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0. INTRODUCTION. 

In this paper we consider a Markov decision model studied by De Leve 

(1964). This model is a generalization of the finite-state semi-Markov de­

cision model (cf. Howard (1960) and Jewell (1963)) and allows for general 

state spaces and for controlling the system at each point of time. The op­

timality criterion is the Zong-y,un average cost.The original presentation 

in De Leve (1964) is difficult accessible due to the generality of the mo­

del considered. This paper treats the general Markov decision model under 

the assumption that the decision processes are regenerative processes as is 

the case in almost any application. Under this assumption a self-contained 

exposition of the model will be given with proofs that have been considera­

bly simplified. Emphasis will be laid on the presentation of a policy iter­

ation method. 

It is characterisic for our model to consider any decision process as 

a superposition of a so-called natural process and interventions made in 

certain states of the natural process. The natural process could be consid­

ered as a process describing the evolution of the state of the system when 

no interventions are made. In solving any particular problem we have first 

to specify the natural process where to a certain extent we are free in the 

choice of this process provided that the result of the natural process and 

the control by a policy agrees with the "reality" of the problem. The natu­

ral process underlies the policy iteration method and for a particular prob­

lem the final form of this method is determined by the choice of the natural 

process. Since the structure of the problem considered is reflected in the 

natural process, this structure will be exploited by the policy iteration 

method. This may result in a simple algorithm. An iteration step of the pol­

icy iteration method consists not only of the familiar value determination 

operation and policy improvement operation but also of a cutting operation. 

It was notified by Weeda (1974a) that the cutting operation is in fact the 

optimal stopping of a Markov process. 

Chapter I deals with the model. In section I.I we define the materials 

of the model. Section 1.2 discusses a formula for the average cost of a 
"' (stationary) policy. This formula in itself may be useful, in particular in 
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controlled inventory and queueing systems. In section 1 .3 we give the basic 

tools for the solution techniques. These techniques consisting of a direct 

and an iterative approach are sunnnarized in section 1.4. In section I .5 we 

prove several results stated in section 1.3. Convergence results for the 

policy iteration method are established in section 1.6. In chapter 2 we give 

two applications to controlled queueing systems. In section 2.1 we apply the 

formula for the average cost to a control policy that switches from rate 

to rate 2 when the amount of work in the sys~em exceeds the level y 1 and 

switches from rate 2 to rate I when the work in the system falls to the 

level y2 <y 1• In section 2.2 we derive a very simple algorithm for an MIGi I 

queue with two service types where the decision to use which service type 

is based on the queue size. Finally, in the appendix we state some results 

for discrete-time Markov processes with a general state space. 

Throughout this paper the words set and function serve as abbrevia­

tions for Borel set and real-valued Baire function. The phrase "the system 

enters the set A at time t" means that the system is in the set A at time 

t but not at time t-. 
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I • MODEL AND METHOD 

I . I . The materia Zs of the mode Z. 

This section formulates the materials of the model. For any particular 

problem these materials have to be first specified before the actual solu­

tion of the problem can be started. 

PROPERTY I. There is a state space X such that at each point of time the 

state of the system can be described by a point in X, where Xis a subset 

of a finite dimensionaZ EucZidean space. 

PROPERTY 2. There is stochastic process caZZed the naturaZ process. This 

process has X as state space and couZd be considered as a process describing 

the evoZution of the state of the system when no interventions are made. 

The naturaZ process is a strong Markov process having stationary transition 

probabiZities, and sampZe paths which are aZmost sureZy right continuous 

and have a finite number of discontinuities in any finite time intervaZ. 

We note that in most applications the choice of the state space and 

the natural process involves the use of the supplementary variable tech­

nique. The natural process will be controlled by interventions. 

PROPERTY 3. For each state x EX there is a finite set D(x) of feasibZe 

decisions in state x, where between nuZZ-decisions and interventions is 

distinguished. A nuZZ-decision is a decision that does not disturb the nat­

uraZ process. An intervention is a decision that interrupts _the naturaZ 

process and causes an instantaneous (possibly random) change of the state 

of the system. 

. . ( ) *) For any x E x
0 

and 1ntervent1on d ED x, let 

T = the state into which the system is transferred instanta--x,d 
neously by the intervention din state x, 

*)rn this paper random variables are underlined. 
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where 

x0 = {x E XI D(x) contains an intervention} 

Observe that we may assume that a transition caused by an intervention 

takes no time because at each point of time the state of the system is de­

fined. In most applications the effect of an intervention is deterministic. 

The elements of the properties 1-3 have to be chosen in such a way that the 

following property holds. 

PROPERTY 4. The states in which the null-decision is not feasible consti­

tute a non-errrpty closed set A
0 

(say) such that for each initial state, with 

probability I, the natural process will eventually' reach the set AO• 

Further, with probability I, any intervention in a state of A0 causes an 

instantaneous transition to a state outside A
0

• 

PROPERTY 5. In the natural process there is incurred a cost at rate c1(x) 

when the system is in state x, and there is an immediate dost c
2

(x.y) at 

time t when the natural process is in state x at time t- and is in state y 

at time t where x f y. There is incurred an immediate decision cost c3 (x,d) 

when in state x the intervention d E D(x) is made. The functions c 1,c2 
d . *) an c

3 
are non-negat1,,ve. 

In the next property we introduce the quantities k(x;d) and t(x;d). 

It will appear hereafter that in our model these quantities play the same 

role as the one-step expected costs and transition times in the semi-Markov 

decision model. The sets A01 and A02 introduced in property 6 are only used 

to define the functions k(x;d) and t(x;d) and may be freely chosen. 

PROPERTY 6. Choose two non-errrpty closed sets AO1 ~ AO and A02 ~ AO such 

that for each initial state, with probability I, the natural process will 

eventually reach A0i for i = 1,2. Let k0 (x) = 0 for x E A01 , and, for 

x r/. AO1 , let kO(x) be the expected cost incurred up to and including the 

first epoch at which the system enters the set A01 when the system is sub-

*) The non-negativity assumption is made for convenience. 
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jected to the natural process and is in state x at epoch O. For any x E x0 
and intervention d E D(x), let k 1(x;d) = c3(x,d) + EkO(.:!.x,d). That is, 

k 1(x;d) the expected cost incurred up to and including the first epoch at 

which the system enters A
01 

when at epoch O intervention dis made in state 

x and after this intervention the system is suhjected to the natural process 

with the state resulting from this intervention as initial state. 

Similarly, let t 0 (x) = O for x E A02, and, for xi A02, let t 0 (x) be the 

expectation of the first epoch at which the system enters the set A
0 

when 

the system is suhjected to the natural process and is in state x at epoch 

0. For any x E x0 and intervention d E D(x), let t 1(x;d) = Et0 (.:!.x,d). It 

is assumed that the functions k0 ,k 1,t0 and t 1 are finite. For any x E x0 
and intervention d E D(x), let 

The class of policies we will consider is denoted by Z. This class 

has the following property 

PROPERTY 7. Any policy z E Z is a function that adds to each state x EX 

a single decision z(x) E D(x). The states in which policy z E Z prescribes 

an intervention constitute a closed set A such that Pr{T () E A}= O 
Z -x,z X Z 

far all XE A and Pr{T ()EA} is a 
*) Z -x,z X 

Baire function of x EA for any z 
set A. 

REMARK I.I. The process resulting from the control of the natural process 

by a policy z E Z is called the decision process of policy z. Between two 

successive interventions the behaviour of the decision process is descri­

bed by the natural process. It is characteristic for our model to regard 

any decision process as a superposition of the natural process and inter­

ventions made in certain states. As a consequence of this view we have 

some freedom in choosing the natural process for the particular problem to 

be solved provided that the resulting decision processes agree with the 

"reality" of that problem. Moreover, this view enables us to exploit fully 

*) Observe that A
0 

c A X f 11 Z _ z 5:. 
0 

or a z E • 



6 

any structure of the problem considered. It will appear hereafter that the 

choice of the natural process is determinative for the final form of the 

policy iteration method. 

Finally, we introduce the following notation. For any state x EX and 

closed set A 2 A
O

, let 

~[x,A] = the first state in the set A taken on by the natural 

process starting from state x. 

Observe that, by A~ A0 and property 4, the random variable ~[x,A] is well­

defined. Also, observe that ~[x,AJ = x when x EA. 

l .2. A formula for the average cost and a system of functional equations. 

This section derives a formula for the average cost of a policy from 

Zand discusses the system of functional equations to be solved in the value 

determination operation. Unless stated otherwise, we assume that a fixed 

policy z E Z is used. We make the following assumptions. 

ASSUMPTION 1. Far any policy z E Z there are positive numbers o and£ z z 
such that u:nder policy z for each initial state x EA the probability z 
that the time until the next return to A exceeds o is at least£ • z z z 

This assumption implies that, with probability 1, the number of inter­

ventions is finite in any finite time interval. 

We now introduce a Markov chain embedded in the decision process. 

Given that at epoch O the system is in state x E Az, let .!o = x, and for 

n ~ 1, let I be the state of the n-th entry of the decision process into the -n 
set A. Using property 2, it can be shown that {I, n ~ O} is a discrete-

z -n 
time Markov process with state space A, cf. part II of De Leve (1964). 

z 
Denote by 

k ~ O, 
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the k-step transition probability function of the Markov chain {I , n ~ O}. 
-n 

We write p1(x,A,z) = p(x,A,z). 

ASSUMPTION 2. For any policy z E z there is some state s (say) such that z 

and 
Pr{.!_n = sz for some n ~ 1 I .!.o = x} = I 

E(_N I I = s) < 00 where N = inf{n ~ I I I = s }. 
~ z ~ z 

for au XEA z 

Now, by Theorem A.I in the appendix, the Markov chain {I} has a 
-n 

unique stationary probability distribution Q(•,z) (say) where 

(1. 1) 

and 

( 1 • 2) 

. -ltn k 
Q(A,z) = limn-+oon lk=O p (x,A,z) 

Q(A,z) = I p(y,A,z)Q(dy,z) 
Az 

for all x and A. 

for all A. 

