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Abstract 

So far two fairly efficient branch-and-bound algorithms for the job-shop 

scheduling problem have been developed: one by Charlton and Death and one 

by Florian et al •• In this report we investigate the possibility of com

bining the good qualities of these algorithms into one new and hopef'u.lly 

more powerf'u.l approach. Though some questions remain unanswered, the 

enquiry seems worth pursuing. 
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1 • Introduction 

The job-shop scheduUng problem can be formulated as follows: 

Given the order by which each of n jobs has to pass through m machines, 

and given the processing time of each operation, find the order by which 

each machine has to process the jobs so as to minimize the total pro

cessing time. 

The problem is generally considered to be one of the most difficult se

quencing problems and has been attacked rather unsuccesfully by many re

searchers. Recently, however, some branch-and-bound algorithms have been 

developed that seen to be able to handle at least a small number of jobs 

in an efficient way. 

These algorithms are all based on the formulation of the problem by 

means of the highly useful concept of a disjunctive graph [1]. They differ, 

however, considerably with regard to the branching strategy used and the 

computation of a lOIJ)er bound. We can roughly distinguish two groups of 

algorithms, typical examples of each group being given by the work of 

Charlton and Death [2,3] and Florian et al. [4,5], respectively. A descrip

tion of these algorithms can be found in [6]; their basic principles will 

be summarized in section 2 below. 

From this summary it will become apparent that ideally one should try 

to combine the superior branching strategy of Charlton and Death with the 

much stronger lower bound of Florian et al., as outlined in section 3. 

We are at the moment engaged in an effort to effect this happy liaison. 

The object of this preliminary paper is to describe some of the problems 

encountered and the conclusions reached so far. Section 4 is devoted to 

this matter. Obviously, a lot of work remains to be done, but the present 

enquiry seems worth pursuing. 



6 

2. Summary of previous algorithms 

First, we introduce some notation. We denote then jobs by J 1, ••• ,Jn and 

them machines by M1, ••• ,Mm. A job consists of a number of operations, each 

performed on a specific machine. The disju:native graph is characterized by 

three sets V, C and V: 

Vis the set of vertlaes of the graph; there is a vertex corresponding 

to every operation. Two dmnmy operations O and* are added to mark the 

beginning and the end of the process. The n1 operations of J
1 

are num

bered 1, ••• ,n1 in their technological order, the n
2 

operations of J
2 

~re numbered n 1+1, ••• ,n1+n2 , etc •• 

- C is the set of directed aonju:native aras; they connect two operations 

that follow each other directly for technological reasons. Vertex O is 

connected to the set a of all first operations; the set S of all last 

operations is connected to vertex*· 

- Vis the set of disjunative aras; it contains oppositely directed arcs 

connecting each pair of operations in µt' the set of operations to be 

performed on Mt (t = l, ••• ,m). 

To each arc in both C and Va Zength pk is assigned, corresponding to the 

processing time of the operation k which is its initial vertex. 

A typical example of a disjunctive graph is pictured in figure 1. 

Figure 1 

A disjunctive arc is settZed if the oppositely directed arc. is rejected; 

this means that on some machine one operation is made to precede another 

one. 

At each stage of the algorithms we have a partial solution characterized 

by a subset D c V of disjunctive arcs that have been settled. We denote by 

M0 the set of machines that still have some unsettled disjunctive arcs. 



We can now describe the two main types of algorithms that have been 

reasonably succesful in solving the job-shop scheduling problem. 

A. Chariton and Death [2,3] 

1. For each partial solution detjrmine earliest possible starting times tk 

of each operation k, disregarding all disjunctive arcs in V - D. 

2. If either t. - tk;;;;:; pk or tt"'-~.:-;;;;:; p. for all pairs (j,k) € µt x µt 
J "1 J 

(Mt€ M0 ), then this partial solution is feasible: we have a complete 

solution. 
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3. However, if both t. - tk < pk and tk - t. < p., then we have a conflict. 
J J J . 

We choose one of the conflicts heuristically and branch by settling 

either one or the other of the disjunctive arcs in question. 

4. A 7.,ower bound for each of these branches is given by the longest path in 

the newly created directed graph, disregarding again all disjunctive 

arcs in V - D. 

