,k+1) (k € µt,k+1 € µt,)

then either Ct or Ct' is greater than t*. The difficulties that we encoun

tered in trying to construct a counterexample lead us to conjecture that in

most cases (5) will turn out to be true anyway. Tests of this conjecture on

16

randomly generated examples will either lead to the desired counterexample

or to an intensified search for an analytic proof.

Suppose now that (5) does not generally hold true. Theorem 2 underlines

that we may then still try to set things right in the following manner. We

define the siaak Si on each machine to be equal tot* - Ci. Now~ if neces

sary, we can po~tpone all operations on Mi collectively by a maximum amount

of Si. (Essentially we need not postpone all operations at the same time;

however, if we move one of them, we will at least also have to postpone

those operations following it in the same bZoak; see [5] for a definition

of this term.)

~e fact remains, however, that Si will often be equal to O; to be more

precise, this will certainly be the case for all machines through which a

critical path is running. For each operation k on a critical path we always

have Bk+ pk+ qk ~ t*, so if we know that Ci~ t* for all i, it follows

that for all these machines Ci= t* and Si= O.

Our conclusion is that we will have to check (5) :for all pairs (k,k+1).

If possible, we can try to set things right by using the machine slack Si,;

if that does not work, we will branch on two operations on M
1

in the way

described in step b above.

It may be possible that by rearranging operations on some machines we get

m 1-feasible solutions that can indeed be combined into 1 m-feasible one,

whereas them original solutions could not. On heuristic grounds we want to

disregard this possibility for the time being.

17

5. Conclusions

Obviously, the better algorithm that we are looking for has not yet been

completely constructed - hence the numerical index in the title of this

paper. Considering the close links that we have found so far between lower

bound computations and checks for feasibility, we tentatively conclude that

this enquiry is worth pursuing and may indeed lead to a more forceful attack

on our complicated scheduling problem.

Ref'erences

1~ B. ROY, B. SUSSMA.NN, Les probl~mes d'ordonnancement avec contraints

disjonctives, Note DS no.9 bis, SEMA, Paris, 1964.

2. J.M. CHARLTON, C.C. DEATH, A method of' solution for general machine

scheduling problems, Operations Res • .:!.§_(1970)689-707.

3. J.M. CHARLTON, c.c. DEATH, A generalized machine scheduling algorithm,

Operational, Res. Quart • .£1(1971)127-134.

4. M. FLORIAN, P. TREPANT, G. McMAHON, An implicit enumeration algorithm

f'or the machine sequencing problem, Management Bai. 17(1971)B782-792.

5. P. BRATLEY, M. FLORIAN, P. ROBILLARD, On sequencing with earliest starts

and due-dates with application to computing bounds for the (nlm!G!F) max
problem, Naval, Res. Logist. Quart. 20(1973)57-67.

6. A.H.G. RINNOOY KAN, The machine scheduling problem, Report BW 27/73,

Mathematisch Centrum, Amsterdam, 1973.