AS SUMPTION 3 • For any po liay z E Z , 

(a) 

(b) For each initial state x EX holds that under policy z both the time 

until the first return of the decision process to states and the cost z 
incurred during this time have a finite expectation. 

Now, let f(t) be the total cost incurred during [O,t). 

THEOREM 1.1. For each initial state, f(t)/t converges for t + 00 both in 

expectation and with probability 1 to 

(I. 3) g(z) = f A k(x;z(x))Q(dx,z)/ IA 
z z 

*) t(x;z(x))Q(dx,z). 

*) 
By rel~tion (1.9) below, I t(x;z(x))Q(dx,z) > 0 for all z E z. 
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PROOF. Let .'.!o=O, and, for n ~ I, let~ be the epoch of the nth entry of the 

decision process into the set A. For any n ~ 0, let K be the cost incurred 
z -n 

between the epochs T and T 1, where K includes the immediate decision cost 
-n -n+ -n 

incurred at epoch T but not the immediate decision cost incurred at epoch 
-n 

T 
1

, and K includes any cost of entering A at epoch T 
1 

but not any cost 
-n+ -n z -n+ 
of entering A at epoch T (cf. property 5). Let T(x,z) = E(T 1-T II =x), 

z -n -n+ -n -n 
and let K(x,z) = E(K. II =x) for x EA. 

-n -n z 

Consider first the case where the initial state is s • Following the 
z 

proof of Theorem 7.5 in Ross (1970) and using the assumptions 1-2 and 3(b), 

we get 

( 1.4) 
. - I \'n • - I \'n lim-t--+mE_Z(t)/t = l1m n l· O EK./l1m n l• O E(T.+ 1-T.), 

1., -- n+oo 1= -1 r.+oo 1= -1 -1 

where both the numerator and the denumerator of the right side of (1.4) 

are finite. Now, using the non-negativity of K(•,z) and T(•,z), relation 

(I.I) and Proposition 17 on p.231 in Royden (1968), we get 

( 1 • 5) 

( 1.6) 

By (1.4)-(1.6) and relation (A.7) in the appendix, we next get 

(I. 7) lim EZ (t) /t 
t➔oo 

= f K(x,z)Q(dx,z)/f T(x,z)Q(dx,z) 
AZ A 

We shall now prove that 

( 1 • 8) 

(1. 9) 

IA K'(x,z)Q(dx,z) = 
z 

IA T(x,z)Q(dx,z) = 
z 

z 

IA k(x;z(x))Q(dx,z), 
z 

L t(x;z(x))Q(dx,z). 

z 
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In property 6 we have introduced the sets A01 and A
02 

and the functions k
0

, 

k 1,t0 and t 1• By Az 2 A0 we have Az 2 AOi for i = 1,2. Using this and the 

definitions of the functions k0 ,k1,t0 ,t1, Kand T, it is easy to see 

(1. IO) k1(x;z(x)) = K(x,z) + L k0(y)p(x,dy,z) for all xEA , 
z 

z 

(1.11) t 1(x;~(x)) = T(x,z) + L t 0 (y)p(x,dy,z) for all XEA. z 
z 

Now integrate both sides of each of the relations (1.10) and (1 .11) with 

respect to Q(•,z). Using the non-negativity of the functions involved, as­

sumption 3(a) and the relations (1.2), (1.5) and (1.6), we get after an in­

terchange of the order of integration (1.8) and (1.9). By (1.7) - (1.9), 

Ef(t)/t converges to g(z) as t + 00 • However, using assumption 3(b), it is 

easy to verify that limt➔ooEf(t)/t is independent of the initial state. 

Moreover, by Theorem 3.16 in Ross (1970), we have for each initial state, 

with probability 1, lim Z(t)/t equals limt EZ(t)/t. This ends the proof. t~ +oo -

The quantity g(z) represents the long-run average (ex-pected) cost per 

unit time when policy z is used. This quantity is independent of the initial 

state. A policy z* E Z is called optimal when g(z*) ::;; g(z) for all z E Z. 

The average cost g(z) can also be found by solving a system of func­

tional equations. In solving this system we obtain in addition a function 

that will be used to improve policy z. 

ASSUMPTION 4. For any policy z E Z there is'a finite nwnber a such that 
z 

( I • I 2) E(N I In= x) :s; a for all xEA where N = inf{n ~ I I I= s }. 
- -v z z - -n z 

ASSUMPTION 5. For any policy z E Z there is a finite number S such that the 
z 

functions k(x;z(x)) and t(x;z(x)) are bounded by S for x EA. 
b Z Z 



Consider now the following system of functional equations, 

(1.13) v(x) = k(x;z(x)) - gt(x;z(x)) + E {v(!_1)1.!.o = x}, 

For any bounded solution {g, v(x) I x EA } to ( 1. 13), define 
z 

(1.14) v(x) = Ev(S[x,A ]) 
- z 

where ~[x,A] is defined on p.6. 

THEOREM 1 .2. (a) Let g = g(z), a:nd, for x E Az, let 

co r 
gt(y;z(y))} pn(x,dy,z), (1.15) v(x) = ln=O J {k(y;z(y)) -

A 
z 

where pO(x,A,z) = for x E A, pO(x,A,z) = 0 for x t A, and 

(1. 16) 

XEA. z 

for x'-A. z 

for n::C:1. 

Then v(s ) = 0 a:nd {g, v(x) I x EA } is a bounded solution to ( 1 .13). z z 
(b) For a:ny bounded solution {g,v(x)} to (1.13) holds g = g(z). 

(c) For a:ny two bounded solutions {g,v1(x)} a:nd {g,v2(x)} to (1.13) there 

is a aonsta:nt c suah that v 1(x) - v
2

(x) = c for all x.E Az. 

(d) Let y be a:n arbitrary state in X, then together (1.13) a:nd (1.14) have 

a unique bounded solution with v(y) = 0. 

PROOF. (a) We first observe that, by E!!_ =}:~Pr{!!_> n}, 

(1.17) for xEA. z 

By the assumptions 4-5 and relation (1.17), the function v(x) is bounded. 

From (A.3) we have Q(A,z) = /.coo pn(s ,A,z)/E(N I In=s ). Together this and . z - -v z 
(1.3) imply that v(s) = O. Using v(s) = O, assumption 5 and the relation z z 

(1.18) n f An-1 p (x,A,z) = p (y,A,z)p(x,dy,z) 
A \{s} 

z z 
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we next find that {g,v(x)} satisfies (1.13). 

(b) Integrating both sides of (1.13) with respect to Q(•,z), and using the 

relations (1.2) and 1.3), we get (b). 

(c) Using part (b), we have v 1(x) - v2 (x) = f {v1(y) - v2(y)}p(x,dy,z) for 

x EA. Iterate this equality n times and average over n. Letting n + 00 and 

usingz(l.1), we get v 1(x) - v2 (x) = f{v 1(y) - v2 (y)} Q(dy,z) for x E Az 

which proves (c). 

(d) This assertion follows easily from (a)-(c). 

REMARK 1.2. When we replace in Theorem 1.2 bounded by finite, the assump­

tions 4 and 5 can be weakened somewhat (cf. Derman and Veinott (1967)). 

To avoid overburdening the text, Theorem 1.2 is not stated with maximum 

generality. 

REMARK 1.3. The following relation may be useful in solving .(1.13) and 

(1.14), 

(1. 19) v(x) = k(x;z(x)) - gt(x;z(x)) + Ev(T ( )) -x,z X 
for xEA. 

z 

This relation follows from (1.13), (1.14) and the fact that the intervention 

z(x) in state x causes an instantaneous transition to the state T () -x,z X 

outside A, see property 7. 
z 

REMARK 1.4. In fact we need only to solve (1.13) in order to obtain a solu­

tion to (1.13) and (1.14). *) The dimension of the system of equations (1.13) 

is equal to the dimension of the embedded set of A. However the dimension z 
of A is determined by the choice of the natural process because an inter-

z 
vention is a decision which interrupts the natural process. Therefore, to 

keep the number of equations to be solved as small as possible it may be 

advantageous to make "obvious optimal decisions" part of the natural process. 

*) Sometimes (1.13) can be solved by solving a system of equations on a set 
which in its turn is embedded in A. Embedding may be very useful to re­
duce the number of equations to bezactually solved. 
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1.3. Basic tools. 

This section gives the basic tools for the solution techniques. Now, 

fix a policy z 1 E Zand a bounded solution {g(z 1) ,v(z 1 ;x) Ix EX} to (1.13) and 

(1.14) with z = z 1• To introduce the tools for improving policy z
1

, define 

for any XEX and dED(x), 

(1 .20) {
v(z

1
;x) ford= null-decision, 

v(d.zl;x) = k(x;d) - g(z
1
)t(x;d)+Ev(z

1
;_!.x,d) otherwise. 

Furthermore, for any policy ZEZ, let 

(1.21) { 
v(z(x).z 1 ;x) 

v([z]zl;x) = Ev([z]z ·S[x A]) 
1 '- ' z 

for xEA, z 
for x/A. 

z 

REMARK 1.5. In this remark we give a number of obvious relations that will 

be frequently used in the sequel. By (1.19) and (1.20), 

( I • 22) for all xEX 

Distinguishing between x EA and x t A , we get from (1. 22), (1. 21) and (I. I 4 ), z z 

( I • 23) for all xEX. 

Further, let V be any closed set with V2Az
1

• Then using (1.14), the strong 

Markov property of the natural process and the theorem of conditional ex­

pectation 

(I. 24) for all xEX, 

Similarly, let W be any closed set with W ~A. Then by (1.21), 
z 

(1. 25) for all xEX. 

We now prove the following main theorem. 

THEOREM 1.3. Let policy z E Z be such that v([zJz 1 ;x) :o;v(z 1 ;x) for aU x E x0• 

Then g(z) :o; g(z 1). This assertion remains true when the inequality signs 

are reversed. 