B. FZorian et ai. [4,5] 
1. At each stage we have here a set s0 (originally a) of operations, all of 

whose predecessors have been scheduled. We find an operation k
0 

E s0 
such that 

tk + pk = min {tk + pk}. 
0 0 kES0 

2. If k0 E µ.ti', we branch.by consecutively processing first all operations 

k' e: s0 n µ.2,,• 

3. For each of these branches we compute a 7.,ower bound by means of the 

following steps. 

a. Determine earliest possible starting times tk of all operations k € µt 

(Mt E M
0
), disregarding all disjunctive arcs in V - D. 

b. Also determine tai7.,s qk for each operation k E µt (Mt€ M0 ); qk is 

equal to the sum of processing times of all operations that follow k. 

c. For each Mt E M
0

, solve the one-machine problem where operations are 

available at tk, take pk to process and have tails qk before they are 

finished; an efficient branch-and-bound algorithm is available for this 

purpose [5]. Denote the minimum time needed to completely finish all 

operations on Mt_ by Ct • 
• 
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d. A lower bound is given by max{Ci}. 

A complete example of the latter calculation can be found in [6]. 
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3. Comments 

From the above summary, two points should be clear. 

First, the branching strategy of Charlton and Death is much superior to 

that of Florian. In the latter's algorithm all possible conflicts are set

tled; many of them may never really arise .• 

Secondly, the lower bound of Florian is much stronger than that of 

Charlton and Death. This is amply confirmed by actual tests [5]. Even a 

much weaker version of Florian's algorithm [4] that restricted itself to 

those machines Mt with Mt n 8 f ~ and consequently ignored the tails, was 

sup~rior to any other algorithm existing at that time. The algorithm as 

sketched in section 2 is obviously more complex from a computational point 

of view, but the increased strength of the lower bound makes this algorithm 

again superior to the former one. Thus we reach the very important conclu

sion that it is worth wile to spend some e:x:t'Pa computation time in order to 

find stronger bou:nd.s and reduce the search tree as much as possible. 

It seems therefore interesting to look for a branch~and-bound algorithm 

in which 

- the branching strategy is equivalent to that of Charlton and Death: if 

conflicts exist in the present partial solution, branch on one of them 

and proceed along the branch with the lowest lower bound; 

- the computation of the lower bound is equivalent to that of Florian. 
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4. Towards a better algorithm? 

Given a partial solution where a subset D € V of disjunctive arcs has been 

settled, we first consider the computation of a lower bound. 

By Kelly's well-known critical-path algorithm we first determine for each 

operation k on M1 € M
0 

the earliest possible starting time tk. The length 

of the critical path is equal tot*, the earliest possible starting time of 

vertex*· If the partial solution is feasible, t* is also the time needed 

to process all the jobs. 

We next have to define the tails qk. In Florian's algorithm qk was taken 

to be equal to the sum of the remaining processing times. Here, however, we 

can define qk to be equal to the length of the longest path from vertex k 

to vertex* minus the processing time pk of operation k. We can easily find 

qk by working backwards from vertex* to find the latest possible starting 

time Tk of vertex k. Then qk is given by 

( 1) 

Just as in Florian's algorithm we now want to solve the one-machine problem 

on each machine Mi€ M
0

• 

There is an important difference, however. Within our set-up it is quite 

possible that one or more disjunctive arcs on Mi have been settled during a 

previous branching operation. Suppose for instance that the disjunctive arc 

from operation j to operation k has been settled. Is it now possible that 

an optimal solution to the one-machine problem inevitably has k preceding j? 

It is easy to see that at least operation k will not be preceding opera

tion j directly. Indeed, if the disjunctive arc from j to k has been set

tled, we have obviously 

(2) 

and 

or 

(3) 
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Now if k would precede j directly (figure 2(a)), we would interchange the 

two operations (figure 2(b)) and retain a feasible schedule because of (2). 

It cannot have got worse, since j now finishes earlier than previously but 

still not before k because of (3); all other operations have not been moved. 

t. p. q. 
IJ J . J 

I (a) 

tk pk qk 

t. q. 
IJ J 

I (b) 
tk pk qk 

Figure 2 

This result is, however, not extendable to a more general result. A counter

example is constructed in what follows. 

It is easy to see that we need at least 5 operations for this example. 

In the optimal solution operation k has to be preceded by at least one other 

operation because otherwise j could be inserted before kin view of (2); 

likewise j has to be followed by at least one operation in view of (3), and 

k and j have to be separated by at least one operation because of the rea

soning above. 