PROOF. Since v([z]z 1 ;x} ::; v(z1 ;x} for x E xO, it follows from (1.25} with 

W = x
0 

and (1.24} with V = x0 that 

Hence, for all XEA, z 

(1. 26} k(x;z(x}} - g(z 1}t(x;z(x}) + Ev([z]z
1

; T ( }} ::; -x,z X 

By (1.20} and (1.21), the right side of (1.26) equals v([z]z1;x}. Since, 

with probability 1, the state T· ( ) does not belong to A , we have by -x,z X Z 

(1. 21) that 

(1. 27) Ev([z]z 1; .!.x,z(x)) = IA v([z]z 1;y}p(x,dy,z) 

z 

for xEA. z 

Hence, by (1.26), for all xEA, 
z 

(1. 28) k(x;z(x)) - g(z 1)t(x;z(x)) + IA v([z]z 1;y)p(x,dy,z)::; 

z 

13 

Now, integrate both sides of (1.28) with respect to Q(·,z). Using the boun­

dedness of the functions k, t and v, and using the relations (1 .2) and (1.3} 

we get after an interchange of the order of integration g(z)::; g(z 1). Clear­

ly, this proof carries over when the inequality signs are reversed. 

Theorem 1.3 has the following corollary. 

THEOREM 1 .4. If v(z 1 ;x} = minZEZ v([z]z 1 ;x) for al:l x E xO., then poUcy z
1 

is optimal,. 
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This theorem provides us a direct approach for determining an optimal 

policy. We refer to De Leve, Tijms and Weeda (1970) for an application. 

However, in most cases an optimal policy can only be found by an iterative 

approach. We shall now discuss a policy iteration method. When we want to 

improve policy z1 Theorem 1.4 suggests to look for a policy z2EZ satisfying 

(1 • 29) 

Observe that, by_ (1.23) and Theorem 1.3, g(z 2) ~ g(z 1) when z2 satisfies 

(1.29). Also, by Theorem 1.4, z2 is optimal when z2 = z1• 

We shall now prove that a policy z2 satisfying (1.29) can be found by 

two operations. The first one is the poZicy improvement operation which 

adds to each state x E x0 a decision d E D(x) for which v(d.z 1 ;x) is minimal, 

where d = z 1(x) is chosen when this decision minimizes v(d.z 1;x). In this 

way we obtain a policy zj. It is assumed that zi EZ. By the construction 

of zj and the fact that v(d.z 1;x) assumes the same value for both d = z1(x) 

and d = null-decision (see (1.20) and (1.22)), we have 

(I • 30) 

Although g(zj) ~ g(z 1) (see Theorem 1.5 below) it will be clear from (1.30) 

that we need a second operation which determines a policy whose set of 

intervention states is contained in A,. To formulate this cutting operation 
zl 

define for any policy z E Z and closed set A 2 A
0

, 

(1.31) for XEX. 

REMARK 1.6. It may be helpful to interprete v(A.[z]z 1;x) as the expected 

stopping cost for initial state x when the natural process is stopped at 

the states of the set A and there is a cost of v([z]z 1;y) for stopping at 

state y. 

REMARK 1.7. In this remark we give some obvious relations that will be ,, 
needed in the sequel. By definition (1.31), 
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(I • 32) for all xEA, 

and, by (1.21) and (1.32), 

(1.33) for all XEX. 

Further, let V be any closed set with V ~A.Then, by (1.31) and the theorem 

of conditional expectation, 

( I. 34) v(A.[z]z
1 

;x) = Ev(A.[z]z
1

; ~[x,V]) for all xEX. 

TIIEOREM 1.5. Let z E Z be such that Az'?.Az and v([zJz
1 
;x) ~ v(z

1 
;x) for aU 

x E Az. Let A be any ctosed set with A
0 
~ 1 ~ Az such that v(A. [zJz

1 
;x) ~ 

~ v([zJz 1 ;x) for aU x E Az. Suppose that policy zA E z where zA (x) = z(x) 

for x EA, and zA (x) = nuU-d.ecision, otherwise. Then, g(zA) ~ g(z
1
). 

Observe that, by taking A= Az and z = zj in Theorem 1.5 and using 

(1.33), we get g(zj) ~ g(z
1
). Next we introduce 

ASSUMPTION 6. There is a ctosed set A' with A
0 

~A' ~x
0 

such that, for aU 

xEX
0

, v(A'.[zjJz
1
;x) ~v(B.[zj]z

1
;x) for any cl,osed set B with A

0
~B~x

0
• 

We note that, by (1.34) with V = x
0

, it is easy to verify that under 

assumption 6 the inequality in this assumption holds for all XEX. The set 

A' can be interpreted as an optimal stopping set for the optimal stopping 

of the natural process when this process must be stopped at the states of 

A0 , may be stopped at the states of x0 , and must be continued at the states 

of X\X
0 

and there is a cost of v([zjJz
1

;x) for stopping at state x. By a 

well known result in the theory of optimal stopping (cf. chapter 7 in Derman 

(1970)), assumption 6 holds when x0\A0 is finite. 

In section 1.5 we prove 

LEMMA 1.1. Let A' be as in assumption 6. Suppose that A'~ A
2

, and that 
• 1 

policy z
2 

E z, where z
2 

(x) = zi (x) for x EA', and z
2 

(x) = nuU-d.ecision, other-

wise. Then, policy z2 satisfies (1.29) and g(z
2

) ~ g(z1). 
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We shall now construct a set A' satisfying the conditions of Lennna I.I. 

ASSUMPTION 7. For any closed set A with A
O 

5 A ;: x
O 

holds that for each 

initial state, with probability I, the nwnber of times where the natural 

process enters A before it enters A
0 

is finite. 

In section 1.5 we prove 

LEMMA 1.2. Let u(x) be a bounded function on X. Let A
1 

and A2 be closed sets 

with A0 ~Ai~ x0 for i=l,2. For i=I,2 and xEX, let vi(x) = Eu(~[x,Ai]). and 

let v(x) = Eu(~[x,A1nA2J). Suppose that vi(x) ~ u(x) for i = 1,2 and all 

xEX0 • Then v(x) ~ vi(x) for i = 1,2 and all xEX. 

Next define Ras the class of all closed sets A' satisfying the condi­

tions of assumption 6. Also, let K be the class of all closed sets A such 

that A0 ~As. x0 and v(A.[zj]z 1 ;x) ~v([zj]z 1 ;x) for all XE x
0

• By (1.33) 

with z = z' I , 

( I • 35) A, EK and R c K. 
z -I 

Taking u{x) = v([z1Jz 1;x) in Lennna 1.2 and using R ~ K, we easily get 

( I • 36) 

ASSUMPTION 8. The intersection A* of all sets in R belongs to R. 

Observe that, by (1.35) and (1.36), this assumption holds when R is 

finite. Now define A', as the intersection of all sets in K. This set is 

further characterize:
1
in the next theorem where it is proved that this set 

is the desired set. 

* THEOREM I • 6 • (a) A' , c A , and A' , = A . 
zl - zl z1 

(b) A', is the smallest closed set A with A
O 
~A~ A

21
, such that, for any 

~1 
closed set B with A

0 
~ B c A " 

- zl 
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(1. 37) for au XEA '. 
zl 

(c) A~
1
, is the smallest closed set A with A

0 
~Ac A, such that 

- zl 

(1. 38) 

* PROOF. (a) By (1.35), Az, EK and A EK, so, 
* 1 * Then, by ( 1 • 36) , A n B E R, so, B ~ A • Hence 

* A~, ~Az' and A~, ~A . Let BEK. 
1 * I I 

A~, ~ A which proves (a). 
1 

(b) By the secon4 assertion of (a) and the assumptions 6-8, we have A= A~, 
1 

satisfies (1.37). Now, let A be any closed set satisfying the conditions 

of (b). Taking B = Az, in (1.37) and using (1.33), yields v(A.[z 1Jz 1;x) ~ 

~ v([z'Jz
1 
;x) for all 1x E Azi. Next, by (1.34) and (1.25) with V = W = Azj, 

this equality holds for all x EX. Hence A EK which proves (b). 

(c) The proof of (c) is very similar to that of (b). 

THEOREM I • 7. De fine z
2 

(x) = z i (x) for x E A~, , and z2 (x) = null-decision, 

otherwise. Suppose that poUcy z
2 

E Z •. Then ~2 satisfies (l .29) and 

g(z
2

) ~ g(z
1
). Policy z

2 
is optimal when z2 = z

1
• 

PROOF. The theorem follows from Theorem l.6(a), assumption 8 and lemma I.I. 

It is important to note that Theorem l.6(b) states that A~, is the 
. I 

smallest optimal stopping.set for the optimal stopping of the natural pro-

cess when this process must be stopped at the states of A
0

, may be stopped 

at the states of Az,, and must be continued at the states of X\Az'' and 
I 1 

there is a cost of v(z1(x).z
1

;x) for stopping at state x. Since in general 

practical problems have a special structure and this structure is reflected 

in the natural process, in most applications the determination of the above 

optimal stopping set turns out to be rather simple. 

1.4. The solution techniques. 

Thi; section sunnnarizes the solution techniques. In solving any par­

ticular problem, we first have to specify the properties 1-6 for this problem. 
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Next an optimal policy may be obtained by a direct approach or an iterative 

one. In most cases the iterative approach must be used. 

DIRECT APPROACH (cf. Theorem 1.3) 

Determine a policy z* E Z such that v(z* ;x) 

XE XO. 

= min 
2
v([z]z*;x) for all 

ZE 

ITERATIVE APPROACH (the policy iteration method). 

Let z be the policy obtained at the end of the (n-1)-th iteration 
n 

step (the first step is started with an arbitrary policy z 1). Then-th step 

of the policy iteration method proceeds as follows. 

(a) Value determination operation. Determine a bounded solution 

{g(z ),v(z ;x)} to (1.13) and (1.14) with z = z • n n n 
(b) Policy improvement operation. Construct policy z' by adding to each 

n 
state x E x

O
. a decision d E D(x) for which 

v(d.z ;x) = k(x;d) - g(z )t(x;d) + Ev(z ;T d) n n n -x, 

is minimal, where z'(x) = z (x) is chosen when z (x) is a minimizing deci-n n n 
sion. 

(c) Cutting operation (optimal stopping). Determine the smallest optimal 

stopping set A~, for the optimal stopping of the natural process when this 
n 

process must be stopped at the states of A
O

, may be stopped at the states 

of Az, , and must be continued at the states of X \ Az,, and there is a cost 
n n 

of v(z'(x).z ;x) for stopping at state x. Define policy z 1 by n n n+ 

l
z' (x) 

zn+l (x) = n 

null-decision, 

for xEA~,, 
n 

otherwise. 

This policy iteration method generates a sequence {z , n ~ l} of 
n 

polic1es where it is assumed that z ,z' E Z for all n ~ l. By Theorem l. 7 
n n 

we have g(z 1) ~ g(z) for all n~ I. Also, policy zk is optimal when n+ n 
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zk+l = zk. In section 1.6 we shall give conditions under which 

lim -~g(z) = inf Zg(z). n--,-w n ZE 

REMARK 1.8. In this remark we consider a modified policy iteration method 

where the policy improvement operation is not applied to all states and a 

stopping set is determined yielding a lower stopping cost than stopping im­

mediately. By Theorem 1 • 5 a policy f 1 E F can also be improved to a policy 

f 2 E F as follows_: 

(a) Determine a bounded solution {g(f1),v(f1;x)} to (1.13) and (1.14) with 

z = fl. 

(b) Construct a policy t 1 EF such that Af
1 

?.Aft and v(£ 1(x).f 1;x)::; v(f1;x) 

for all x E Af • 
1 

(c) Determine a set A with A
0

s_As_Af
1 

such that (cf. also remark 1.6) 

for all XEAf, 
1 

that is, the stopping of the natural process at the states of A is at 

least as good as the immediate stopping of the natural process when there 

is a cost of v(t
1
(x).f 1;x) for stopping at state x. Also, the set A must be 

determined such that policy f 2 E Z where 

= {f 1 (x) 
f

2
(x) 

null-decision, 

for all xEA, 

otherwise. 

This modified policy iteration method may be used to generate a se­

quence {f} of structured policies, see section 2.2 for an example. Also, 
n 

the modified policy iteration method is very often computationally more 

attractive than the above policy iteration method, see Weeda (1974a). 

Finally, we note that in case the sequence {f } converges to a policy f E F 
n 

this policy is optimal when a single iteration step of the above policy 

iteration method applied to f yields again f. 
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1.5. Proofs of Theorem 1.5 and the Lemmas 1.1 and 1.2. 

Proof of Theorem 1.5. We first prove v(A.[zJz
1
;x) = v([zAJz

1
;x) for all 

x EX. For x EA this equality follows innnediately from the relations (1.32) 

and (1.21) and that the fact that zA(x) is an intervention which equals z(x). 

For x i A we have by (I. 34) with V = A and (I. 21), 

Next we prove v(A.[z]z
1 
;x) :,; v(z

1 
;x) for all x EX. By the conditions of the 

Theorem, this inequality holds for x E Az. Since A '=.Az and A c A it follows z 1 - z 
from (I. 34) and (I. 24) with V = A that, for xi A , z z 

Together the above relations yield v([zAJz 1 ;x) :,; v(z
1 
;x) for all x EX, 

so, by Theorem 1.3, g(zA):,; g(z
1
). 

Proof of Lemma 1.1. By the first part of the proof of Theorem 1.5, 

(I. 39) for all XEX. 

We shall next prove that,. for all x EX, 

(1.40) 

Clearly, by (1.21) and the construction of zj, this inequality holds for 

x EAz'· Next it follows from (1.24) with V = A
2

, and (1.21) that (1.40) 
I I 

holds for all x EX. By the construction of zj we have v(z(x).zj ;x) ~ 

;;: v(zj(x).z
1
;x) for all XEX and zEZ. Distinguishing between xEAzj and 

x I. Az' it now follows from the latter inequality, (I .40) and the definitions 
I 

(1.20) and (1.21) that, for any policy z EZ, 

(1.41) for all xEA. 
z 
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By (1.31), (1.41) and (1.21), for all z EZ and x EX, 

(1.42) 

Assume now to the contrary that v([z
0

Jz
1 

;x
0

) < v([z
2

Jz
1 
;x

0
) for some z

0 
E Z 

and x
0

EX0 • Together this inequality, (1.39) and (1.42) contradict the in­

equality in assumption 6. Hence z
2 

satisfies (1.29). This implies 

g(z
2

) ~ g(z
1

) as observed below relation (1.29). 

Proof of Lerrona 1.2. For reasons of synnnetry if suffices to prove v
1 

(x) 2:v(x) 

for all x EX. Clearly, this inequality holds with the equality sign for 

XEA
1 

nA
2

• Let P(Bjx,A) = Pr{~(x,A) EB}. Now fix XEA~ where Ac= X\A. 

Using the fact that u(y) 2: v 
2 

(y) for all y E A
1

, we get 

+ j c P(dyllx,Al){j u(y2)P(dy2IY1,A2) + 
A2 Al 

+ f Ac u(y2)P(dy2jyl,A2)}. 

I 

Using the fact that u(y) ~ v 
1 

(y) for all y E A
2

, we next get 

f Ac P(dyllx,AI) jAc u(y2)P(dy2IY1,A2) 2: 

2 1 

2: f C P(dyllx,Al) JC P(dy2IY1,A2){J u(y3)P(dy3IY2,A1) + 
~ Al ~ 

+ jAc u(y3)P(dy3IY2,At)}. 

2 

Continuing in this way yields for n = 2,3, ••• 

v I (x) 2: j u(y1)P(dy 11x,A1) + l~:! Jc P(dy1 lx,B0 ) 

A2 Bl 

... f c P(dyklYk-l'Bk_l) J u(yk+l)P(dyk+tlYk,Bk) + en, 
Bk Bk+I 
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where 

en= f Bc P(dyllx,BO) ••• f Bc u(yn)P(dynlYn-I'Bn-1), 
I n 

By assumption 7 and the boundedness of u(•), lim c = 0. Further, for n-+oo n 
any set B, 

P(Blx,A1nA2) = P(BnA21x,A1) + f Ac P(dy1 jx,A1)P(BnA1 IY1,A2) + 

2 

+ f Ac P(dyllx,Al) f Ac P(dy2IY1,A2)P(BnA2IY2,A1) + •••• 

2 1 

Using these relations we have Ju(y)P(dylx,A1nA2) equals the limit of the 

right side of the latter inequality as n ➔ 00 • Hence v1 (x) ~ v(x) for all 
C C x E A
1

• For reasons of symmetry, v2 (x) ~ v(x) for all x E A2 • From this we 

get v
1
(x) = u(x) ~ v2(x) ~ v(x) for all x EA

1 
\ (A

1
nA

2
). The proof is now 

complete. 

1.6. Convergence results. 

This section gives conditions under which lim g(z) = inf 
2
g(z), . n-+oo n ZE 

where {;zn} is the sequence of policies generated by the policy iteration 

method, see section I .4. To our knowledge the only other paper dealing with 

the convergence of a policy iteration method for the case of a non-finite 

state space is that of Derman (1966) where different conditions for con­

vergence are given. 

ASSUMPTION 9. There are finite nwnbers a and 8 such that a ~ a and 8 ~ 8 z z 
for aU z E Z where a and 8 are introduced in the assumptions 4 and 5. z z 

THEOREM 1.8. Suppose that lim {v([z 1Jz ;x) - v(z ·x)} = n-+oo n+ n n' ,. * 
Then g = inf Zg(z). ZE 
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PROOF. We first observe that, by Theorem I.2(c) and (1.21), for any n~ I 

the difference v([z 1Jz ;x) - v(z ;x) is independent of the particular so-n+ n n 
lution v(z ;x). It follows from assumption 9 and (I. 17) that, for any z E Z, n 
the particular solution (1.15) of (1.13) is bounded by aB{l +g(z)}. Using 

this and the fact that the sequence {g(z )} is non-increasing, we have 
n 

v([z 1Jz ;x) - v(z ;x) is uniformly bounded in x and n. Next we observe n+ n n 
that, by (1.24) and (1.25) with V = W = x0 and the bounded convergence 

theorem, we get 

(I. 43) lim {v([z 1Jz ;x) - v(zn;x)} = 0 n-+<x> n+ n for all xEX. 

Now, fix z E Z. By theorem I. 7 and (1.29), v([z]z ;x) ~ v([z 
1 
]z ;x) for n n+ n 

all x E x0 and n ~I. Using (I .25) with W = x0 , we have that this inequality 

holds for all x EX. Hence, for all x EA and n ~I, 
z 

k(x;z(x)) - g(z )t(x;z(x)) + Ev([z]z ;T ( )) ~ n n -x,z x 

~ k(x;z(x)) - g(z )t(x;z(x)) + Ev(z ;T ( )) + Ev([z 1Jz ;T ( ))+ n n -x,z x n+ n --:x:,z x 

- Ev(z ;T ( )). n -'X,Z X 

Using the definitions (I .20) and (1.21), we next get, for all x EA and z 

k(x,z(x)) - g(z )t(x;z(x)) + f v([z]z ;y)p(x,dy,z) ~ 
n A n 

z 

~ v([z]z ;x) + Ev([z .]z ;T ( )) - Ev(z ;T ( )). n · n+ 1 n -x, z x n -'X, z x 

Integrate both sides of this inequality with respect to Q(•,z). Letting 

n-+ 00 , and using the relations (1.2), (1.3) and (1.43) and the bounded con­

* vergence theorem, we get g ~ g(z). This ends the proof. 

We need the following lennna. 
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LEMMA I • 3. Let { v ,n ~ I} be a bounded sequence such that for any e: > 0 there 
n 

is an integer N(e:) such that v + ::; v + e: for aU n,m ~ N(e:). Then lim v nm n n-+oon 
exists. 

PROOF. Letv= liminf v, and letV= limsup v. Choose £>0. Then, n-+oo n n-+<x> n 
v::;v +e: for all n~N(e:), so, v::;v+£ which proves the lemma since e: was 

n 
arbitrary. 

ASSUMPTION IO. The states introduced in assumption 2 is independent of 
z 

z E Z and equals s* (say). The set D(s*) consists of a single intervention. 