We now construct an example with 5 operations where the only optimal 

solution inevitably contradicts a previously settled disjunctive arc. 

Suppose the disjunctive arc from 1 to 2 has been settled; the further data 

are given in table 1. Then the only optimal solution to this particular 

one-machine problem is given by the sequence (3,2,4,1,5); see figure 3. 

k 

1 

2 

3 

4 

5 

tk pk qk 

0 2 3 

2 1 2 

0 2 5 

3 2 6 

7 2 2 

Table 1 

1 : 

2: 

3: 

4: 
5: 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Figure 3 
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From the preceding discussion, it is clear that we have to take already 

settled disjunctive arcs into account whiie solving the one-machine problems. 

This will effectively increase the bound. No particular problems are expected 

in adapting the one-machine solution algorithm to these added precedence 

constraints. Although an extra feasibility check has to be added, the total 

number of feasible solutions is substantially reduced. The net effect of 

these two changes remains to be seen. 

Having found optimal values Ci for each Mi E M0 , a lower bound LB is 

given by LB= max{Ci}. 

We proceed along that branch among those created recently, that has the 

lowest lower bound. We now-want to find out if this particular (partial) 

solution is feasible. We could do this by using the Charlton-and-Death 

criterium for a conflict which would require each operation to be able to 

start at the earliest possible starting time tk. It is, however, perfectly 

possible that an operation k starts after tk but that the overall schedule 

is still feasible in the sense that all operations can be finished before 

t* and all previously settled disjunctive arcs are respected. So we settle 

for a broader definition of conflict that is more complex from a computa

tional point of view, but will hopefully further reduce the search tree -

something that is badly needed indeed (see the final remark in [5]). 

In searching for this conflict, we want to make as mu.oh use as possibZe 

of the optimaZ sequende found on each machine Mi during the Zower bound 

computation. We divide the search for a possible conflict in two stages: 

1. First, we look at each machine Mi to find out if there is a sequence of 

operations on Mi that allows every operation k to start on Tk at the 

latest. (If this is the case we say that there is a 1-feasibZe solution 

on Mi.) 

2. If there is a 1-feasible solution on each Mi, we try to find out if the 

schedules on each machine can be combined to form an overall feasible 

(or m-feasibZe) solution. 

The following result concerns the first stage. 

Theorem 1. The optimal solution to the one-machine problem on Mi is 

1-feasible if and only if Ci~ t*. 
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Proof. Denote by Bk the starting time of operation kin the optimal solution 

to the one-machine problem on Mt. We have by definition 

max {Bk + p + qk} 
ke:µ k 

t 
then obviously 

so by (1) 

or 

Bk:,; Tk 

= C t 

for all k € µt 

for all k € µt' 

(4) 

i.e., the solution is 1-feasible. Conversely, if~:,; 

then (4) follows easily, and therefore Ct:,; t*. 

Tk for all k € µt' 

(Q.E.D.) 

Remark. We note in passing (with Florian [5]) that solving the one-machine 

problem with tails qk is equivalent to solving a one-machine problem with 

due-dates~= Tk + pk, where the objective is to minimize the maximum 

lateness L , iateness being defined as the difference (negative or posi-max 
tive) between finishing time Bk+ pk and due-date~• 

This equivalence is easily proved as follows: 

.Another way of 

to L :s; O. 
max 

max {Bk + pk + qk} = 
ke:µt 

= max {Bk + pk + t* Tk - pk} = 
ke:µt 

= t + max {Bk + pk - ~} = 
* ke:µt 

= t* + L . max 

stating the above theorem J.S then that ct :,; t is equivalent 
* 

At this stage of the proceedings, there are two possibilities: either 

Ct> t* for at least one t, or Ct:,; t* for all t. We will successively 

consider these possibilities in what follows. 
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Suppose first that there are some machines, say Mi1, ••• ,M1s, for which the 

solution to the one-machine problem is not 1-feasible: 

C n. > t 
JvJ * (j = 1, ••• ,s). 

In view of the remark above we may draw the conclusion that no 1-feasible 

solution on Mt· can then be found at all: the minimum L is strictly 
J max 

positive, so at least one operation will have to start after Tk. 

Following the terminology of Charlton and Death, we now have a aonfl,iat 

on M11, ••• ,M 18 • Like them, we want to branch by settling a disjunctive arc, 

not already in D, in either one or the other direction. 