THEOREM 1.9. g* = inf zg(z). 
ZE 

PROOF. Using Theorem I.2(c), it is easy to see that for any n~l the policy 

z is independent of the particular choice of the solution v(z ;x) of 
n+l n 

(1.13) with z = z. Hence it is no restriction to assume that v(z ;s~) = 0 
n n 

for all n~ 1, cf. Theorem 1.2(d). Since the sequence {g(z )} is non-in­
n 

creasing, it now follows from assumption 9 and (1.14) - (1.17) that 

(1.44) for all XEX and n~l. 

We shall now prove 

(1. 45) lim v(z ;x) exists and is finite for all XEX. n-+<x> n 

Suppose that (1.45) holds. Writing v([z 1Jz ;x) - v(z ;x) = v([z 1Jz ;x) + n+ n n n+ n 
- v(z 1 ;x) + v(z 1 ;x) - v(z ;x), and distinguishing between x EA and 

n+ n+ n Zn+l 
x,/.Az , it easily follows from the relations (1.45), (1.21) - (1.19) and 

n+I 
(1.14) and the bounded convergence theorem that 

(1.46) lim {v([z 
1

Jz ;x) - v(z ;x)} = 0 n-+<x> n+ n n for all xEX. 

Hence, by Theorem 1.8, it suffices to prove (1.45). Now, fix n. By Theorem 

1.7, (1.29) and (1.23), v(z ;x) ~ v([z 1Jz ;x) for all x EX
0

, so, by n n+ n 
(1.24) and (1.25), 



(1.47) v(z ;x) ~ v([z 1Jz ;x) n n+ n 

Put for abbreviation 

(1.48) a(x) = k(x,z +l(x)) - g(z )t(x;z 
1

(x)) n n n+ 

for all XEX. 

for xEAz • 
n+l 
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Since z 
1

(s*) = z (s*) and v(z ;s*) = O, it follows from (1.19) with z=z 
n+ n n n 

that 

(I. 49) * a(s) + Ev(z ;T * ( *)) = O. 
n -s ,zn+l s 

Fix x EAz • From (1.47), (1.21), (1.20), (1.16) and (1.49), 
n+l 

= a(x) + Ev(z ;T ( )) ~ 
n -'X,Z } X n+ 

a (x) + Ev ( [ z + 1 ] z ; T ( ) ) = 
n n -'X,zn+l x 

= a(x) + JA {a(y) 

zn+l 

+ Ev(z ;T ( ))}p(x,dy,z 1) = 
n -y,zn+l y n+ 

= a(x) + JA {a(y) 

zn+l 

.... 1 
+ Ev(z ;T ( ))}p (x,dy,z 1). 

n -y,zn+l y n+ 

Continuing in this way and using repeatedly (1.47) and (1.49), we get, for 

k ~I, 

v([z 
1 
]z ;x) 

n+ n 

Letting k+ 00 , and using (1.44), (1.17) and assumption 2, we get 

(1.50) v([z 1Jz ;x) > '
00 J n+ n - lj=O A 

zn+l 

for all xEA • 
zn+l 

Let~ (x} be equal to the right side of (1.50), and let w (x) be equal to 
n n 

the right side of (1.15) with z = zn+l" Observe that ~n and wn are bounded. 
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Also, let P (BI x) = Pr{ S[x,Az J EB}. Since v([ z 1 Jz ;x) = 
n - n+l n+ n 

= Ev([z 1Jz ;S[x,Az ]) for all XEX, we have by (1.47) and (1.50) 
n+ n - n+l 

(1.51) v(z ;x) 
n ~ J 4> (y)P (dyjx) 

A n n 
zn+l 

for all xEX. 

Since v(z 1;s*) = 0 it follows from Theorem l.2(a),(d) and (1.14) that n+ 

(1.52) 1/1 (y)P (dy!x) 
n n 

for all xEX. 

Let "'n = g(zn) - g(zn+l). Observe that l'.n ~ 0. Now, by (I .52), (I .51), assump­

tion 9 and ( I • 17) , for any n ~ I • 

v(z 1;x) -v(z ;x) :,;f {lj, (y) - 4> (y)}P (dylx) = 
n+ n A n n n 

zn+l 

= 8 f p ( dy I x) r' -o f 
n A n J- A 

t(u;z 
1
(u))pj(y,du,z 1) :,;['. aS n+ n+ n 

zn+l zn+l 

for all x EX. Hence, for all x EX, 

v(z ;x) - v(z ;x):,; {g(z) - g(z )}aS n+m n n n+m for all n,m~l. 

Using (1.44), Lemma 1.3 and the fact that the sequence {g(z )} is bounded 
n 

and convergent, relation (1.45) now follows. This completes the proof. 

REMARK 1.9. A convergence proof can also be given when there is some fixed 

state which is a regeneration state for each decision process and in which 

the null-decision is the only feasible decision. 

For the case where x0 is finite it is shown in Weeda (1974b) in all 

generality that the policy iteration method converges to an optimal policy 

after a finite number of steps. 

REMARK I.IO. Consider the special case where A0 = x
0 

and consequently 

Az =,,X0 for all z E Z. Then, using (I .45)-(1.46), (I .14) and the finiteness 

of D(x), it follows from v([z 1 ]z ;x) = mind{k(x,d)-g(z )t(x;d)+Ev(z ;T d)} n+ n n n -x, 



for all x E x
0 

and n ~ I that there exists a bounded function v* (x), x E x
0 

such that 

(1.53) v*(x) = mindED(x){k(x;d) -g*t(x;d) + J X v*(y)p(dylx,d)}, 

0 

27 

where p(Alx,d) is the probability that the next intervention state belongs 

to the set A when in state x the intervention dis made. Moreover, by a 

standard argument as used in the proof of Theorem I .3, any policy z
0 

E Z 

such that z
0

(x) minimizes the right side of (I .53) for all x E x
0 

is optimal. 
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2. APPLICATIONS TO CONTROLLED QUEUEING SYSTEMS 

2.1. A switch-over policy for controlling the workload in the MIMll queue 

with switch-over costs 

2.1.0. Introduction 

We consider a service station with a single server where jobs arrive 

in accordance with a Poisson process with rate A. Each job involves an 

amount of work. The amounts of work of the jobs are known upon arrival and 

are independently sampled from an exponential distribution with mean 1/µ. 

At any time the server may choose between the service rates I and 2. When 

the server is in service and uses service rate i an amount of work cr. will 
l. 

be processed per unit time, i = I ,2. It is assumed that cr
2 

> cr
1 

> A/µ. Define 

the workload at time t as the total amount of work remaining to be processed 

in the system at time t, t~O. The server provides service when the system 

is not empty and uses the following switch-over policy. The server switches 

from rate to rate 2 when the workload exceeds the level y 1 
and switches 

from rate 2 to rate when the workload falls to the level y
2

, where y1 and 

y
2 

are given numbers with O < y
2 

< y1• It is assumed that it takes no time to 

switch from one service rate to another. 

The following costs are incurred. There is a holding cost of h > 0 per 

unit work in the system per unit time. When the server is busy and uses 

service rate i there is a service cost at rate r. ~ O, i = 1,2. There is a 
l. 

service cost at rate r
0 

~ 0 when the system is empty. The cost of switching 

from rate I to rate 2 is K ~ 0 (any cost of switching from rate 2 to rate I 

is assumed to be included in K). 

Denote the above switch-over policy as the (y1,y
2

) policy. We shall 

determine an expression for the average cost of the (y
1

,y2) policy. Related 

work was done by Thatcher (1968) who derived by busy-period analysis an ex­

pression for the average cost of the (y1,y
2

) policy with y 1 = y
2 

for the 

MIGi I queue with no switch-over costs. 

An expression for the average cost of the (y 1,y2) policy will be 
,, 

derived from Theorem I.I of section 1.2. To do this, we first have to spec-

ify the properties 1-6 in section I.I. This will be done in section 2.1.2. 



Some preliminaries are given in section 2.1.1. Finally, in section 2.1.3 

the embedded Markov process {.!n} corresponding to the (y1,y2) policy is 

studied and the expression for the average cost is given. 

2.1.1. Preliminaries 
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Consider the MjGll queue where jobs arrive in accordance with a Poisson 

process with rate A and the amounts of work involved by the jobs are inde­

pendent, positive random variables having a common probability distribution 

function F(x) with finite first moment Sand finite second moment e< 2). 

When the system is not empty the server provides service where an amount of 

work cr is processed per unit time. Assume that AS/cr < l. For any t;?: O, let 

,!_(t) be the total amount of work remaining to be processed in the system at 

time t. In queueing theory the process f:!(t), t;?: O} is often called the 

virtual waiting time process. Further, let T = inf{t;?:0 l.!_(t)=O}. We have 

the following lemma (cf. Theorem 4 in Thatcher (1968) and Tijms (1974)), 

LEMMA 2.1. Far any x > o, 

(2.1) E (.!,. I v(O) = x) = x/cr(l-AS/ cr) 

and 

(2.2) f 
T I 2 (2) 2 2 

E[ O ,!_(t)dt I :!(O) =x] = x /2cr(l-AS/cr) + AxS /2cr (1-Ae/cr) • 

PROOF. For the completeness we prove the second relation. The first one is 

well-known. For any x > O, let n be the number of arrivals in (O,x/cr). Let 

w = J~ w(x)F(dx) where w(x) is-~efined as the left side of (2.2). Then, by 

well-known properties of the Poisson process and (2.1), 

so' 

for 

E[ J: v(t)dt I :!(O) = x, n:K = n) = 

2 ,n 
= x /2cr + nSx/2cr + nw + lk=l(n-k)S{S/cr(l-AS/cr)}, 

by unconditioning on n, w(x) =x2/2cr+ASx2/2cr2 +Axw/cr +A2x2e2Jcr3
(1-AS/cr) 

~ Joo all x >O. Together this and w = 
0 

w(x)F(dx) yield (2.2). 
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2.1.2. The nawral process3 the decisions3 and the k- and t-functions 

The natural process and the feasible decisions will be of course spec­

ified to measure the (y 1,y2) policy. Before doing this, we make the follow­

ing observations. The natural process and the intervention must be chosen 

in such a way that the result of the natural process and the control by the 

interventions agrees with the process describing the workload when the 

(y1,y
2

) policy is used. However, these choices determine the set A
0

• In its 

turn the set A
0 

is determinative for the calculation of the k- and t-func­

tions. It will be obvious that we shall try to choose the natural process 

and the interventions in such a way that the resulting set A
0 

allows for a 

simple calculation of the k- and t-functions. Clearly, a convenient choice 

for the natural process is one where the server never switches from one 

service rate to another. Given this choice it will also be clear that the 

states corresponding to the cases where the system becomes empty are at­

tractive states to set up the sets A01 and A02 • However, the state corres­

ponding to the situation where the system becomes empty while the server is 

adjusted to service rate is not an intervention state for the (y1,y2) 

policy. Nevertheless, by a generally usuable trick, we can achieve that 

this state is an intervention state. We can define the natural process such 

that in the natural process the service station is closed down forever when 

the system becomes empty while the server is adjusted to rate I. This has as 

a consequence that we also have to introduce both a fictitious intervention 

which re-opens the station innnediately and a fictitious state to which the 

system is instantaneously transferred by this intervention. All this can be 

done provided that the result of the natural process and the control by the 

interventions agrees with the process describing the workload under the 

(y 1,y2) policy, cf. remark I.I of section I.I. These observations will be 

used in the specification of the properties 1-3. 

We choose as state space 

X = {u I u real, u;;:: O} u {u' I u real, u;;:: 0} u {O}. 

State u(u') corresponds to the situation where the workload equals u and 
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the server is adjusted to rate 1 (2). In addition, in state O the station 

is closed down. State O corresponds to the situation where the workload is 

zero, the station is open and the server is adjusted to rate 1. 

The natural process is chosen such that in the natural process the 

server never switches from one service rate to another. For any initial 

state u' we define the natural process as the process describing the work­

load when always service rate 2 is used. For initial state u > 0 the natural 

process is defined as the process describing the workload under the use of 

service rate I u~til the system becomes empty. Then the natural process 

closes down the station and assumes state O which is an absorbing state for 
-the natural process. When the initial state is O the natural process stays 

in this state until the next job arrives. Then the natural process assumes 
. *) 

state y when this job involves an amount of work y. 

Next we define the possible decisions. In each state either the null­

decision or the intervention d = 1 is the only possible decision. Both in 

state u with O < u < y 1, state u' with u > y2 and in state O the null-decision 

is the only feasible decision. The null-decision does not disturb the nat­

ural process. In the other states the intervention d = 1 is the only possible 

decision. The intervention d = I in state u' with O ~u ~y
2 

prescribes to 

switch from rate 2 to rate 1 and causes an instantaneous transition to state 

u when u > 0 and to state O when u = O. The intervention d = 1 in state u with 

u~y1 prescribes to switch from rate I to rate 2 and causes an instantaneous 

transition to state u'. Finally the intervention d = 1 in state O prescribes 

to re-open the station and causes an instantaneous transition to state 0. 

Now, it will be clear that the result of this natural process and the 

control by the above decisions agrees with the process describing the work­

load under the (y 1,y2) policy. Also, by the above choices, 

A
0 

= { o} u { u I u ~ y 
1 
} u { u' I o ~ u ~ y 2} • 

Since o2 > o
1 

> >../µ we have for each initial state that, with probability 1, 

the natural process will eventually reach one of the states O and O', so 

the set ¾o satisfies the conditions of property 4 in section 1.1. The fact 

*) The above discussion shows that the choice of the natural process re­
quires some practice just as the choice of the contour in complex inte­
gration. 
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that the states O and O' belong to A0 has as a consequence that the task of 

calculating the k- and t-functions is an easy one. To do this, we choose 

For u::C:0 and i=l,2, let 

T. (u) 
1. 

u 
= -a-. -=-(1---:.\...,./ µ-o-.-:--) 

1. 1. 
and w. (u) 1. 

2 AU = u + ------~ ( I ) 2 2 2 • 
2oi 1-:.\ µoi µ o.(1-:.\/µo.) 

1. 1. 

Now, using Lennna 2.1, it easily follows that (see property 6 1.n section I.I) 

for u::C:O, 

for u::c:O, 

for u::C:y 
1

, 

for O<u~y2 , 

Clearly, the class Z of policies consists of the single policy 

z = (y1,y
2
). Also, Az = A

0
• It will be obvious that assumption I 1.n sec­

tion 1.2 is satisfied. Now we consider the embedded Markov chain {I}, see 
-n 

section 1.2. This Markov chain describes the workload at the epochs at 

which the system enters the set Az using the (y1,y2) policy. Since 

a
2 

> a 
1 

> ;\/µ it follows that assumption 2 holds when we take sz = O. Let 

Q(•) be the unique stationary probability distribution of {I}. For ease of 
-n 

notation, put Q
0 

= Q({O}), Q(v) = Q({u I u::c:v}) for v:::::y1, and Q2 = Q({y2}). 
To determine these probabilities, define, for all O < u < y I and v::::: y 1, 

p(u,v) = probability that the state of the first entry of the natural 

process into the set {0} u {x I x::::: y1} belongs to the set 

{x I x::::: v} given that the initial state is u. 
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Also, let p
0

(u) = l -p(u,y
1

) for O <u <y
1

• Now, by (1.2) in section 1.2, 

and 

Considering what can happen in a very small time interval, we get for any 

V :2:: y 1 

ap(u,v) 
au 

1 -µx -µ(v-u) 
J
y -u 

= {'>1./0
1 
)[-p(u,v) + 

0 
p(u+x,v)µe dx + e ], O<u<y. 

1 

Routine analysis involving the use of Laplace transforms yields after some 

algebra 

p(u,v) 
-(µv-iy

1
Ja

1
) (µcr

1
-i)(u/cr

1
) -(µcr

1
-1)(y

1
/cr

1
) _

1 = 1e [e -l][µcr
1
-Ae J 

for all O<u<y
1 

and v;,:y
1

• From p
0

(u) = l -p(u,y
1
), 

-(µcrl-1)(yl-u)/crl -(µcrl-1)(yl/crl) -1 
p

0
(u) = [µcr

1
-ie J[µcr

1
-ie J , O<u<y l. 

The formula for p
0

(u) was also found in Keilson (1963). Using these results 

we next get after some algebra 

-1 -(µcrl-i)(yl-y2)/crl 
QO = c {µal - 1e } 

-1 -(µcrl-i)(yl/crl) 
Q2 = c (µcr

1
-i)e 

q(v) 
-1 -(µv-1yl/crl) 

= c µ(µcr
1
-i)e for all v;,:y

1
, where q(v) = -aQ(v)/av, 

with 
-(µcrl-i)(yl/crl) -(µcrl-A)(yl-y2)/crl 

c = µcr
1 

+ (2µcr
1
-21)e -ie • It 1.s easy 

to check that assumption 3 holds. Now, by Theorem 1.1, the average cost of 

the (y
1

,y2) policy is equal to 
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k(O;l)Q
0 

+ f)O k(u;l)q(u)du+k(y2;1)Q
2 

Y1 
g(y I ,y 2) = ----------------

t(O; I )QO + r)O ~(u;I)q(u)du+ t(y2;1)Q
2 

Y1 

Each of the quantities in this expression has been explicitly determined. 

We further refrain from working out this expression. To end, we consider 

the special case where the switch-over cost K = 0 and the y-policy is used. 

They-policy swi~ches from rate I to rate 2 when the workload exceeds the 

level y and switches from rate 2 to rate I when the workload falls to the 

level y. Putting K=O and y
1 

=y
2 

=yin the above expression for g(y
1
,y

2
), 

we find after some algebra that the average cost of they-policy is equal to 

g(y) 

where 

2 2 r 1 = h(a
2
-a 1)/µ + hA(a2-a1)/µ + r

2
a

2 
- r 1a

1
, 

2 y
3 

= r
0

/A + ha
1
/µ + hAa

1
/µ + r

1
a

1
, 

Putting the derivative g'(y) = 0 yields after some algebra 

(2.3) 

-I where b = (hµcr
1
) (µcr

1
-:q{r

0
+ (r

2
cr

1
-r1cr 2)/(cr

2
-cr

1
)}. By cr

2 
>cr

1 
>A/µ the 

function g 1 (y) is strictly increasing for y ~ 0 with g' (y) -+ 00 as y -+ 00 • 

Using this it follows that for b > 0 the function g(y) is minimal for the 

unique positive y* (say) satisfying (2.3). Moreover, using the fact that 

I -e-x :;;x for x ~O, it is easily derived from (2.3) that 



In case b s O the function g(y) is minimal for y = 0. We note that (2.3) 

agrees with relation (2) on p.80 in Thatcher (1968). 

1 . . 1 * ( *) Be ow we give the optima y and g y for a number of numerical 

examples with µ=I, a 1 =4, h=5, r 0 =o, r 1 =IO and r
2

=15. 

a = 5 2 02 = 4. 5 02=4.25 

* * * * * * >.. y g(y) y g(y) y g(y) 

3 .759 16.297 I. 874 19.370 3. 872 21.361 

3. 25 .665 18.863 1. 566 23.330 3.103 26.764 

3.50 .572 22.027 1.260 28.800 2.342 35.044 

3.75 .479 26.144 .954 37.268 I. 580 50.402 

3.90 .423 29.340 .768 45.341 1.117 69.302 
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2.2. An algorithm for the switch-over policy controlling the queue size in 

the MIGl1 queue with two service types and switch-over costs. 

2.2.0. Introduction 

Consider a single-server station where customers arrive in accordance 

with a Poisson process with rate>... The service times of the customers are 

independent random variables. The server provides service when there are 

customers present where t_he server may choose between two service types. 

When the server uses service type I the service time of a customer is ex­

ponentially distributed with mean 1/µ, while for service type 2 the service 

time of a customer has a general distribution with finite first moment 8 

and finite second moment 8 (2). It is assumed that ;\8 < I. The server may 

switch from service type to service type 2 both at arrival epochs and 

service completion epochs. The service of a customer starts anew when it is 

interrupted for switching to service type 2. When the server is adjusted 

to service type 2 it is only allowed to switch to service type 1 at service 

completion epochs. It takes no time to switch from one service type to 

another. 