Although we are still investigating possibilities for a better branching 

strategy, we think the strategy described below has at least the advantage 

of being computationally simple and may lead to quite acceptable results. 
. \ 

a. SeZeat the maahine M1 . for whiah 
J 

Ci j = max{ Ci} • 

(This effec~ively reduces the n~ber of one-machine problems that we have 

to solve during the lower bound computation; as soon as we have found 
. < . that Ci0 > t* for some t 0 we will only be interested in those machines 

that might conceivably produce a still higher c1 .) 

b. On M1 . find the pair of operations (j,k) suah that 
J 

min{tj + pj - tk,tk + pk - tj} 

is mazimaZ and branch by settZing a disjunative ara between J and k 

either in one or the other direction. 

(Such a disjunctive arc cannot have been settled already, because in this 

case both tj + pj - tk and tk + pk - tj are non-positive.) 

We realize that, in choosing this branching strategy, we do not use the 

information provided by the one-machine solution (except in step a). Though 

we are still exploring ways to use this information in step bas well, there 

seems at the moment no way of doing so without running into serious computa

tional trouble. 
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Suppose now that Ct~ t for all t. We would like to conclude that in this 

case: 

Bk+ pk~ Bk+1 ( 5) 

for every pair of opera:tions (k,k+1) (k € µ
1

,k+1 € µ
1
,) whereby k+1 directiy 

foiiows k for technoZogicai reasons. 

If this conclusion would be justified it would immediately imply that all 

m 1-feasible solutions could be combined into 1 m-feasible solution. 

The proof of (5) would have to be based on interfering properties of the 

one-machine problems. The following theorem at least assures us that the 

conflict between two machines will not be too serious. 

Theorem 2. If operation k €µtis directly followed by operation k+1 € µt' 

and if Ct$ t*, then 

Proof. Since Ct~ t*, we have from theorem 1: 

tk ~Bk~ Tk 

Evidently (cf. ( 3) ) : 

or 

Tk +pk~ Tk+1 

Combining (7) and (8) we get (6). 

. (6) 

(7) 

(8) 

(Q.E.D.) 

Although the above theorem effectively bounds the seriousness of the conflict 

between Mt and M1 ,, such a conflict nevertheless might create nasty problems. 

If (5) would be correct, these problems would disappear at once. At the 

moment, however, we cannot present a proof of (5), nor, of course, of the 

equivalent statement that if Bk+ pk> Bk+1 for some (k,k+1) (k € µt,k+1 € µt,) 

then either Ct or Ct' is greater than t*. The difficulties that we encoun

tered in trying to construct a counterexample lead us to conjecture that in 

most cases (5) will turn out to be true anyway. Tests of this conjecture on 
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randomly generated examples will either lead to the desired counterexample 

or to an intensified search for an analytic proof. 

Suppose now that (5) does not generally hold true. Theorem 2 underlines 

that we may then still try to set things right in the following manner. We 

define the siaak Si on each machine to be equal tot* - Ci. Now~ if neces

sary, we can po~tpone all operations on Mi collectively by a maximum amount 

of Si. (Essentially we need not postpone all operations at the same time; 

however, if we move one of them, we will at least also have to postpone 

those operations following it in the same bZoak; see [5] for a definition 

of this term.) 

~e fact remains, however, that Si will often be equal to O; to be more 

precise, this will certainly be the case for all machines through which a 

critical path is running. For each operation k on a critical path we always 

have Bk+ pk+ qk ~ t*, so if we know that Ci~ t* for all i, it follows 

that for all these machines Ci= t* and Si= O. 

Our conclusion is that we will have to check (5) :for all pairs (k,k+1). 

If possible, we can try to set things right by using the machine slack Si,; 

if that does not work, we will branch on two operations on M
1 

in the way 

described in step b above. 

It may be possible that by rearranging operations on some machines we get 

m 1-feasible solutions that can indeed be combined into 1 m-feasible one, 

whereas them original solutions could not. On heuristic grounds we want to 

disregard this possibility for the time being. 
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5. Conclusions 

Obviously, the better algorithm that we are looking for has not yet been 

completely constructed - hence the numerical index in the title of this 

paper. Considering the close links that we have found so far between lower 

bound computations and checks for feasibility, we tentatively conclude that 

this enquiry is worth pursuing and may indeed lead to a more forceful attack 

on our complicated scheduling problem. 
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