The following costs are considered. There is a holding cost at rate 
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h• i when i customers are in the system, where h > 0. A service cost at rate 

r. ~O applies when the server is busy and uses service type 1 (=1,2), while 
1 

a service cost at rate r
0 

applies when the system is empty. The cost of 

switching from service type I to service type 2 is K ~ 0 (it is assumed that 

any cost of switching from service type 2 to service type I is included in 

K). 

In solving this problem we will only consider policies that always use 

service type I when the system is empty and always use service type 2 when 

at least N customers are present where N is some fixed positive integer. 

This seems no restriction in practical problems provided that N is chosen 

sufficiently large. We are interested in policies of the following form. 

The server switches from service type to service type 2 when the number 

of customers present reaches from below the level i 1 and the server switches 

from service type 2 to service type 1 when the number of customers present 

falls to the level i
2

, where i 1 and i
2 

are given integers with Os i
2 

< i
1 

s N. 

Such a policy will be called an (i
1
,i2) policy. We shall give two very 

simple finite algorithms which each generate a sequence of (i 1,i2) policies 

where any policy of the sequence has a lower average cost than its predeces­

sor. The algorithms do not involve the solving of any system of linear 

equations. We note that for the case where K = 0 and the service time under 

service type 2 is also exponential it was shown in Crabill {1972) and 

Lippman (1973) that under general conditions an (i
1
,i2) policy with i

1
=i2+1 

is average cost optimal among the class of all possible policies. 

In section 2.2.1 we choose the state space, the natural process and 

the feasible decisions. Further, in this section we determine the k- and t­

functions. The algorithms are given in section 2.2.2. 

2.2.1. The state space, the natitraZ process, the decisions, and the k- and 

t-functions. 

We choose as state space 

~ = {i j i = 0,1, ••• ,N} u {i' j i=O,l,. •• } u 

u {(O',O),(i',t) I i=l,2, ••• and t~O}. 
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State i corresponds to the situation where i customers are in the system 

and the server is adjusted to service type I, while state i' corresponds to 

the situation where i customers are in the system and a service has been 

just completed by the use of service type 2. State (i',t) with i ~ I cor­

responds to the situation where i customers are present, the server is busy 

and uses service type 2, and the elapsed service time of the customer being 

served is t. State (O',O) corresponds to the situation where the system is 

empty and the server is adjusted to service type 2. 

We choose the natural process in such a way that in the natural process 

the server never switches from service type 2 to service type I and switches 

from service type I to service type 2 only when a customer arrives who finds 

N other customers present. Now, for any initial state (i',t) the natural 

process is defined as the process describing jointly the number of customers 

present and the elapsed service time of the customer being served (if any) 

when service type 2 is always used. When the initial state is i' the natural 

process makes an instantaneous transition to state (i',O). For initial state 

i the natural process describes the number of customers present when service 

type 1 is used until the arrival of a customer who finds N other customers 

present. At the arrival epoch of this customer the natural process makes an 

instantaneous transition to state ((N+l)',O). 

Next we choose the feasible decisions. The only two possible decisions 

are the null-decision and the intervention d= 1. The null-decision is the 

only possible decision in both the states (i',t), the states i' with i~N 

and the state 0. In the states O' and N we take the intervention d= 1 as 

the only possible decision. In the other states both the null-decision and 

the intervention d= I are possible. The null-decision does not disturb the 

natural process. The intervention d= I in state i prescribes to switch to 

service type 2 and causes an instantaneous transition to state (i',O), 

while the intervention d= 1 in state i' prescribes to switch to service 

type 1 and causes an instantaneous transition to state i. 

AO= {N} u {O'}. 

Observe that this set satisfies the conditions of property 4 in section 1.1. 
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Also, observe that, by the above definitions, there are only a finite num­

ber of states in which an intervention is possible. Using this it is easy 

to see that the assumptions 1-8 in chapter 1 are satisfied. 

To determine the k- and t-functions, we choose 

Before determining these functions, we make the following observations: 

(i) Consider the.MIGi I queue where the arrival rate is A and the service 

time of a customer has finite first moment 8 and finite second moment B(Z) 

with AB< 1. It is well-known that the expected length of one busy period and 

the expected total amount of time spent by customers in the system during 

one busy period are given by 

respectively. 

(ii) Consider the MIMII queue where the arrival rate is A and the service 

time of a customer has mean 1/µ. Assume that there is a holding cost of h 

per customer per unit time spent in the system and a service cost at rate 

r
1 

(r
0

) when the server is busy (idle). Given that at epoch O there are i 

customers present, let T(i) be the expectation of the first epoch at which 

N customers are present, and let c(i) be the expected holding and service 

cost incurred up to this epoch, i = O, ••• ,N. Now, from 

T(i) = (A+µ)- 1{1 +AT(i+I} +µT(i-1)} for l~i<N, 

c(i) = (A+µ)- 1{r
1 

+hi+Ac(i+l}+µc(i-1)} for l~i<N, 

T(O) = 1/A+T(l}, c(O) = ro/A+c(l}, and T(N) = c(N) = o, 

it is routine to derive that, for O~i~N, (cf. pp.313-317 in Feller (1957)) -- t A-µ) - I [ N - i + µ (A-µ) - l { (µ/A) N - (µ/A) i}] 

T(i) 

(2A)-1[N(N+l) - i(i+l)] 
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if 11.=µ. 

It is now easy to give the k- and t-functions, see property 6 of sec­

tion I.I. Using the results in (i) and (ii), it follows that 

k
0

(i) = c(i), t
0

(i) = T(i) for Q:s;i:s;N, 

k
0
(i') = hi{13/(I-A.f3)+11.$(2)/2(1-11.13/}+{hi(i+I)/2+r2i}13/(I-11.13) for i~O, 

t
0
(i') = iB/(I-11.13) for i~O. 

Hence, by k(i;l) = K+k
0
(i') -k

0
(i), t(i;I) = t

0
(i') -t

0
(i), 

k(i';I) = k
0
(i)-k

0
(i'), and t(i';l) = t

0
(i)-t

0
(i), we find 

(2.4) k(i;l) = K+k(i), t(i;l) = t(i) for ]:s;i:s;N, 

(2.5) k(i';l) = -k(i), t(i';I) = -t(i) for Q:s;i<N, 

where, for O :s; i :s; N, 

k(i) = hi{B/(1-11.13) +~13(2)/2(1->.13/}+{hi(i+I)/2+ri}B/(I-11.13)-c(i), 

t(i) = iB/(1-11.13) -.(i). 

2.2.2. Algorithms 

First we shall spec~fy the equations (I.13) and (1.I4) for the (i 1,i2) 

policy. Now, fix an (i 1 ,i2) policy with O :s; i 2 < i 1 :s;N. The set of interven­

tion states for this policy is given by { i I i 1 :s; i :s; N} u { i' I O :s; i :s; i 2}. 

Clearly, the embedded Markov chain {.!n_} corresponding to the (i 1,i2) policy 

assumes alternatively the states i 1 and i 2• The equations (I.13) and (1.14) 

yield for the (i 1,i2) policy, 
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To obtain a unique solution to this system of equations, we put v(i2) = 0 

(cf. Theorem 1.2(d)). Using (2.4) and (2.5), we then find 

(2.6) 

Observe that, by (2.6), we have found an explicit expression for the average 

cost of an (i 1,i2) policy. Also, observe that this expression is independent 

of N. 

Denote the (i 1,i2
) policy by f 1• We shall now give a procedure that 

derives from policy f 1 an improved policy f 2 = (k1,k2) of the same struc­

ture. This procedure will be based on the modified policy iteration method 

outlined in remark 1.8 of section 1.4. First we determine a policy 

f 
1 

= (j 
1 
,j 

2
) with i

2 
:,; j 2 < j 1 :,; i 1 by applying the policy improvement opera­

tion in the following way. Let j
2 

be the largest integer such that 

i
2 

<j
2 

<i
1 

and v(t.f1;i') < v(i') = 0 for all i 2 <i:;:;j
2 

if such an integer 

exists, and let j 2 = i
2

, otherwise. Then let j 1 be the smallest integer 

such that j
2 

<j
1 

<i
1 

and v(l.f
1
;i) < v(i) = v(i

1
) for all j 1 :,;i < i

1 
if such 

an integer exists, and let j 1 = i 1, otherwise. Next we determine a policy 

f
2 

= (k
1

,k
2

) with Q:;:;k2 :;:;j
2

<j
1 

:;:;k1 $N such that the stopping of the natural 

proces at the states of the set A= {i I k
1

:,; i :;:;N} u {i' IO:,; i ::;k
2

} yields 

a lower expected stopping cost than the immediate stopping of the natural 

process at the states of the set A= {i I j 1 :,;i ::;N} u {i' IO :,;i :;:;j 2} when 

there is a cost of v( I. f 
1 
;x) for stopping at state x •EA. To do this, we ob­

serve that for initial state i' IO' the state of the first entry of the 

natural process into the set {j' I j :,; k} with O:,; k < i is the state k', while 

for initial state i < N the state of the first entry of the natural process 
' into the set {j I j :::: k} with i < k:,; N is the state k. Now the policy 



41 

f
2 

= (k
1

,k
2

) is constructed as follows. Let k
2 

be the largest value of i 

for which v(I.f 1;i') is minimal on [O,j
2

J, and let k
1 

be the smallest value 

of i for which v(I.f 1;i) is minimal on [j
1

,NJ. 

So far we have not specified the quantities v(l.f 1;i) and v(l.f1;i'). 

Using the fact that v((i' ,0)) = v(i2) = 0 for i > i 2 (see (I .14)), it fol­

lows from (1.21) that 

f . "<N or 1.
2 

<1._ , 

Using this, it is straightforward to verify from the construction of 

f 2 = (k1,k
2

) that 

where the equality sign in the first (second) inequality holds only when 

k
1 

= i
1 

(k
2
=i

2
). In case the (k

1
,k

2
) policy is unequal to the (i

1
,i

2
) 

policy it now follows from (2.6) that 

(2. 7) 

so the above procedure constructs a policy f 2 whose average cost is lower 

than that of policy f 1 in case f
2 

f f 1• 

We shall now formulate two algorithms. 

Algorithm 1 

Step 0. For the (i1,i2) policy compute g(i 1,i2) = 

= {K+k(i
1

) -k(i
2
)}/{t(i

1
) - t(i

2
}} and v(i1) = K+k(i

1
) -g(i 1,i2

)t(i
1
). 

Step 1. In case either i
2

+I = i
1 

or -k(i
2
+I)+g(i1,i

2
)t(i

2
+1)+v(i 1) ~ 0 

when i
2 

< i 1 - I, let j
2 

= i
2

• Otherwise, let j
2 

be the largest integer with 

i
2 

< j
2 

< i
1 

such that -k(i) + g(i
1 
,i

2
)t(i) < 0 for all i

2 
< i:,; j 

2
• 

Step 2. ,In case either i
1 

= j 2 +1 or K+k(i1-I}-g(i
1
,i

2
)t(i1-I} ~ v(i 1) 

when i 1 > j
2 

+I, let j 
1 

= i 1• Otherwise, let j 1 be the smallest integer with 
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j
2 

<j
1 

<i
1 

such that K+k(i)-g(i
1
,i

2
)t(i) < v(i

1
) for all jl :o;i<i

1
• 

Step J. Let k2 be the largest integer for which -k(i) + g(i 1 ,i2)t(i) is 

minimal on [ 0 ,j 2], and let k1 be the smallest integer for which 

k(i) -g(i
1 
,i

2
)t(i) is minimal on [j 1 ,NJ. 

Step 4. If k 1 I i 1 or k
2 

I i 2 , go to step O with the (k1,k
2

) policy. Other­

wise, the algorithm has been converged. 

Since there are only a finite number of policies, it follows from 

(2.7) that this algorithm converges after a finite number of iterations to 

an (i;,i;) policy, say. Using relation (I) on p.106 in Derman (1970) it is 

* * easy to formulate conditions under which the (i1,i
2

) policy is optimal among 

the class Z of policies. These conditions can be numerically checked when 

the algorithm has been converged. We do not discuss these conditions which 

involve the probability distribution of the number of arrivals during a 

service according to service type 2. 

It appears from computational considerations that the following algo­

rithm requires in general less iterations than algorithm I above. 

AZgonthm 2. 

The steps 0-2 and 4 are as in algorithm I. 

Step J. Compute g(j 1,j
2

) = {K+k(j 1)-k(j
2
)}/{t(j

1
) -t(j 2)}. Let k

2 
be the 

largest integer for which -k(i) + g(j 1 ,j 2)t(i) is minimal on [O,j 2J, and let 

k
1 

be the smallest integer for which k(i) - g(j 
1 
,j 

2
)t(i) is minimal on [j 1 ,NJ. 

It is straightforward to verify from this algorithm that 

where the equality sign in the first [second] inequality holds only when 

(j 1,j
2

) = (i 1,i2
) [(k

1
,k2) = (j 1,j

2
)J. Consequently algorithm 2 is finite 

too. It should be noted that algorithm 2 can also be derived directly from 

the modified policy iteration method outlined in remark 1.8 of section 1.4. 

In f;ct an iteration of algorithm 2 consists of both an iteration in which 

only a policy improvement operation is performed and an iteration in which 

only a cutting operation is performed. 



REMARK 2.1. An examination of the algorithms 1 and 2 shows that it is im­

material when we replace the functions k(i) and t(i) by k(i) + c 1 and 

t(i) + c2 for any constants c1 and c2• This observation may be useful when 

the functions k(i) and t(i) are very large as will be the case when A<µ 

and N is very large. 
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REMARK 2.2. The finite machine repair problem with a single repairman, two 

possible repair times from which repair time I is exponential, and switch­

over costs can Qe solved in an almost identical way. In this finite source 

problem the k- and t-functions must be computed by solving a system of 

linear equations. We note that for the finite machine problem with two ex­

ponential repair times and no switch-over costs Crabill (1973) has given 

conditions under which a switch-over policy (i1 ,i2
) with i

1 
= i 2 + I is 

average cost optimal among the class of all possible policies. 

We have applied algorithm 2 to a number of numerical examples with 

µ=I.I, S = .6, S(2) = .72, h = I, r
0 

= 0, r
1 

= 5, r
2 

= 40 en N = 40. In 

each example we have started the algorithm with policy (N/2,0). In table I 

we give the results of the iterations of algorithm 2 for the example with 

A= 1 and K = 25. For the other examples we give in table 2 the finally ob­

tained policy (i~,i;), the average cost g(i~,i;), and the number n of iter­

ations required. 

Table 1. The iterations when A= I and K = 25. 

iteration (il,i2) g(il,i2) (j I 'j 2) g(jl,j2) (kl ,k2) 

1 (20,0) 12.3450 (20,16) 12.2797 (20,7) 

2 (20,7) 12.0501 (13,9) 12.0395 (17 ,8) 

3 (17 ,8) 11. 9479 (15,9) 11.9424 (16,9) 

4 (16,9) I 1.9363 (16,9) 11.9363 (16,9) 
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Table 2. The policy (i7,i;). 

K = 0 K = 25 K = 50 

A c* ·*) 1
1 '

1
2 

c* ·*) g 1 1 ' 1 2 n c* ·*) 1 1' 1 2 
c* ·*) g 1 1' 1 2 n c* ·*) 1

1 '
1
2 

c* ·*) g 1 1' 1 2 n 

.8 (20,19) 6.2994 2 (25, 17) 6.3013 5 (27,17) 6.3019 4 

.9 (15,14) 8.4254 5 (20,12) 8.4655 4 (21,12) 8.4843 5 

1.0 (12,11) 11. 7220 4 (16,9) 11.9363 4 ( 17, 8) 12.0505 4· 

I.I (10, 9) 16.1431 4 (13,6) 16.6396 3 (14,6) 16.9288 3 

1.2 (8,7) · 21.3958 2 (11,5) 22.1864 3 (12,4) 22.6408 4 

REMARK 2.3. For the case where the service time under service type 2 is 

also exponential we were able to check numerically for each of the examples 

above that the following conditions guaranteeing the optimality of the 

(i7,i;) policy among the class Z of policies are satisfied, 

. * . 1 l. -1.+ 

-k(i) + g(i7 ,i;)t(i) +v(i;) ~ Ij,:0 {-k(i-l+j) + g(i; ,i;)t(i-t+j)}pj 

and 

. * . for all 1. 1<1.<N, 

• • 1 
where p. = (AS)J/(l+AS)J+ is the probability of j arrivals during one 

J 
service according to service type 2. 
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APPENDIX 

The appendix gives some results for discrete-time Markov processes 

with a general state space. Consider a Markov chain ~,.!_1,x2 , ••• with sta­

tionary transition probability function p(•,•) on (S,B) where the state 

space Sis a Borel set of a finite dimensional Euclidean space and Bis the 

class of all Borel sets in S. For any n:2:0, let pn(•,•) be then-step tran­

sition probability function of the Markov chain. That is, pn(x,A) = 
= Pr{~ EA I .!.a =x}. We assume that there is some state s (say) such that 

(A. I) Pr{!n = s for some n :::: I I ~ = x} = I for all XES, 

(A. 2) E(N I~= s) < 00 where N = inf{ n:::: I I !n = s}. 

.... o ) .... o ) ,J Let p (x,A = l for x EA, let p (x,A = 0 for x,:. A, and let 

For any set A EB, define 

(A.3) ,co --n I Q(A) = ln=O p (s ,A)/E(N ~ = s). 

Observe that, by EN = 2~ Pr{N > n}, 

(A. 4) I 
,co .... n 

E (N .!.a = s) = ln=O p ( s, S) , 

so, Q(•) is a probability distribution. We note that Q(A) can be interpreted 

as the ratio of the expected number of visits of the Markov chain to the 

set A before returning to states and the expected number of transitions 

needed to return to states starting from states. 

THEOREM A. I. For any A E B 

(A.5) 

and 

-1 ,n k 
limn400n lk=O p (x,A) = Q(A) for au XES 
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(A.6) Q(A) = JS p(x,A)Q(dx). 

Further, Q is the unique stationary probability distribution of the Markov 

chain{~}. Also, when~= s, 

(A. 7) limn~n-
1 

I:=o Ef(~) = f s f(x)Q(dx) 

for a:ny Baire function f such that J!f(x)IQ(dx) is finite. 

PROOF. For any xES, let f 0(x) = O, and let fn(x) = Pr{N=nl~=x} for n~l. 

By (A.I), l~ fn(x) = I for all x. Clearly, for any x and A (cf. p.365 in 

Feller (1966)), 

(A.8) n An ,n n-k 
p (x,A) = p (x,A) + lk=O p (s ,A)fk (x) for n~O. 

For x=s this relation is a renewal equation. By (A.2) and (A.4), both 

Infn(s) and l,pn(s,A) are finite. Now, by applying the Key Renewal Theorem 

(see p.292 in Feller (1957)), for any A EB, 

(A. 9) 
-I ,n k , 00 An ,oo 

limn~n lk=O p (s,A) = ln=O p (s,A)/ln=O nfn(s) = Q(A). 

Since I; fn(x) = 1 and pn(x,A) + 0 as n+ 00 for all x and A, relation (A.5) 

now follows from (A.8) and (A.9). Using (A.5) it is easy to verify that Q 

satisfies the steady state equation (A.6) (cf. pp.133-134 in Breiman (1968)). 

Since the Markov chain {x} has no two disjoint closed sets, Q is the 
-n 

unique probability distribution satisfying (A.6), see Theorem 7.16 in 

Breiman (1968). To prove (A.7), let m be a finite measure on (S,B) such 

that m(A) > 0 if and only if s EA. Then, by (A. 1), m(A) > 0 implies 

Pr{~ EA for some n ~ 1 I ~ = x} = 1 for all x E S. Consequently, the Markov 

chain {x} satisfies the recurrence condition of Harris (cf. pp.206-207 in 
-n 

Jain (1966)). Relation (A.7) now follows from Theorem 3.3 in Jain (1966). 
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